model LBO-5O2

OSCILLOSCOPE/VECTORSCOPE

OPERATING INSTRUCTIONS

and SERVICE MANUAL

LEADER ELECTRONICS CORP.

TABLE OF CONTENTS

PAGE

1. INTRODUCTION 1
2. SPECIFICATIONS 1
3. PRECAUTIONS 1
4. 1 Power Source Voltage 1
5. 2 Signal Input 3
6. 3 Intensity 3
7. 4 Tilt of Horizontal Traces 3
8. 5 Operation in a Powerful Magnetic Field 3
9. DESCRIPTION OF PANEL FUNCTIONS 3
10. 1 Front Panel 3
11. 2 Rear Pancl 10
12. OPERATING INSTRUCTIONS 11
13. 1 Preparation For Use 11
14. 2 AUTO. Synchronization 11
15. 3 LEVEL Synchronization 12
16. 4 Synchronization by EXT. TRIG. SOURCE 13
17. 5 Synchronization to TV Waveforms 13
18. 6 Voltage Measurement 14
19. 7 Pulse Measurements 17
20. 8 Frequency Measurement 20
21. 9 TV-V and TV-H Range 21
22. 10 EXT. H. IN 21
23. 11 VECTORSCOPE Application 22
24. 12 Checking Modulation in AM Transmitters 25
25. 13 Time Measurement and Frequency Marking 27
26. C1RCUIT DESCRIPTIONS 27
27. 1 Vertical 1nput 27
28. 2 Amplifiers 28
29. 3 Time Base 28
30. 4 CRT Section 29
31. MAINTENANCE 29
32. 1 General 29
33. 2 Exposing the Chassis 30
34. 3 Location of Adjusters and Test Points 30
35. 4 CRT Circuit 31
36. 5 CAL 0.5 Vp -p Output 31
37. 6 Vertical Amplifier Circuit 31
38. 7 Time Base Circuit 33
39. PIN CONNECTIONS, TRANSISTORS AND CRT 37
40. TRANSISTOR CHECKING 39
41. VOLTAGE AND WAVEFORM CHART 40
NAME AND NUMBER OF PCB's
40
40
42. PARTS LIST 41
43. BLOCK DIAGRAM 52
44. SCHEMATIC DIAGRAMS 53
45. PCB ASSEMBLY DRAWINGS 61

1. INTRODUCTION

The LBO. 502 is an all solid state wideband oscilloscope/vectorscope. It is extremely compact, lightweight and offers a new ease of operational convenience.

It has broad applications in every conceivable branch of electronics and has no equal in the servicing and troubleshooting of home entertainment products. It's use is very highly recommended in laboratories, schools, and production facilities.
2. SPECIFICATIONS

Vertical Amplifier	
Sensitivity	$10 \mathrm{MVp}-\mathrm{p} / \mathrm{cm}$ to $20 \mathrm{~V}_{\mathrm{p}-\mathrm{p} / \mathrm{cm}} \pm 3 \%$, calibrated in 11 steps, $1-2-5$ sequence and continuous adjuster (uncalibrated)
Bandwidth	DC to $15 \mathrm{MHz},-3 \mathrm{~dB}$ (with 3 cm deflection)
Rise Time	23 nanoseconds
Input Impedance	$1 \mathrm{Meg} \Omega$ shunted by 40 pfd (with $10: 1$ probe, $10 \mathrm{Meg} \Omega$ shunted by 15 pfd or less)
Input Connector	BNC
Calibration Voltage	$0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}} \pm 3 \%, 1 \mathrm{kHz}$; square wave
Horizontal Amplifier	
Sensitivity	200 MVp - $/ \mathrm{cm}$
Bandwidth	$2 \mathrm{~Hz}-200 \mathrm{kHz},-3 \mathrm{~dB}$
Input Impedance	IMeg Ω, shunted by 40 pfd
Time Base	
Sweep Speeds	$1 \mu_{\mathrm{s}} / \mathrm{cm}$ to $0.2 \mathrm{~s} / \mathrm{cm}$, calibrated in 17 steps, $1 \cdot 2-5$ sequence and uncalibrated continuous adjuster; TV-V $(33.3 \mathrm{~ms} / 10 \mathrm{~cm} ; 30 \mathrm{~Hz})$ and $(127 \mu \mathrm{~s} / 10 \mathrm{~cm} ; 15.750 / 2 \mathrm{kHz})$ preset positions.
Magnification	$\times 5$ (max. speed 200 nanosecs/cm)
Synchronization	Triggered and automatic, internal or external at + or - slope.
Intensity Modulation	Fxternal input over 15 V - p , negative polarity.
Power Supply	$115 / 230 \mathrm{~V} ; 50 / 60 \mathrm{~Hz} ; 40 \mathrm{VA} \pm 5 \mathrm{VA}$
Size and Weight	$73 / 8^{\prime \prime} \mathrm{h} \times 91 / 8^{\prime \prime} \mathrm{w} \times 15 \mathrm{~d}$, 17lbs. approx.
Accessories	Direct/Low capacitance probe LP-8X I
	Terminal adaptor . 1
	Test leads (three per set) 1
	Operating instruction 1

3. PRECAUTIONS

3-1 Power Source Voltage

The AC power input is normally wired for $105 \sim 125 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ operation. For other voltages, changes are necessary in the transformer primary connections. Refer to Fig. 3-1 for connections to match the average line voltage, $100,115,200,215$ or 230 V .

Terminal Arrangement and Wiring Diagram of Primary Windings

Fig. 3-1

The $A C$ line fuse ratings are shown below.

Average Line Voltage	Fuse Rating
100 V	
115 V	1 A, slow blow
200 V	
215 V	0.5 A, slow blow
230 V	

3-2 Signal Input

A voltage higher than 600 V (P.P+D.C.) applied to the Vert. Input, Ext. H, Trig. Input or the low capacitance probe may damage circuit components.

The value of 600 V ($\mathrm{P}-\mathrm{P}+\mathrm{D} . \mathrm{C}$.$) is shown in the following figures:$

Fig. 3-2
3.3 Intensity

An accelerating voltage of 1800 V is applied to the cathode ray tube during operation. If the cathode ray tube is left with a bright dot, (no sweep), or with unnecessarily raised intensity, the fluoresccnt screen may be stained with ion spots in the form of whitc lines or black blots.
The Intensity should be maintained at a minimum level.
3.4 Tilt of Horizontal Traces

The effect of the earth's magnetic field may cause slight tilting of the traces due to placement of the instrument. If the tilt is operationally inconvenient, change the placement of the unit or slope the scale by means of the SCALE TILT knob on the hood so that the scale is parallel with the traces.
3.5 Operation in a Powerful Magnetic Ficld

Operation in a powerful magnetic ficld will cause distortion of waveforms or make traces tilt exccssively. If the instrument is operated close to machinety or equipment that use a large transformets 200 or 300VA ratin. g), a great deal of hum will be noted. In the worst case, the traces may be so severely tilted that self-restoration is not possible. In this casc, demagnetize the instrument with a degaussing coil such as used in a color television set.

4. DESCRIPTION OF PANEL FUNCTIONS

The operational functions on the front and rear panels are described below. The numbers refer to their placement as shown on the following panel drawings.
41 Front Panel
(1) CRT Hood (Bezel)

Removal of the four hood nuts, will free the hood, scale plate, spacer and green filter. (Hold the SCALE TILT knob during the above procedure to avoid loss of scale assembly.)
(2) The large boxes on the scalc plate are calibrated in centimeters; the small markings on the center vertical and center horizontal scale lines are spaced at 2 millimeters.

Front Panel

Fig. 4-1
Rear panel

Fig. 42

In addition, the oblique lines, every 30 degrees, pointing towards the center of the scale are for vectorscope or vector pattern use. (This application is covered in detail on page 22 of this manual.)
(3) SCALE TILT

Slight Horizontal line tilt due to the influence of the earth's magnetic field or any other magnetic field may be corrected with the scale tilt adjustment.
(4) INT'EN (Intensity Adjustment)

Varies the bias on the control grid of the cathode ray tube to adjust pattern luminance or brightness. High luminance will cause return trace lines to appear on the screen.
(5) FOCUS (Focus Adjustment)

Adjusts focus grid voltage for best clarity of display.
(6) P1LOT LAMP

Lamp lights when the power is on.
(7) PWR ON (Power Supply Switch)

Turns power on or off.
(8) SCALE ILLUM. (Scale Ilfumination)

Provides illumination on the scales at proper brightness for easy scale and trace readings.
(9) ㄱㅡㅡ- (Ground Terminal)
(10) EXT. H or TRIG. IN (External Horizontal Axis 1nput or External Trigger Input Terminal)

External signals may be fed to the horizontal amplifier through this terminal when switch (14) is set in the H IN position. If external sweep or internal sweep in a range other than the $H 1 N$ are used, and external trigger synchronization is desired, the synchronizing signal is added to this terminal with switch (16) at Ext. position.
(11) TRIG.'D LAMP (Synchronization Indicating Lamp)

This lamp indicates whether or not trigger synchronization is operating. When it does not light, waveforms will be unstable (not locked in) or no trace will appear.
(12) TR1G. LEVEL (Synchronization Level Adjustment)

This is for stabilizing the starting point of trigger sweep at a proper level. 1f the fixed value is taken off the complex portion of the waveform under observation, trig. lamp (11) will go out and sweep will stop, and no trace will appear on the screen due to unblaning action of the CRT circuit. The same action will take place when there is no input signal.

Fig. 4-3

Automatic synchronization is accomplished by turning this knob fully counter-clockwise until it clicks. In this case, horizontal bright lines (Traces) will appear even when there is no input signal, automatic synchronization will be performed around the approximate center of its waveform and the lamp (11) will light.

Fig. 4-4
(I3) VARIABLE (Fine Adjustment of Sweep Time or Horizontal Sensitivity, Red Knob)

Fig. 4-5
It will not work when the switch (I4) is in TV-V or TV-H range.. In H IN range and when a signal is fed to the horizontal axis by way of EXT. or TRIG. IN. terminal of (10), it will operate as a fine adjuster of horizontal sensitivity.
(14) TIME/CM. or H IN (Switching of Sweep Time and External Horizontal Axis, Black Knob) Seventeen steps from $1 \mu_{S} / \mathrm{CM}$ to $0.2 \mathrm{~s} / \mathrm{CM}$. When measurement is made by the use of the indicated time, sct the VARIABLE (13) (red knob) to CAL'D by turning it fully clockwise.

VARIABLE

Fig. 4-6
The TV-V and TV-H ranges are preset to observe two cycles cach of the vertical and horizontal periods of television on 10 CM . In this case, of course, the VARIABLE control (13) does not work. With this knob (14) in the H IN range, the time axis circuit stops working, and a signal can be fed to the horizontal amplifier directly from an external source.

Clockwise rotation will shift the pattern to the right and vice versa.
PULL MAG X5
Switch for increasing gain of the horizontal amplifier. When pulled, the speed of TIME/CM, (14) will be multiplied five times; the sweep time will be $1 / 5$ of the indicated value.
(16) TRIG. SOURCE (Synchronizing Sigıal Source Switch)

Selects synchronizing signal source. At INT., part of the signal taken from the vertical input is utilized for syuchronization. Normal operation is performed with this switch at the INT. position.

EXT. position is used when synchronization is desired from another signal in close relation to the period of the signal fed to the vertical input. This synchronization signal is fed to terminal (10).
(17) TRIG. MODE

In normal operation, this switch must be set to NORM. position. It must be set to TV position when the switch (I4) is in TV-V or TV.H rallge, or when synchronization with the TV composite video signal is desired.
(I8) TRIG. SLOPE (Synchronization Slope Switch)
If triggered sweep is desircd against the positive slope of waveforms displayed on the screen, set this switch to $(+) \square$ position, and against negative slope, set it to $(-) \square$ position, whichever is applicable.

TRIG SLOPE

TRIG SLOPE

Fig. 4-7

For observation of compositc TV video signals it is necessary to follow procedure (17) and at the same time select the same slope polarity as the synchronizing signal of the video signals.

For positive polarity, set the TRIG. SLOPE to $\left({ }^{(}\right)$position.
(19)
(Vertical Positioning Adjustment)
Clockwise rotation will move pattern up, and vice versa.
OGAIN (Sensitivity Adjuster)
After (22) turncd fully clockwise and clicked adjustment can be made to bring sc nisitivity of Vertical Amplifier to indicated value.
(20) (Ground Terminal)
(2I) IN (Vertical Axis Input Terminal)
(22) VARIABLE (Vertical Sensitivity Fine Adjustment Red Knob)

Fig. 4-9
(23) VOLTS/CM (Vertical Sensitivity Switch, Black Knob)

Eleven steps from $0.01 \mathrm{~V} / \mathrm{CM}$ to $20 \mathrm{~V} / \mathrm{CM}$. If measurement is made with use of the indicated voltage sensitivity, set the VARIABLE (22) (red knob) to CAL'D by turning it fully clockwise until clicked, Note that the indicated voltage sensitivity is only applicable to the signal dircctly fed to Input Terminal (21). If a I0 to I low capacitance probe (such as LPB-15X and LP-8X made by LEADER) is connected to the Input Terminal (21), the values are ten times the indicated voltage,

SCALE IN Use

It will be noted that markings, A, B, and C , on the switch at different ranges correspond with the scalc graduations on the graticule, see Fig, 4-10 and Fig. 4-I I. When the VARIABLE (rcd) knob is at CAL'D, the scale in use will be illuminated. If the illumination is not required, set the RANGE ILLUM, switch, (36) on rear panel, at OFF,

Fig, 4-10

Fig. 4-11
(24) AC-DC-GND. (Alternating Current-Direct Current-Ground Switch)

Switches the coupling of the signal to Vertical Axis Input (21). DC coupling is obtained at the DC position, at AC position the direct current component is removed by a capacitor. The GND position grounds the amplifier input and opens Input Terminal (21).

Fig. 4-12

Set by (19)
Note the setting

DC content can be measured

DC content can not be measured

Fig. 4-13
(25) CAL 0.5Vp-p (Calibration Wave)

Standard signal output terminal for amplitude and waveform calibration. The frequency is a square wave signal, $0.5 \mathrm{Vp}-\mathrm{p}$, at 1 kHz .

Fig. 4-14

4-2 Rear Panel

(26) Legs used for Vertical Viewing and/or A.C. line cord winding convenience. Wind the AC cord aroung legs.

(27) AC Cord

Fig. 4-15
Obscrve caution relative to the rated line voltage.
(Refer to Section 3-1).
(28) FUSE

Fuse is released with the cap when rotated counter-clockwise. Note the type and rating of the fuse to be used. (Refer to Section 3-1).
(29) INTEN. MOD. Z (Intensity Modulation Terminal)
(30) Ground Terminal
(31) AC RECEPTACLE

Outlet for direct power connection to auxiliary equipment, independent of power switch and line fuse; indicated current rating is not to be exceeded.
$\left.\begin{array}{l}\text { (32) } \\ \text { (33) }\end{array}\right\}$ VECTOR AMP (NORMAL) switches
To be set at VECTOR when the instrument is used as a vectorscope. Normally set at NORMAI position.
(35)

R-Y INPUT and B-Y INPUT terminals
For connections to R-Y and B-Y signals in a color TV set when the instrument is used as a vectorscope. The R-Y INPUT is used when checking modulation in an AM transmitter.
(36) RANGE ILLUM.

Switch for turning on the lamps used in illuminating thc relevant scales for the VOLTS/CM ranges, see (23).

5. OPERATING INSTRUCTIONS

The LBO-502 differs from conventional oscilloscopes in that a trigger signal obtained from the input signal triggers and controls the sweep signal generator circuit (Trigger Sweep). When a signal is fed to the input, trigger pulses synchronizing with the input signal are generated. These pulses start the sweep circuit and display bright lines or traces on the screen. If traces are desired to constantly show on the screcn as with a conventional oscilloscope, set the TRIG LEVEL (12) at the AUTO position by turning it counter clockwise until clicked.

5-1 Preparation For Use

Fig. 5-1

Do not turn on power until all other settings shown on Fig 1 have been made.
Notes: 1. Set the VERTICAL VARIABLE (red knob) (22) on the CAL'D position by turning it clockwise until a click is heard.
2. Set the TRIG. LEVEL (12) on the AUTO position by turning it counterclockwise until a click is heard

After all settings are made, connect line cord to A.C. outlet. Turn the power switch to the POWER ON position. A display will appear on the screen in approximately ten seconds. The CAL, 0.5 Vp -p is applied to the $0.1 \mathrm{~V} / \mathrm{CM}$ range, a square wave form with an amplitude of 5 CM shows on the screen. Since AUTO SYNC. setting is used a stable (locked) waveform is displayed. Position the waveform for best viewing by adjusting the INTEN., (4) FOCUS., (5) and/or (19) $\uparrow,(15) \leftrightarrow$ controls.

5-2 Auto Syuclironization
[Position of Auto Knob]
TRIG. LEVEI.

Fig. 5-2

AUTO Synchronization is used for synchronization of comparatively simple waveforms. With AUTO Synchronization, the sweep citcuit is on even when no input signals are applied. Once an input signal is present the TRIG'D lamp (11) is lit and a synchronizing signal is developed from the input signal to lock in the input signal waveform. Thus, a trace will always be present in the AUTO synchronization position as in conventional oscilloscopes. (Example of AUTTO Operation)

AUTO
STAR'I

TRIG. SLOPPE

TRIG LEVEI.

TRIG. SLOPE - (push-in)

Fig. 5-3

During AUTO operation, sweeping always starts near the center of a waveform. Even if the amplitude of the input signal varics, synchronization is maintained as long as the amplitude does not fall bclow a minimum synchronization amplitude of 1 CM . When the waveform is difficult to stabilize (lock), increase the vertical amplitude or use the TRIG SLOPE switch, (18) choose the proper polarity for lock. in of waveform. If complcxity of the waveform still prevents synchronization, adjust the TRIG. LEVEL knob as explained in the next paragraph 5-3.

5-3 LEVEL Synchronization

It possible to start sweeping at any desired point of a waveform by adjusting the TRIG. LEVEL knob. (Example of T.EVEL Operation)

Fig. 5-4

If the LEVEL knob is turned as illustrated above, synchronization will be lost, or if no input signal is applied, bright lines (traces) on the screen will disappear as the sweep stops functioning. (These phenomena are inherent in a Trigger Oscilloscope.) Therefore, if LEVEL is set on an upper or a lower point of a waveform, even a slight change in the amplitude of the input signal can overrun a permissible range of fluctuation, causing the waveform to disappear from the screen. Namely, the sweep is halted. If it is difficult to obtain synchronization in the AUTO position, use LEVEL as shown below:

AUTO. makes the swcep starting point unstable as shown above.

LEVEL and SLOPE make it possible to move the sweep starting point to obtain stable synchronization.
Fig. 5-5

5-4 Synchronization by RXT. TRIG. SOURCE
Although the TRIG. SOURCE is used normally with INT.; EXT. can also be utilized under certain conditions. The EXT. trigger is affected by a vertical axis input signal plus an additional synchronizing signal to the EXT. H or the TRIG. IN terminal. In this case, the frequency of the additional input signal must be the same as that of the vertical axis input signal or the two frequencies must have a whole number (integer) relationship.

Example of Use with a TV Set

To Vert. INPUT

Fig. 5-6
In the observation of VIF detection output of complex or composite waveforms of a video amplifier, synchronization must be readjusted every time the signal changes its level. However, if only synch signals following synch separation from a TV set are added to the EXT. INPUT, then synchronization once attained will not be disrupted even if the magnitude of the vertical axis signal varies. (For Example, the point of measurement may be changed to another amplitude but the waveform will hold sync if a $0.1-2.0 \mathrm{~V}$-p signal is fed to the EXT. TRIG. IN (External Synchronizing Input) terminal. (If the signal is too great, attenuate the signal by means of a resistive network connected externally as shown above). In the case of horizontal pulses, just having a lead wire dangling inside the receiver will do for synchronization.

5-5 Synchronization To TV Waveforms

When the TIME/CM switch is set on the position of the TV. V range or TV. H range, the V or H sync. selector (Sync Separator) circuit readily functions on a composite video signal to present a stable waveform on the screen.

Push-in (-) when the sync. signal portion of the composite video signal is in luwer part (negative polarity) and push-out (+) if it is in npper part (positive polarity).

For synchronizalion with a TV composite video signal, set the TIME/CM switch at the TV. V or TV. H position and push-in The TRIG mode to TV.

Fig. 5-7
Note: Refer also to No. 18 in Item 4-1.

5-6 Voltage Measurement

Fig. 5.8

The graticulc scale is provided with 0.2 CM and 1 CM markings. When the VERTICAL VARIABLE (red knob) is turned fully clockwise till a click is heard, the CAL'D position is reached. The value indicated at the VOLTS/CM represents the value of voltage/CM of the display or waveform (peak value or DC value) and may be read directly from the scale.

5-6-1 Low Capacity Probe

When a low capacity probe (LPB-15X, LP.8X, etc.) is applied to the vertical axis INPUT, either the VOLTS/CM must indicate ten times the actual valuc or, convcrsely, measured voltages must be increased ten times. This applies to all measurements, either AC or DC , because the probe has a 10:1 attenuation factor.

A lo-eap probe is used to reduce loading effeets upon the circuitry under test. Input impedance when the lo-cap probe is used is $10 \mathrm{M} \Omega, 15 \mathrm{pF}$ or less.

5-6-2 AC Voltage
The $A C$ voltage is the variable portion remaining after the $D C$ component is eliminated, e.g. pulses and sine waves.

Fig. 5-10

As shown in Fig. 5-10, the voltage of the signal being measured is calculated as follows:
$V=$ (Amplitude observed on the screen) \times (Range indicated at the Volts/CM) Therefore, $V=4 C M \times$ $0.05 \mathrm{~V} / \mathrm{CM}=0.2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$

The above represents an input signal fed by a lead wire directly to the 1NPUT (Input Terminal). The observed value must be increased ten times, if a low capacity probe of 10:1 attenuation type is used at the INPUT. (Example: Measurement using a lo-cap, 10:1 Probe)
VOLTS/CM: $0.2 \mathrm{~V} / \mathrm{CM}$
Vertical Amplitude on the screen: 4CM
Probe: 10:1 low capacity type (LPB-15'X, LP-8X, etc.)
$\mathrm{V}=$ (Amplitude on the screen, CM) \times (VOLTS/CM, range) \times (Probe's magnification, 10)
Therefore, $\mathrm{V}=4 \mathrm{CM} \times 0.2 \mathrm{~V} / \mathrm{CM} \times 10=8 \mathrm{~V}(\mathrm{p}-\mathrm{p})$

If the input waveform is a sine wave, the measured voltage ($p-p$) can be converted to effective voltage (r.m.s.). The following relationship exists between the r.m.s. and the p-p values: r.m.s. Voltage $\times 2 \sqrt{2}$ $=\mathrm{p}-\mathrm{p}$ Voltage where $2 \sqrt{2}=2.828$
$0.2 \mathrm{Vp}-\mathrm{p}$ for instance, is converted to r.m.s. value as follows: $0.2 \mathrm{Vp}-\mathrm{p}=\frac{1}{2 \sqrt{2}} \times 0.2 \mathrm{Vr.m.s}=.0.0707 \mathrm{~V}$ r.m.s. $=70.7 \mathrm{mV} \mathrm{r.m.s}$.

5-6-3 DC Voltage

DC voltage is measured by observing the distance and the direction of the movement of the vertical position.

An upward shift of the bright line (trace) represents (+) and a downward shift (-).
VOLTS/CM: $2 \mathrm{~V} / \mathrm{CM}$
TIME/CM: $\quad 0.1 \mathrm{~ms} / \mathrm{CM}$
TRIG. LEVEL: AUTO.

Adjust to a suitable position and take note of position.
This position represents 0 V .
As shown above, the upward shift of the bright line (trace) indicates positive polarity. The value is obtained in the same manner as for the measurement of AC voltage, i.e.

$$
\mathrm{V}=+2 \mathrm{~V} / \mathrm{CM} \times 3 \mathrm{CM}=+6 \mathrm{~V}
$$

5-6-4 AC Voltage Containing OC Component When it is desired to observe the distribution of DC voltage component within an $A C$ wave form, the " $D C$ " and the " $G N D$ " are used as in the case of the measurement of DC voltage."
VOLTS/CM: IV/CM
PROCEDURE 1

Adjust to an appropriate position and rake note of GND position. This position represenrs OV. Set the TRJG. LEVEL knob at the AUTO, to have the horizontal bright line (trace) shown on the screen.

Fig. 5-12

Waveform will shift up or down from OV. Amount of shift determines the value of D.C. Component. An upward shift represents a positive valıe; a downward shift represents a negative value.
Note: When the DC component is much greater than the AC content of the waveform, measurement by the procedures above will result in a very small waveform on the screen. Turning the VOLTS/CM range clockwise in an attempt to enlarge the waveform will metely let the DC component push the waveform off the screen making observation impossible.

5-6-5 High Frequency Voltage

In making high frequency voltage measurements careful consideration must be given to the frequency characteristics of the vertical axis amplifier of the LBO-502. When a sine wave input signal with a constnat voltage is applied the vertical axis input terminal, amplitude shown on the screen decreases along with the frequency.

For example, with an amplitude of 4.2 CM on the screen, $1 \mathrm{~V} / \mathrm{CM}$ range and a frequency of 10 MHz :

$$
\mathrm{V}=4.2 \mathrm{CM} \times 1 \mathrm{~V} / \mathrm{CM} \times \frac{1}{1-0.3}=6 \mathrm{~V}
$$

Further, high frequency measurement involves very small input capacities, the circuit being tested will be adversely affected unless input impedance is sufficiently high. For this reason, it is advisable to employ a low capacity probe.

5-7 Pulse Mcasurements

With a time axis incorporated, the width (Tw) or the tise time of a pulse can be measured directly on the screen in a manner similar to that for the measurement of voltage.
When the VARIABLE (red knob) for the time axis is turned fully clockwise the CAL'D position is reached, the value indicated at the TIME/CM represents time per CM. (If setting is at MAG $\times 5$, the indication will be one fifth the value actually shown on TIME/CM.)
Pulse width (Tw) is measured as follows:
T'w $=$ (T1ME/CM range) \times (Horizontal Distance CM)

5-7-1 Magnifier

The Magnifier increases the gain of the horizontal amplifier by five, all the ranges of the T1ME/CM switch,
i.e., TV-V, TV-H, EXT. H IN ranges, are operational.

This Magnifier is used for the detailed observation of a portion of a waveform. This is especially conventent when the enlargement of a portion of a waveform, away from its sync. sweep starting point, is desired.

Procedure 1

MAGNIFIER: X I

Push-in (normal)

Procedure 2
MAGNIFIER: $\times 5$

Fig. 5-14

Place the portion being observed on the center of the scale by means of the horizontal positioning knob. Note: When MAGN1FIER $\times 5$ is used, brightness is decreased. Furthermore, as only one fifth the normal size of a waveform is shown on the screen, the waveform is visible only intermittently in the case of slow sweep. Time must also be calculated based on one fifth the value measured. Unless otherwisc required, always leave the MAGNIFIER at the $\times 1$ position.
5-7-2 Rise Time of Pulsc
The rise time of a pulse is measured making use of the MAGN1F1ER.
Procedure 1
TRIG SLOPE: $-($ Push-in $)$
MAGNIF1LR: $\quad \times 1$
Set TIME/CM so that the rising portion of the pulse is caught on the screen. Position the VAR1ABLE (red knob) to the end of its clockwise rotation.
Procedure 2
Position the pulse so that the flat portion is placed on the screen at a height with no fractional values, e.g. just 4 cm or 6 cm . (This is for easy calculation of 10% upper and lower deduction, when required.)
Procedure 3
Place the rising portion of the pulse on the center line of the scale by means of the horizontal positioning knob.

Ptocedure 4

Make certain the MAGNIFIER is set at $\times 5$ (Pilll-ont)
Shown below are examples of measurement and calculation:

Fig. 5-15
Calculation of rise time;
$\operatorname{Tr}=(\mathrm{TIME} / \mathrm{CM}$ range $) \times($ Horizontal Distance on the screen, CM) \times (Magnification Rate, $1 / 5$)
$\mathrm{Tr}=2 \mu \mathrm{~s} / \mathrm{CM} \times 2.9 \mathrm{CM} \times 1 / 5=1.16 \mu \mathrm{~s}$
On the basis of this rise time, Tr , the upper limit frequency of the amplifier, fc (-3 dB), call be determined.
For instance, on the assumption that the above measurement was performed with input pulses which were fast enough and that the value calculated represents the ourput waveform of the amplifier being tested, then the upper limit frequency, f_{c}, of the amplifier can be found.
This is relationship to determine $\mathrm{fc}(-3 \mathrm{~dB})$ from rise time of square wave pulse.

Units of time are enumerated below for reference:
Millisecond; ms $=10^{-3}$ Sec.
Microsecond; $\mu \mathrm{s}=10^{-6}$ Sec.
Nanosecond; ns $=10^{-9} \mathrm{Sec}$.
Picosecond; $\mathrm{ps}=10^{-12} \mathrm{Sec}$.
In the measurement of a comparatively fast pulse, the rise time of the LBO-502 must also be taken into consideration.

Rise time of The $\mathrm{LBO}-502$; $\mathrm{Ta}=0.023 \mu \mathrm{~s}$
Rise time of the output of the amplifier being tested; Ti
Rise time observed on the screen; Tr
With this data, the true rise time Ti is calculated:

$$
\mathrm{Ti}=\sqrt{\mathrm{Tr}^{2}-\mathrm{Ta}^{2}}
$$

5-8 Frequency Measurement

Frequency can be calculated from one period of a repetitive wave form.

Time of 1 period is:
$\mathrm{T}=[\mathrm{T} I \mathrm{ME} / \mathrm{CM}$ range $\rfloor \times[$ Horizontal Distance of 1 period $]=50 \mu \mathrm{~s} / \mathrm{CM} \times 3 \mathrm{CM}=150 \mu \mathrm{~s}$
Frequency, f, is:
$\mathrm{f}=\frac{1}{\mathrm{~T}}=\frac{1}{150 \times 10^{-6}}=0.67 \times 10^{4}$

$$
\mathrm{f}=6.7 \times 10^{3}=6.7 \mathrm{kHz}
$$

Units of frequency are enumerated below for reference:
Kilohertz; $\mathrm{kHz}=10^{3} \mathrm{~Hz}$
Megahertz; $\mathrm{MHz}=10^{6} \mathrm{~Hz}$
Gigahertz; $\mathrm{GHz}=10^{9} \mathrm{~Hz}$

5.9 TV.V and TV.H Range

The TIME/CM switch is provided with two special-purpose sweep ranges, TV-V and TV-H, for the convenience of servicing TV sets. These two ranges are preadjusted at $33.3 \mathrm{~ms} / 10 \mathrm{CM}$ and $127 \mu \mathrm{~s} / 10 \mathrm{CM}$ respectively, while the function of the VARIABLE is nullified. Since the function of the MAGNIFIER is left effective, it is still possible to magnify a specified point of a waveform for minute observation.
Also, as a TV sync. selector (sync. separator) circuit is built in, the observation of the waveform of a composite video signal is performed following the procedures as described in Item 5.5.
Notes: 1. When the brightness of a TV picture makes a sudden change, the composite waveform shown on the screen may disappear for an instant due to the trigger signal being developed from a rapidly changing portion of the composite signal.
2. In the case of circuits similar to color demodulators, if there are no horizontal sync. pulses present as shown here the T.V. sync. selector circuit will not function. The EXT. TRIG. SOURCE, if used as explained in Item 5-5, serves to present a locked in waveform without fail.

Fig. 5-18

5.10 EXT H IN

When the TIME/CM switch is set for the H IN range, the internal time axis circuit ceases to function and only the horizontal axis amplifier is operating. A sigual may then be fed through the EXT H IN terminal.

MAG. $\times 5$ is also left effective, when the VARIABLE is turned to its limit, thus the deflection sensitivity of the horizontal axis is less than $200 \mathrm{mV} / \mathrm{CM}$. (The less the value, the higher the sensitivity.)
If used in combination with a sweep generator, it is possible to observe frequency response, or to display Lissajous figures on the screen by feeding separate sine waves to the V and H inputs. For combined use with a swecp marker generator, sucl as type LSW-330, connect the V scope to the VERTICAL INPUT and the H scope to the EXT. H IN and follow the rest of the details as outlined in the LSW- 330 operation manual.
(Example of how to check Diode Characteristics)

Fig. 5.19

From the waveform shown, Zener voltage Vz and forward voltage Vf can be calculated as follows:

$$
\begin{aligned}
& \mathrm{Vf}=2 \mathrm{~V} / \mathrm{CM} \times 0.2 \mathrm{CM}=0.4 \mathrm{~V} \\
& \mathrm{Vr}=2 \mathrm{~V} / \mathrm{CM} \times 3 \mathrm{CM}=6 \mathrm{~V}
\end{aligned}
$$

Fig. 5-20
When the AC-DC-GND switch is set for GND, perform measurement after placing the bright line trace on this position by adjusting the $\boldsymbol{\uparrow}$ knob.
Note: Determine the suitable values of AC voltage and series resistance, based on rated values of both forward and backward currents for the diode being tested.

5.11 VECTORSCOPE Application

5-11.1 Color TV Signal Checking: Gated Rainbow Method

The signals in a color TV set can be observed for checking and adjusting the circuits for color saturation, or amplitude, and color tint, or hue, when used with a color bar pattern generator. Suggested LEADER Color Pattern Generators are: LCG-388, -382, $-384 \mathrm{~B},-386$ and $\cdot 381$.

GATED RAINBOW PATTERN

Fig. 5-21
The ten colors of the gated rainbow pattern are shown in Fig. 5-21.
Circuit adjustments can be made through observation of the respective waveforms as shown in Fig. 5-22. Notes: Waveforms are shown for pickup at the CRT grids.

For cathode pickup (cathode modulation system), the waveform displays will be inverted.
The oscilloscope can be synchronized with the horizontal sync signal in the following manner: Set the TRIG SOURCE at "EXT". Connect a short insulated wire to the EXT TRIG IN terminal and hang this wire at a suitable place within the TV set to pick up the horizontal pulse signal by "static" coupling. The waveforms should be "near sinewave" in shape at the peaks; if not, then" color saturation is indicated.
Waveforms at Grid Terminals (or at cathodes, with inverted display).

Fig. 5-22
In the rainbow pattern tests, if counting the peaks in the waveforms is tedious, usc of LEADER Color Pattern Generator, LCG-388, is recommended. With use of this generator, the threc respective waveforms will be displayed in the manner shown in Fig. 5-23.

R-Y, B-Y and (G-Y) Waveforms using LCG-388

Fig. 5-23

5-11-2 Vector Display of R-Y and B-Y Signals

By commecting the R-Y and B-Y grids (or cathodes) respectively to the R-Y and B-Y terminals at back of the oscilloscope, the vector characteristic, Fig. 5-24, can be observed.

Phase relationship of the gated rainbow signals

Fig. 5-24

The switch and control settings on the front panel for the vector display are shown in Fig, 5-25, Note that the settings are not used for vertical or horizontal inputs; only the positioning controls are to be used.

Fig, 5.25

The switch settings and input connections at the back of the oscilloscope are shown in Fig. 5-26.
Switch settings: Both slide switches at the VECTOR side.
Connections: R-Y signal to R-Y terminal.
$\mathrm{B}-\mathrm{Y}$ signal to $\mathrm{B}-\mathrm{Y}$ terminal.
INTEN MOD ground to chassis ground.
The gated rainbow signal from the color bar pattern generator is connected to the input of the color TV set.

Fig. 5-26
When the tint (or huc) control in the set is adjusted, the pattern shown in Fig. 5-27 will be displayed.
Adjustments are made to properly align the peaks on the short slanted lines on the graticule.
If there is flattening of the "peaks" in the pattern, over-control or saturation is indicated.

Fig. 5-27
IMPORTANT NOTE: After the vector pattern test, always set both slide switches at the AMP position.
5-12 Checking Modulation in AM Transmitters
The oscilloscope can be used in checking the modulation in AM transmitters up to 30 MHz , with direct connections to the R•Y input. The deflection sensitivity is approximately $30 \mathrm{Vp}-\mathrm{p} / \mathrm{cm}$.

PRECAUTION: Always turn off the transmitter power when connecring or disconnecting the leads.
A. Envelope Mcthod.

The conncctions and switch settings arc shown in Fig 5-28. Note that the B-Y slide switch is at AMP The sweep time depends on the audio modulation ftequency; set for a two cycle display Setup for Envelope Method:

The degrec of modulation is calculated from the following relation -
Modulation in $\%=\frac{E m a x-E m i n}{E m a x+E m i n} \times 100$
Where Emax and Emin are shown in Fig. 5-29.
Envelope Pattern:

Fig. 5-29
B. Trapezoid Pattern Method.
in this method, the connections are the same as shown in Fig. 5-28. The switch settings are the same except that the TIME/CM is set at H IN.

The displayed pattern is shown in Fig. 5-30.
The degree of modulation is calculated as given for the envclope method.
Trapezoid Pattern:

Fig. 5-30

5.13 Time Measurement and Frequency Marking

Witli intensity modulation of the CRT beam, it is possible to make time (period) measurements with use of an accurate external pulse generator. Furthermore, frequency markers can be applied to the response curves when the oscilloscope is used in circuit alignment procedurcs.
The signal, unknown time or detected swcep output, is connected to the INPUT. The panel controls are set for waveform observation or swecp operation.

Input from the pulse generator, or marker gencrator, is connected to the INTEN. MOD Z terminals on the rear pancl.

The pulse input voltage required is in the range from $5 \mathrm{Vp}-\mathrm{p}$ to $30 \mathrm{Vp} \cdot \mathrm{p}$. Positive pulses create dark spots; negative pulses bright spots.

6. CIRCUIT DESCRIPTION

The circuits which comprise the LBO- 502 will be described briefly in this section. Refer to the block diagram and schematic.

6-1 Vertical Input

The signal under examination at the INPUT connector is applied to the AC-DC-GND Push switch for AC
coupling through a blocking capacitor or is directly coupled (DC). A 11 step attenuator is used to lower the input voltage to suitable levels for amplification. The input voltage in volt per CM deflection is adjusted by suitable combination of four frequency-compensated attenuator pads.

6-2 Amplifiers

6-2-1 Vertical Preamplifier

The signal from the input attenuator is fed to FET Q403 by way of the input protection circuit of Q401 and Q402. After the high input impedance of the input is converted to a low impedance at Q405, it becomes a balanced output signal through Q407 and Q408.
Q404 and Q406 act as a temperature compensation circuits to cancel direct current drift.

6-2-2 Horizontal

The operational amplifier configuration, $\mathrm{Q} 803 \sim$ Q805 is used in the horizontal deflection stage. The amplification is dependent on the tatio of the feedback and input resistances. The amplitude of the horizontal signals, namely, the sawtooth voltage for the time base and preamplifier output are preset or controlled with adjusters and variable resistors.

The amplifier is single-ended and another identical stage, $\mathrm{Q} 806 \sim \mathrm{Q} 808$ with unity gain is used as a phase inverter for pushpull deflection.

The preamplifier, $\mathrm{Q} 801 \sim \mathrm{Q} 802$ for external horizontal input or triggering signals uses the Darlington citcuit for impedance conversion. The input is AC coupled and includes a diode for protection against voltage overload.

The $X 5$ magnification raises the gain by a factor of five. The spot position is adjusted by varying the bias on the base of Q803

6-3 Time Base

Control of the triggered sweep with calibrated speeds is accomplished as follows. A triggered signal from the input is picked off at Q408 in the vertical amplifier and through the buffer Q411then to the polarity changer Q601-Q604. The external triggering is applied from the EXT H or TRIG. IN jack. The TRIG LEVEL conttol, VR603, is for control at any chosen portion of the slope of the triggering waveform. The direction is selected with the TRIG SLOPE switch S601.

A Schmitt trigger wirh Q605-Q606 is used for waveshaping and generation of sharp pulses. These pulses are applied to the sweep gating and switching multivibrator made up of Q612-Q613.

Sawtooth waveforms are generated by the Miller integrator consisring of Q615-Q617, D610, D611. The TIME/CM switch controls the sweep timing in $\mu \mathrm{s}$, ms and secoud per CM., TV-V and TV-H by selection of the different RC combinations. The controlled sweep is then fed to the horizontal deflection amplifier,

The boldoff circuit with Q618, Q619, is used to start the sweep with the trigger signal and will keep the sweep in action, i.e., until the sweep is stopped as determined by the preset LENGTH adjuster VR608. The sweep is prevenred from starting, or being triggered, until the sweep voltage has dropped to zero.
The pulse for unblanking is picked off at the multivibrator output by Q614. In use, the pulse extinguishes the bean when there is no sweep action due to absence of the triggering signal. When the signal is applied to the
intensity control circuit of the CRT. the trace is displayed.
When set to AUTO and the trigger pulse is not generated at the trigger shaper, the one-shot multivibrator consisting of Q608 and Q609 will be OFF for Q609, OFF for Q610 and ON for D606 lowering the STABILITY presetting of VR606, thus the sweep loop made up of Q612 to Q618 will be free running.
When trigger pulse is generated at the trigger shaper, the pulse will be added to the onc-shot multivibrator through Q607.
Q609 turns on only when the pulse arrives, because of the time constant of C612 and R624 to R626 in the collector circuit of Q609.
Then, Q610 turns ON, D606 turns OFF, and VR606 returns to its initial triggered swecp condition.

6.4 CRT Section

The CRT, V101, is a 5 -inch flat-face type operated with an accelerating potential of 1800 V .
To intensity the bcam only when the sweep is in opcration, unblanking action is used. The control signal from Q614 is amplificd to apply apprxoimatcly 160 Vp -p to grid No 1 of the CRT.

Voltage Calibrator

The $0.5 \mathrm{~V} \cdot \mathrm{p}$ voltage used in calibration of the vertical sensitivity is generated with a multivibrator Q904.Q905.
The square waveform, at 1 kHz is fed to the amplifier Q906. The output voltage is taken off adjuster VR901 at the collector circuit.

Power Supplies

The following power supplies are used in the operation:

TYPE	OUTPUT Voltage	USE
Rcgulated	$\begin{aligned} & +12 \mathrm{~V} \\ & +27 \mathrm{~V} \\ & -27 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Vcrtical Preamplificr } \\ & \text { Amplifier, time base, Voltage calibrator } \end{aligned}$
Unregulated	$\begin{array}{r} -1600 \mathrm{~V} \\ -40 \mathrm{~V} \\ +210 \mathrm{~V} \\ +320 \mathrm{~V} \end{array}$	CRT acceleration voltage Vertical Output Amplifier Vertical output amplifier, Unblanking circuit, Astigmatism adjuster, $\mathrm{CH}-1, \mathrm{CH}-2$ and TRIG'D LAMP. Horizontal Amplificr

CHART 6-1

7. MAINTENANCE

7.1 General

In this section, the performance checks and the internal adjustments, when required, will be described.
Precautions:

1. Checks should be made after a 30 minute warmup.
2. Care must be exercised not to come in contact with the high voltage, 1800 V approximatcly, when checking the CRT circuit.

7.2 Exposing the Chassis

The covers are removed by unscrewing the 11 screws which hold them to the frame.

Fig. 7.1
Removing the cover screws.

7.3 Location of Adjusters and Test Points

On the inside of the top and bottom covers, labels are pasted which indicate the location of the different adjusters and test points. Prefix "TP" indicates the test points.
(LBO-502MAIN label)

(Artenuator Triminers, top view label)

Fig. 7-2
(LBO. 502 V.AMP label)

Fig. 7.4

Fig. 7.3
7.4-1 Limited control of spot intensity

If the spot cannot be extinguished or made to appear with the INTENsity control, check the following voltages and adjust if necessary.

TEST POINT	VOLTAGE, V		ADJUSTER
TP 104	+27	± 2	VR102
TP 106	-27	± 2	VR103
TP 202	-1600	± 100	

Assuming that the voltages are proper, set the controls as follows:
1NTEN
1NTENsity as shown at the right
TRIG LEVEL to AUTO (switched)
TIME/CM to 5 ms
Set the INTEN adjuster to a suitable brightness of the spot.

7-4.2 Sloping of the horizontal trace
When the axis of the CRT is oriented 360° in the horizontal plane, there may be a slight sloping of the trace from the horizontal, about 1 to 2 mm per 10 cm . This amount can be corrected by Scale tilt knob. (If the sloping is great, then the CRT must be repositioned by loosening the clamp at front of the CRT. CARE!! High voltage, -1800 approx., is present at the INTENsity and FOCUS controls and caution must be exercised.)

7-4-3 Proper focussing cannot be achieved

If at the opetating intensity, the vertical or horizontal display is not clear, adjustment is made with the ASTIGmatism adjuster VR205.

NOTE that when adjusted, there is possibility of a slight change, about 1%, in the vertical amplifier and time base characteristics.

7.5 CAL $0.5 \mathrm{Vp} \cdot \mathrm{p}$ Output

The calibration voltage at $0.5 \mathrm{Vp}-\mathrm{p}$ can be checked with a scope with accurate voltage calibration.
The proper voltage is $0.5 \mathrm{Vp} \cdot \mathrm{p} \pm 3 \%$. If necessary, adjust VR901 CAL adjuster.

7.6 Vertical Amplifier Circuit

7-6-1 Improper Square Wave Display

The display of the square wave input should have correct value and be clean cut.
If not, adjustments must be made using a lab grade square wave generator at about 1 kHz and a capacitance meter. The lattet is used to adjust the input capacitance of CIN to 40 pF .

Trimimers for the different attenuator pads are listed in CHART 7-1.

CHART 7-1 ATTENUATOR TRIMMERS

PAD	Cc	CIN
$1 / 2$	VC301	VC302
$1 / 5$	VC303	VC304
$1 / 10$	VC305	VC306
$1 / 100$	VC307	VC308
$1 / 1000$	VC309	VC310

Refer to 7.3 for location of trimmers
Adjust according to the steps in CHART 7-2.

CHART 7-2 ORDER OF TRIMMER ADJUSTMENTS

		TRIMMERS	
S'I'EP	VOLTS/CM SETT1NG	SQUARE WAVE Cc	FOR 40PF 1NPUT CAPPACITANCE Gn
1	0.01	-	
2	0.02	VC301	VC302
3	0.05	VC303	VC304
4	0.1	VC305	VC306
5	0.2, 0.5	CHE	ONLY
6	1	VC307	VC308
7	2, 5	CHECK	NLY
8	10	VC309	VC310
9	20	CHECK	NLY

NOTES: 1. The order of the steps must not be changed.
2. If equipment for the 40 pF input capacitance measurement is not available, adjust the C_{c} trimmer only.
7.6.2 Vertical shift when VOLTS/CM switch is changed.

Control settings for check:
AC-DC-GND switch to GND.
TRIG. LEVEL Knob to AUTO (switched).
Short the VERTICIAL INPUT to ground.
Rotate the VOLTS/CM from 0.01 to 0.1 cm
The vertical shift tolcrance should be less than 10 mm . If the shift is less than about 5 mm but affects the measurements, correction can be made with the gate current adjuster VR401

If the shif1 is over 5 mm , leakage of the order of 5 nA may be present in the input circuit caused by extremely high humidity conditions. Check by drying with forced hot air on the attenuator components. If the trouble persists, replacement of components may be necessary.
7.6.3 Vertical shift when VARIABLE of VOLTS/CM is rotated.

Control settings for check:
AC-DC-GND switch to GND.
TRIG. LEVEL Knob to AU'O (switched).
Rotate the VARIABLE control.
The shift should not exceed 10 mm .
If the shift is over this amount and affects the measurements, adjustments are required. Note, however, that the sensitivity and bandwidth characteristics are not affected.

STEP 1 Set the VARIABLE knob to fully clockwise. Note the position of the trace on the scale.
STEP 2 Set the VARIABLE knob to fully counterclockwise.
STEP 3 Adjust VR404 DC BAL adjuster to return the trace to the position in STEP 1.
STEP 4 Repeat STEPS 1, 2 and 2 as required to produce a no shift condition.
7.6-4 Compression of vertical trace

When the displayed waveform is distorted by compression, or "clipping effect" at the peaks, regardless of the vertical positioning control, it is an indication of improper bias on the input FET's Q403 and Q404.
Assuming that the FET's are functioning properly, voltage at TP401 and TP402 should be 0.5 V . If not within $\pm 0.3 \mathrm{~V}$ of 0.5 V , adjust VR 402 and/or VR40.3. (The voltmeter must have a resistance of $10 \mathrm{k} \Omega$ or higher on the range used.)
The voltage at the two points must be the same, otherwise the DC balance is upset and requires an adjustment of VR404 as mentioned in the previous section, 7-6.3.
When replacing the FET's Q403 and Q404, a matched pair must be selected in which the drain current ${ }^{1}$ DSS is within 110%. Typical IDSS is 5 mA at $\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}$ and $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$.

7.7 Time Base Circuit

7.7-1 No syuc action or no display.

Control setting for check:
TIME/CM switch to 5 ms .
Faults: 1. Trace cannot be exitnguished when the TRIG LEVEL control is rotated fully in the + or direction.
2. Trace does not apper when the TRIG LEVEL switch is set to AUTO (switched).

Adjustments:
STEP 1. Control settings
TIME/CM switch to 5 ms .
AC-DC-GND switch to AC.
$0.5 \mathrm{~V} \cdot \mathrm{p}$ CAL connect to V IN and VOLTS/CM Switch to 0.1 V .

STEP 2. Rotate the TRIG LEVEL control to full + or - direction and set VR606 STAB adjuster to the point where the trace just appears.
Note this setting.
STEP 3. Set the TRIG LEVEL control to "O" (Center) and set VR606 adjuster to the point where the trace just disappears.
Note this setting.
STEP 4. Finally, set VR606 at the position midway between the settings.

Stability adjustments.

Fig. 7-5

7-7-2 AUTO TRIG. is hard to synchronize.
When the TRIG. LEVEL knob is set to " O ", a sine wave of about 1 kHz should synchronize correctly at less than 10 mm with the SLOPE + or - . If it does not, adjust VR604 and AUTO BAL. so that the sine wave of about 1 kHz will synchronize within 5 to 10 mm even if the SLOPE is switched to + or - when AUTO is set.

7-7-3 TV synchronization is hard to synchronize.
Check whether the AUTO synchronization is being performed correctly or not. If it is not synchronizing within an amplitude of less than 10 mm , correct it in accordance with the procedure of the above section 7-7-2. and make check again.

Then, adjust VR605 and TV bias so that synchronization of the TV signal occurs even when AUTO is set. If possible, it would be best to check both positive and negative polarities.

7-7-4 Sweep timing incorrect on all ranges.
An accurate time marker or a wideband signal generator is required for checking.
When there is an error of more than $\pm 5 \%$ in timing on all ranges, adjust VR803 WIDTH adjuster.
As shown below, the 11 th pulse must lie exactly on the 11 th vertical line. If the pulse is $\pm 5 \mathrm{~mm}$ off, the error is $\pm 5 \%$.

Timing pulse display.
Fig. 7-6

In the calibration procedure, VR803 WIDTH adjuster must be set at the point where pulses in the range 0.2 ms to $1 \mu_{\mathrm{s}}$ are applied at the proper TIME/CM settings. The final setting of VR803 is made at the average point.
When a signal generator (sine wave) is used for calibration, the adjacent peaks will lie on one division of the scale; refer to CHART 7-3 for the TIME/CM VS. frequency relationship.

CHART 7-3 TIME/CM VS. FREQUENCY

TIME/CM SETTING	FREQUENCY	TIME/CM SETTING	FREQUENCY
AND TIME PER CYCLE	Hz	AND TIME PER CYCLE	$H \mathrm{~Hz}$
0.2 s	5	0.5 ms	2 k
0.1 s	10	0.2 ms	5 k
50 ms	20	0.1 ms	10 k
20 ms	50	$50 \mu \mathrm{~s}$	20 k
10 ms	100	$20 \mu \mathrm{~s}$	50 k
5 ms	200	$10 \mu \mathrm{~s}$	100 k
2 ms	500	$5 \mu \mathrm{~s}$	200 k
1 ms	1 k	$2 \mu \mathrm{~s}$	500 k
		$1 \mu \mathrm{~s}$	1 M

7-7-5 Sweep timing incorrect on $20-10-5 \mu$ s and $2-1 \mu \mathrm{~s}$ ranges only.
When only these ranges are incorrect in timing, adjustments are made in the same manner as for the 11 pulses display given in Section 7-7-4 above.

CHART 74	
RANGE	ADJUSTER
$20-10-5 \mu \mathrm{~s}$	VC701
$2-1 \mu \mathrm{~s}$	VC702

TV-V and TV-H width adjustment.
At each setting of the TIME/CM switch, two cycles of the respective TV signals should cover 10 cm . If there is a discrepancy, adjustment is made as shown below.

CHART 7-5

SETTING	ADJUSTER
TV -V	VR704
TV - H	VR705

Use of two input signals, TV and pulse,

TV SIGNAL INPUT

FOR REFERENCE

Pulses
10 ms at 3 cm separation
(VR701)
50μ sulses at 4 cm separation
(VR702)

TV-V and TV-H adjustments.
Fig. 7-7
7-7-6 MAG $\times 5$ adjustments.
A. Calibration is off:

When the sweep is not magnified (expanded) properly at Five times, adjust VR807 the MAG $\times 5$ adjuster.
B. Trace shift at MAG $\times 5$:

When the portion of the display is centered on the scale but shifts in position by 2 or 3 cm when the button is pushed, adjust VR808 theMAG CENTER adjuster for centering.
7-7-7 Horizontal shift when VARIABLE at EXT H IN is adjusted.
Set the Mag $\times 5$.
If the trace shifts by more than 2 or 3 cm , set VR802 DC BAL adjuster to the point where the shift is eliminated, or minimized.

8. PIN CONNECTIONS, TRANSISTORS AND CR'f

NAME	TYPE	CONNECTIONS
2SA678	PNP	1. Emitter 2. Collector 3. Base
2SC154C $2 S C 423$ $2 \mathrm{SC} 1012 \mathrm{~A}$	NPN NPN NPN	1. Emitter 2. Base 3. Collector (case)
2SC458	NPN	1 03 1 02 1 2 1 01 1. Emitter 2. Collector 3. Base

2SC499

9. TRANSISTOR CHECKING

Transistors can be checked quickly with an ohmmeter, using the $\mathrm{R} \times 100$ or $\mathrm{R} \times 1000$ range. (Disconnect the power supply.)
By considering transistor as two diodes with a common connection, tests can be made in the same manner as when determining the quality and diodes.

NPN TYPE

BASE

OHMMETER

HIGH RESISTANCE

PNP TYPE

OHMMETER

LOW RESISTANCE

Fig. 9-1

Condition for a good transistor.
10. VOLTAGE AND WAVEFORM CHART

TP No.	VOLTAGE AND WAVEFORM
TP101	+320 V
TP102	+210 V
TP103	+43 V
TP104	+27 V
TP105	-42 V
TP106	-27 V
TP202	-1600 V
TP401	+0.5 V
TP402	+0.5 V
TP403	+12 V
TP601	-7.6 V
TP602	-7.6 V
TP603	-19 V
TP605	
TP806	

11. NAME AND NUMBER OF PCB's

NAME	No.
V AMP	T-664
V F1NAL	T-588A
MAIN	T-592
V ATT	T-663
HV RECT	T-666
VECTOR	T-294A
P1LOT	T-665

$\begin{aligned} & \text { SCH. } \\ & \text { No. } \end{aligned}$	Symbol No.	Description				LEADER Parts No.		Note
		RESISTORS						
1	R101	Carbon film 1		330Ω	$\pm 10 \%$	RD1/2PSZK	330Ω	
1	R102	Carbon film		56Ω	. $\pm 10 \%$.	RD $1 / 2 \mathrm{PSZK}$	56Ω	
1	R103	Carbon film	1/2W	47Ω	$\pm 10 \%$	RD $1 / 2 \mathrm{PSZK}$	47Ω	
1	R104	Carban film		$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$1 \mathrm{~K} \Omega$	
1	R105	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PYY	$4.7 \mathrm{~K} \Omega$	
1	R106	Carbon film	1/4W	$1.8 \mathrm{~K} \Omega$	$\pm 5 \%$	RD\%PNYJ	$1.8 \mathrm{~K} \Omega$	
1	R107	Carbon film	1/4W	4.7 KO	$\pm 5 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
1	R108	Carbon filn	1/4W	$1.8 \mathrm{k} \Omega$	$\pm 5 \%$	RD1/4NYJ	$1.8 \mathrm{~K} \Omega$	
1	R109	Carbon film $1 / 2$		220Ω	$\pm 10 \%$	RD'/2PSZK	220	
1	R110	Carbon film	1/2W	47Ω	$\pm 10 \%$	RD'/2PSZK	47Ω	
1	R111	Carbon film	1/6W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PN YJ	$1 \mathrm{~K} \Omega$	
1	R112	Carbon filin	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDY/9NYJ	$4.7 \mathrm{~K} \Omega$	
1	R113	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
1	R114	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDI/4NYJ	$4.7 \mathrm{~K} \Omega$	
1	R11j	Carbon frim		$150 \mathrm{~K} \Omega$	$\pm 5 \%$	RD ${ }^{1 / 4} \mathrm{PNYJ}$	$150 \mathrm{~K} \Omega$	
1	R117	Carbon film	1/2W	5.6 6	$\pm 10 \%$	RD²/2PSZK	5.6Ω	
1	R11\%	Carbon film	1W	18Ω	$\pm 10 \%$	RD1SPZK	18Ω	
2	R201	Carbon filun	1/2W	$47 \mathrm{~K} \Omega$	$\pm 10 \%$	RDD $/$ PPS 2 K	$47 \mathrm{~K} \Omega$	
2	R202	Carbon filn	1/2W	$68 \mathrm{~K} \Omega$	$\pm 10 \%$	RD'/2PSZK	$68 \mathrm{~K} \Omega$	
2	R203	Carbun film	$1 / 2 W$	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$1 \mathrm{M} \Omega$	
2	R204	Carbonfilm	1/2W	$33 \mathrm{~K} \Omega$	$\pm 10 \%$	RD1/21 ${ }^{1}$ SLK	$33 \mathrm{~K} \Omega$	
2	R205	High Meg.	1W	$1.5 \mathrm{M} \Omega$	$\pm 10 \%$	HM1PK	$1.5 \mathrm{M} \Omega$	
2	R206	Carbon film	1W	$1.5 \mathrm{M} \Omega$	$\pm 10 \%$	RDIPYJ	$1.5 \mathrm{M} \Omega$	
2	R207	Carbon film	1W	1.5M	$\pm 10 \%$	RD1PYT	$1.5 \mathrm{M} \Omega$	
2	R208	Carbon film		$1.5 \mathrm{M} \Omega$	$\pm 10 \%$	RD1PYT	$1.5 \mathrm{M} \Omega$	
2	R209	Carbon film	1 w	$1.5 \mathrm{M} \Omega$	$\pm 10 \%$	RD1PYJ	1.jm Ω	
2	R210	Carbon film	1/4W	$47 \mathrm{~K} \Omega$	$\pm 5 \%$	RD'/4PNYJ	$47 \mathrm{~K} \Omega$	Factory Adj.
$\frac{2}{2}$	R211	Carbon film	1/4W	$27 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYYJ	$27 \mathrm{~K} \Omega$	
2	R212	Carbon film	1/4W	100Ω	$\pm 5 \%$	RD1/4PNYJ	10082	
2	R21.3	Carbou film	3/2W	$47 \mathrm{~K} \Omega$	$\pm 10 \%$	RD1/2PSZK	$47 \mathrm{~K} \Omega$	
2	R214	Carbon film	1/2W	$681 \mathrm{~K} \Omega$	$\pm 10 \%$	RDD1/2PSZK	68 K	
2	R215	Carbon film	1/2W	$68 \mathrm{~K} \Omega 2$	$\pm 10 \%$	RD1/2 PS7.K	68 K	
2	12216	Carbon filln	1/4W	3.3 K	$\pm 5 \%$		33 K	
2	R217	Carbon film		2.2 K	$\pm 5 \%$	RD1/4PNYJ	2.2 K	
2	R218	High Mug.		3. $\mathrm{6} \mathrm{m} \Omega$	$\pm 10 \%$	HM1PK	$3.6 \mathrm{M} \Omega$	
	R219	High Meg.		$3.3 \mathrm{M} \Omega$	$\pm 10 \%$	HM1PK	3.3M Ω	
2	R230	Carbon film	1/2W	1MS2	$\pm 10 \%$	RD'1/2PSEK	$1 \mathrm{M} \Omega$	
2	R23.31	Carbon film	1/2W	$1 \mathrm{~m} \Omega$	$\pm 10 \%$	RD $1 / 2 \mathrm{PSZK}$	$1 \mathrm{~m} \Omega$	
2	R232	Carbon film	1/2W	$1 \mathrm{~m} \Omega$	$\pm 10 \%$	KD1/2PSZK	$1 \mathrm{~m} \Omega$	
2	R233	Carbon film	1/2W	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$1 \mathrm{M} \Omega$	
2	R2.34	Carbon film	12 W	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$\lim \Omega$	
2	R235	Carbon film	1/2W	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$1 \mathrm{M} \Omega$	
2	R236	Carbonfilm	1/2W	$4.7 \mathrm{~K} \Omega$	$\pm 10 \%$	RD1/2PSZK	$4.7 \mathrm{~K} \Omega$	Factory Adj.
2	R237	Carbon film	1/2W	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$2.2 \mathrm{M} \Omega$	
2	R238	Carbon film	3/2W	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD//I'S 7 K	$2.2 \mathrm{M} \Omega$	
2	R239	Carbon film	1/2W	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$2.2 \mathrm{M} \Omega$	
2	R240	Carbon film	$1 / 2 W$	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2PSZK	$2.2 \mathrm{M} \Omega$	
2	R241	Carbon film	$1 / 2 W$	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD1/2'STK	$2.2 \mathrm{M} \Omega$	
2	R242	Carbon film	1/2W	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RD'2PSZK	$2.2 \mathrm{M} \Omega$	
2	R243	Carbon film	1/2W	$2.2 \mathrm{M} \Omega$	$\pm 10 \%$	RDV/2PSEK	$2.2 \mathrm{M} \Omega$	
2	R241	Carbon film	1/2W	2. $2 \mathrm{M} \Omega$	$\pm 10 \%$	RD/ITSZK	2.2 MS 2	
2	R245	Carbon film	3/2W	1MS2	$\pm 10 \%$	RD'/2PSZK	$1 \mathrm{M} \Omega 2$	
2	R246	Carbonfilnı	1/2W	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD $1 / 2 \mathrm{PSZK}$	$1 \mathrm{M} \Omega$	
2	R 247	Carbon film ${ }^{1 / 2}$	1/2W	$1 \mathrm{M} \Omega$	$\pm 10 \%$	RD $1 / 2 \mathrm{P}$ S 7 K	$1 \mathrm{~m} \Omega$	
2	R248	Carbon film	3/2W	$150 \mathrm{~K} \Omega$	± 1 (\%)	RD1/2PSZK	$150 \mathrm{~K} \Omega$	
2	R249	Carban film	1/4W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RIDIPPNY	$1 \mathrm{k} \Omega$	
2	R250	Carbon film	1/4W	32 K 52	$\pm 5 \%$	RDYPNYY	22 k 3 L	
3	R. 301	Metal filus	1/2W	$500 \mathrm{~K} \Omega$	$\pm 0.5 \%$	F.F'/21)	$300 \mathrm{~K} \Omega 2$	
3	R302	Metal film	1/2W	$\mathrm{m} \Omega$	$\pm 0.5 \%$	EF $1 / 2 \mathrm{D}$	$1 \mathrm{~m} \Omega$	
3	R303	Metal film	1/2W	$800 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF/1/2D	$800 \mathrm{k} \Omega$	
3	R 304	Metal film .	1/2W	$250 \mathrm{~K} \Omega$	$\pm 0.5 \%$	El $1 / 21$]	$250 \mathrm{~K} \Omega$	

SCH. No.	Symbol No.	Descriptian				LEADER Parts No.		Note
				RESISTORS				
3	R 305	Metal filn	1/2W	$900 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF $/ 2 \mathrm{D}$	$900 \mathrm{~K} \Omega$	
3	R306	Meral film	1/2W	$111 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF $1 / 2 \mathrm{D}$	$111 \mathrm{~K} \Omega$	
3	R307	Meral filın	1/2W	$990 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF $1 / 2 \mathrm{D}$	$990 \mathrm{~K} \Omega$	
3	R308	Metal film	1/2W	$10.1 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF1/2D	$10.1 \mathrm{~K} \Omega$	
3	R309	Carbon fimm	1/4W	33Ω	$\pm 5 \%$	RD $1^{1 / 4} \mathrm{PNYJ}$	3352	
3	R310	Metal film	1/2W	$1 \mathrm{M} \Omega$	$\pm 0.5 \%$	EF1/2D	$1 \mathrm{M} \Omega$	
3	R311	Metal film	1/2W	$1 \mathrm{~K} \Omega$	$\pm 0.5 \%$	EF $1 / 2 \mathrm{D}$	$1 \mathrm{~K} \Omega$	
4	R401	Carbon film	1/4W	$100 \Omega 2$	$\pm 5 \%$	RD1/PNYJ	100Ω	
4	R402	Carbonfilin	$1 / 4 \mathrm{~W}$	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RDI/4PNYJ	$1 \mathrm{~K} \Omega$	
4	R403	Carbon film	$1 / 4 \mathrm{~W}$	$560 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYJ	$560 \mathrm{~K} \Omega$	
4	R404	Metal filnt		$1 \mathrm{M} \Omega$	$\pm 0.5 \%$	EF1/2D	$1 \mathrm{M} \Omega$	
4	R405	Carbouf film	1/2W	3.3M Ω	$\pm 10 \%$	RD1⁄2PSZK	3.3M	
4	R406	Carbon film		22Ω	$\pm 5 \%$	RD1/4PNYJ	22Ω	
4	R407	Carbon film	1/4W	$12 \mathrm{~K} \Omega$	$\pm 5 \%$	RD¹/4PNYJ	$12 \mathrm{~K} \Omega$	
4	12408	Carbon film		$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
4	R409	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 10 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
4	R410	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} 1 / 4 \mathrm{PNYJ}$	$4.7 \mathrm{~K} \Omega$	
4	R411	Carbon film	1/2W	$4.7 \mathrm{~K} \Omega$	15\%	RD\%PNY	$4.7 \mathrm{~K} \Omega$	
4	R412	Carbon film	1/4W	$15 \mathrm{~K} \Omega$	5\%	$\mathrm{PD} 1 / 4 \mathrm{PNYJ}$	$15 \mathrm{~K} \Omega$	
4	R413	Carbon film		$15 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} 1 / 4 \mathrm{PNY}]$	$15 \mathrm{~K} \Omega$	
4	R4114	Carbon filn		680Ω	$\pm 5 \%$	RD1/4PNYJ	680Ω	
4	R415	Carbon film	$1 / 4 \mathrm{~W}$	820Ω	$\pm 5 \%$	RD1/4PNYJ	820Ω	
4	R 416	Carbon film	$1 / 4 \mathrm{~W}$	820Ω	$\pm 5 \%$	RD ${ }^{1 / 4} \mathrm{PNYJ}$	820Ω	
4	R417	Carbon film	1/4W	$15 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYT}$	$15 \mathrm{~K} \Omega$	
1	R418	Carbon film		$15 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4 1 NYJ	$15 \mathrm{~K} \Omega$	
4	R419	Carbonfilm		220Ω	$\pm 5 \%$	RD¹/PNYJ	220Ω	
4	R420	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYJ	$10 \mathrm{~K} \Omega$	
4	R421	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYJ	$10 \mathrm{~K} \Omega$	
4	R422	Carbonf film	$1 / 4 \mathrm{~W}$	220Ω	$\pm 5 \%$	RD $1 / 2 \mathrm{PNY}$]	22012	
4	R423	Carbon film	1/4W	220Ω	$\pm 5 \%$	RD/4)NYi	220Ω	
4	R.424	Carbon film		$1.5 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PPNYJ	15 kS	
4	R425	Carbon filin	1/4W	$15 \mathrm{~K} \Omega 2$	$\pm 5 \%$	RDI/PNYJ	$1.5 \mathrm{~K} \Omega$	
4	R426	Carbon film	1/4W	$15 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYI	$15 \mathrm{~K} \Omega$	
4	R427	Carhon film	1/1W	22Ω	$\pm 5 \%$	RD//PNY]	22Ω	
4	R428	Carbon film		$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD/4 PNYJ	$4.7 \mathrm{~K} \Omega 2$	
4	R429	Carbon filtr	1/4W	$1.5 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/2PNYJ	$1.5 \mathrm{~K} \Omega$	
4	R430	Carbon film	1/4W	$1.5 \mathrm{~K} \Omega$	$\pm 5 \%$	RD'/4PNYJ	$1.5 \mathrm{~K} \Omega$	
4	R431	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
4	R4.32	Carbon film		$3.9 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYT	$3.9 \mathrm{~K} \Omega$	
4	[243.3	Carbon film		$2.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDV/4PNYJ	$2.7 \mathrm{~K} \Omega$	Factory Adj.
4	R434	Carbon film		$2.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$2.7 \mathrm{~K} \Omega$	Factory Adj.
4	R435	Carbon film	1/1/W	$3.9 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	. $3.9 \mathrm{~K} \Omega$	
4	R436	Carbon film	1/4W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} 1 / 4 \mathrm{PNYJ}$	$1 \mathrm{~K} \Omega$	
4	R437	Carbon film	1/4W	$2.2 \overline{\mathrm{~K}}$	$\pm 5 \%$	RD1/4PNYJ	$2.2 \mathrm{~K} \Omega$	
4	R4.38	Carbon film		$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$1 \mathrm{~K} \Omega$	
4	R4.39	Carbon film		$1.5 \mathrm{~K} \Omega$	$\pm 5 \%$	RD//PNYJ	$1.5 \mathrm{~K} \Omega$	
4	R440	Carbon film	1/4W	$1.5 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$1.5 \mathrm{~K} \Omega$	
4	R441	Carbon film	1/1/W	100Ω	$\pm 5 \%$	RD1/4PNYJ	100Ω	
4	R442 R443	Carbon film	1/1/w	$1.2 \mathrm{~K} \Omega 2$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$1.2 \mathrm{~K} \Omega$	
4	R44.3	Carbon film		$3.9 \mathrm{~K} \Omega$	さち \%	RD $1 / 4 \mathrm{PNYJ}$	$3.9 \mathrm{~K} \Omega$	
4	R 444	Carbon film	1/4W	$1.2 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$1.2 \mathrm{~K} \Omega$	
4	12445	Carbon film	1/1W	100	$\pm 5 \%$	RDY/ PNYJ	10052	
4	R446	Carbon film	1/12W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$1 \mathrm{~K} \Omega$	
4	R447	Carbonfilm	1/3W	47Ω	$\pm 5 \%$	RD1/4PNYJ	47Ω	
4	R448	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$10 \mathrm{~K} \Omega$	
4	R449	Carbon film	1/4W	$15 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$15 \mathrm{~K} \Omega$	
4	R450	Carbon film	1/4W	100Ω	$\pm 5 \%$	REB/4PNYJ	100Ω	
4	R451	Carbon film	1/4W	100Ω	$\pm 5 \%$	RDI/PNYJ	100Ω	
4	R 4.52	Carbots film	1/4W	1.50Ω	$\pm 5 \%$	RD1/4 ${ }^{\text {P }}$ NYJ	150Ω	
4	R45.3	Metal film	2W	$1 \mathrm{~K} \Omega 2$	$\pm 10 \%$	MOR2XPK	$1 \mathrm{~K} \Omega$	

$\begin{aligned} & \text { SCH. } \\ & \text { No. } \end{aligned}$	Symbo No.	Description				LEADER Parts No.		Note
		RESISTORS						
4	R454	Carbon filu	1/4W	150Ω	$\pm 5 \%$	RD148PNY	150Ω	
4	R455	Carbon film	1/4W	100Ω	$\pm 5 \%$	RD1/4PNYJ	100Ω	
4	R456	Carbon film	1/4W	100Ω	$\pm 5 \%$	RD1/4PNYJ	100Ω	
4	R457	Metal film	7W	$4.7 \mathrm{~K} \Omega$	$\pm 10 \%$	MOR7SPK	$4.7 \mathrm{~K} \Omega$	
4	R458	Mctal film	7W	$4.7 \mathrm{~K} \Omega$	$\pm 10 \%$	MOR7SPK	$4.7 \mathrm{~K} \Omega$	
4	R459	Carbon film		68Ω	$\pm 5 \%$	RD1/4PNYJ	68Ω	
6	R601	Carbon film		100Ω	$\pm 5 \%$	RD¹/2PNYJ	100Ω	
6	R602	Carbon film	1/4W	100Ω	$\pm 5 \%$	RD1/4PNYJ	100Ω	
6	R603	Carbon film	1/4W	56Ω	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	56Ω	
6	R604 R605	Carbon film Carbon film	$1 / 2 \mathrm{~W}$ $1 / 4 \mathrm{~W}$	50Ω 330Ω	$\pm 5 \%$	RD1/4PNYJ	56Ω	
6	R605	Carbon film		. 3.30Ω	$\pm 5 \%$	RD鲑NYJ	330Ω	
6	R606	Carboin film	1/4W	560Ω	$\pm 5 \%$	RD'44PNYJ	560Ω	
6	R607	Carbon film	1/4W	$1.2 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4NYJ	$1.2 \mathrm{~K} \Omega$	
6	R608	Carbon film	1/4W	$1.2 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} 1 / 4 \mathrm{PNY}$	$1.2 \mathrm{~K} \Omega$	
6	${ }^{\text {R } 609}$	Carbon filnı	1/4W	$2.2 \mathrm{~K} \Omega$	$\pm 5 \%$	RDI/4PNYJ	$2.2 \mathrm{~K} \Omega$	
6	R610	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDI/4PNYJ	$4.7 \mathrm{~K} \Omega$	
6	R611	Carbon film	1/2w	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$10 \mathrm{~K} \Omega$	
6	R612	Carbon film	1/aW	$22 \mathrm{k} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$22 \mathrm{~K} \Omega$	
6	R613	Carbon film	1/4W	$1 \mathrm{M} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$1 \mathrm{M} \Omega$	
6	R614	Carbon film	1/4W	$100 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$100 \mathrm{~K} \Omega$	
6.	R615	Carbon film	1/1W	820Ω	+5\%	RDY/4PNYy	820Ω	
6	R616	Carbon film	1/4W	$2.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$2.7 \mathrm{~K} \Omega$	
6	R617	Carbon film	1/4W	$12 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$12 \mathrm{~K} \Omega$	
6	R618	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 3 \mathrm{PNYJ}$	$4.7 \mathrm{~K} \Omega$	
6	R619	Carbon film	1/4W	$5.6 \mathrm{~K} \Omega$	$\pm 5 \%$	RD\% 4_{4} PNYJ	$5.6 \mathrm{~K} \Omega$	
6	R620	Carbon film	1/4W	100Ω	$\pm 5 \%$	RD ${ }^{1 / 4} \mathrm{PNYJ}$	100Ω	
6	R621	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$10 \mathrm{~K} \Omega$	
6	R622	Carbon filln	1/4W	$22 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$22 \mathrm{~K} \Omega$	
6	R623	Carbon film	1/4W	$100 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$100 \mathrm{~K} \Omega$	
6	R624	Carbon film	1/4W	$22 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYJ	$22 \mathrm{~K} \Omega$	
6	R625	Carbon film	1/4W	$82 . \mathrm{K} \Omega$	$\pm 5 \%$	RD1/4NYJ	$82 \mathrm{~K} \Omega$	
6	R626	Carbout film	1/4W	$22 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$22 \mathrm{~K} \Omega$	
6	R627	Carbon film	1/4W	680Ω	$\pm 5 \%$	RD1/4PNYJ	680Ω	
6	R628	Carbon film	1/4W	$22 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$22 \mathrm{~K} \Omega$	
6	R629	Carbon film	1/4W	22Ω	$\pm 5 \%$	RD1/4NYJ	22Ω	
6	R630	Carbon filn	1/4W	680Ω	$\pm 5 \%$	RD/4/NYJ	680Ω	
6	R631	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/2NYJ	$4.7 \mathrm{~K} \Omega$	
6	R632	Carbon film	1/4W	$220 \mathrm{~K} \Omega$	$\pm 5 \%$	RD\% $1 / 4 \mathrm{PNYJ}$	$220 \mathrm{~K} \Omega$	
6	R633	Carbon film	1/4W	$1 \mathrm{M} \Omega$	$\pm 5 \%$	RD1/2NYJ	$1 \mathrm{M} \Omega$	
6	R634	Carbon film	1/2W	$220 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/2NYJ	$220 \mathrm{~K} \Omega$	
6	R635	Carbon film	1/4W	$6.8 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$6.8 \mathrm{~K} \Omega$	
6	R636	Carbon film	1/4W	$100 \mathrm{~K} \Omega$	$\pm 5 \%$	RID1/4PNYJ	$100 \mathrm{~K} \Omega$	
6	R637	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$4.7 \mathrm{~K} \Omega$	
6	R638	Carbon film	1/1/W	$560 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 1 / \mathrm{NYY}$	$560 \mathrm{~K} \Omega$	
6	R¢139	Carbon film	1/4W	$18 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$18 \mathrm{~K} \Omega$	
6	R640	Carbon film	1/4W	$3.3 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$3.3 \mathrm{~K} \Omega$	
6	R641	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYT	$10 \mathrm{~K} \Omega$	
6	R642	Carbon film	1/4W	47Ω	$\pm 5 \%$	RD1/4PNYJ	47Ω	
6	R643	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD ${ }^{1 / 4} \mathrm{PNY}$ \%	$10 \mathrm{~K} \Omega$	
6	R644	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/PNYJ	$4.7 \mathrm{~K} \Omega$	
6	R645	Carbon film	1/4W	$8.2 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNY 1	$8.2 \mathrm{~K} \Omega$	
6	R646	Carbon film	1/4W	$12 \mathrm{~K} \Omega$	$\pm 5 \%$	RD ${ }^{2}$ / ${ }^{\text {PNY }}$	$12 \mathrm{~K} \Omega$	
6	R647	Carbon film	1/2W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNY} 3$	$10 \mathrm{~K} \Omega$	
6	R648	Carbon filu	1/4W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} / 4 \mathrm{PNYJ}$	$1 \mathrm{~K} \Omega$	
6	R6499 R650	Carbon fillu	$1 / 1 / \mathrm{W}$	$27 \mathrm{~K} \Omega$	$\pm 5 \%$	RDYPNYJ	$27 \mathrm{~K} \Omega$	
6	R650	Carbon film ${ }^{1}$	1/2W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD/4PNYJ	$1 \mathrm{~K} \Omega$	
6	R651	Carbon film	1/2W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$10 \mathrm{~K} \Omega$	
6	R652	Carbonfilm	1/aw	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	$\mathrm{RD} 3 / 4 \mathrm{PNY}$ J	$10 \mathrm{~K} \Omega$	

SCH. No.	$\begin{aligned} & \text { Symbol } \\ & \text { No. } \end{aligned}$	Description				LEADER Parts No.		Note
9	R909	Carbon film	1/4W	$56 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$56 \mathrm{~K} \Omega$	
9	R910	Carbon film	1/4W	$22 \mathrm{~K} \Omega$	$\pm 5 \%$	RDI/4PNYJ	$22 \mathrm{~K} \Omega$	
9	R911	Carbon film	$1 / 4 \mathrm{~W}$	$2.2 \mathrm{M} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$2.2 \mathrm{M} \Omega$	
9	R912	Carbon film	1/4W	$1 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$1 \mathrm{~K} \Omega$	
9	R913	Carbon film		$470 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4 YNY J	$470 \mathrm{~K} \Omega$	
9	R914	Carbon film		$15 \mathrm{~K} \Omega$	$\pm 5 \%$	RD\%PNYJ	$15 \mathrm{~K} \Omega$	
9	R915	Carbon film	$1 / 4 \mathrm{~W}$	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4NYY	$10 \mathrm{~K} \Omega$	
9	R916	Carbon film	$1 / 4 \mathrm{~W}$	$10 \mathrm{k} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{~T}$ NYJ	$10 \mathrm{~K} \Omega$	
9	R917	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDt/4NYJ	$4.7 \mathrm{~K} \Omega$	
9	R918	Carbon film		$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$10 \mathrm{k} \Omega$	
9	R919	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$10 \mathrm{~K} \Omega$	
9	R920	Carbon film	1/4W	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RD $1 / 4 \mathrm{PNYJ}$	$4.7 \mathrm{~K} \Omega$	
9	R921	Carbon film	$1 / 4 \mathrm{~W}$	$4.7 \mathrm{~K} \Omega$	$\pm 5 \%$	RDt/4NYJ	$4.7 \mathrm{~K} \Omega$	
9	R922	Carbon film	$1 / 4 \mathrm{~W}$	$100 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4NYJ	$100 \mathrm{~K} \Omega$	
9	R923	Carbon film	1/4W	$100 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$100 \mathrm{~K} \Omega$	
9	R924	Carbon film	1/4W	$10 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/2PNYJ	$10 \mathrm{~K} \Omega$	
9	R925	Carbon film	1/4W	$8.2 \mathrm{k} \Omega$	$\pm 5 \%$	RD¹/4PNYJ	$8.2 \mathrm{~K} \Omega$	
9	R926	Carhon film	$1 / 4 \mathrm{~W}$	$87 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$82 \mathrm{~K} \Omega$	
9	R927 R928	Carbon film	11/2W	$4.7 \mathrm{~K} \Omega$ $5.6 \mathrm{~K} \Omega$	\pm	RD1/4PNYJ $\mathrm{RD}^{1 / 4} \mathrm{PNYJ}$	4.7Kת	
9	R928	Carbon film	1/4W	$5.6 \mathrm{~K} \Omega$	$\pm 5 \%$	RD1/4PNYJ	$5.6 \mathrm{~K} \Omega$	
9	R929	Carbon film		3.30Ω	$\pm 5 \%$	RD1⁄2PNYJ	330Ω	
					VAR	BLE RESI	STORS	
1	VR102	Solid	0.15W	$1 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.f	$1 \mathrm{~K} \Omega$	(2) +27 V
1	VR103	Solid	0.15W	$1 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$1 \mathrm{~K} \mathrm{~S}^{2}$	O-27V
1	VR 101	W.W	1/2W	50Ω	± 105	RA16YN15S	B50 2K	SCALE 1LLUM
2	VR205	Solid	0.3 W	$100 \mathrm{~K} \Omega$	$\pm 25 \%$	SM19R-B	100 K 52	(0) ASTIG
2	VR204	Carbnn film	0.25 w	$1 \mathrm{M} \Omega$	$\pm 20 \%$	V24L5 (8.x10	1N20SB1M 2	FOCUS
2	VR 203	Solid	0.15 W	$10 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B10K		(6) INTEN
2	VR 206	Carbon film	0.5W	$10 \mathrm{~K} \Omega$	$\pm 20 \%$	V24L5GN	$\times 10 \mathrm{k}$	INTEN.
2	VR207	Carbon film	0.5 W	$100 \mathrm{~K} \Omega$	$\pm 20 \%$	20 SB $10 \mathrm{~K} / 10$	$470 \mathrm{~K} \Omega$	Gatecurr
4 4	VR 401	Solid	0.15W	470Ω	$\pm 25 \%$	SR19R.B	$470 \mathrm{~K} \Omega$	8 GATE CURR
4	VR402	Solid	0.15W	$4.7 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$4.7 \mathrm{~K} \Omega$	(0) FET BIAS F1NE
4	VR403	Solid	0.15w	$100 \mathrm{k} \Omega$ $3.3 \mathrm{~K} \Omega$	$\pm 25 \%$ $\pm 25 \%$	SR19R.B SR19R.B	$\begin{aligned} & 100 \mathrm{~K} \Omega \\ & 3.3 \mathrm{~K} \Omega \end{aligned}$	
4	VR404	Solid	0.15 W	$3.3 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$3.3 \mathrm{~K} \Omega$	(2) DC BAI.
4	VR405	Carbon film	0.1 W	300Ω	$\pm 20 \%$	DM1OA15R.	B $10 \mathrm{~K} \Omega / \mathrm{B} 300 \Omega$	(0) GAIN Gang with VR407
4	VR406	Carbon film	0.5W	300Ω	$\pm 20 \%$	V24L5 \$2	(DF) $15 \mathrm{SC} 300 \Omega$	[VARIABLEE) with S401 and \$103(F.C.W, lork)
4	VR 407 VR 408 VR	Carbon film	0.5W	$10 \mathrm{~K} \Omega$	$\pm 20 \%$	DM10A15R.	B10K $2 / \mathrm{B} 300 \Omega$	Gang with VR405 not assigned
4	VR 408	Solid	0.15W	$2.2 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$2.2 \mathrm{~K} \Omega$	\bigcirc MF ${ }^{\text {a }}$
6	VR601	Solid	0.15W	330Ω	$\pm 25 \%$	SR19R.B330		$\square \mathrm{O}^{\square} \mathrm{BAL}$
6	VR602	Solid	0.15 W	$4.7 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$4.7 \mathrm{~K} \Omega$	(1) LEVFL CENTER
6	VR603	Carbon film		$5 \mathrm{~K} \Omega$				[1'RIC. I.EVEL with S 602
6	VR604	Solid	0.15 W	$1 \mathrm{M} \Omega$	$\pm 25 \%$	SR19R.B	$1 \mathrm{M} \Omega$	\bigcirc AUTO BAL
6	VR605	Solid	0.15 W	$100 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$100 \mathrm{~K} \Omega$	(2) TV. B1AS
6	VR606	Solid	0.15 W	$3.3 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$3.3 \mathrm{~K} \Omega$	(D) STAB VARIABLE Gang with VR803
6	VR607.	Carbon film	0.5W	$10 \mathrm{~K} \Omega$	$\pm 20 \%$			VARIABLEE Gang wirh VR803
6	VR608	Solid	0.15 W	$2.2 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$2.2 \mathrm{~K} \Omega$	(2) LENGTH
7	VR701	Solid	0.15 W	$33 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B.	$33 \mathrm{~K} \Omega$	(2) TV.V
7	VR 702	Solid	0.15W	$3.3 \mathrm{k} \Omega$	$\pm 25 \%$	SR19R.B	$33 \mathrm{~K} \Omega$	(6) TV.H
8	VR802	Solid	0.15 W	$3.3 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$33 \mathrm{~K} \Omega$	(D DC BAL
8	VR803	Solid	0.15 W	$33 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R.B	$33 \mathrm{~K} \Omega$	(2) WIDTH
8	VR804	Carbon film	0.5W	$100 \mathrm{k} \Omega$	$\pm 20 \%$			VARIABI.E Gang with VR607
8	VR805	Carbon film	0.5W	$50 \mathrm{~K} \Omega$	$\pm 20 \%$			with SK01
8	VR807	Solid	0.15 W	$10 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R-B		($)$ MAG $\times 5$ (2) MAG CENTER
8	VR808	Solid	0.15 W	$10 \mathrm{~K} \Omega$	$\pm 25 \%$	SR19R-B SR19R.B	$10 \mathrm{~K} \Omega$	Q MAG CEN'TER (CAL
9	VR901	Solid	0.15 W	470Ω	$\pm 25 \%$	SR19R.B		(7) CAL

SCH. No.	Symbol No.	Description	LEADER Parts No.	Note

CAPACITORS

SCH. No.	Symbol No.	Deseription				LEADER Parts No.	Note
4	C415	Cermic	50 V	$0.01 \mu \mathrm{~F}$		RD204YM103	
4	C416	Cermic	50 V	$0.01 \mu \mathrm{~F}$		RD204YM103	
4	C417	Electrolytic	50 V	$1 \mu \mathrm{~F}$		50 VBSN 1	
6	C601	Mica	500 V	10 pF	$\pm 10 \%$	FM05ZC100K	
6	C602	Mica	500 V	220 pF	$\pm 10 \%$	V.EM08ZC221K	
6	C603	Electrolytic	50 V	3.3 pF		50 VBSN 3 R 3	
6	C604	Ccramic	50 V	0.05 pF		RD209YM503750	
6 6	C605	Plastic film	100 V	$0.47 \mu \mathrm{~F}$	$\pm 20 \%$	IMFT-D474	not assigned
6	C607	Mica	500 V	3 pF	$\pm 10 \%$	FM05ZCO30K	not assign
6	C608						not assigned
6	C609	Mica	500 V	47 pF	$\pm 10 \%$	FM08ZC470K	
6	C610	Mica	500 V	27 pF	$\pm 10 \%$	FMO7ZC270K	
6	C611	Mica	500 V	22 pF	$\pm 10 \%$	FM06ZC220K	
6	C612	Plastic film	100 V	$0.47 \mu \mathrm{~F}$	$\pm 20 \%$	lMET-D474	
6	C613	Mico	500 V	5 pF	$\pm 10 \%$	FM05ZC50K	
6	C614	Mica	500 V	15 pF	$\pm 10 \%$	F'M05ZC.150K	
6	C615	Mica	500 V	10 pF	$\pm 10 \%$	FM05ZC100K	
6	C616	Ceramic	50 V	$0.01 \mu \mathrm{~F}$		RD209YM103	
6	C617	Mica	50 V	100 pF	$\pm 10 \%$	V-FM06ZC101K	
6	C618						not assigned
6	C619	Mica	50 V	100 pF	$\pm 10 \%$	V.FM06ZC101K	
6	C620	Mica	50 V	220 pF	$\pm 10 \%$	V.FM08ZC221K	
7	0701	Electrolytic	50 V	$1 \mu \mathrm{~F}$	$\pm 10 \%$	50 VBSN1	
7	C702	Plastic film	50 V	$0.1 \mu \mathrm{~F}$	$\pm 10 \%$	CQ92MB1H104K	
7	C703	Plastic film	50 V	$0.01 \mu \mathrm{~F}$	$\pm 10 \%$	CQ92MB1H103K	
7	C704	Plastic film	50 V	1000 pF	$\pm 10 \%$	CQ92MB1H102K	
7	C705	Mica	500 V	68 pF	$\pm 2 \%$	FM082ZC680K	
7.	C706	Plastic film	100 V	$1 \mu \mathrm{~F}$	$\pm 2 \%$	CQ. 14 T 2 A 105 G	
7	C707	Plastic film	100 V	$0.1 \mu \mathrm{~F}$	$\pm 2 \%$	TNX104C 100V	
7	C708	Plastic film	100 V	$0.01 \mu \mathrm{~F}$	$\pm 2 \%$	TNX103G 100 V	
7	C709	Plastic film	125 V	1000 pF	$\pm 2 \%$	CQ08P2B102G	
7	C710	Mica	500 V	82 pF	$\pm 10 \%$	FM09ZC820K	
7	C711	Mica	500 V	33 pF	$\pm 10 \%$	FM07ZC330K	
8	C801	Plastic film	630 V	$0.1 \mu \mathrm{~F}$	$\pm 10 \%$	6MFT-D104K	
8	C802	Mica	500 V	220 pF	$\pm 10 \%$	FM12ZC221K	
8	$\mathrm{C8O}_{3}$	Ceramic	50 V	1000 pF		RD204YM102	
8	C804	Plastic film	50 V	680 pF	$\pm 10 \%$	CQ08SCH1H681K	
8	C805	Plastic	500 V	1 pF	$\pm 10 \%$	ECG-N5010K	
8	C806	Plastic	500 V	1 pF	$\pm 10 \%$	ECG-N5010K	
8	C 807	Plastic	500 V	1 pF	$\pm 10 \%$	ECG.N5010K	
8	C808	Plastic	500 V	1 pF	$\pm 10 \%$	ECG-N5010K	
8	C809	Plastic	500 V	1 pF	$\pm 10 \%$	ECG.N5010K	
8	C810	Plastic	500 V	$1_{\mathrm{P} F}$	$\pm 10 \%$	ECG-N5010K	
8	C811	Ceramic	50 V	$0.01 \mu \mathrm{~F}$		RD204YM103	
9	C901	Electrolytic	50 V	$1 \mu \mathrm{~F}$		50 VBSN 1	
9	C902	Plastic film	100 V	$0.47 \mu \mathrm{~F}$	$\pm 20 \%$	1MFT-D474	
9	C903	Electrolytic	50 V	$1 \mu \mathrm{~F}$	$\pm 10 \%$	50 VBSN 1	
9	C904	Plastic film	50 V	0.047MF	$\pm 10 \%$	CQ92MB1H473K	
9	C905	Plastic film	50 V	1000 pF	$\pm 10 \%$	CQ92MB1H102K	
9	C906	Plastic film	50 V	1000 pF	$\pm 10 \%$	CQ92MB1H102K	
9	C907	Plastic film	50 V	1000 pF	$\pm 10 \%$	CQ92MB1H102K	
9	C908	Plastic film	50 V	$0.047 \mu \mathrm{~F}$	$\pm 10 \%$	CQ92MB1H473K	
9	C909	Plastic film	50 V	$0.047 \mu \mathrm{~F}$	$\pm 10 \%$	CQ92MB1H473K	
9	C910	Electroytic	16 V	$47 \mu \mathrm{~F}$		16 VBSN 47	
9	C911	Plastic film	50 V	6800 pF	$\pm 10 \%$	CQ92MB1H682K	
9	C912	Plastic film	50 V	6800 pF	$\pm 10 \%$	CQ92MB1H682K	
9	C913	Mica	500 V	27 pF	$\pm 10 \%$	FM07ZC270K	

$\begin{aligned} & \mathrm{SCH} . \\ & \mathrm{No} . \end{aligned}$	Symbol No.	Description			LEADER Parts No.	Note
VARIABLE CAPACITORS						
3	VC301	Ceramic	500 V	$20 \mathrm{ps}$	ECV-1ZW20P32	Q Vertical Attenuator
3	VC302	Ceramic	500 V	20 pF	ECV.1ZW 20 P 32	© Vertical Attenuator
3	VC303	Cerannic	500 V	20 pF	ECV.1ZW 20 P 32	Q Vertical Attenuator
3	VC304	Ceramic	500 V	20 pF	ECV-1ZW20P32	\bigcirc Vertical Attenuator
3	VC305	Ceramic	500 V	20 pF	ECV-1ZW 20 P 32	\square Vertical Attenuator
3	VC306	Ccramic	500 V	20pF	ECV-1ZW20P 32	Q Verrical Artenuator
3	VC307	Ceramic	500 V	20 pr	ECV-1ZW20P32	- Vertical Attenuator
3	VC308	Ceramic	500 V	20 pF	ECV-1ZW20P32	- Vertical Attenuator
3	VC309	Ceramic	500 V	20 pF	ECV-1ZW20P32	© Vertical Attenuator
3	VC310	Ceramic	500 V	20 pF	ECV 1ZW20P32	Q Vertical Attenuator
4	VC401	Ceramic	500 V	20 pF	ECV-1ZW20P32	Q Vertical Attenuator
4	VC402	Ceramic	500 V	50 pF	ECV. 12W50P32	$Q \mathrm{HF}$
7	VC701	Ceramic	500 V	20 pF	ATSWECV 20 pF	Q Time BASE
7	VC702	Ceramic	500 V	20 pF	ATSWECV20pF	(8) Time Bdse
TUBES						
2	V201	CRT			130ARB1/B7	
2	V202	NEON	68 V		NE. 2	
2	V203	NEON	68 V		NE. 2	
2	V204	NEON	68 V		NE. 2	
2	V205	NEON	68 V		NE-2	
TRANSISTORS						
1	Q101	NPN	$\mathrm{Vcco}=46 \mathrm{~V}, \mathrm{Pt}=15 \mathrm{~W}$		2SD150	ur 2SD315, 2SC1160
1	Q102	NPN	V cco $=1$		2SC499.Y	
1	Q103	NPN	$\mathrm{Vceo}=100 \mathrm{~V}$		2SC499.Y	
1	Q104	NPN	$\mathrm{Vceo}=40 \mathrm{~V}, \mathrm{Pt}=1.5 \mathrm{~W}$.		2SD150	or 2SD315, SSC1160
1	Q105	PNP	$V \mathrm{ceo}=50 \mathrm{~V}$		2SA678.6	
1	Q106	PNP	$\mathrm{Vceo}=50 \mathrm{~V}$		2SA678.6	
2	Q201	NPN			2SC515A	or 2 SC 685 A .
2	Q202	NPN	$\begin{aligned} & \mathrm{Vcbo}=250 \mathrm{~V}, \\ & \mathrm{P}_{\mathrm{c}}=2.5 \mathrm{~W}\left(\mathrm{Tc} \cdot 125^{\circ} \mathrm{C}\right) \end{aligned}$		2SC1012A	
2	Q203	NPN	$\begin{aligned} & \mathrm{Vcbo}=250 \mathrm{~V}, \\ & \mathrm{Pc}=2.5 \mathrm{~W}\left(\mathrm{Tc}=125^{\circ} \mathrm{C}\right) \end{aligned}$		2SC1012A	
4	Q401	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458.B	u* 2SC459-C
4	Q402	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458.B	or 2SC458-C
4	Q403	J-FET	$\mathrm{Vdgo}=30 \mathrm{~V}, 1 \mathrm{DSS}=2.5 \sim 6 \mathrm{~mA}$		2SK34-D	Selected Pair IDSS 10%
4	Q404	J-FET	$\mathrm{Vdgo}=30 \mathrm{~V}, 1 \mathrm{DSS}=2.5 \sim 6 \mathrm{~m} \mathrm{\Lambda}$		2SK34-D	
4	Q405	NPN	V cea $=$		2SC458.B	or 2SC458.C
4	Q406	NPN	V ceo $=30 \mathrm{~V}$		2SC458-B	or $2 \mathrm{SC} 458 . \mathrm{C}$
4	Q407	NPN	V ceo $=30 \mathrm{~V}$		2SC458-8	or 2SC458.C.
4	Q408	NPN	V ceo $=30 \mathrm{~V}$		2SC458.B	or 2SC458.C
4	Q409	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		SSC458.B	or $2 \mathrm{SC} 458 . \mathrm{C}$
4	Q410	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
4	Q411	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		$2 \mathrm{SC} 458 . \mathrm{B}$	or 2SC458.C
4	Q412	PNP	V ceo $=50 \mathrm{~V}$		2SC678-6	
4	Q413	PNP	Vceo $=50 \mathrm{~V}$$\mathrm{Vceo}=30 \mathrm{~V}$		2SA678-6	
4	Q414	NPN			2SC458-B	or 2SC458-C
4	Q415	NPN	V ceo $=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
4	Q416	NPN	$\mathrm{Vcbo}=40 \mathrm{~V}, \mathrm{Pc}=500 \mathrm{~mW}$		2SC423-D	
4	Q417	NPN	$\mathrm{Vchn}=250 \mathrm{~V}, \mathrm{P}_{c}=2.5 \mathrm{~W}\left(\mathrm{Tc}=\mathrm{R} .5^{\circ} \mathrm{C}\right) 2 \mathrm{SC} 1012 \mathrm{~A}$			
4	Q418	NPN	$\mathrm{Vcbo}=250 \mathrm{~V}, \mathrm{Pc}=2.5 \mathrm{~W}\left(\mathrm{Tc}=125^{\circ} \mathrm{c}\right) 2 \mathrm{SC} 1012 \mathrm{~A}$ ($\mathrm{Tc}=125^{\circ} \mathrm{C}$)			
4	Q419	NPN				
4	Q420	NPN	$\begin{aligned} & \mathrm{Vcen}=35 \mathrm{~V}, \mathrm{Pc}=1.5 \mathrm{~W} \\ & \mathrm{Vcbo}=30 \mathrm{~V} \end{aligned}$		${ }_{2 S}^{2 S D 235-0}$	
6	Q601	NPN			2SC645	
6	Q602	NPN	$\mathrm{Vcbo}=30 \mathrm{~V}$		2 SC 645	
6	Q603	NPN	V cbo $=$		2SC645	

SCH. No.	Symbal No.	Oescription			LEADER Parts No.	Note
6	Q604	NPN	$\mathrm{Vcbo}=30 \mathrm{~V}$		2SC645	
6	Q605	NPN	$\mathrm{Vcbo}=30 \mathrm{~V}$		2SC645	
6	Q606	NPN	$\mathrm{Vcbo}=30 \mathrm{~V}$		2SC645	
6	Q607	NPN	$\mathrm{Vcbo}=30 \mathrm{~V}$		2SC645	
6	Q608	NPN	Vcea $=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q609	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q610	PNP	$\mathrm{Vceo}=50 \mathrm{~V}$		2SA678-6	
6	Q611	NPN	$\mathrm{Vcbo}=160 \mathrm{~V}$		2SC869	
6	Q612	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q613	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q614	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q615	J-FET	$\mathrm{Vdgo}=30 \mathrm{~V}, \mathrm{IDSS}=2.6^{\circ} \mathrm{6mA}$		2SK34-D	
6	Q616	NPN	$\mathrm{Vcco}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
6	Q617	NPN	$\mathrm{Vcco}=100 \mathrm{~V}$		2SC499-Y	
6	Q618	NPN	$\mathrm{Vce} 0=30 \mathrm{~V}$		2SC458-B	or 2SC458.C
6	Q619	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-C
8	Q801	NPN	$\mathrm{Vceo}=100 \mathrm{~V}$		2SC499-Y	
8	Q802	NPN	$\mathrm{Vcco}=100 \mathrm{~V}$		2SC499.Y	
8	Q803	PNP	$V \mathrm{ceo}=50 \mathrm{~V}$		2SA678-6	
8	Q804	NPN	$\mathrm{Vceo}=200 \mathrm{~V}$		2SC154-C	or 2SC1012A
8	Q805	NPN	$\mathrm{Vceo}=200 \mathrm{~V}$		2SC154-C	or 2 SC 1012 A
8	Q806	PNP	$\mathrm{Vceo}=50 \mathrm{~V}$		2SA678-6	
8	Q807	NPN	$\mathrm{Vceo}=200 \mathrm{~V}$		2SC154-C	or 2SC1012A
8	Q808	NPN	$\mathrm{Vceo}=200 \mathrm{~V}$		2SC154-C	or 2SC1012A
8	Q809	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2 SC 458 C
9	Q901	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-8	or 2SC458-C
9	Q902	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458.B	or $2 \mathrm{SC} 458-\mathrm{C}$
9	Q903	NPN	V cbo $=160 \mathrm{~V}$		2 SC 869	
9	Q904	NPN	$\mathrm{Vceo}=30 \mathrm{~V}$		2SC458-B	or 2SC458-B
9	Q905	NPN	$\mathrm{Vc} 0=30 \mathrm{~V}$		2SC458-B	or 2SC458-B
9	Q906	NPN	$\mathrm{V} \mathrm{ceo}=5$		2SA678.6	
DIODES						
1	D101	Rect,	400 V	1.1A	V06E	
1	D102	Rect,	600 V	1.1 A	V06G	
1	D103	Rect.	600 V	1.1 A	V06G	
1	D104	Rect.	200 V	1.1A	V06C	
1	D105	Rect.	200 V	1.1 A	V06C	
1	D106	Rect.	200V	1.1A	V06C	
1	D107	Rect.	200 V	1.1 A	V06C	
1	D108	Zcner	7 V		RD7A	
1	D109	Det.	35 V		1 S 1555	or 1S1588
1	D110	Rect.	100 V	1.1A	V06B	
1	D111	Rect.	100 V	1.1A	V06B	
1	D112	Rect.		1.1 A	V06B	
1	D113	Rect		1.1A	V06B	
2	D201	Rect.	100 V	0.5A	1S1941	
2	D202	Zener	6 V		RD6A	
2	D203	Zcner	6 V		RD6A	
2	D204	Det	35 V		1S1555	or 1S1588
2	D206	Rect	1.5 KV	0.1A	152355	or S1R150
2	D207	Rect	1.5 KV	0.1 A	1S2355	or S1R150
2	D208	Rect.	1.5 KV	0.1A	1S2355	or S1R150
2	D209	Rect.	1.5 KV	0.1 A	1S2355	or S1R150
2	D210	Rect	1.5 KV	0.1A	1S2355	or S1R150
2	D211	Rect.	1.5 KV	0.1A	1S2355	or S1R150
2	D212	Rect.	1.5 KV	0.1A	$1 \$ 2355$	or S1R150
2	D213	Rect.	1.5 KV	0.1A	1S2355	or S1R150

CALIBRATOR

$$
\begin{aligned}
& R_{901} \sim R_{929} \\
& V R_{901} \\
& C_{901} \sim C_{913} \\
& D_{901} \sim D_{903} \\
& Q_{901} \sim Q_{906}
\end{aligned}
$$

PILOT T-665

VECTOR T-294A

HV•RECT T-666

V•AMP T-664

V-FINAL T-588A

V•ATT T-663

