200CD WIDE RANGE OSCILLATOR

OPERATING AND SERVICE MANUAL

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The HewlettPackard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

MODEL 200CD/CDR WIDE RANGE OSCILLATOR

SERIALS PREFIXED: 605-

Appendix C, Manual Backdating Changes, adapts this manual to serials \quad refixed: 333-, 229-, 212-, 129-, and 103-, 005- and serials 22549 thru 1.

TABLE OF CONTENTS

Section
I GENERAL INFORMATION

Page
1-1. Description. 1-1
1-6. Differences Between Instruments . . 1-1
1-8. Backdating Sheet1-1
Section Page
II PREPARATION FOR USE 2-1
2-1. Introduction 2-1
2-3. Unpacking and Inspection 2-1
2-6. Power Requirements 2-1
2-8. Power Cable 2-1
$2-11$. 230-Volt Operation 2-1
2-13. Repacking for Shipment 2-1
Section Page
III OPERATING INSTRUCTIONS 3-1
$3-1$. Introduction. 3-1
3-3. Operation 3-1
Section Page
IV THEORY OF OPERATION 4-1
4-1. General 4-1
4-4. Frequency-Controlling Bridge 4-1
4-9. Amplifier 4-1
4-11. Output Circuit 4-1
Section Page
V MAINTENANCE 5-1
$5-1$. Introduction 5-1
5-3. Periodic Maintenance 5-1
5-5. Test Equipment 5-2
5-7. Troubleshooting 5-2
Section PageV MAINTENANCE (Cont'd)
5-9. Amplifier Power Supply. 5-2
5-11. Repair and Replacement 5-2
5-12. Cabinet Removal 5-2
5-14. Servicing Etched Circuit Boards 5-3
5-16. Tube Replacement 5-3
5-18. Replacement of Lamps, RT1 and RT2 5-4
5-20. Tuning Capacitor Repair 5-4
5-22. Range Switch Repair 5-4
5-24. Adjustments. 5-4
5-26. Preliminary Checks 5-4
5-31. Calibration 5-4
5-37. Distortion 5-7
5-38. Output Voltage 5-7
5-39. Performance Check 5-7
5-41. Output Impedance. 5-7
5-42. Frequency Response 5-7
5-43. Dial Accuracy 5-7
5-44. Distortion 5-8
Section Page
VI REPLACEABLE PARTS 6-1
$6-1$. Introduction 6-1
6-4. Ordering Information. 6-1
6-7. Non-Listed Parts 6-1
APPENDIX
A CODE LIST OF MANUFACTURERS
B SALES AND SERVICE OFFICES
C MANUAL BACKDATING CHANGES

LIST OF ILLUSTRATIONS

LIST OF TABLES

Table Page
1-0
1-1. Specffications
5-0
5-0
5-1. Test Instruments Required
5-1. Test Instruments Required 5-2
5-3. Tube Replacement List 5-3

Table 1-1. Specifications

FREQUENCY RANGE:

5 cps to 600 kc covered in five ranges
RANGES:

X1	5 cps	to	60 cps
X10	50 cps	to	600 cps
X100	500 cps	to	6 kc
X1000	5 kc	to	60 kc
X10000	50 kc	to	600 kc

ACCURACY: $\quad \pm 2 \%$ including calibration error, warmup, changes due to aging of components, tubes, etc

DIAL: 6-inch diameter calibrated over 300° of arc. 85 divisions. Total scale length, 78 inches

FREQUENCY RESPONSE:

$\pm 1 \mathrm{db}$ entire frequency range (reference 1 kc)
OUTPUT:
160 milliwatts (10 volts) into 600 -ohm rated load, 20 volts open circuit
OUTPUT BALANCE:

INTERNAL IMPEDANCE:
Better than 0.1\% at lower frequencies and approximately 1% at higher frequencies

600 ohms. Output is balanced to ground for zero attenuation. (May be operated with one side grounded if desired.)

DISTORTION: $\quad 0.2 \%$ from 20 cps to $200 \mathrm{kc} ; 0.5 \%$ from 5 cps to 20 cps and from 200 kc to 600 kc

HUM VOLTAGE:
POWER:
ACCESSORIES AVAILABLE:
(4. ${ }^{\text {p }}$ 11004A Line Matching Transformer (provides balanced output at any attenuator setting at 135 and 600 ohms)
(5ip) 11000A Cable Assembly, 44 in. long, terminated each end with dual banana plugs
(49) 11001A Cable Assembly, 45 in. long, with one dual banana plug and one BNC male connector

DIMENSIONS
Cabinet Mount: 7-3/8 in. wide, 11-1/2 in. high, 14-3/8 in. deep. (187, $3 \times 292,1 \times 365,1 \mathrm{~mm}$)
Rack Mount:

WEIGHT:
Cabinet Mount: Net, $22 \mathrm{lbs} .(9,9 \mathrm{~kg})$. Shipping, $27 \mathrm{lbs} .(12,2 \mathrm{Kg})$.
Rack Mount: Net, 27 lbs. (12, 2 kg). Shipping, 37 lbs . (16.7 kg).

SECTION I

GENERAL INFORMATION

1-1. DESCRIPTION.

1-2. The Model 200 CD Wide Range Oscillator generates frequencies of excellent waveform in the subsonic, audio, and ultrasonic ranges (5 cycleo to 600 kc , in five overlapping decade bands). The Model 200 CD includes new design features which result in still finer performance than previous Hewlett-Packard instruments. Special circuitry ensures an output voltage of low distortion and high stability with any output load impedance from zero ohms to open circuit. Usefulness of the oscillator has been extended by designing the 200 CD output circuit so that the instrument may be operated balanced as well as unbzlanced and by providing a $600-$ ohm impedance match.
$1-3$. The Model 200 CD is easy to oper te: frequency and amplitude of the output voltage ars set merely by operating dials on the control panel. The easily-read, 6 -inch diameter frequency dial is calibr ted over 3000 of arc, and has an effective scale len th of approximately 80 inches.
1-4. The Model 200 CD furnishes upto 10 volts into a $600-$ ohm load (20 volts open circuit) at any frequency
from 5 cps to 600 kc . A bridged tee variable attenuator in the output circuit controls the output power.

1-5. The Model 200 CD provides an ideal signal source for testing servo and vibrating systems, medical and geophysical equipment, audio amplifier circuits and transducers, sonar and supersonic apparatus, carrier telephone systems, video frequency circuits, and low radio-frequency equipment.

1-6. DIFFERENCES BETWEEN INSTRUMENTS.

1-7. Hewlett-Packard uses a two-section eight-digit serial number ($000-00000$). If the first three digits of the serial number on your instrument do not agree with those on the title page of this manual, change sheets supplied with the manual will define differences between your instrument and the Model 200CD described in this manual.

1-8. BACKDATING SHEET.

1-9. A backdating sheet that makes this manual applicable for instruments with serial prefixes to 103, is provided in The Appendix of this manual.

Figure 1-1. Model 200CD Wide Range Oscillator

SECTION II

PREPARATION FOR USE

2-1. INTRODUCTION.

$2-2$. This section contains information on unpacking, inspection, repacking, and installation o: Model 200CD.

2-3. UNPACKING AND INSPECTION.

$2-4$. Unpack the instrument upon receipt and inspect it for signs of physical damage such as ocratched panel surfaces, broken knobs, etc. If there is any apparent damage, file a claim with the carrier and refer to the war ranty page in this manual.

2-5. An electrical inspection should be performed as soon as possible after receipt. To aid in electrical inspection a list of performance checks are given in section V, paragraph 5-39. These procedures make a good test as part of incoming quality-control inspection.

2-6. POWER REQUIREMENTS.

$2-7$. The Model 200 CD requires a pwer source of $115 / 230$ volts $+10 \%, 50 / 1000 \mathrm{cps}, 75$ watts.

2-8. POWER CABLE.

2-9. This Hewlett-Packard instrument is equipped with a three-conductor power cable which, when plugged into an appropriate receptacle, grounds the instrument. The offset pin on the power cable threeprong connector is the ground pin.
$2-10$. To preserve the protection feature when operating instrument from a two-contact outlet, use a three-prong to two-prong adapter and connect the pigtail on the adapter to ground.

2-11. 230-VOLT OPERATION.

$2-12$. The Model 200 CD is normally wired for operation from a nominal 115 -volt supply. Cperation from
a 230 -volt source is easily accomplished by reconnecting the dual 115 -volt primary windings of the power transformer from a parallel configuration to a series configuration. (See figure 5-9). At the time of the change, replace the 1.25 amp , slow-blow line fuse with a 0.6 amp , slow-blow line fuse.

2-13. REPACKING FOR SHIPMENT.

2-14. The following list is a general guide for repackaging an instrument for shipment. If you have any questions, contact your authorized Hewlett-Packard sales and service office. See map in Appendix.
a. If possible, use the original container designed for the instrument.
b. Wrap the instrument in heavy paper or plastic before placing it in the shipping container.
c. Use plenty of packing material around all sides of the instrument and protect the panel with cardboard strips.
d. Use heavy cardboard carton or wooden box to house the instrument and use heaxy tape or metal bands to seal the container.
e. Mark the packing box with "Fragile", "Delicate Instrument, " etc.

Note

If the instrument is to be shipped to HewlettPackard Company for service or repair, attach to the instrument a tag identifying the owner and indicating the service or repair to be accomplished. In any correspondence be sure to identify the instrument by model number, serial prefix, and serial number.

Figure 3-1

Figure 3-1. Controls and Terminals

SECTION III OPERATING INSTRUCTIONS

3-1. INTRODUCTION.

3-2. This section contains operating instructions for the Model 200CD Wide Range Oscillator. Figure 3-1 gives basic operating instructions. Th \geqslant remainder of this section supplements these instructions.

3-3. OPERATION.

3-4. ON. The oscillator is ready for une as received from the factory and will give specifies performance after a short warmup period. Turn oscillator on and allow approximately five minutes to w?rm up. Where maximum accuracy is desired, this warm-up period should be extended to at least thirty minutes.

3-5. RANGE. The RANGE is select d with the five position RANGE switch. The position of this switch indicates the multiplying factor for the frequency dial calibration.

3-6. FREQUENCY dial. The frequency dial varies the frequency between the RANGE switch steps. The dial is calibrated from 5 to 60 and its in lication multiplied by the factor indicated by the RANGE switch will give the actual output frequency of the scillator. The small knob below the frequency dial is 2 vernier control for the dial.

3-7. OUTPUT CIRCUIT OPTIONS. The output circuit of the Model 200 CD may be arrang d for balanced or unbalanced operation. Typical connections for each are indicated in figure 3-2.
a. Unbalanced Operation. To operate with side grounded, a strap is placed between the G terminal, as indicated in figure 3-2A.

Figure 3-2. Typical Output Connections
b. Balanced Operation. Connections for balanced operation are indicated in figure $3-2 B$. (The broken line from the ground terminal indicates the output circuit is balanced to ground, within the tolerances given below.)

3-8. The AMPLITUDE control in the output circuit is a bridged-T attenuator and at any setting except minimum attenuation unbalances the circuit. Therefore, for balanced operation the AMPLITUDE control must be set for maximum output (full clockwise). Output balance also is a function of frequency because of capacitive feed-through at higher frequencies. Up to 10 kc , however, unbalance is less than 0.1%, and at 600 kc is approximately 1%. If small outputs are desired, or if balance at higher frequencies is critical, turn the AMPLITUDE control maximum clockwise, and connect an external attenuator, designed for the frequencies involved, between the Model 200CD and the load.

3-9. A balanced output may also be obtained over the full range of the AMPLITUDE control by using an top AC-60A/B Line Matching Transformer at the output terminals of the oscillator.
$3-10$. The following chart indicates the area where within 1% of balance may be obtained. This chart indicates balance obtainable at various settings of the AMPLITUDE control when operating into a 600 -ohm load. Where other values of load are used, the chart does not apply directly but does apply for settings of the AMPLITUDE control that would produce the indicated voltage across at 600 -ohm load.

Figure 3-3. Balance Chart Operating into 600-ohm Load

Figure 4-1. Model 200CD Block Diagram

SECTION IV
 THEORY OF OPERATION

4-1. GENERAL.

4-2. The Model 200CD Wide Range Oscillator uses a balanced (push-pull) oscillator circuit rom which the output is taken directly, avoiding the complication and possible distortion of an isolating emplifier. Reaction of the load on the oscillator is avoided by the use of a zero source impedance output stage. This arrangement results in a simple, trouble-free circuit having low distortion and high stability over the entire frequency range.

4-3. Functionally, the circuits of the Model 200 CD include a frequency-controlling bridge and balanced push-pull amplifier which constitute the oscillator circuit, an output circuit which may be zrranged either for balanced or unbalanced operation, and a powersupply circuit. These are shown in hlock diagram form in figure 4-1 and in detail in the schematic diagram.

4-4. FREQUENCY-CONTROLLING BRIDGE.

4-5. The frequency-controlling circuit is arranged as a floating bridge, symmetrical with respect to ground. With no connection to ground on any tarminal of the bridge, stability of calibration is assured since any stray capacity or leakage to ground yresent at the bridge output terminals does not shunt either the frequency-controlling or amplitude-st bilizing arms of the bridge. The frequency-controlling components (RC networks which are varied by oferation of the RANGE switch and frequency dial) com, rise two arms of the bridge, while the amplitude-st bilizing components (a voltage divider which includes a thermallysensitive resistance) comprise the other two arms. The amplitude is stabilized at such a level that the amplifier tubes are operated in the substantially linear portion of their characteristics, which, together with the large negative feedback at harmonic frequencies, results in a very pure sine wave oscillition.
$4-6$. The bridge is fed by the balanced voltage developed at the cathodes of V2 and V4 in the output of the balanced amplifier. The output of the frequeacy-controlling branch of the bridge is applied to the grld of V3 and the output of the amplitude-stabilizing brunch is applied to the grid of V1. The manner in whith the voltage-versus-frequency and phase-versus-fr quency characteristics of an RC network can be utllized with an amplifier of proper design to achieve an oscillator which delivers a voltage of excellent stability and waveform is well covered intexts such as Terman \& Pettit's Electronic Measurements.

4-7. Variable resistor R11 is provided for adjustment of the amplitude-stabilizing branch of the bridge should it be found after replacement of lamp ねT1 or RT2 that less or more than rated voltage is being delivered to the output terminals.

4-8. Variable capacitors C3, C6, and C7 are adjusted at the factory for optimum calibration and amplitude constancy with frequency. They should not require adjustment unless the RANGE switch is replaced.

4-9. AMPLIFIER.

4-10. The oscillator amplifier is a balanced push-pull circuit including a voltage-amplifier stage (V1, V3) and a special cathode-follower stage (V2, V4). Crisscross positive feedback is used in the cathode-follower stage to provide an essentially zero output impedance as seen by the cathode-to-cathode load. The feedback paths are from the plate of V2 to the control grid and screen of V4, and from the plate of V4 to the control grid and screen of V2. The degree of the positive feedback is a function of the load and increases as the load impedance decreases, thus tending to maintain the output constant regardless of load. Self-oscillation in the amplifier circuit is prevented by proper choice of resistance in the feedback circuits and by controlling plate and cathode impedances over the entire frequency range of the oscillator. The output stage is protected against a cathode-to-cathode short circuit by the resistors in series with the transformer secondaries. These resistors also make the oscillator present a 600 -ohm impedance to the attenuator.

4-11. OUTPUT CIRCUIT.

4-12. Transformer coupling provides isolation between the oscillator circuit and the output circuit, and allows the output to be obtained either balanced or unbalanced. Since a single transformer will operate suitably over only a part of the frequency range covered 200 CD , two transformers are provided. Connections between cathode-followers V2 and V4 and the proper transformer for the band in use are set up by the RANGE switch. The secondary windings of the coupling transformers supply a conventional bridged tee attenuator, the setting of which is adjusted by operation of the AMPLITUDE control on the front panel. As the control is turned counterclockwise, the loss inserted by the attenuator is increased. The source impedance at the output terminals is 600 ohms .

4-13. With attenuator set for minimum loss, the output circuit is arranged for balanced operation, and is so designed that for frequencies up to 10 kc , stray capacity and leakage resistance will cause less than 0.1% unbalance. Unbalance at 600 kc is approximately 1%.
$4-14$. When it is desired to operate unbalanced, ground should be connected to the center output terminal, the termination for the connection brought out from terminal 6 of output transformers T1 and T2. Proper operation cannot be obtained if the ground is connected to the side of the circuit which includes the attenuator.

Table 5-1. Test Instruments Required

Instrument Type	Minimum Required Specifications			Recommended (1) Instruments
DC Electronic Voltmeter	Sensitivity: 1 volt full scale minimum Input resistance: 10 megohms or higher			Model 410B or 412A Vacuum Tube Voltmeter
AC Transistor Voltmeter	Input impedance: 2 megohms shunted by 40 pf (below the 0,3 volt range) Acuuracy: $\pm 3 \%$ from 5 cps to 500 kc			Model 403A Transistor Voltmeter
AC Electronic Voltmeter	Input impedance: 10 megohms shunted by 25 pf (below the 0.3 volt range) Acuuracy: $\pm 2 \%$ from 20 cps to 1 mc			Model 400D/H/L Vacuum Tube Voltmeter
Distortion Analyzer	Distortion measurement range: 5 cps to 600 kc Sensitivity: 54 db down from rated output			Model 331A or Model 330B (20 kc max range) Distortion Analyzer
600-ohm Resistor	600	ohms $\pm 1 \%$ to 100 kc		Model 470E Shunt Resistor
Electronic Counter	Fr quency and period readings available. Frequency measuring capabilities to at least 600 kc			Models 523C/CR, D/DR or 524C/D Electronic Counters
Frequency Standard		quencies availa a) 10 cps b) 100 cps c) 1 kc d) 100 kc put voltage: 5 quency accurac	ble: volts rms minimum $y: \pm 0.05 \%$	100ER Precisions Frequency Standard
(Optional - recommended) Oscilloscope		quency range:	flat from 5 cps to at least 600 kc	Models 150A, 160B, 170A Oscilloscopes
5-0				00084

SECTION V

MAINTENANCE

5-1. INTRODUCTION.

$5-2$. This section contains test and maintenance information for Model 200 CD Wide Range Oscillator. A performance check is included (jaragraph 5-39) that may be used to verify operation within published specifications. This check should be made with the instrument in its cabinet. This section also includes recommended test equipment, trouble shooting repair and adjustment procedures.

5-3. PERIODIC MAINTENANCE.

$5-4$. The Model 200 CD should requize a minimum of maintenance, since there are few moving parts. The
following procedure performed once or twice a year should insure smooth operation.
a. Put one drop of oil in each of the three oil holes on the tuning drive mechanism.
b. Place a small amount of high quality contact cleaner on the RANGE switch contacts. Rotate the switch back and forth several times.
c. Using compressed air, gently blow any accumulated dust out of the tuning capacitor plates (C5). See figure 5-1.

Figure 5-1. Left Side of Model 200CD (as viewed from the front)

Paragraphs 5-5 to 5-13

5-5. TEST EQUIPMENT.

5-6. Table 5-1 lists the test equipment required to accurately check the Model 200 CD . Equipment having similar characteristics can be substituted for the equipment listed.

5-7. TROUBLESHOOTING.

$5-8$. The following section give information to aid in the localizing of troubles in the Model 200 CD . In many cases a visual inspection of the instrument will reveal the area of the faulty comp nent if not the component itself. To further assist in troubleshooting, table 5-2 and a voltage -resistance liagram, figure 5-8, have been included in this section. The troubleshooting table (5-2) gives a list of symptoms and their possible causes.

5-9. AMPLIFIER POWER SUPPLY.

5-10. Amplifier and power supply operation is best checked by voltage-resistance readings and tube
substitution. If tube substitution does not correct the difficulty, return the original tube to the instrument. Voltages and resistances are indicated in figure 5-8; these are typical readings and may vary somewhat from instrument to instrument.

5-11. REPAIR AND REPLACEMENT.

5-12. CABINET REMOVAL.

5-13. To remove the Model 200 CD proceed as follows:
a. Disconnect the Model 200CD from the power source.
b. Remove the two screws at the rear of the cabinet. The Model 200 CDR rack mount unit has two additional screws on the front panel which must be removed.
c. Carefully slide the instrument forward, out of the cabinet.

Table 5-2. Troubleshooting

Symptom		Probable Cause	Symptom	Probable Cause
Resistance to ground less than 100K ohms	$\begin{aligned} & \mathrm{C} 13 \\ & \mathrm{C} 1 \% \\ & \mathrm{C} 14 \end{aligned}$	A, B, C leaky leaky , 11 shorted	200CD obviously microphonic	V1-V4 defective RT1, RT2 defective Tuning capacitor dirty or defective
Tubes not glowing, pilot light out	Bl wn fuse Fl S2 lefective		Dial springs back when turned clockwise against the stop	Tuning capacitor closed too far when fully meshed
One or more tubes not glowing, pilot light on	On: or more tubes burned out			
Power supply voltage variation exceeds test limit	C13A, B, C or C14 breaking down under high voltage V5 defective V1-V4 shorted		Impossible to set low end on frequency Dial springs back when turned counterclockwise against the stop	Tuning capacitor open too far when fully meshed
Impossible to set 200 CD output to 20 volts (unloaded)		V4 defective 1,RT2 defective	Calibration bad on one range only	Dirty RANGE switch contacts $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 7$, or C 16 need adjusting One RANGE switch resistor has changed resistance
With RANGE set to X1X100 ranges and output set to 20 volts rms, addition of $600-$ ohm termination does not lower output to 10 volts $\pm 0.5 \mathrm{v}$.	T2	defective		
			Excessive distortion on X1K-X10K ranges	R50 or R51 mis adjusted T1 defective
			Excessive distortion on X1, X10 and X100 ranges	R50 or R51 misadjusted T2 defective
Same as above with RANGE set at X1K or X10K	T1	defective		
			Excessive distortion on all ranges	V1-V4 defective RT1-RT2 defective Dust between tuning capacitor plates
Turning AMPLITUDE control causes jumpy output		(AMPLITUDE ontrol) defective		
			Impossible to set 11.5 v out with 200 CD terminated with 600 ohms (adjustment procedure)	RT1, RT2 defective V1-V4 weak
Recovery time exceeds test limit	$\begin{aligned} & \mathrm{V} 1, \\ & \mathrm{RT} \end{aligned}$	V3 defective . RT2 defective		
5-2				00084-4

5-14.
SERVICING ETCHED CIRCUIT BOARDS.

Note

Excessive heat or pressure can lift copper conductors from etched circuit boards.

5-15. To remove components from board, clip leads on component side of board. New components can then be soldered to the leads extending from the board or the leads can be removed. If leads are removed, clean holes with a toothpick or wooden splinter (metal awls or soldering aids may destroy the cpper conductor) before inserting leads.

5-16. TUBE REPLACEMENT.
5-17. Tubes used in the Model 20 CD are listed in Tube Replacement List (table 5-3). If V2 or V4 are changed, replace the special tube shields in their original positions, (shown in figure 5-2).

Table 5-3. Tube Replacement List

Tube	Type	Function	Required Checks or Adjustments
V1	6AU6	Voltage Amplifier	Recheck calibration and distortion.
V2	6CW5 EL86		Reset output voltage (paragraphs 5-24 through 5-38).
V3	6AU6	Cathode Followers	Recheck distortion (paragraph 5-37).
V4	6AU6		Reset output voltage (paragraph 5-38).

Figure 5-2. Right Side of Model 200CD (as viewed from the front)

Paragraphs 5-18 to 5-33
5-18. REPLACEMENT OF LAMPS, RT1 and RT2
5-19. The amplitude stablization lamps operate well below their rating and should have a long life, unless they are damaged by severe mechanical vibration. When RT1 or RT2 (see figure 5-1) are replaced, reset output voltage (paragraph $5-38$).

5-20. TUNING CAPACITOR RE: AIR,

5-21. The tuning capacitor, C $\$ \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ (shown in figure $5-1$), should not be loosened unless absolutely necessary, since doing so may cause misalignment of the tuning capacitor shaft with the shaft extension to the gears. If $\mathrm{C} 5 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ his been removed or loosened for any reason, it should be readjusted mechanically before any electrical adju stment is attempted. In some cases, due to slippage, the tuning capacitor will not mesh far enough to allow perfect calibration at the extreme low end of the dial. When correctly set, the edge of the insulation protruding from the rotor plate spacer on C5 should line up with the topmost stator spacer when the dial is set fully clockwise.

5-22. RANGE SWITCH REPAIR.

5-23. Resistor values on $S 1$ zave been carefully bridged and adjusted at the factory to the exact value required for proper tracking on all ranges. If one range is found to be badly out of calibration and all other possibilities have been exhausted (especially dirty RANGE switch contacts) try adjusting the value of C1, C2, C7 or C16 (depending on the range affected) slightly. If any part of the RAN IE switch is found to be defective, it is recommende 1 that the switch be replacedas an assembly. Figure $5-3$ shows all wiring detail for replacement.

5-24. ADJUSTMENTS.

5-25. The following section is a complete adjustment procedure and should be made only if it has been definitely determined that the Model 200 CD is out of adjustment.

Note

In order to minimize the effects of hand capacity, a "tuning wand" or tuning screwdriver with a plastic shank should be used for all adjustments.

5-26. PRELIMINARY CHECKS.

5-27. The following basic test are given to avoid possible unnecessary adjustment of the Model 200 CD . If the instrument fails any of the ee tests, some component is probably at fault and should be replaced before attempting any adjustment. Proceed as follows:

5-28. POWER SUPPLY:

a. With the instrument turned off, check the resistance from C13 to ground and the resistance across C13. This resistance is typically many megohms. A very low reading (below 100K) indicates a shorted or leaky capacitor between the B+ line and ground.
b. Turn the instrument on, an
allow it to warm up for at least 15 minutes.
c. Check to see that all tubes are glowing.
d. Using an dc electronic voltmeter, measure the positive and negative power supply voltages using ground as a reference. The positive voltage (approximately 225 volts) may be measured between the chassis and C14. The negative voltage (approximately 155 volts) is measured from the chassis to the junction of R30, R31 and R40 (figure 5-2). The difference between the negative and positive voltage should be 380 volts ± 75 volts.

5-29. AMPLITUDE CONTROL OPERATION:

a. With a 600 -ohm load connected to the OUTPUT terminals, and the Model 200 CD output connected to the ac voltmeter, set the Model 200 CD RANGE to X100.
b. Turn the Model 200CD AMPLITUDE fully clockwise. If necessary adjust R11 to obtain 12 vac.
c. Now, while observing the voltmeter indication and switching to lower voltmeter ranges as necessary, slowly turn the Model 200CD AMPLITUDE fully counter clockwise. Note the voltmeter reading again. The attenuation should be smooth and the final reading should be at least 46 db below the reference in step b.

5-30. RECOVERY TIME:

a. Switch RANGE to X10 and frequency to 50 kc .
b. Connect the output of the Model 200 CD to an oscilloscope.
c. Switch from range to range, observing the oscilloscope pattern after range switching.
d. The oscilloscope presentation should become stable within 5 seconds after switching ranges.

5-31. CALIBRATION.

$5-32$. The calibration procedure for the Model 200 CD is divided into two sections. The first section,paragraph $5-33$, is intended to produce a flat frequency response for the Model 200 CD , and is accomplished with the instrument set on the X 10 range. The second section, paragraph 5-34, is intended to produce correct frequency dial tracking and is accomplished with the instrument set on the X 100 range.

5-33. FREQUENCY RESPONSE ADJUSTMENTS:

a. Turn Model 200 CD RANGE to X 10 , frequency dial to 5 .
b. Connect the Model 200 CD to an ac voltmeter and a frequency measuring device (counter or frequency standard) as shown in figure 5-4.
c. Using Model 200 CD AMPLITUDE, set a reference of 9 volts as read on the ac voltmeter.
d. Turn the frequency dial to 60 . The ac voltmeter should read within $\pm 1 / 4 \mathrm{db}$ of the reference in step c and the frequency should be correct within 2%.

Figure 5-3. Range Switch Detail
e. If 600 cps is off more than 2%, set the frequency on with C6.

Note

Since replacing the cabinet raises the frequency slightly, it is advisable to set the frequency slightly low (e.g., 599 cps) when making this adjustment.
f. Observe the output voltag, and determine how much it differs from the reference.
g. Adjust C3 to correct for half this difference. Then adjust C6 so that the output frequency is again 600 cps .
h. Observe the output voltag. If it is more than $\pm 1 / 4 \mathrm{db}$ from the reference in step c repeat steps c through h until a flat response is obtained with 600 cps set on frequency (see note alove).

5-34. FREQUENCY DIAL TRA KING:

a. Switch Model 200CD RANGE to X100. Connect the equipment as shown in figur s 5-4 or 5-5.
b. Check the frequency at 5. The frequency reading should be $500 \mathrm{cps} \pm 2 \%$. If the frequency is off more than $\pm 2 \%$, slip the dial to put it on frequency:

1) Remove center knob on frequency dial.
2) Loosen the four screwswhich secure the dial plate to the drive shaft.

Figure 5-4. Calibration Test Setup

Figure 5-5. Alternate Calibration Setup
3) Reset dial to position indicated in the text.
4) Tighten the four securing screws. (Center knob may be replaced at the end of this procedure.)
c. If it was necessary to slip the dial, repeat steps a through h in paragraph 5-33.
d. If step c was necessary, repeat step b. It is possible that the entire dial will now track without further adjustment.
e. Check all numbered points on the dial, beginning at the highend. If some points exceed test limits ($\pm 2 \%$) try to equalize the error by slipping the dial to get all points within these limits.
f. Switch RANGE to X10K, and set the Model 200CD frequency dial to 60.
g. Adjust C 7 to put 600 kc on frequency.
h. Check calibration on the remaining ranges. Calibration should be correct to $\pm 2 \%$.

Note

It will be advantageous to set the counter FUNCTION SELECTOR to 10 PERIOD AVERAGE when measuring frequency on the X1 range (refer to table 5-4).

Table 5-4. Frequency/Period Conversion

Frequency (cps)	Frequency Limits	Period Limits
5	5.1	196.0 ms
	4.9	204.0 ms
10	10.2	098.0 ms
	9.8	102.0 ms
20	20.4	049.0 ms
	19.6	051.0 ms
40	40.8	024.5 ms
	39.2	025.5 ms
60	61.2	016.3 ms
	58.8	017.0 ms

5-35. If the above procedures do not result in correct calibration, start over by adjusting C3 and/or C6 as in step a through h, paragraph 5-33. Then work toward the low end by setting the dial to the next numbered point and bending one of the outer rotor plates in each section of C5 at the point of mesh. Continue this procedure to the low end of the dial to obtain approximately correct frequencies. Repeat the bending procedure from the high end, this time making fine adjustments of frequency with the other outer rotor plates. In this way, bending of any one plate is minimized.
$5-36$. When bending rotor plates, observe the following precautions: 1) keep all bends as near the shaft as possible; 2) keep all segments in line. The rotor plates should taper gradually inward or outward, depending on whether you must compress or expand the
frequency range. This gradual taper is essential for linearity. 3) Bending of plates near th= high frequency end should be unnecessary.

5-37. DISTORTION

a. Connect the Model 200 CD to the iistortion analyzer as shown in figure 5-6.
b. Set the Model 200 CD RANGE to X 1 and the frequency dial to 20 .
c. The distortion analyzer switches should be in the following positions:
AF - RF . AF
FREQUENCY 20
Selector switch SET LEVEL
RMS VOLTS-DB switch $\pm 20 \mathrm{db}$
d. Adjust distortion analyzer INPUC control for a zero db reference on the distortion andyzer meter.
e. Switch selector to DISTORTION.
f. Adjust BALANCE and FREQUENCY controls for a dip on the meter.
g. Turn RMS VOLTS-DB switch counterclockwise while continually adjusting distortion analyzer BALANCE and FREQUENCY until the low st possible dip is obtained.
h. Adjust R50 (dynamic balance) fors dip (minimum distortion; see figure 5-2) on the distortion analyzer meter until the lowest possible dip is btained.

Note
For optimum results use lowest frequency setting of the 200 CD Wide Range Oscillator. $^{\text {S }}$
i. Repeat steps a through h , adjusting all distortion analyzer controls for 50 cps (60 cps if 50 cps line frequency is being used) instead of 10.0 cps .
j. Adjust R51 (hum balance; see fisure 5-2) instead of dynamic balance in step h.

Figure 5-6. Distortion Test Setup

5-38. OUTPUT VOLTAGE

a. Connect the Model 200 CD to an ac voltmeter.
b. Load the Model 200 CD with a 600 -ohm load resistor.
c. Turn Model 200CD AMPLITUDE fully clockwise, and adjust R11 for 11.5 volts on the ac voltmeter (see figure 5-7).

5-39. PERFORMANCE CHECK.

$5-40$. Proper operation of the Model 200 CD is verified in the following procedure. A complete adjustment procedure is given in paragraph $5-24$.

5-41. OUTPUT IMPEDANCE.

a. Set Model 200 CD RANGE to X100, frequency dial to 10 .
b. Connect Model 200 CD output to an ac transistor voltmeter. Set the voltmeter RANGE to 30 volts.
c. Turn Model 200 CD AMPLITUDE fully clockwise. The voltmeter should read at least 20 volts.
d. Set Model 200CD AMPLITUDE for exactly 20 volts as read on the voltmeter.
e. Connect a 600 -ohm resistor such as the Model 470 E Shunt Resistor across output of Model 200CD.
f. The voltage as read on the voltmeter should drop to 10 volts +0.5 volts.

5-42. FREQUENCY RESPONSE.

a. Connect the Model 200 CD to an ac voltmeter and an electronic counter as shown in figure 5-4. Substitute an ac transistor voltmeter for the ac electronic voltmeter in figure 5-4.
b. Set Model 200 CD RANGE to X100, frequency dial to 10 . Terminate output with 600 ohms.
c. Adjust Model 200 CD AMPLITUDE for a convenient reference around 0.9 on the voltmeter scale.
d. Starting with the X1 range, rotate the frequency dial across the band while observing the meter.
e. Repeat this process for each range. The voltmeter indication should not vary more than ± 1 db throughout the ranges checked.

5-43. DIAL ACCURACY.

a. Set Model 200 CD RANGE to X10K, frequency dial to 60 . Observe the frequency reading on the electronic counter.
b. Check frequency at $40,20,10$ and 5 on the dial.
c. Repeat this procedure for the remaining ranges. The frequency should be correct within $\pm 2 \%$.

Note

For the lower end of the X10 range and the entire X1 range, it will be advantageous to measure the frequency indirectly by switching the electronic counter FUNCTION SELECTOR to 10 PERIOD AVERAGE. Table 5-4 lists the specifications interms of period readings for each point on the X1 range. To check X10 range, divide the period limit in table $5-4$ by 10 .

5-44. DISTORTION.
a. Connect the Model 200CD to a distortion analyzer as shown in figure 5-6.
b. Set Model 200CD RANGE switch and frequency dial to one of the frequencies indicated in table 5-5.
f. Adjust BALANCE and FREQUENCY controls for a dip on the meter.
g. Turn RMS VOLTS-DB switch counterclockwise while continually adjusting distortion analyzer BALANCE and FREQUENCY until the lowest possible dip is obtained. Specifications are listed in table 5-5. \#
c. The distortion analyzer switches should be set to the following positions:
AF-RF \qquad AF
FREQUENCY. .incoming frequency selected in step b Selector switch SET LEVEL RMS VOLTS-DB switch $\pm 20 \mathrm{db}$
d. Adjust distortion analyzer INPUT control for a zero db reference on the distortion analyzer meter.
e. Switch selector to DISTORTION.

Table 5-5. Distortion Test Frequencies

Range	Frequency	Specifications
X10	100 cps	54 db
X100	1000 cps	54 db
X100	6 kc	54 db
X1K	5 kc	54 db

Figure 5-7. Bottom View Model 200CD
\# If the measurement of distortion above the frequency of 20 kc is desired, a distortion analyzer which will measure distortion to 600 kc must be used (such is top Model 331A). At 500 kc and above, the distortion must be down 46 db from reference 0.5%.

SECTION VI
 REPLACEABLE PARTS

6-1. INTRODUCTION.

6-2. This section contains information for ordering replacement parts. Table 6-1 lists parts in alphameric order of their reference designators and indicates the description, -hp- part number of each part, together with any applicable notes, and provides the follows:
a. Total quantity used in the instrument (TQ column).
b. Description of the part. (See list of abbreviations below.)
c. Typical manufacturer of the part in a fivedigit code. (See Appendix A for list of manufacturers.)
d. Manufacturer's part number.

6-3. Miscellaneous parts are listed at the end of Table 6-1.

6-4. ORDERING INFORMATION.

$6-5$. To obtain replacement parts, address order or inquiry to your local Hewlett-Packard Field Office. (See Appendix B for list of office locations.) Identify parts by their Hewlett-Packard part numbers.

6-6. NON-LISTED PARTS.

6-7. To obtain a part that is not listed, include:
a. Instrument model number.
b. Instrument serial number.
c. Description of the part.
d. Function and location of the part.

A	= assembly
B	$=$ motor
BT	= battery
C	= capacitor
CR	= diode
DL	= delay line
DS	= lamp
E	= misc electronic part
Ag	= silver
Al	= aluminum
amp	$=$ ampere (s)
Au	$=$ gold
C	= capacitor
cer	$=$ ceramic
coef	$=$ coefficient
com	= common
comp	= composition
conn	= connection
cps	= cycles per second
dep	= deposited
DPDT	= double-pole doublethrow
DPST	$=\underset{\text { throw }}{\text { double pole single- }}$
elect encap	= electrolytic = encapsulated
f	$=$ fanad (s)
FET	= field effect transistor
fxd	= fixed
GaAs	= gatlum arsenide
Gc	$=$ gigacycle $(\mathrm{s})=10^{+9}$
gd	= guard (ed)
Ge	= germanium
grd	= ground (ed)
h	$=$ henry (ies)
Hg	= mercury

designators

F	$=$ fuse
FL	$=$ filter
HR	$=$ heater
J	= jack
K	$=$ relay
L	= fnductor
M	= meter
MP	= mechanical part

\mathbf{p}	$=$ plug
\mathbf{Q}	$=$ transistor
$Q C R$	$=$ transistor-diode
R	$=$ resistor
RT	$=$ thermistor
S	$=$ switch
T	$=$ transformer
TC	$=$ thermocouple

ABBREVIATIONS

ID	$=$ inside diameter	ns	$=$ nanosecond (s) $=10^{-9}$	
impg	= impregnated	nsr	$=$ not separately replace-	
incd	= incandescent		able	
ins	$=$ insulation (ed)			
K	$=$ kilohm (s) $=10^{+3}$		obd	$=$ order by description
Kc	$=$ kiloycycle (s) = 10^{+3}	p	= peak	
L	= inductor	pc	= printed circuit	
lin	= linear taper	pf	$=$ picofarad (s) $=10^{-12}$	
\log	= logarithmic taper	piv	= peak inverse voltage	
	$=$ milli $=10^{-3}$	p/o	$=$ part of $=$ position (s)	
ma	$=$ milliampere $(\mathrm{s})=10^{-3}$	poly	= polystyrene	
Mc	$=$ megacycle $(\mathrm{s})=10^{+6}$	$\begin{aligned} & \text { p-p } \\ & \text { prec } \end{aligned}$	= peak-to-peak	
meg met flm mfr mtg	$\begin{aligned} & =\text { megohm }(\mathrm{s})=10^{+6} \\ & =\text { metal film } \\ & =\text { manufacturer } \\ & =\text { mounting } \end{aligned}$		$=$ precision (temperature coefficient, long term stability, and/or tolerance)	
μ	$=$ micro $=10^{-6}$	R	= resistor	
my	$=$ Mylar	R_{R}	= resistor $=$ rhodium	
na	$=$ nanoampere $(\mathrm{s})=10^{-9}$	rms	= root-mean-square	
NC	$=$ normally closed	rot	= rotary	
Ne	= neon			
NO	* normally open	Se sect Si sl	$\begin{aligned} & =\text { selenium } \\ & =\text { section }(\mathrm{s}) \\ & =\text { silicon } \\ & =\text { slide } \end{aligned}$	
NPO	= negative positive zero (zero temperature coefficlent)			

SPDT	$\begin{aligned} &= \text { single-pole double- } \\ & \text { throw } \end{aligned}$
SPST	$\begin{aligned} & =\text { single-pole single- } \\ & \text { throw } \end{aligned}$
Ta	= tantalum
TiO_{2}	= titanium dioxide
tog	$=$ toggle
tol	= tolerance
trim	$=$ trimmer
TSTR	$=$ transistor
v	$=$ volt (s)
vacw	$\begin{aligned} = & \text { alternating current } \\ & \text { working volt (s) } \end{aligned}$
var	= variable
vdew	```= direct current working volt (s)```
w	= watt (s)
w/	= with
wiv	= reverse working voltage
w/o	= without
ww	= wirewound
*	$=$ optimum value selected at factory, average value shown (part may be omitted)
**	= no standard type number assigned (selected or special type)

V	$=$
	vacuum tube, neon
	bulb, photocell etc.
W	$=$
X	cable
$\mathrm{X} S$	socket
XDS	$=$ lampholder
XF	$=$ fuseholder
Z	$=$

(R) Dupont de Nemours

Table 6-1. Reference Designation Index

Circuit Reference	(ta) Stock No.	Description	Note
A1	200CD-19WB	Assy, range switch includes: C1, C2, C16, L4, L5, R1 thru R10, R33, R34, R37, R38, R42 thru R45, S1	
C1		Nsr; part of A1	
C2		Nsr; part of A1	
C3	0130-0001	C: var, cer, $7-45 \mathrm{pf}, 500 \mathrm{vdcw}$	
C4	0140-0116	C: fxd, mica, $39 \mathrm{pf} \pm 2 \%$, 500 vdcw	
C5	0121-0018	C: var, 3 sect, $14-617 \mathrm{pf} /$ sect	
C6	0130-0001	C: var, cer, $7-45 \mathrm{pf}, 500 \mathrm{vdcw}$	
C7	0130-0011	C: var, cer, $1.5-7 \mathrm{pf}, 500 \mathrm{vdcw}$	
C8, C9	0160-0024	C: fxd, my, $0.5 \mu \mathrm{f} \pm 10^{\circ} \%, 400 \mathrm{vdcw}$	
C10, C11	0140-0054	C: fxd, mica, $100 \mathrm{pf} \pm 10 \%, 500 \mathrm{vdew}$	
C12	$0180-0013$	C: fxd, elect, $100 \mu \mathrm{f}, 100$ vdcw	
C13A, B, C	0180-0017	C: fxd, elect, 3 sect, $10 \mu \mathrm{f} /$ sect, 450 vdcw	
C14	0180-0024	C: fxd, aluminum elect, $40 \mu \mathrm{f}, 450 \mathrm{vdcw}$	
C15	0140-0004	C: fxd, mica, 15^{*} pf $\pm 10 \%, 500$ vdcw	
${ }_{\text {C16 }}^{\text {C17, }} \mathrm{C} 18$	0140-0005	Nsr; part of A1 C: fxd, mica, $27 *$ pf $\pm 10 \%, 500 \mathrm{vdcw}$	
CR1, CR2	1901-0037	Rectifier, silicon	
DS1	2140-000	Lamp, incd: $0.15 \mathrm{amp}, 6-8 \mathrm{~V}$	
F1	$2110-0021$	Fuse, 1.25 amp , s-b (for 115 V operation)	
	2110-0016	Fuse, 0.6 amp , s-b (for 230 V operation)	
J1	5060-0625	Connector assy, consists of: Binding post w/ground link	
	$\begin{aligned} & 5060-0625 \\ & 5060-063 \end{aligned}$	Binding post: red	
	0340-0087	Insulator: bl, 3 hole (rear)	
	0340-0091	Insulator: black, 3 hole (front), with locating key	
L1		Not assigned	
L2, L3	200CD-6) ${ }^{\text {C }}$	Coil, R.F., 2 mh	
L4, L5		Nsr; part of A1	
L6	9110-000:	Rector, filter choke, 6 h	
P1	8120-005	Assy, power cable: smooth, black, shiny, 7.5 ft , NEMA plug	
R1 thru R10		Nsr; part of A1	
R11	2100-015:	R : var, comp, lin, 1 K ohms $\pm 30 \%, 3 / 10 \mathrm{~W}$	
$\begin{aligned} & \text { R12 } \\ & \text { R13, R14 } \end{aligned}$	0689-302	R: fxd, comp, 3 K ohms $\pm 5 \%, 1 \mathrm{~W}$ Not assianed	
R15, R16	0687-5601	R : fxd, comp, $56 \mathrm{ohms}+10 \%, 1 / 2 \mathrm{~W}$	
R17, R18	0761-003	R : fxd, met flm, 22 K ahms $\pm 5 \%, 1 \mathrm{~W}$	
R19	0686-1053	R : fxd, comp, $1 \mathrm{M} \pm 5 \%, 1 / 2 \mathrm{~W}$	
R20, R21	0761-0083	R : fxd, met flm, 68 K ohms $\pm 5 \%, 1 \mathrm{~W}$	
R22 $\mathrm{R} 23, \mathrm{R} 24$	0686-105	R : fxd, comp, $1 \mathrm{M} \pm 5 \%, 1 / 2 \mathrm{~W}$ R : fxd, comp, $1.5 \mathrm{M} \pm 10 \%, 1 / 2 \mathrm{~W}$	
R25, R26	0687-5601	R : fxd, comp, 56 ohms $\pm 10 \%, 1 / 2 \mathrm{~W}$	
R27, R28	0816-0003	R : fxd, ww, $500 \mathrm{ohms} \pm 10 \%, 10 \mathrm{~W}$	
R29		R: 470 ohms, nsr; part of L4	
$\begin{aligned} & \text { R30, R31 } \\ & \text { R32 } \end{aligned}$	0816-0002	R: fxd, ww, 3 K ohms $+10 \%, 10 \mathrm{~W}$ R: 470 ohms, nsr; part of L5	

[^0]Table 6-1. Reference Designation Index (Cont'd)

\# See introduction to this section

Table 6-1. Reference Designation Index (Cont'd)

Table 6-2. Replaceable Parts

Table 6-2. Replaceable Parts (Cont'd)

Stip Stock No.	Description	Mfr.	Mfr. Part No.	TQ	
2100-0013	R : var, comp, lin, 50 K ohms $\pm 20 \%, 1 / 2 \mathrm{~W}$	71590	Model 2	1	
2100-0036	R : var, comp, lin, 1 K ohms, 0.5 W	01121	JA1L0405502UC	1	
2100-0113	R : var, comp, dual tandem, 2 W	01121	JJ59160	1	
2100-0154	R : var, comp, lin, 1 K ohms $\pm 30 \%, 3 / 10 \mathrm{~W}$	11237	UPE-70	1	
2110-0016	Fuse, 0.6 amp , s-b (for 230 v operation)	75915	313. 600	1	
2110-0021	Fuse, 1. $25 \mathrm{amp}, \mathrm{s}-\mathrm{b}$ (for 115 v operation)	71400	MDL 1. 25	1	
2140-0007	Lamp, incd: ${ }^{5} 50 \mathrm{v}, 10 \mathrm{~W}$	24455	8A/S6-12V	2	
2140-0009	Lamp, incd: $0.15 \mathrm{amp}, 6-8 \mathrm{v}$	24455	47	1	
3101-0001	Switch, tog: SLST, 3 amp	04009	80994-11	1	
5000-0637	Spring, thrust (vernier drive)	28480	5000-0637	1	
5020-0600	Hub, dial: fits on shaft of 5020-0617	28480	5020-0600	1	
5020-0618	Bearing, capacitor drive	28480	5020-0618	1	
5040-0212	Insulator, flex coupling	28480	5040-0212	1	
5040-0600	Window, dial for curved frequency dial	28480	5040-0600	1	
5040-0607	Assy, disc vernier drive	28480	5040-0607	1	
5060-0020	Assy, Gear with coupling hub	28480		1	
5060-0021	Assy, Gear	28480		1	
5060-0625	Assy, binding post, ground w/link	28480	5060-0625	1	
5060-0633	Binding post, red	28480	5060-0633	2	
5080-0205	Coupler, flexible	28480	5080-0205	1	
8120-0050	Assy, power ctble: Smooth, black, shiny, 7.5 ft . NEMA plug	70903	$\begin{aligned} & \text { KH }-4096 / \mathrm{PH}-151 \\ & 7.5 \mathrm{ft} . \end{aligned}$	1	
9100-1329	Transformer, power	28480	9100-1329	1	
9110-0004	Rector, filter choke	72964	8168-D	1	
9120-0016	Transformer, low freq. output	98734	2005	1	

APPENDIX
 CODE LIST OF MANUFACTURERS (Sheet 1 of 2)

The following code numbers are from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1 (Name to Code) and H4-2 (Code to Name) and their latest supplements. The date of revision and the date of the supplements used appear at the botfom of each page. Alphabetical codes have been arbitrarily assigned to suppliers not appearing in the H 4 handbooks.

APPENDIX

CODE LIST OF MANUFACTURERS (Sheet 2 of 2)

Cas.	Manufoc furer	
81349	Military Specificatio	
81415	Raytheon Mig. Co., Industrial Components Div., Indust1. Tube Operations Newlon, Mass	
81453		
81483	Internationat Rectitier Corp.	El Segundo, Calif.
81541	The Alipax Products Co.	Cambridge, Mass.
81860	Bary Conftols, Inc.	
82042	Carter Parts Co.	Skokie, III,
82142	Jeffers Electronics Division of Speer Carbon Co.	of Du Bois, Pa.
	Allen B. Dumon	N.J.
82209	Maguire Industies	reenwich, Conn.
32219	Sylyania Electicic Prod. Inc. Electronic Tube Div.	P,
82376	Astion Co.	Cost Newrk, M.J.
82389	Switcheraft, inc.	
82647	Metals and Controls, Inc., Div. of Texas instruments, Inc.	
82865	Research Products Corp.	Attleboro, Mass. Madison, wis.
88877	Rolion Manulacturing Co., Inc.	c. Woodstock, M.Y.
82893	Vecior Electronic Co.	
83053	Western Hasher Mif. Co.	Los Angeles, Calif.
83058	Carl Fastener Co.	Cambridge, Mass.
83085	New Hampshire Ball Bearing. In	inc. Peterborough, N.H.
83125	amid Electric Co. Pater	Peterborough, N.H. Darlington, S.C.
83148	Electro Cords Co.	Angoles, Calif.
83185	Victory Engineering Coip.	Springlield, N. ${ }^{\text {d }}$,Red Bank, N.J.
83298	Bendik Corp., Red Bank Div.	
83315	Hubbel\| Corp.	Mundelein, ili.
330	Smith, Heiman H.,	Brooklyn, N.Y. Chicago, IIt.
83385	Central Scre* Co.	
83501	Gavilt Mire and Cable Co. Div, of Amerace Corp.	Brooktiold, Mass.
83594	Burroughs Corp. Electronic Tube Div. Plainfield, N.J.	
83740	Eveleady Battely	Plainfiold, N.J. New York, N. Y.
837	Model Eng, and Mita	Huntington, Ind.
8382	Loyd Scrugss Co.	Festus, Mo.
84.71	Alco Electionis, Inc.	New York, N.Y.Francisco, Calif.
84396	A.J. Glesener Co., inc.	
844	Good All Electric Mfg. Co.	Ozalala, Neb,
84970	Sarkes Tarzian, Inc.	
85454	Boonton Molding Company	oomington, Ind. Boanton, N.J.
85471	A.B. Boyd Co.	

Code		
No.	Manufacturer	Addres
93929	Q. V. Contrals	Livingston, N. J.
9398394157	Insuline-Van Noman Ind., Inc. Electronic Division	Manchester, N.H.
	General Cable Corp.	Bayonne, N. ${ }^{\text {d }}$
94144	Raytheon Mg. Co., Industrial Components Div.. Receiving Tube Operation Quincy, Mass.	
94145	Ray theon Mig. Co., Semiconductor Diy., California Street Pant Newton, Mass.	
94148	Scientific Radio Products, Inc.	
		Loveland, Colo.
94154	Tung-Sol Electric, l c.	Newark, N.I.
34197	curtiss-Wright Corp.,	East Paterson, N.J.
$\begin{aligned} & 94222 \\ & 94310 \end{aligned}$	Southco Div. of S. Chester Comp	ar. Lester, Pa.
4330	Wire Cloth Products Inc.	Chicago, III.
94682	Worcester Pressed Aluminum Corp.	
		Worcester, Mass.
95023	Philbrich Researchers, tac.	Boston, Mass.
95236	Allies Products Corp.	Miami, Fla.
95238	Continental Connector Corp.	* oodside, N, Y.
95263	Leecralt Mig. Co., Inc.	Ne\% York, N.Y.
95264	Lerco Electronics, Inc.	Burbank, Calif.
9526	National Coil Co.	Sheridan, Wyo.
95275	Vitramon, Inc.	Bridge port, Conn.
95348	Gordas Corp.	Bloomlield, N. . .
95354	Methode Mfg. $\mathrm{Co}^{\text {. }}$	Chicago, III.
95712	Dage Electric Co., Ine.	Franklin, Ind.
95987	*eckesser Co.	Chicago, III.
96067	Huggins Labotalories	Sunnyvale, Calif.
96095	Hi-Q Division of Amrovax	Olean, N.Y.
96256	Thoodarson-Meissner Div, of Maguire Industries, lic.	Mt. Carmel, III.
96296	Sorar Manufacluring Ca.	Los Angeles, Calit.
96330	Cariton Screw Co.	Ckicago, IIt.
96341	Microwave Associates, inc.	Burlington, Mass.
96501	Excel Transformer Co.	Jakland, calif.
97464	Industrial Retaining Ring Co	Invington, N.J.
97539	Automatic and Precision Mig. Co.	
		Yonkers, N.Y.
97966	CBS Electronics,	
97979	Reon Resistor Corp.	Yonkers, N, Y.
98141	Axel Brothers Inc.	Jamaica, N, Y.
98159	Rubber Teck, Inc.	Gardena, Calif.

Code		
No.	Monufacturer	Addres
98220	Francis L. Mostey	ena, Calif.
98278	Microdot, Ins	Pasadena, Calii
291	Sealectro Corb	Mamaroneck
98405	Carad Corp.	Redwood City, Calif.
98731	General Mills	Minneapolis, Minn.
98821	North Hilis Electric Co.	Mineoia, N. Y.
98925	Clevite Tiansistor Prod. Div. of Clevite Coip.	
98978	international Electionic	
	Research Corp.	urtank
99109	Columbia Technical Corp.	New York, N,Y.
99313	Vatian Associates	Palo Alto, Calif.
99515	Marshall Industries, Electron Products Division	,
99707	Control Switch Division, Controls Co.	
99800	Delevan Electronics Corp.	Esas Aurora, N.Y.
99848	Wilco Corpor	Jianapolis, Ind.
99934	Renbrandt, inc.	
99942	Hoflman Semiconductor Div. of Hoffman Electionics Corp.	
99957	Tethnology Instrument Corp of Caili.	wbury
THE FOLLOWING H-P VENDORS HAVE NO NUM.		
The feotral supply code for manufac-		
10000	Winchesler Electronics, Ine.	
		Santz Morica, Calit.
0000F	Malco Tooi and Die	Los Angeles.
0000 M	Western Coil Div. of Automatic	
	Ind., inc.	Redwood City, Calif.
0003 P	Ty.Car Mig. Co. , inc.	Holliston, Mass.
00002	Willow Leather Products Copp.	Newark, N.
000 AA	British Radio Electeonics Lld.	Washinglon, D.C.
000AB	ETA	Engla
000AC	Indiana General Colp., Elect.	Div.
00088	Precision instument Components Co .	
		Van Nuys,
000M	Rubber Eng. \& Develapment	Hayward,
OOONN	A "W") D Manulacturing Co.	San Jose 27, Calif.
0009Q	cooltron	Oakland, Calif.
000ss	Control of Elgin Watch Co.	Burbank, Callf.
000世木	Casilornia Eastern Lab.	But lingame,

HEWLETT-PACKARD INTERNATIONALOFFICES Electronic Instrument Sales and service

ARGENTINA
Mauricio A. Saurez
Telecomunicaciones
Carlos Calvo 224, Buenos Aires
Tel: $30-6312$
AUSTRALIA
Sample Electronics (Vic.) Pty. Ltd.
9-11 Cremorne Street
Richmond E. 1, Victoria
Tel: 42.4757 (3 lines)
Sample Electronics (N.S.W.) Pty. Ltd 4 Grose Street, Glebe, N.S.W. Tel: 69.6338 (6 lines)

AUSTRIA
UNILABOR H.m.b.H
Wissenschaftliche Instrumente
Rummelhardtgasse $6 / 3$
P.0. Box 33 Vienna 1×171

Tel: 426181
BELGIUM
Hewlett-Packard Benelux
$20-24$ Rue de :Hooital Brussels 1
Tel: 1122.20
BRAZIL
Ciental Importacao e Comercio Ltda
R. Des Eliseu Guilherme, 62

Sao Paulo 6
CHILE
Hector Calcagn
Casilla 13942, Santiago
Tel: 6.42 .26
COLOMBIA
Instrumentacion Henrik A. Langebeck \& Cia. Ltda.
Apartado Aereo 6287
Bogota 1. D.E
Tel: 45-78-06
Cable: AARIS - Bogota
DENMARK
Tage OIsen A/S
Ronnegade 1, Copenhagen 0
Tei: 29.48 .00
FINLAND
INTO OM Y
P.O. Box 153

II Meritullinkatu, Helsink
Tel: 6:11.33
FRANCE
Hewlett-Packard France
150 Blvd. Massena, Paris $13 e$
Tel: 707.97.19
GERMANY
Hewlett-Packard VgmbH
Steindamm 35, Hamburg
Tel: 24.05 .51
Hewlett-Packard Vgmbr
Kurhessenstrasse 95
Frankfutt a. Main
Tel: 52.00 .36
Hewlett-Packard VembH
Reginfriedstrasse 13
Munich 9
Tel: $49.51 .21 / 2$
Hewlett-Packard Vgmbt
Technisches Buro
Herrenbergerstrasse 110
703 Boblingen, Wurttemberg
Tel: 6971
Hewlett-Packard VgmbH
Lietzenburger Strasse 30
1000 Berlin 30
Tel: 249271

IN EUROPE
Hewlett-Packard, S.A
54 Route des Acacia
Geneva. Switzerland
Telephone: (022) 42.81 .50
Telex: 2.24 .86
Cable: HEWPACKSA

GREECE

K. Karayannis

Klaftmonos Square, Athens 124
Tel: 230.301
INDIA
The Scientific Instrument Company, Ld
6. Tei Bahadur Sapru Road, Allahabad 1

Tel: 2451
The Scientific Instrument Company, Ld.
240, Dr. Dadabhai Naoroji Rd., Bombay 1
The Scientific Instrument Company, Ld
11, Esplanade East, Calcutta 1
Tel: 23-4129
The Scientific Instrument Company, Ld
30, Mount Road, Madras 2
Tel: 86339
The Scientific Instrument Company, L.d
B-7, Ajmeri Gate Extn., New Delhi 1
Tel: 271053
IRAN
Telecom Ltd
P.O. Box 1812, Tehran

Tel: 43850
SRAEL
Electronics \& Engineering Ltd
16 kremenetski St., Tel Aviv
Tel: 35021-2-3
ITALY
Hewlelt.Packard Italiana S.p.A
Viale Lunigiana 46, Milan
Tel: 69.15.84/5/6
Hewlett-Packard Italiana S.p.A.
Palazzo Italia
Piazza Marconi, 25, Roma-Eur
Tel: 59.12.544/5
JAPAN
Yokogawa Hewlett-Packard Lid.
2270 ishikawa-cho
Hachioji, Tokyo
Tel: Hachioji 0426-3-1231 (19 lines)
Yokogawa Hewlett-Packard L!d.
No. 3, 6-chome, Aoyama-Kitamachi
Akasaka, Minalo-ku, Tokyo
Tel: 403.6511
Yokogawa-Hewlett-Packard Lid.
No 8 Umeda, Kita-ku. Osaka
Tel: 313.0091
Yokogawa-Hewlett-Packard LId.
No. 4, 3-chome, Himeikedori,
Chigusa-ku, Nagoya
Tel: 751-8545
KOREA
American Trading Company, Korea, Ltd
112.35 Sokong-Dong, Jung ku

Seoul P O. Box 1103, Seoul
Tel: 3.7049, 3-7613
NETHERLANDS
Hewlett-Packard Benelux N.V
23 Burg Roellstraat, Amsterdam W
Tel (020) 13.28 .98 and 13.54 .99
NEW ZEALAND
Sample Electronics (N. Z) Ltd
8 Matipo Street
Onehunga S. E. 5, Auckland
Tel: $565-361$

NORWAY

Morgenstierne \& Co. A/S
Ingeniorfirma
6 Wessels Gate, Oslo
Tel: 201635
For Sales and Service Assistance in Areas Not Listed Contact

IN LATIN AMERICA
Hewlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304 U.S.A
Telephone: (415) 326.7000
TWX 910-373.1267
Telex: 033811 Cable: HEWPACK

PANAMA
Electronico Balboa, S. A. P. O. Box 4929

Panama City 5, Panama Tel: 3-0833

PERU
Fernando Ezeła 8
Casilla 3061
Tel: 78745
PORTUGAL
TELECTRA
Rua Rodrigo da Fonseca 103
P.0. Box 2531, Lisbon 1

Tel: 686072 and 686073 and 686074

PUERTO RICO \& VIRGIN ISLANDS
San Juan Electronics, Inc.
150 Ponce de Leon, Stop 3
P.0. Box 5167

Pta. de Tierra Sta. San Juan 00906
Tel: 725-3342, 724.440f

SPAIN
ATAIO, Ingenieros
Enrique Larreta 12, Madrid 6
Tel: 235.43.44 and 235.43.45

SOUTH AFRICA
F. H. Flanter \& Co. (Pty), Ltd

Rosella House
Buitencingle Street, Cape Town
Tel: 3.3817
SWEDEN
H-P Instrument AB
Centralvagen 28, Solna, Centrum
Tel: 83.08 .30
H.P Instrument $A B$

Idunagatan 28A
Goteborg
Tel: 276800 and 276801
SWITZERLAND
Max Paul Frey
Wankdorffeldsitrasse 66, Berne
Tel: (031) 42.00 .78
TAIWAN (FORMOSA)
Hwa Sheng Electronic Co., Ltd
21 Nanking West Road, Taipei
Tel. 4607645936
TURKEY
TELEKOM Engineering Bureau
P.0. Box 376 -Galata, Istanbul

Tel 49.40 .40
UNITED KINGDOM
Hewlett-Packard Lid
Dallas Rd. Bedford, England
Tel: Bediord 68052
VENEZUELA
Citec, C. A.
Edif. Arisan-Of $=4$
Avda Francisco de Miranda-Chacaito
Apartado del Este 10.837, Caracas
Tel: 71.88 .05
YUGOSLAVIA
Belram S.A
83 Avenue des Mimosas
Brussels 15, Belgium
Tel: 35.29.58

ELSEWHERE
Hewlett-Packard
Overseas Sales Department
1501 Page Mill Road
Palo Alto. Calitornia 94304. U.S.A
Telephone: (415) 326.7000
TWX: 910.373 -1267
Telex: 0338 il Cable: HEWPACK

be MANUAL BACKDATING CHANGES

Model 200CD
WIDE RANGE OSCILLATOR
Manual Serial Prefixed: 605-
-hp- Part No. 200CD-903

This manual backdating sheet makes this manual applicable to earlier instruments. Instrument-component values that differ from those in the manual, yet are not listed in the backdating sheet, should be replaced using the part number given in the manual.

Instrument Serial Prefix Make Manual Changes Instrument Serial Prefix Make Manual Changes

Serials 1 thru 903	1, 2, 3, 4, 5, 6, 7, 8	129-	5, 6, 7, 8
Serials 904 thru 22549	$2,3,4,5,6,7,8$	212-	$6,7,8$
005-	3, 4, 5, 6, 7, 8	229-	7, 8
103-	4, 5, 6, 7, 8	$333-$	8

CHANGE \#1

CHANGE \#2
Change V1 and V3 to 6AC7 tubes, -hp- Part No. 1923-0014.
The following partial schematic shows these tubes and their connections.

Delete C17 and C18 below serial 3637 .
Change R11 to 1000 ohm rheostat, -hp- Part No. 2100-0036 and R12 to 3000 ohms, -hp- Part No. 0689-3025.
The following partial schematic shows the electrical connections.

Manual Changes Model 200CD Page 2

Instrument Serial Prefix
Make Manual Changes
Instrument Serial Prefix
Make Manual Changes

Serials 1 thru 903	$1,2,3,4,5,6,7,8$
Serials 904 thru 22529	$2,3,4,5,6,7,8$
$005-$	$3,4,5,6,7,8$
$103-$	$4,5,6,7,8$

$129-$	$5,6,7,8$
$212-$	$6,7,8$
$229-$	7,8
$333-$	8

CHANGE \#3

Change V2 and V4 to 6AU5 tubes, -hp- Part No. 1923-0020.
The following schematic shows electrical connections.

$5 A R 4$ tube is interchangeable with 5 Y 3 in the power supply.
Delete R51, hum adjust and R50, Dynamic Bal. Adj.
CHANGE \#4
Change R50 to 250 K ohms, -hp- Part No. 2100-0175, connected between R23 and R24.
Change R30, 31 to resistors, maiched pair, 2500 ohms each matched to within 1\%, -hp- Part No. 200J-26.
Delete R35 and 36.
Partial schematic shows change in this circuit.

Manual Changes Model 200CD Page 3

Instrument Serial Prefix
Make Manual Changes

Serials 1 thru 903	$1,2,3,4,5,6,7,8$
Serials 904 thru 22549	$2,3,4,5,6,7,8$
$005-$	$3,4,5,6,7,8$
$103-$	$4,5,6,7,8$

$129-$	$5,6,7,8$
$212-$	$6,7,8$
$229-$	7,8
$333-$	8

CHANGE \#5

CHANGE \#6

CHANGE \#7

ALL

Change R23, 24 to resistor: fixed, composition, 820,000 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$, -hp- Part No. 0687-8241. (If amplitude oscillations occur expecially at high frequencies, use current value of resistors.)

Section VI Table 6-1, under Miscellaneous, and Table 6-2
Delete the following:
Disc Ass'y Vernier Drive, -hp- Part No. 5040-0607; Mfr. 28480; TQ, 1
Bearing Capacitor Drive, -hp- Part No. 5020-0618; Mfr. 28480; TQ, 1
Spring Thrust, -hp- Part No. 5000-0637; Mfr. 28480; TQ, 1
Add the following:
Disc, vernfer drive 5020-0236
Disc, vernier drive 5040-0211
Spring, compression 1460-0019
Spring only for replacement. For replacement of vernier drive, use current part numbers.

Section VI Table 6-1, under Miscellaneous, and Table 6-2
Delete the following:
Assembly, Gear, -hp- Part No. 5060-0020
Assembly, Gear, -hp- Part No. 5060-0021
Spring, -hp- Part No. 1460-0114
Add the following:
Gear Spur, -hp- Part No. 5020-0011
Assembly, Gear, -hp- Part No. 5020-0602
Spring, -hp- Part No. 624A-36B-5
Spring only for replacement. For replacement of gears, use current gear assembly.
Proper Range Switches for All Serials
Instrument Serial No. \quad Range Switch (-hp- Part No.)

1 thru 833
834 thru 853
854 thru 903
904 thru 3637
3638 and above

Range Switch (-hp- Part No.)

Proper Output Transformers for All Serials

Instrument Serial No.
1 thru 833
834 thru 853
854 thru 903
904 thru 3637
3638 and above

200CD-19W 200CD-19WA 200CD-19W 200CD-19WA 200CD-19WB
\# There are some exceptions. If R37 and R38, on the range switch, are 100 ohms, use 9120-0010; if R37 and R38 are 200 ohms, use 9120-0016.

Manual Changes Model 200CD Page 4

Instrum Serial Prefix Make Manual Changes

Serials 1 thru 903	$1,2,3,4,5,6,7,8$
Serials 904 thru 22549	$2,3,4,5,6,7,8$
005 -	$3,4,5,6,7,8$
103 -	$4,5,6,7,8$

Instrument Serial Prefix
Make Manual Changes

$129-$	$5,6,7,8$
$212-212-$	$6,7,8$
$229-$	7,8
$333-$	8

CHANGE \#8
Section VI and Figure 5-9 Delete CR1 and CR2.
Change T3 power transformer to -hp- Part No. 9100-0036.
Add the following:
V5, Tube, elect, 5AR4, -hp- Part No. 1930-0003.
XV5, Socket, tube, octal, -hp-Part No. 1200-0020.
Change Table 1-1, Specifications, to the following:
DISTORTION: Less than 0.5% below 500 kc ; less than $1 \%, 500 \mathrm{kc}$ and above. Independent of load impedance.

The following partial schematic shows Power Supply changes

[^0]: \# See introduction to this section

