## 8040A

 maintenance manual

## FLDK目

## 8040A

## maintenance manual

John Fluke Mig. Co., Inc. • P.O. Box 43210 • Mountlake Terrace, Washington 98043

## Table of Contents

SECTION TITLE ..... PAGE
1 INTRODUCTION AND SPECIFICATIONS ..... 1-1
1-1. INTRODUCTION ..... 1-1
1-6. SPECIFICATIONS ..... 1-2
2 OPERATING INSTRUCTIONS ..... 2-1
2-1. INTRODUCTION ..... 2-1
2-3. SHIPPING INFORMATION ..... 2-1
2-6. INPUT POWER ..... 2-1
2-8. OPERATING FEATURES ..... 2-1
2-10. OPERATING NOTES ..... 2-1
2-12. Fuse Replacement ..... 2-1
2-14. Overrange Indication ..... 2-1
2-16. Input Overload Protection $\triangle$ ..... 2-1
2-18. ASSEMBLY AND INITIAL OPERATION ..... 2-3
2-22. FUNCTION SELECTION EXAMPLES ..... 2-5
3 THEORY OF OPERATION ..... 3-1
3-1. INTRODUCTION ..... 3-1
3-3. OVERALL FUNCTIONAL DESCRIPTION ..... 3-1
3-4. Introduction ..... 3-1
3-6. Analog Circuits ..... 3-2
3-8. Digital Circuits ..... 3-2
3-10. CIRCUIT DESCRIPTION ..... 3-2
3-11. Introduction ..... 3-2
3-13. Input Divider ..... 3-2
3-15. Current Shunts ..... 3-2
3-17. Buffer ..... 3-2
3-19. A/D Reference ..... 3-2
3-26. Ohms Voltage Source ..... 3-5
3-28. RMS Converter ..... 3-5
3-33. A/D Converter ..... 3-5
3-35. Timing and Control ..... 3-6
3-38. Display ..... 3-6
SECTION TITLE ..... PAGE
4 MAINTENANCE ..... 4-1
4-1. INTRODUCTION ..... 4-1
4-4. GENERAL MAINTENANCE ..... 4-2
4-5. Access Information ..... 4-2
4-7. Cleaning ..... 4-2
4-9. Fuse Replacement ..... 4-2
4-11. PERFORMANCE CHECK ..... 4-2
4-13. DC Volts ..... 4-3
4-15. AC Volts ..... 4-3
4-17. Resistance Measurements ..... 4-3
4-19. Direct Current ..... 4-3
4-21. Alternating Current ..... 4-3
4-23. CALIBRATION ..... 4-5
4-26. Required Method for Votlage Source Connection ..... 4-5
4-29. TROUBLESHOOTING ..... 4-8
5 LIST OF REPLACEABLE PARTS ..... 5-1
5-1. INTRODUCTION ..... 5-1
5-4. HOW TO OBTAIN PARTS ..... 5-1
5-7. USE CODE EFFECTIVITY LIST ..... 5-1
6 OPTIONS \& ACCESSORY INFORMATION ..... 6-1
6-1. INTRODUCTION ..... 6-1
6-3. RECHARGEABLE BATTERY PACK, 8040A-7005 ..... 6-1
6-4. Introduction ..... 6-1
6-6. Operation ..... 6-1
6-8. BATTERY COVER KIT, 8040A-7004 ..... 6-1
6-10. BATTERY COVER, 8040A-7007 ..... 6-1
6-12. CARRYING CASE (C88) ..... 6-1
6-14. BATTERY CHARGER/ELIMINATOR ..... 6-3
6-16. TEMPERATURE PROBE (80T-150) ..... 6-3
6-17. Introduction ..... 6-3
6-20. $\quad$ Operating Notes ..... 6-3
6-25. Operating Instructions ..... 6-3
6-27. DELUXE TEST LEAD KIT (A80) ..... 6-4
6-29. CURRENT TRANSFORMER, CLAMP-ON (80I-600) ..... 6-4
6-30. Introduction ..... 6-4
6-32. Operation ..... 6-5
6-34. HIGH VOLTAGE PROBE (80F-5) ..... 6-5
6-35. Introduction ..... 6-5
6-39. Cleaning ..... 6-5
6-41. Calibration ..... 6-5
6-44. HIGH VOLTAGE PROBE (80F-15) ..... 6-6
6-45. Introduction ..... 6-6
6-49. Cleaning ..... 6-6
6-51. Calibration ..... 6-6
6-54. HIGH VOLTAGE PROBE (80K-40) ..... 6-7
6-55. Introduction ..... 6-7
6-58. HIGH FREQUENCY PROBE (81RF) ..... 6-7
6-59. Introduction ..... 6-7
6-61. HIGH FREQUENCY PROBE (82RF) ..... 6-7
6-62. Introduction ..... 6-7
7 SCHEMATIC DIAGRAM ..... 7-1

## List of Illustrations

FIGURE
TITLEPAGE
2-1 Control, Indicator and Connector Locations ..... 2-2
2-2 Function Selection Examples ..... 2-5
3-1 8040A Block Diagram ..... 3-1
3-2 Simplified Buffer Circuit ..... 3-3
3-3 Simplified A/D Reference Circuit ..... 3-4
3-4 RMS Converter Representation ..... 3-5
3-5 Simplified RMS Converter Circuit ..... 3-6
3-6 Dual-Slope A/D Conversion Timing for VAC or VDC Inputs ..... 3-7
4-1 Calibration Adjustment Controls ..... 4-4
4-2 Required Method for Voltage Source Connection ..... 4-5
4-3 Waveform at U26 Pin 8 for In Range and Overrange Inputs ..... 4-9
4-4 Waveforms at TP1, Q10, C22 and U14 for In Range and Overrange Inputs ..... 4-10
4-5 Oscilloscope Connections for Troubleshooting ..... 4-11
5-1 Main PCB Assembly ..... 5-4
5-2 Digital Conditioner PCB Assembly ..... 5-8
5-3 Analog Converter PCB Assembly ..... 5-10
6-1 8040A Accessories ..... 6-2
6-2 Initial Case Temperature above Ambient versus Meter Reading above Ambient ..... 6-4
6-3 Maximum RF Signal Limits (V RMS) at Probe Tip ..... 6-4
6-4 Deluxe Test Lead Kit ..... 6-4
6-5 80I-600 Current Transformer ..... 6-5
6-6 80F-5 Voltage Divider ..... 6-5
6-7 80F-15 Voltage Divider ..... 6-6
6-8 $\quad 80 \mathrm{~K}-40$ Voltage Divider ..... 6-7
6-9 81RF High Frequency Probe ..... 6-7
6-10 82RF High Frequency Probe ..... 6-7

## List of Tables

TITLE
1-1 Accessories ..... 1-1
2-1 Control, Indicator and Connector Description ..... 2-3
2-2 8040A Maximum Allowable Input Overload Conditions ..... 2-4
3-1 Buffer Gain Configuration, $k \Omega$ Function ..... 3-2
4-1 Recommended Test Equipment ..... 4-1
4-2 DC Voltage ..... 4-3
4-3 AC Voltage Performance Check ..... 4-3
4-4 Resistance Performance Check ..... 4-3
4-5 Direct Current Performance Check ..... 4-4
4-6 DC Voltage Calibration ..... 4-6
4-7 Ohms Calibration ..... 4-7
4-8 Low Frequency AC V Check ..... 4-8
4-9 High Frequency AC V Check ..... 4-8
4-10 Direct Current Accuracy Check ..... 4-8
6-1 Battery Charger/Eliminator Input Power Configurations ..... 6-3
6-2 8040A Ranges for Current Transformer (80I-600) ..... 6-5

## Section

## Introduction \& Specifications

## 1-1. INTRODUCTION

1-2. The Model 8040A Multimeter provides the accuracy and portability required in today's field service work. A slide-out sunshade protects the $41 / 2$ digit LED display from glare when operating the 8040A in adverse lighting conditions. The small size and battery power add to the portability; yet the fold-away stand allows the instrument to be positioned at a convenient angle for bench top use.

1-3. The 8040A offers 20,000 count resolution in all five functions which provides measurement resolution to 0.01 ohms on the 200 ohm range and 10 microvolts on the 200 millivolt range. AC voltage and current measure-
ments are made using true rms conversion techniques for improved accuracy in communications and industrial control applications.

1-4. Several accessories are available for use with the 8040A to expand its' capabilities. A list of these accessories is provided in Table 1-1 while more detail about each one is provided in Section 6.

1-5. Note that two of the accessories, the 80T-150 temperature probe and A81 battery charger/eliminator, are configured at the factory for particular applications. Insure that the correct form of the model number is used when ordering either of these accessories.

Table 1-1. ACCESSORIES

| ACCESSORY | DESCRIPTION | ACCESSORY | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 801-600 | Clamp-on current probe; 2 to 600 amps | 8040A. | A rechargeable Ni-Cad battery pack |
| 80F-5 | High voltage probe; 5 kV | 7005K | (batteries come secured in the battery cover) |
| 80F-15 | High voltage probe; 15 kV |  |  |
| 80K-40 | High voltage probe; 40 kV | $7007 \mathrm{~K}$ | A battery cover intended for use with alkaline batteries (batteries not included) |
| 81RF | High frequency probe; 20 kHz to $100 \mathrm{MHz}$ | A8I-115 | Battery charger/eliminator for 115 V , 50 to 60 Hz line source |
| 82R F | High frequency probe; 100 kHz to $500 \mathrm{MHz}$ | A8I-100 | Battery charger/eliminator for 100 V , 50 to 60 Hz line source |
| 80T-150C | Temperature probe; $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | A81-230-1 | Battery charger/eliminator for 230V, |
| 807-150F | $-58^{\circ} \mathrm{F}$ to $+302^{\circ} \mathrm{F}$ |  | 50 to 60 Hz line source (U.S. type |
| C88 | Carrying case |  | plug) |
| A80 | Deluxe test lead kit | A81-230 | Battery charger/eliminator for 230V, |
| $\begin{aligned} & 8040 \mathrm{~A}- \\ & 7004 \mathrm{~K} \end{aligned}$ | A battery cover kit; includes 4 " C " size alkaline batteries |  | 50 to 60 Hz line source (European type plug) |

## 1-6. SPECIFICATIONS

| DC Voltage <br> Ranges: (Autoranging or Manual) | $\pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}, \pm 200 \mathrm{~V}, \pm 1100 \mathrm{~V}$ |
| :---: | :---: |
| Accuracy: ( 6 months, $18^{\circ}$ to $28^{\circ} \mathrm{C}$ ) |  |
| 200 mV range: | $\pm(0.05 \%$ of reading +3 digits) |
| 2 V thru 1100 V ranges: | $\pm(0.05 \%$ of reading +2 digits) |
| Input Impedance: | $10 \mathrm{M} \Omega$, all ranges |
| Normal Mode Noise Rejection: | Greater than 60 dB at 50 Hz and 60 Hz |
| Common Mode Noise Rejection: . . . . . . . . . | Greater than 120 dB at 50 Hz and 60 Hz ( $1 \mathrm{k} \Omega$ in either lead) |
| Maximum Input Voltage: | 200 mV and 2 V ranges: |
| $\Delta$ | 500 V dc or rms ac (continuous) 1100 V dc or peak ac for less than 10 sec . |
|  | $20 \mathrm{~V}, 200 \mathrm{~V}$ and 1100 V ranges: <br> 1100 V dc or peak ac (continuous) |
| AC Voltage (True rms) |  |
| Ranges: (Autoranging or Manual) | $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 750 \mathrm{~V}$ |
| Accuracy: ( 6 months, $18^{\circ}$ to $28^{\circ} \mathrm{C}$, from $5 \%$ of range to full range) |  |
| 45 Hz to $10 \mathrm{kHz} . . . . . . . . . . . . . . . . . . . .$. | $\pm(0.5 \%$ of reading +10 digits $)$ |
| 10 Hz to 20 kHz . . . . . . . . . . . . . . . . . . . | $\pm(1.0 \%$ of reading +10 digits) |
| Input Impedance: . ....................... $10 \mathrm{M} \Omega$ in parallel with less than 100 pF |  |
| Common Mode Noise Rejection: | Greater than 60 dB at 50 Hz and 60 Hz ( $1 \mathrm{k} \Omega$ in either lead) |
| Crest Factor: | 3.0 |
| Maximum Input Voltage: | 200 mV and 2V ranges: |
| $\triangle$ | 500 V rms or 700 V peak ac (continuous) 750 V rms, 1100 V peak ac or $10^{7}$ volt-hertz (whichever is less), for less than 10 sec . |
|  | $20 \mathrm{~V}, 200 \mathrm{~V}$ and 750 V ranges: <br> 750 V rms, 1100 V peak ac or $10^{7}$ volt-hertz (whichever is less) |


| DC mA |  |
| :---: | :---: |
| Ranges: | $\pm 200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2000 \mathrm{~mA}$ |
| Accuracy: $\left(6\right.$ months, $18^{\circ}$ to $28^{\circ} \mathrm{C}$ ) | $\pm$ (0.3\% of reading +3 digits) |
| Voltage Burden: | 0.25 V rms max. except 0.7 V rms max. on 2000 mA range |
| Maximum Input: | 2 amps (fuse protected) |




## Section 2

## Operating Instructions

## 2-1. INTRODUCTION

2-2. This section of the manual contains information regarding the correct operation of the Model 8040A Multimeter. It is recommended that the contents of this section be read and understood before attempting to operate the instrument. Should any difficulties arise during operation, please contact your nearest John Fluke Sales Representative, or the John Fluke Mfg. Co., Inc., P.O. Box 43210 Mountlake Terrace WA, 98043, Telephone (206) 774-2211. A list of sales representatives is located at the back of this manual.

## 2-3. SHIPPING INFORMATION

2-4. The 8040A was packed and shipped in a foam container especially designed to provide adequate protection. Upon receipt, inspect the instrument for possible shipping damage.

2-5. If reshipment of the instrument is necessary, the original container should be used. If the original container is not available, a new one can be obtained from the John Fluke Mfg. Co., Inc. Please reference the instrument model number when requesting a new shipping container.

## 2-6. INPUT POWER

2-7. Operating power for the standard 8040A instrument comes from four, non-rechargeable, alkaline " C " size batteries. The power source typically provides 14 hours of instrument operation. Optionally available power sources include rechargeable Ni -Cad batteries and a battery charger/eliminator. The instrument equipped with rechargeable batteries will typically operate for 8 hours; recharging, using the charger/eliminator, takes approximately 14 hours with the instrument turned off.

## 2-8. OPERATING FEATURES

2-9. The location of the 8040A controls, indicators, and connectors is shown in Figure 2-1. A description of the control, indicator, or connector is provided in Table 2-1.

## 2-10. OPERATING NOTES

2-11. The following paragraphs describe various conditions which should be considered before operating the 8040A.

## 2-12. Fuse Replacement

2-13. The 8040 A is equipped with a current overload fuse to protect the instrument circuitry from inadvertent applications of current in excess of 2 amps . This fuse is located behind the mA input jack and is removed by pressing in lightly on the jack then turning it counterclockwise $1 / 4$ turn to release. When replacement is necessary, use a 2 amp AGX replacement fuse.

## 2-14. Overrange Indication

2-15. When the full scale capability of the selected range for any function is exceeded, the display will blink. The overrange indication does not necessarily mean that the instrument is being exposed to a damaging input condition.

## 2-16. Input Overload Protection

## CAUTION

Exceeding the maximum input overload conditions can damage the 8040A. Read Tables 2-2 before attempting to operate the instrument.


Figure 2-1. CONTROL, INDICATOR AND CONNECTOR LOCATIONS

Table 2-1. CONTROL, INDICATOR AND CONNECTOR DESCRIPTION

| $\begin{array}{\|c\|} \text { ITEM } \\ \text { NUMBER } \end{array}$ | NAME | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | POWER switch | Separates the power source (batteries or battery eliminator) from 8040A circuitry. |
| 2 | Display | A 4 $1 / 2$ digit display ( 19999 maximum) of the measured input, including decimal point and polarity sign when appropriate. The units annunicators ( $\mathrm{M} \Omega$ or $\mu \mathrm{A} \cdot \mathrm{mV} \cdot \Omega$ ) light when the applicable range is selected. |
| 3 | Range switches | Provide pushbutton selection of one of five ranges for each function, i.e., <br> DC Voltage: $200 \mathrm{mV}, 2,20,200,1100 \mathrm{~V}$, or AUTO AC Voltage: $200 \mathrm{mV}, 2,20,200,750 \mathrm{~V} \mathrm{rms}$, or AUTO AC or DC Current: $200 \mu \mathrm{~A}, 2,20,200$, or 2000 mA Resistance: $200 \Omega, 2,20,200,2000 \mathrm{k} \Omega$, or $20 \mathrm{M} \Omega / \mathrm{AUTO}$ |
| 4 | k $\Omega$ | Selects resistance measurement mode of operation. |
| 5 | $\checkmark \overline{m A}$ | Works in conjunction with the $D C$ and $A C$ switches to select the voltage function (out position) or current function (in position). |
| 6 | $\widetilde{A C}$ | This switch, in conjunction with item 5 , selects ac voltage or alternating current measurement capability. |
| 7 | $\overline{\bar{D} \bar{C}}$ | This switch, in conjunction with item 5 , selects dc voltage or direct current measurement capability. |
| 8 | BATTERY CHARGER/ ELIMINATOR | Jack provided for connection of the charger/eliminator accessory. |
| 9 | $\mathrm{V} \cdot \Omega$ | Jack for high (red) lead connection to 8040A for voltage (ac or dc) and resistance measurements. |
| 10 | COMMON | Jack for low (black) lead connection to 8040A for all functions. |
| 11 | mA | Jack for high (red) lead conrection to 8040A for current (ac and dc) measurements (2A FUSE behind; push in and twist $1 / 4$ turn and pull to remove). |
| 12 | Sunshade | Shade slides forward to improve the readability of the displays in bright light environments. |

2-17. The overload protection varies with the range and function selected. The maximum allowable input overload condition for each function and range is given in Table 2-2.

## 2-18. ASSEMBLY AND INITIAL OPERATION

2-19. It is recommended that the assembly and initial operation of the 8040 A be done in accordance with the following procedure. No test equipment is required to
perform this procedure; all signals observed are generated by the 8040 A . This procedure may be used as an instrument operational evaluation when the 8040 A is being used in locations away from normal calibration equipment.

2-20. Assemble the 8040A as follows:
a. Remove the contents of the box marked BATTER Y COVER. (Four "C" size batteries, a

Table 2-2. 8040A MAXIMUM ALLOWABLE INPUT OVERLOAD CONDITIONS

| SELECTED <br> FUNCTION | SELECTED RANGE | INPUT CONNECTIONS | MAXIMUM INPUT OVERLOAD LIMITS |
| :---: | :---: | :---: | :---: |
| VDC | $200 \mathrm{mV}, 2 \mathrm{~V}$ | $V-\Omega$ and COMMON | 500 V dc or V rms (continuous) <br> 1100 V dc or peak ac (for less than 10 seconds). |
|  | 20,200, 1100V | $\mathrm{V}-\Omega$ and COMMON | 1100 V dc or peak ac |
| DC mA | $\begin{aligned} & 200 \mu \mathrm{~A}, 2,20,200, \\ & \text { or } 2000 \mathrm{~mA} \end{aligned}$ | mA and COMMON | 2 amps , 250V Fuse Protected |
| VAC | $200 \mathrm{mV}, 2 \mathrm{~V}$ | $\mathrm{V}-\Omega$ and COMMON | 500 V dc or ac (continuous) 750 V rms, 1100 V peak, or $10^{7} \mathrm{~V}-\mathrm{Hz}$, whichever is less, for less than 10 seconds. |
|  | 20,200, 750V | $V-\Omega$ and COMMON | 750 V rms, 1100 V peak, or $10^{7} \mathrm{~V}-\mathrm{Hz}$, whichever is less (continuous) |
| AC mA | $200 \mu \mathrm{~A}, 2,20,200$, or 2000 mA | mA and COMMON | 2 amp , 250V Fuse Protected |
| k $\Omega$ | $\begin{aligned} & 200 \Omega, 2,20,200 \\ & 2000 \mathrm{k} \Omega \text {, or } 20 \mathrm{M} \end{aligned}$ | $V-\Omega$ and COMMON | 250 V ac or 100 V dc |

battery cover, and two mounting screws for non-rechargeable batteries; an assembled pack and two mounting screws for rechargeable batteries.

## CAUTION

Do not operate 8040A without battery cover in place (batteries do not have to be installed).
b. The four non-rechargeable alkaline batteries are to be mounted in the battery clips (position as indicated on 8040A case) then the battery cover secured in place with the two screws provided. When installing the battery pack note the guide tab on the edge of the cover and match it with the recess in the bottom center of the 8040A case.

2-21. The following procedure may be used to check the basic operation of the 8040 A . It is not intended to be used as a verification of calibration accuracy. Proceed with the operational check as follows:
a. Turn the 8040 A on.
b. Connect the red test lead to the $\mathrm{V}-\Omega$ input terminal.
c. (Check DC Volts Operation) Select volts dc function (see Function Selection Examples) and the 20 range.
d. Insert the test lead probe into the BTRY TEST hole, located on the bottom of the 8040A case.
e. The 8040 A display will indicate the battery voltage; between 4.0 volts and 5.8 volts.
f. (Check AC Volts Operation) Select the volts ac function and 200 mV range.
g. The 8040 A display will indicate the ripple voltage created by the inverter. This voltage will be as much as 60 mV ac (battery operation) or 150 mV ac with the charger/eliminator as power source.

## NOTE

Due to the charging of the input coupling capacitor it will take 5 to 10 seconds for this reading to setlle.
h. (Check Resistance Operation) Select the resistance function and 2 range.
i. Insert the test probe tip into the mA input terminal.
j. The 8040 A display will indicate $0.100+2$ digits.
k. (Check DC mA Operation) Connect the red test lead to the mA input terminal.

1. Select the dc mA function and 2 range.
m. Place the test probe tip into the BTRY TEST hole.
n. The 8040 A display will indicate between 0.400 the 0.580 milliamps. (The current depends upon the battery voltage measured in step d and e.)
o. (Check AC mA Operation) Select the ac mA function.
p. The 8040A display will indicate the same as step n ( mA input is dc coupled).

## 2-22. FUNCTION SELECTION EXAMPLES

2-23. Figure 2-2 provides a graphic illustration of switch positions and input connections for each 8040A function.


Figure 2-2. FUNCTION SELECTION EXAMPLES

## Section 3

## Theory of Operation

## 3-1. INTRODUCTION

3-2. The theory of operation for the Model 8040A is arranged under two major headings. The first, titled OVERALL FUNCTIONAL DESCRIPTION, discusses the overall operation of the instrument in terms of the functional relationships of the major circuits. The second section is titled CIRCUIT DESCRIPTION and deals with the internal operation of each major circuit in more detail. Block diagrams and simplified circuit diagrams are included, where needed, to aid in understanding the theory. The complete schematic diagrams are located in Section 7.

## 3-3. OVERALL FUNCTIONAL DESCRIPTION

## 3-4. Introduction

3-5. The 8040A circuitry can be divided into two major sections; an Analog section and a Digital section. The interconnection of the two major sections of circuitry, including the subsections within each section is illustrated in Figure 3-1. This section of theory will discuss the operation of the 8040A in terms of the two major sections (and subsections of each) giving a brief look at the function and interrelationship of these circuits.


Figure 3-1. 8040A BLOCK DIAGRAM

## 3-6. Analog Circuits

3-7. The Analog portion of the 8040A circuitry consists of an Input Divider, Buffer, RMS Converter, Ohms Voltage Source, A/D Reference, Current Shunts, Power Supplies and A/D Converter. The inputs to be measured are connected to the Analog circuitry via the $\mathrm{V}-\Omega$ or mA terminals. A dc voltage, directly proportional to the applied input, is developed by the Input Divider, Current Shunts, Buffer and RMS Converter and applied to the A/D Converter. This dc voltage equivalent of the applied input charges a capacitor in the $A / D$ to a level proportional to the input. A reference voltage, opposite in polarity to the voltage representing the applied input, is then connected to the $\mathrm{A} / \mathrm{D}$ causing the charged capacitor to discharge at a constant rate. The time it takes the capacitor to discharge is therefore proportional to the applied input. the Digital section of 8040A circuitry measures the time and displays it as a digital representation of the input circuit.

## 3-8. Digital Circuits

3-9. The Digital section consists of Timing and Control and Display circuits. The Timing and Control Signals connect the dc voltage representing the input being measured to the $\mathrm{A} / \mathrm{D}$ for 100 ms then disconnect it and apply the reference voltage. At the time the reference voltage is applied the Timing and Control circuit starts counting the number of cycles of the Crystal Oscillator occur until the A/D sends a signal to the Timing and Control circuit indicating that the capacitor has been discharged to zero. The number of cycles of oscillator signal that occurred is presented on the display as the value of the unknown input being measured by the 8040 A .

## 3-10. CIRCUIT DESCRIPTION

## 3-11. Introduction

3-12. This section of 8040A theory of operation will look at the subsections of circuitry, as presented in the block diagram, in more detail. When needed for explanation, simplified schematic diagrams of the circuits being discussed will be provided

## 3-13. Input Divider

3-14. The Input Divider performs two basic functions when measuring unknown inputs applied to the $\mathrm{V}-\Omega$ terminal. First, when measuring either dc or ac voltages, the divider is used to scale the input voltages down to a level that can be handled by the Buffer. The second function of the divider is to provide resistors which can
be connected in series with the unknown resistance applied to the $V-\Omega$ terminal to form a voltage divider. The Ohms Source Voltage is applied to this voltage divider and the voltage drop across the unknown resistance is measured by the 8040 A to calculate the value of the resistance.

## 3-15. Current Shunts

3-16. The Current Shunts are a set of series connected resistors. The unknown current applied to the mA terminal develops a voltage proportional to the current, across the portion of the shunt resistors selected by the range switch. The 8040A processes the voltage developed across the shunt resistor and displays the value of the input current.

## 3-17. Buffer

3-18. The output voltage of either the Input Divider (measurement of dc or ac volts), the $\mathrm{V}-\Omega$ terminal (measurement of resistance) or the Current Shunts (measurement of dc or ac mA ) is applied to Q8 in the Buffer (see Figure 3-2). The gain of the Buffer is changed to compensate for the changes in the output voltage of the Input Divider and Current Shunts. A combination of buffer gain (X1 or X10) and scale factor of the Input Divider or Current Shunts is selected so that the output of the Buffer will not exceed 2 V dc (or rms) for any full scale input in either the dc (or ac) voltage or current function. Because of changes in the reference voltage used in the resistance function (explained in the $A / D$ Reference theory) the output of the Buffer, for full scale inputs, changes when the range changes. Table 3-1 provides the gain and Buffer output information for each range.

Table 3-1. BUFFER GAIN CONFIGURATION, k $\Omega$ FUNCTION

| RANGE | BUFFER GAIN <br> AND DIVISION | FULL SCALE <br> BUFFER OUTPUT |
| :--- | :---: | :---: |
| 200 | $\times 10, \div 1$ | 980 mV |
| $2 \mathrm{k} \Omega$ | $\times 10 \div 1$ | 980 mV |
| $20 \mathrm{k} \Omega$ | $\times 1, \div 1$ | 833 mV |
| $200 \mathrm{k} \Omega$ | $\times 10, \div 1$ | 980 mV |
| $2000 \mathrm{k} \Omega$ | $\times 1, \div 1$ | 833 mV |
| $20 \mathrm{M} \Omega$ | $\times 1, \div 10$ | 333 mV |

## 3-19. A/D Reference

3-20. After the output of the Buffer has been applied to the $\mathrm{A} / \mathrm{D}$ Converter for 100 ms the timing and control
signals disconnect the Buffer output and connect the appropriate A/D Reference voltage. Figure 3-3 is a simplified schematic diagram of the $A / D$ Reference circuit.

3-21. When the 8040 A is used to measure de volts or current the Timing and Control circuit detects the polarity of the voltage applied to the A/D Converter in order to select the reference voltage of the opposite polarity. If, for example, the input to the 8040 A is positive the Control circuits would produce a $\mathrm{DE}(-\mathrm{R})$ command which would cause the -VREF gate (part of U8) to turn on and supply a -1.0 volt reference to the A/D Converter. A negative polarity input to the 8040 A will cause the Control circuit to provide a $\mathrm{DE}(+\mathrm{R})$ command to turn on the + Vref gate to apply a +1.0 volt reference to the A/D Converter.

3-22. AC voltage or current applied to the 8040 A is processed by the RMS Converter so that the dc voltage (proportional to the ac input voltage) applied to the A/D Converter is always positive polarity. In the AC function (volts or current) the Control circuit produces a $\mathrm{DE}(-\mathrm{R})$ command to apply the -VREF to the $\mathrm{A} / \mathrm{D}$ Converter. In the AC and DC functions the reference voltage is fixed at 1.0 volt either positive or negative.

3-23. In the resistance ( $\mathrm{K} \Omega$ ) function the reference voltage changes as the input to the 8040 A changes. The 8040A use a ratio ohms conversion technique to determine the value of the unknown resistance applied to the input terminals. This technique works on the principle that when a voltage (Ohms Source Voltage) is applied across series connected resistors (the Input Divider resistors and the unknown) the voltage drop across each will be proportional to the value of each resistor.

3-24. The 8040A calculates the value of the unknown resistor. The formula followed to make this calculation is:

$$
R X=\operatorname{RrEF} X \quad V X / V R E F
$$

Where Rx is the unknown resistance, RREF is the Input Divider resistor(s) selected by the range relays, VX is the voltage across the unknown resistance and Vref is the voltage across the Input Divider resistor(s).

3-25. Since the value of the reference resistor(s) in the Input Divider is fixed for any given range and the resistance values are a factor of 10 apart, the position of the decimal point in the Display makes the adjustment


Figure 3-2. SIMPLIFIED BUFFER CIRCUIT


Figure 3-3. SIMPLIFIED A/D REFERENCE CIRCUIT
for the RREF term in the formula. The 8040A directly reads the value of Vx and applies the resulting Buffer output to the A/D Converter for 100 ms . The value of VREF is determined by algebraically adding VX (a positive voltage) to a negative equivalent of the ohms source voltage. The resulting voltage is VREF and is applied to the A/D Converter at the end of the 100 ms application of VX .

## 3-26. Ohms Voltage Source

3-27. The ohms source voltage is derived from the positive voltage source in the A/D reference. Operational amplifier U1 and associated components (see schematics in Section 7) make up the unity gain buffer amplifier that supplies the ohms source voltage. The Ohms Voltage Source circuit is used exclusively in the resistance measurement function.

## 3-28. RMS Converter

3-29. An rms amplitude is that value of alternating current or voltage that results in the same power dissipation in a given resistance as dc current or voltage of the same numerical value. The mathematical formula for determining the rms value of an ac voltage is:

$$
\mathrm{Vrms}=\sqrt{\overline{\mathrm{Vi}^{2}}}
$$

Where $\mathrm{Vi}_{\mathrm{i}}$ is the value of the ac voltage at any given instant. The 8040A RMS Converter monitors the instantaneous voltage and computes the rms value of the input signal.

3-30. The 8040A uses an implicit method for computing the rms value of the input. Figure $3-4$ is a block diagram of the implicit method of calculating the rms value of an ac voltage. The output voltage of the RMS Converter (Vo) is a dc voltage proportional to the rms value of the ac voltage applied to the 8040A. This is proven by the following mathematical calculations. As indicated in Figure 3-4 $V_{o}=\left(\overline{\mathrm{Vi}^{2}}\right) / \mathrm{Vo}_{0}$; therefore, by multiplying both sides of the equation by Vo we get $V_{o}{ }^{2}=\overline{\mathrm{Vi}^{2}}$. By taking the square root of both sides the formula becomes $V_{o}=\sqrt{\overline{\overline{V i}^{2}}}$.

3-31. In the 8040A implicit conversion method the Multiplier-Divider function is performed using a LogAntilog circuit. The base-emitter voltage of a transistor is almost perfectly logarithmically related to the collector current. By putting two transistors in series we obtain two times the $\log$ of the input; then by taking the antilog we obtain a voltage proportional to the square of the input ( $\mathrm{Vi}^{2}$ ).

3-32. The components in the 8040A RMS Converter that perform the various functions in calculating the rms value of the input are illustrated in Figure 3-5. The input signal (Vi) to the RMS Converter is first applied to a circuit which produces a current representative of the absolute value of the input. The current is then applied to the collector of the first of the two series connected transistors that, in conjunction with operational amplifier U38, produce a voltage output representing two times the $\log$ of Vi. A feedback circuit through U13 (pins 1, 2, and 3) and the upper right transistor in array U11 provide a voltage equal to the log of Vo. Subtracting the $\log$ of $V_{o}$ from two times the $\log$ of $V_{i}$ is equal to the mathematical function of calculating $\mathrm{Vi}^{2} / \mathrm{Vo}_{0}$. The final step in determining the rms value is handled by U13 (pins 7, 6, and 5), the lower right transistor of array U11 and the output filter (the 47 k resistor and $0.47 \mu \mathrm{~F}$ capacitor). These components calculate the antilog of $\overline{\mathrm{Vi}^{2}} / \mathrm{Vo}$ producing an output voltage equal to $\sqrt{\overline{\mathrm{Vi}^{2}}}$, this voltage being directly proportional to the rms value of the input applied to the 8040A.

## 3-33. A/D Converter

3-34. The A/D Converter receives the dc voltage output, from either the RMS Converter or Buffer, representing the unknown value applied to the 8040A input terminals. Timing signals from the Timing and Control circuit cause the RMS Converter or Buffer output voltage to be applied to the A/D for exactly 100 ms . The amplitude of this input voltage controls the rate at which a capacitor in the $A / D$ is charged, so that at the end of the 100 ms integrate period the charge on the capacitor is proportional to the unknown applied to the


Figure 3-4. RMS CONVERTER REPRESENTATION

8040A. At the end of the 100 ms integrate period the input to the $A / D$ is then connected to the $A / D$ Reference. The reference voltage is selected, by the Timing and Control circuit, to be opposite in polarity from the output of the Buffer or RMS Converter. The reference voltage causes the capacitor in the $A / D$ Converter to discharge at a constant rate. The time, called read period, that it takes the capacitor to discharge is directly proportional to the unknown input applied to the 8040A. Figure 3-6 illustrates the chargedischarge cycle of the $A / D$ capacitor for ac or dc volts or current inputs. The charge-discharge cycle of the A/D capacitor in the $K \Omega$ function is unique because the reference voltage is inversely related to the unknown resistance value. This causes the discharge rate (slope) during the read period to change with the input.

## 3-35. Timing and Control

3-36. The Timing and Control circuit, in conjunction with the A/D Converter output, change what has been an analog representation of the unknown input into a digital representation. Signals from the Timing and Control circuit select the Buffer gain and the signal path for processing the unknown input. Correct timing of these signals is derived from a 1 MHz crystal controlled oscillator.

3-37. All of the digitizing process (the actual counting of the oscillator pulses during the read period) takes place in the custom integrated circuit U25. The pulses accumulate, during the read period, in decade counters within the custom chip. The number in each decade counter is converted to a four-bit binary code. Strobe signals, generaed by the custom chip, then cause the binary code for one decade counter at a time to be sent to the Display circuitry where the same strobe signal causes one of the LEDs of the display to be strobed on to display that number.

## 3-38. Display

3-39. The custom chip provides strobe signals (ST0 through ST7) some of which are used by the Display circuits to turn on the LEDs one at a time. The four-bit binary coded digit information applied to the Display is first changed, by U27 (see schematic in Section 7), from the binary code to seven driver signals; one for each segment in the LEDs. The seven segment drive signals are connected in parallel to each of the display digits. The strobe signals allow only one display LED to light at a time. The strobe signal causes the digit in the display corresponding to the digit with the same significant value transmitted from the Timing and Control circuit to appear in the correct position.


Figure 3-5. SIMPLIFIED RMS CONVERTER CIRCUIT


Figure 3-6. DUAL-SLOPE A/D CONVERSION TIMING FOR VAC OR VDC INPUTS

## Section 4 Maintenance

## WARNING!

## THESE SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

## 4-1. INTRODUCTION

4-2. This section of the manual contains information on service, general maintenance, performance tests, calibration, and troubleshooting. The performance test is recommended as a preventative maintenance tool, and should be executed when it is necessary to verify that the instrument is operating within the specification limits. A
calibration interval of 6 months is recommended to insure that the 8040A performs within the specifications stated in Section 1.

4-3. Table 4-1 lists the recommended test equipment necessary to maintain the 8040 A . If the specified equipment is not available, other equipment having equivalent specifications may be used.

Table 4-1. RECOMMENDED TEST EQUIPMENT


## 4-4. GENERAL MAINTENANCE

## 4-5. Access Information

4-6. Use the following procedure to gain access to the interior of the 8040A:

1. Set the POWER switch to OFF and disconnect the battery charger eliminator, if attached.
2. Remove the fuse from the mA jack (press in, turn counterclockwise $1 / 4$ turn to release).
3. Remove the two screws holding the battery holder to the rear of the instrument and remove the holder and batteries.

NOTE
The rechargeable batteries are secured to the battery holder and are removed as one unit.
4. Remove the screw from the center of the rear panel of the instrument case and slide the 8040 A out of the case.

## NOTE

Do not attempt to remove the sunshade when the 8040 A is in the case. The sunshade does not have to be removed to slide the instrument out of the case.

## CAUTION

There are two wires connecting the 8040A circuitry to the battery contactors in the case. Use care not to place excessive strain on these wires.
5. Unplug the battery power wires from the 8040A circuit board.
6. Loosen the two screws securing the circuit board to the top of the front panel. DO NOT REMOVE THEM!
7. Remove the two screws securing the circuit board to the bottom of the front panel.
8. Set the 8040 A , front panel up, on a flat surface and gently lift the bottom edge of the front panel up to clear the switch buttons. Gently lay the switch and display sections of the AI pcb down on the flat surface.

## CAUTION

## Do not bend the circuit board backwards past the flat position as damage to the flex joints may occur.

9. Remove the circuit shield covering the A4 (Input) pcb and switches for inspection or troubleshooting purposes. One screw holds it in place.
10. The A4 pcb can be removed with upward pressure and a gentle rocking motion.
11. When reassembling the 8040 A , protect the flexible lands by first folding the switch section of the A1 pcb then the display section up towards the vertical A2 and A3 pcbs. Tip the bottom edge of the front panel up to clear the switches. Insure that the A2 and A3 boards fit into the plastic board edge retainers on each side.

## 4-7. Cleaning

4-8. Clean the front panel and case with denatured alcohol or a mild solution of detergent and water. Clean dust from the circuit board with low pressure dry air. Contaminates can be washed from the circuit board with demineralized water and a soft brush (avoid getting excessive amounts of water on the switches).

## CAUTION

> Do not use aromatic hydrocarbons or chlorinated solvents for cleaning. These solutions will react with the plastic materials of the instrument.

## 4-9. Fuse Replacement

4-10. A fuse, located behind the mA input jack, provides protection against current inputs that exceed 2 amps. When replacement is required, use only a AGX 2 amp fuse as a replacement. This fuse is removed by pressing in on the mA input terminal then turning it counterclockwise $1 / 4$ turn to release.

## 4-11. PERFORMANCE CHECK

4-12. The performance check provides a means of verifying that the overall operation of the 8040 A is within required limits. This procedure can be used as a acceptance test for receiving inspection and as a periodic maintenance check. Refer to Table 4-1 for the test equipment recommended for these checks. Should the 8040A fail to meet the requirements of these checks calibration and/or troubleshooting will be necessary. See Table 4-1 for recommended calibration equipment. Perform this procedure under environmental conditions of $23 \pm 5^{\circ} \mathrm{C}$ at relative humidity less than $80 \%$.

## WARNING

## REFER TO THE REQUIRED METHOD FOR VOLTAGE SOURCE CONNECTION (THIS SECTION) FOR VOLTAGE SOURCE CONNECTION PROCEDURE.

## 4-13. DC Volts

4-14. This procedure requires the output of a dc voltage source (see Table 4-1), set to specified levels, to be applied to the $8040 \mathrm{~A} \mathrm{~V}-\Omega$ and COMMON input while the display is observed to be within specific limits. Select the DC V function then refer to Table 4-2 for the ranges and inputs for the performance check.

Table 4-2. DC VOLTAGE PERFORMANCE CHECK

| 8040A <br> RANGE | DC VOLTS <br> INPUT | 8040A DISPLAY <br> LIMITS |  |
| :--- | :--- | :--- | :---: |
| 200 mV | 190.00 mV | 189.87 to 190.13 <br> 2 <br> 2 |  |
| 20 | 0.90 V | 1.8988 to 1.9012 <br> 20 |  |
| 19.00 V | 18993 to 0.9007 |  |  |
| 200 | 9.00 V | 8.993 to 19.012 <br> 200 |  |
| 1100 dc | 50.00 V | 189.88 to 190.12 <br> 1100 dc |  |

## 4-15. AC Volts

4-16. During this procedure ac voltage levels at specified frequencies are applied to the $8040 \mathrm{~A} \mathrm{~V}-\Omega$ and COMMON inputs and the displays observed to be within specific limits. Select the AC V function then refer to Table 4-3 for the ranges and inputs for the performance check.

## 4-17. Resistance Measurements

4-18. This procedure calls for precision resistance to be applied to the $8040 \mathrm{~A} V-\Omega$ and COMMON inputs and the display observed to be within specified limits. Select the $K \Omega$ function then refer to Table 4-4 for the ranges and inputs for the performance check.

## 4-19. Direct Current

4-20. This procedure calls for known values of direct current to be applied to the 8040 A mA and COMMON inputs and the display observed to be within specified
limits. Select the DC mA function then refer to Table 4-5 for the ranges and inputs for the current check.

## 4-21. Alternating Current

4-22. The alternating current mode of operation need not be checked because the accuracy of the shunts is established by the direct current check and the frequency response is determined by the ac converter which is checked during the ac voltage check.

Table 4-3. AC VOLTAGE PERFORMANCE CHECK

| 8040 A <br> RANGE | AC VOLTS <br> INPUT | INPUT <br> FREQ | 8040A DISPLAY <br> LIMITS |
| :--- | :--- | :--- | :--- |
| 200 mV | 190.0 mV | 50 Hz | 188.95 to 191.05 |
| 200 mV | 190.0 mV | 5 kHz | 188.95 to 191.05 |
| 200 mV | 190.0 mV | 20 kHz | 188.00 to 192.00 |
| 2 | 1.900 V | 50 Hz | 1.8895 to 1.9105 |
| 2 | 0.900 V | 10 kHz | 0.8945 to 0.9055 |
| 2 | 1.900 V | 20 kHz | 1.8800 to 1.9200 |
| 20 | 19.00 V | 50 Hz | 18.895 to 19.105 |
| 20 | 8.00 V | 5 kHz | 7.950 to 8.050 |
| 20 | 19.00 V | 20 kHz | 18.800 to 19.200 |
| 200 | 190.0 V | 50 Hz | 0.89405 to 0.9055 |
| 200 | 190.0 V | 20 kHz | 188.00 to 192.00 |
| 750 | 750 V | 50 Hz | 745.2 to 7.548 |
| 750 | 750 V | 13 kHz | 741.5 to 7.585 |

Table 4-4. RESISTANCE PERFORMANCE CHECK

| 8040A RANGE | RESISTANCE INPUT | 8040A DISPLAY LIMITS |
| :---: | :---: | :---: |
| AUTO | SHORT (1) | 00.00 to 00.03 |
| AUTO | SHORT (2) | Lead Res Value |
| AUTO | OPEN | Flashing +1.8888 |
| $2000 \mathrm{k} \Omega$ | $1.0 \mathrm{M} \Omega$ | 997.7 to 1002.3 |
| $200 \Omega$ | $100 \Omega$ | 99.77 to 100.23 (3) |
| AUTO | $1.00 \mathrm{k} \Omega$ | . 9977 to 1.0023 (3) |
| AUTO | $5.00 \mathrm{k} \Omega$ | 4.987 to 5.013 |
| AUTO | $10.0 \mathrm{k} \Omega$ | 9.977 to 10.023 (3) |
| AUTO | $100 \mathrm{k} \Omega$ | 99.77 to 100.23 |
| AUTO | $500 \mathrm{k} \Omega$ | 498.7 to 501.3 |
| AUTO | $10.0 \mathrm{M} \Omega$ | 9.947 to 10.058 |
| Use a good quality shorting bar between the $\mathrm{V}-\Omega$ and COMMON-input terminals. |  |  |
| Connect the test leads that will be used to connect the 8040A to the decade resistance source. Place the short at the end of the test leads that will be connected to the resistance source. Note the resistance value indicated on the 8040A display. |  |  |
| Add the lead resistance value to the input resistance value to determine the correct 8040A display. |  |  |



Figure 4-1. CALIBRATION ADJUSTMENT CONTROLS

## Table 4-5. DIRECT CURRENT PERFORMANCE CHECK

| 8040A <br> RANGE | DIRECT CURRENT <br> INPUT | 8040A DISPLAY <br> LIMITS |
| :--- | :---: | :---: |
| $200 \mu \mathrm{~A}$ | $+190.0 \mu \mathrm{~A}$ | +189.40 to +190.60 |
| 2 | +1.900 mA | +1.8940 to +1.9060 |
| 20 | +19.00 mA | +18.940 to +19.060 |
| 200 | +190.0 mA | +189.40 to +190.60 |
| 2000 | +1900 mA | +1894.0 to +1906.0 |

## NOTE

In the $A C m A$ function inputs to the $8040 A$ are dc coupled this allows this function to be checked with a dc mA input. Do this by selecting the $A C m A$ function and 2 range. Apply $+1.9 m A$ dc to the $m A$ input. The 8040A display should read between 1.8800 and 1.9200.

## 4-23. CALIBRATION

4-24. Calibration of the Model 8040A should be done after repairs have been made to the electronic circuitry or when the performance check indicates the unit is not operating within the specification. Table 4-1 provides a list of test equipment required to calibrate this instrument. These procedures should be performed under environmental conditions of $23 \pm 5^{\circ} \mathrm{C}$ at a relative humidity of less than $80 \%$.

4-25. It is recommended that the 8040A circuit board remain folded up and attached to the front panel. All adjustments and test points are accessible through the open sides of the folded up unit. The location of each calibration adjustment is illustrated in Figure 4-1. The steps of this procedure must be performed in the order presented.

## NOTE

The physical position of some components may affect the ac calibration of the instrument. Avoid moving the components, especially after the calibration procedure has been completed.

## 4-26. Required Method for Voltage Source Connection

4-27. When a DMM is opened for servicing, the voltage source connections to it must be made in the manner shown in Figure 4-2. This method is required for PERSONAL SAFETY. Since a DMM has no earth ground connection in itself, the earth ground connection must be suplied from the voltage source. The earth
ground connection will insure that voltage potential, harmful to the calibration or repair technician, will not be present on the instrument's common circuits.

## WARNING

Insure that the voltage source connection method illustrated in Figure 4-2 is used. Other connection methods may cause hazardous voltages to be present on the 8040A common circuits.


Figure 4-2. REQUIRED METHOD FOR VOLTAGE SOURCE CONNECTION

4-28. Perform the 8040 A calibration as follows:

1. On the 8040 A select the AC mA function and 2 range.
2. Connect the positive lead of the test equipment voltmeter to TP1 on the 8040A and the low lead to the 8040 A COMMON input terminal.
3. Adjust R42 for a voltmeter reading of -0.001 to +0.001 volts.
4. Disconnect the test equipment voltmeter.
5. Select the DC V function.

Table 4-6. DC VOLTAGE CALIBRATION

| STEP | RANGE | INPUT | ADJUST | $\begin{aligned} & \text { 8040A } \\ & \text { DISPLAY } \end{aligned}$ | ANNUNCIATOR | TOLERANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 200 mV | SHORT | - | 00.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | -00.02 to +00.02 |
| 2 | 200 mV | OPEN | - | 00.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | -01.00 to +01.00 |
| 3 | 2 | -1.9000V | R31 | -1.9000 | - | exactly -1.9000 |
| 4 | 2 | +1.9000V | R38 | +1.9000 | - | exactly +1.9000 |
| 5 | 2 | 0.0000 V | - | . 0000 | - | -. 0002 to +.0002 |
| 6 | 2 | -1.9000V | - | -1.9000 |  | -1.8998 to -1.9002 |
| 7 | 2 | -1.8000V | - | -1.8000 | - | -1.7998 to -1.8002 |
| 8 | 200 mV | +190.00 mV | R60 | +190.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | +189.98 to +190.02 |
| 9 | 200 mV | $-190.00 \mathrm{mV}$ | R60 | -190.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | -189.98 to -190.02 |
| 10 | Repeat steps 8 and 9 until the tolerance is equal in each polarity. |  |  |  |  |  |
| 11 | AUTO | +190.00V | R9 | +190.00 | - | exactly +190.00 |
| 12 | AUTO | +1.9000V | - | +1.9000 | - | +1.8998 to +1.9002 |
| 13 | AUTO | +19.000V | - | +19.000 | - | +18.998 to +19.002 |
| 14 | AUTO | OPEN | - | 00.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | -01.00 to +01.00 |
| 15 | AUTO | +1000.0V | R3 | +1000.0 | - | exactly 1000.0 |
| 16 | AUTO | SHORT | - | 00.00 | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | -00.02 to +00.02 |
| 17 | AUTO | -1000.0V* | - | -1000.0 | - | -999.8 to -1000.2 |
| * Reverse the polarity of the applied input ( 1000 volts) by decreasing the voltage source output to zero, inverting the output lead at the voltage source output jacks, then increase the voltage to 1000 volts (see Required Method for Voltage Source Connection). |  |  |  |  |  |  |

6. Select the ranges and apply (using the recommended method) the inputs indicated in Table 4-6. Observe the 8040A for a display within the tolerances described and, when necessary, make the adjustments indicated.
7. Disconnect the dc voltage source from the 8040A input.
8. Select the $K \Omega$ function.
9. Select the ranges and apply the inputs indicated in Table 4-7. Observe the 8040A for a display within the tolerances described and, when necessary, make the adjustments indicated.
10. Disconnect the resistance source from the 8040A.
11. Select the AC mA function.
12. Select the 2 range.
13. Connect the positive lead of the test equipment voltmeter to TP2 and the low lead to the COMMON input terminal.
14. Adjust R66 for a voltmeter reading of -0.070 to +0.070 volts.
15. Apply +100 mV dc to the mA input terminal.

## NOTE

The fuse holder ( $m A$ input terminal) and fuse should be connected to the positive plug on a $G R$ type connector so that the fuse will be held in the proper place when negative terminal is plugged into the COMMON input terminal. This should be done for all inputs to the 8040 A mA terminal.
16. Note the 8040A display.
17. Apply -100 mV dc to the mA input terminal.
18. Adjust R86 to obtain a display within three digits of the value of the display noted in step 16.
19. Repeat steps 13 through 18 until all parameters are met.
20. Select the $\mathrm{AC} V$ function and the 2 range.
21. Short the $\mathrm{V}-\Omega$ and COMMON terminal together.
22. Turn R100 fully clockwise then adjust it counterclockwise until the 8040A display is between 0.0180 and 0.0120 .

Table 4-7. OHMS CALIBRATION

| STEP | RANGE | INPUT | ADJUST | $\begin{aligned} & \text { 8040A } \\ & \text { DISPLAY } \end{aligned}$ | ANNUNCIATOR | TOLERANCE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | AUTO | SHORT (1) | - | 00.00 | $m V \cdot \Omega \cdot \mu \mathrm{~A}$ | 00.00 to 00.02 |
| 2 | AUTO | SHORT (2) | - | Lead Res. Value | $m V \cdot \Omega \cdot \mu \mathrm{~A}$ | - |
| 3 | 2000 | $1 \mathrm{M} \Omega$ | R47 | 1000.0 | - | exactly 1000.0 |
| 4 | $200 \Omega$ | $100 \Omega$ | R10 | 100.00 (3) | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | exactly 100.00 (4) |
| 5 | AUTO | $1 \mathrm{M} \Omega$ | R47 | 1000.0 | $-\quad$ - | exactly 1000.0 |
| 6 | AUTO | $100 \Omega$ | R10 | 100.00 (3) | $m V \cdot \Omega \cdot \mu \mathrm{~A}$ | exactly 100.00 |
| 7 | AUTO | $1.0 \mathrm{k} \Omega$ | - | 1.0000 (3) | - | . 9995 to 1.0005 (4) |
| 8 | AUTO | $10 \mathrm{k} \Omega$ | - | 10.000 (3) | - | 9.995 to 10.005 (4) |
| 9 | AUTO | $100 \mathrm{k} \Omega$ | - | 100.00 | - | 99.95 to 100.05 |
| 10 | AUTO | $1.0 \mathrm{M} \Omega$ | - | 1000.0 | - | 999.5 to 1000.5 |
| 11 | AUTO | $10 \mathrm{M} \Omega$ | - | 10.000 | $\mathrm{M} \Omega$ | 9.985 to 10.015 |
| 12 | AUTO | $100 \Omega$ | - | 100.00 (3) | $\mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ | 99.98 to 100.02 (4) |
| 13 | AUTO | OPEN | - | $18.888$ <br> Flashing | $\mathrm{M} \Omega$ | - |
| (1) <br> (2) | Use a good quality shorting bar between the V- |  |  |  |  |  |
|  | Connect the test leads that will be used to connect the 8040A to the decade resistance source. Place the short at the end of the test leads that will be connected to the resistance source. Note the resistance value indicated on the 8040A display. |  |  |  |  |  |
|  | Add the lead resistance value to the input resistance value to determine the correct 8040A display. |  |  |  |  |  |
| (4) | Add the lead resistance value to the tolerance figures. |  |  |  |  |  |

23. Turn R88 fully counterclockwise. Note the 8040 A display; it should stop changing as the control reaches full counterclockwise rotation.

## NOTE

If the display does not stop changing center R88 then return to step 13 and repeat through step 23.
24. Turn R88 clockwise slowly until the 8040A display changes by 1 or 2 digits.
25. Select the AC mA function and the 2 range.
26. Connect a voltmeter to TP2 and verify that the voltage level is between -0.070 and +0.070 volt dc.

## NOTE

If the level at TP2 is not within the specified limits repeat steps 14 through 26.
27. Select the AC V function and 2 range.
28. Apply 1.0000 V ac at 200 Hz to the $8040 \mathrm{~A} \mathrm{~V}-\Omega$ input terminal. Note the display.
29. Apply 0.1000 V ac at 200 Hz to the $\mathrm{V}-\Omega$ input.
30. Adjust R100 until the 8040A display indicate one-tenth of the reading observed in step 28.
31. Repeat steps 28 through 30 until no adjustment of R100 is required to obtain a one-tenth display.
32. Apply 1.0000 V ac at 200 Hz to the $\mathrm{V}-\Omega$ input.
33. Adjust R101 for an 8040A display of exactly 1.0000 .
34. Apply 0.1000 V ac at 200 Hz to the $\mathrm{V}-\Omega$ input.
35. The 8040A display should be between 0.0999 and 0.1001 .
36. Apply 0.0100 V ac at 200 Hz to the $\mathrm{V}-\Omega$ input.
37. The 8040A display should be between 0.0099 and 0.0104 .
38. Apply 1.9000 V ac at 200 Hz to the $\mathrm{V}-\Omega$ input.
39. The 8040 A display should be between 1.8980 and 1.9020 .
40. Press the AUTO range switch and apply the voltages indicated in Table 4-8. Observe the 8040A for a display within the limits indicated.

Table 4-8. LOW FREQUENCY AC V CHECK

| INPUT | DISPLAY |  |
| :---: | :--- | :---: |
| 10.0 mV at 200 Hz | 9.93 to 10.07 <br> 100 mV at 200 Hz 99.95 to 100.05 <br> 1.00 V at 200 Hz 0.9995 to 1.0005 <br> 10.0 V at 200 Hz 9.9993 to 10.007 <br> 100 V at 200 Hz 99.93 to 100.07 <br> 750 V at 200 Hz 749.3 to 75.07 |  |

41. Select the 750 AC range.
42. Apply 500 V ac at 10 k Hz to the $\mathrm{V}-\Omega$ input.
43. Adjust C3 for an 8040A display between 499.7 and 500.3.
44. Disconnect the input from the $\mathrm{V}-\Omega$ input.
45. Select the 200 range.
46. Apply 100 V ac at 10 k Hz to the $\mathrm{V}-\Omega$ input.
47. Adjust C 2 for an 8040 A display between 99.96 and 100.04 .
48. Repeat steps 41 through 47 until both displays are within specification limits.
49. Press the AUTO range switch and apply the voltages indicated in Table 4-9. Observe the 8040A for a display within the limits indicated.

Table 4-9. HIGH FREQUENCY AC V CHECK

| INPUT | DISPLAY |
| :---: | :---: |
| 100 mV at 20 kHz | 99.30 to 100.70 |
| 1.00 V at 20 kHz | .9930 to 1.0070 |
| 10.0 V at 20 kHz | 9.930 to 10.070 |
| 100 V at 20 kHz | 99.30 to 100.70 |
| 500 V at 20 kHz | 496.5 to 503.5 |
| 500 V at 5 kHz | 498.0 to 502.0 |

50. Remove all inputs from the $8040 \mathrm{~A} \mathrm{~V}-\Omega$ input.
51. Select the DC mA function.
52. Select the ranges indicated in Table 4-10 and apply the associated current input to the mA input. Observe the 8040A for a display within the limits indicated.
53. Select the AC mA function and the 2 range.
54. Apply +1.9 mA DC to the mA input.
55. The 8040A display should be between 1.8800 and 1.9200 .

Table 4-10. DIRECT CURRENT ACCURACY CHECK

| RANGE | INPUT | DISPLAY |
| :--- | :--- | :--- |
| $200 \mu \mathrm{~A}$ | $+190 \mu \mathrm{~A}$ | +189.40 to +190.60 |
| 2 mA | +1.9 mA | +1.8940 to +1.9060 |
| 20 mA | +19 mA | +18.940 to +19.060 |
| 200 mA | +190 mA | +189.40 to +190.60 |
| 2000 mA | +1900 mA | +1894.0 to +1906.0 |

## 4-29. TROUBLESHOOTING

4-30. The following information should be kept in mind while doing repair work on the 8040A. Inattention to these precautions may lead to instrument damage.

1. MOS type integrated circuits can be damaged by discharging static electricity through the device. On the Al pcb the integrated circuits which are susceptible to damage are U22, U25 and U28; on the A 2 pcb the sensitive components are U 15 through U21, U23, U24 and U26; on the A3 pcb, U6, U7, U8 and U9; and A4 and A5 pcbs do not include MOS circuits.

To avoid damaging the MOS devices you should (1) minimize handling, (2) discharge personal static before handling the device, (3) handle the MOS device by the body; avoid touching the pins on the device, (4) do not slide the MOS device over any surface, (5) avoid touching plastic, vinyl or styrofoam when working with MOS devices, and (6) always use a grounded soldering iron when installing or removing MOS devices.
2. The 8040A uses flexible connectors for physical and electrical connection of the individual sections of the A1 pcb. These flexible connectors
should never be unfolded past the flat position. Reverse flexing of these connectors can damage the solder joints.
3. The physical position of some components may affect the ac calibration of the instrument. The position of resistor network U33 and the internal shield are most likely to change the calibration if their positions were changed.
4. The low side of the charger/eliminator connector will always be at the same voltage level, with respect to earth ground, as the COMMON input terminal.

4-31. The figures, presented here in the troubleshooting section, are of signal waveforms taken at selected points in the 8040A circuitry. The amplitude of the signal and the time duration of some segments of the waveform are directly related to the input applied to the 8040A. When the input required for each figure is applied to the 8040 A the manner in which the actual waveform deviates from the expected will indicate the probable cause for the malfunction.

4-32. The oscilloscope must be triggered from the signal at U26 pin 8 when observing the waveforms presented in these troubleshooting figures. Set the oscilloscope trigger level to positive and trigger slope to positive. Connect the external trigger level lead to U26 pin 8.

4-33. The signals pictured in Figure 4-3 show the two basic timing sequences of the integrate (INT) signal; waveform A for any in-range input, waveform B for any overrange input. Connect the oscilloscope input to U26
pin 8. Connect the scope ground lead to the 8040A switch frame. Exercise the 8040A in the following manner and observe the oscilloscope for the appropriate waveform.

1. Select the $K \Omega$ function and 2 range.
2. Connect a short between the $\mathrm{V}-\Omega$ and COMMON input terminal.
3. The oscilloscope should display waveform $\mathbf{A}$.
4. Remove the short. The instrument will indicate an overrange condition (flashing +1.8888 ) and the oscilloscope display will change to waveform B.

4-34. The probable area in the 8040 A circuitry causing a malfunction that affects the INT signal may be indicated by the action of the signal under the two input conditions. The following are possible problem areas based upon the action of the INT signal.

1. If the INT signal remains constant at approximately +7 volts or -7 volts look at U26 pin 9 for the INT signal (opposite polarity to the INT signal) if the INT signal is on pin 9, U26 is defective. If the signal is not at pin 9 go on to the next waveform checks.
2. If, when an overrange input is applied to the 8040A input, the waveform at U26 pin 8 does not change from $A$ to $B$ proceed to the next waveform checks to further define the problem area.

4-35. The waveforms presented in Figure 4-4 represent the operation of the analog circuitry, in four key


Figure 4-3. WAVEFORMS AT U26 PIN 8 FOR IN RANGE AND OVERRANGE INPUTS


Figure 4-4. WAVEFORMS AT TP1, Q10, C22 AND U14 FOR IN RANGE AND OVERRANGE INPUTS
locations, with an in-range and overrange input applied to the 8040 A . These points are; TP1 the buffer amplifier output, Q10 gate (same as U2 pin 7) the unity gain amplifier in the $A / D$ converter, C 22 (same as $U 2$ pin 1) the output of the integrator amplifier and U14 pin 3 the compare signal (CM) sent to the digital circuitry. (See Figure 4-5 for the oscilloscope connection points on the 8040A boards.) Check the waveforms at these points as follows.

1. Select the V DC function and 2 range.
2. Apply 1.0 V de to the $\mathrm{V}-\Omega$ input.
3. Connect the oscilloscope input to TP1.
4. The oscilloscope display should be similar to waveform Al in Figure 4-4.


Figure 4-5. OSCILLOSCOPE CONNECTIONS FOR TROUBLESHOOTING
5. Change the voltage applied to the $\mathrm{V}-\Omega$ input to 2.5 volts.
6. The oscilloscope display should be similar to waveform Bl.

## NOTE

If the amplitude of the first 100 ms of either oscilloscope display significantly deviates from waveform A1 or B1, the malfunction is probably in the Buffer circuit (Q1 through Q8, Q11, U5 and U4) or the associated circuitry. If the amplitude is correct and the duration of the second segment of the waveform is incorrect go on to the next step.
7. Connect the oscilloscope input to the gate of Q10 (on the schematic this is the same as U2 pin 7).
8. The oscilloscope display shall be similar to waveform B2.
9. Change the voltage applied to the $\mathrm{V}-\Omega$ input to 1.0 volt.
10. The oscilloscope display should be similar to waveform A2.

## NOTE

If the amplitude of the first 100 ms of either oscilloscope display significantly deviates from waveform $B 2$ or $A 2$ the malfunction is probably in Q10, U2, U8 or U9. If the amplitude is correct and the duration of the second segment of the waveform is incorrect go on to the next step.
11. Connect the oscilloscope input to the left end of C22.
12. The oscilloscope display should be similar to waveform A3.
13. Change the voltage applied to the $\mathrm{V}-\Omega$ input to 2.5 volts.
14. The oscilloscope display should be similar to waveform B3.

## NOTE

If the amplitude of the first 100 ms of either oscilloscope display significantly deviates from waveform $A 3$ or $B 3, U 2$ is the probable cause of the malfunction. If the amplitude is correct and the duration of the second segment of the waveform is incorrect go on to the next step.
15. Connect the oscilloscope input to U14 pin 3.
16. The oscilloscope display should be similar to waveform B4.
17. Change the voltage applied to the $V-\Omega$ input terminal to 1.0 volt.
18. The oscilloscope display should be similar to waveform A4.

## NOTE

If either oscilloscope display significantly deviates from waveform B4 or A4 the malfunction is probably in U14 or U22.

4-36. The voltage level of the first 100 ms segment of waveforms A2 and B2 should be very close to 1.0 volt and 2.5 volts respectively. If this is true yet the amplitude of the second segment of the waveform, -1.0 volts in either case, is incorrect the malfunction is probably in the A/D Reference Supply circuitry. Sections of solid state switches U7 or U8 may be leaky or inoperative or U2 may be defective.

4-37. When a malfunction affects the $\mathrm{AC} V$ function the probable cause of the malfunction is either the AC Converter circuitry or in the switches U7 or U9. The operation of the ac converter should be checked as follows:

1. Select the AC V function and 2 range.
2. Apply a 1.0 volt rms signal at 200 Hz to the $\mathrm{V}-\Omega$ input.
3. Connect the oscilloscope input to TP1.
4. The oscilloscope display should show a 200 Hz signal with the positive peak being approximately +1.4 volts and the negative excursion being approximately -1.4 volts.
5. Connect a voltmeter to the junction of R104 and C 23 , it should indicate +1.0 volt dc.
6. If the voltage at R104 is not +1.0 volt dc, connect the oscilloscope input to the junction of R61 and R62.
7. The oscilloscope display should show a +1.4 volt halfwave rectified signal.

## NOTE

If the signal at the junction of $R 61$ and $R 62$ is not correct U10 is the probable faulty component. If it is correct then U38, Ull or U13 may be the faulty component.

4-38. Malfunctions in the Digital circuitry may be indicated by the manner in which the 8040 A display is affected. Some of the display symptoms and the probable cause for each are as follows:

1. Decimal points inoperative. Probable cause, Q13 defective.
2. Overload indication (flashing 1888) inoperative. Probable cause, U14 defective.
3. All display digits indicate zeros. Probable cause, U25 defective.
4. $\quad \mathrm{mV} \cdot \Omega \cdot \mu \mathrm{A}$ or $\mathrm{M} \Omega$ annunciator inoperative. Probable cause, U22 or DS8 defective.
5. Any individual digit not illuminated. Probable cause, the LED for that digit (DS1 through DS6) or the respective driver transistor (Q15 through Q19).
6. All digits are blank. Probable cause U25, U27, U30 or U29 defective.

## Section

## Lists of Replaceable Parts

## 5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown of the instrument. Components are listed alpha-numerically by assembly. Electrical components are listed by reference designation and mechanical components are listed by item number. Each listed part is shown in an accompanying illustration.

5-3. Parts lists include the following information:
a. Reference Designation or Item Number.
b. Description of each part.
c. FLUKE Stock Number.
d. Federal Supply Code for Manufacturers. (See Appendix A for Code-to-Name list.)
e. Manufacturer's Part Number or Type.
f. Total Quantity per assembly or component.
g. Recommended Quantity: This entry indicates the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one of each assembly in the instrument be stocked. In the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument model, the REC QTY column lists the recommended quantity of the item in that particular assembly.
h. Use Code is provided to identify certain parts that have been added, deleted or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument revision letter by consulting the Use Code Effectivity, paragraph 5-7.

## 5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

5-6. To ensure prompt and efficient handling of your order, include the following information.
a. Quantity.
b. FLUKE Stock Number.
c. Description.
d. Reference Designation or Item Number.
e. Printed Circuit Board Part Number.
f. Instrument Model and Revision Letter.

## 5-7. USE CODE EFFECTIVITY LIST

USE
CODE
REVISION LETTER EFFECTIVITY

| $\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | FLUKE STOCK NO. | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}$ | USE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8040A MULTIMETER |  |  |  |  |  |  |
| Al | Main PCB Assembly (Figure 5-1) |  |  |  |  |  |  |
| A2 | Digital Conditioner PCB Assembly <br> (Figure 5-2) |  |  |  |  |  |  |
| A3 | Analog Converter PCB Assembly (Figure 5-3) |  |  |  |  |  |  |
| A4 | Volt-Ohm Input PCB Assembly (Figure 5-4) |  |  |  |  |  |  |
| A5 | Switch Interconnect PCB | 427542 | 89536 | 427542 |  |  |  |
| F1 | Fuse 2 amp 250V AGX | 376582 | 71400 | AGX2 | 1 | 5 |  |
|  | Fuse Clip, mA input terminal | 426627 | 89536 | 426627 | 1 |  |  |
|  | Battery Cover (does not include batteries or battery retainer) | 418863 | 89536 | 418863 | 1 |  |  |
|  | Case Assembly | 426601 | 89536 | 426601 | 1 |  |  |
|  | Circuit Shield | 426395 | 89536 | 426395 | 1 |  |  |
|  | Display Lens | 426361 | 89536 | 426361 | 1 |  |  |
|  | Main PCB Shield | 426593 | 89536 | 426593 | 1 |  |  |
|  | Manual, maintenance | 427138 | 89536 | 427138 | 1 |  |  |
|  | Manual, operators | 427146 | 89536 | 427146 | 1 |  |  |
|  | Mounting Bracket, circuit shield | 426619 | 89536 | 426619 | 1 |  |  |
|  | Test Leads | 343657 | 89536 | 343657 | 1 |  |  |
|  | PCB Retainers | 426429 | 89536 | 426429 | 2 |  |  |
|  | Power Button | 425975 | 89536 | 425975 | 1 |  |  |


| REF DESIG OR ITEM NO. | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al | MAIN PCB ASSEMBLY |  |  |  |  |  |  |
| C1 | Cap, fxd cer, $50,000 \mathrm{pF}-20 /+80 \%, 500 \mathrm{~V}$ | 105676 | 56289 | 33 C 58 | 1 |  |  |
| C2 | Cap, var, mini-cer | 404301 | 91293 | 9335 | 1 |  |  |
| C3 | Cap, var, $1.5-0.25,2000 \mathrm{~V}$ | 435016 | 72982 | 530-006 | 1 | 1 |  |
| C4 | Cap, mica, $270 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 148452 | 72136 | DM15F271J | 1 |  |  |
| C5 | Cap, mica, $3000 \mathrm{pF} \pm 1 \%, 500 \mathrm{~V}$ | 436188 | 72136 | DM19F302F | 1 |  |  |
| C6 | Cap, poly-flm, $0.047 \mu \mathrm{~F} \pm 10 \%, 250 \mathrm{~V}$ | 162008 | 73445 | C280MAE/A47K | 1 |  |  |
| C7 | Cap, polycarbonate, $0.10 \mu \mathrm{~F} \pm 10 \%, 250 \mathrm{~V}$ | 376251 | 73445 | C280MCH/A100K | 1 |  |  |
| C8 | Cap, mini-cer, $33 \mathrm{pF} \pm 2 \%, 100 \mathrm{~V}$ | 354852 | 80031 | 2222-638-10339 | 1 |  |  |
| C9 | Cap, poly-flm, $0.47 \mu \mathrm{~F} \pm 10 \%, 100 \mathrm{~V}$ | 369124 | 73445 | C280MAH/A470K | 1 |  |  |
| C21 | Cap, elect, $100 \mu \mathrm{~F}-10 /+50 \%, 10 \mathrm{~V}$ | 436170 | 73445 | ET101 X010A7 | 1 | 1 |  |
| C24. | Cap, var, $1.5-0.25,2000 \mathrm{~V}$ | 218206 | 72982 | 530-000 | 1 | 1 |  |
| C26 | Cap, Ta, $5.6 \mu \mathrm{~F} \pm 20 \%, 25 \mathrm{~V}$ | 368969 | 56289 | $\begin{aligned} & \text { 196D565X0025 } \\ & \text { KA1 } \end{aligned}$ | 1 |  |  |
| C27 | Cap, Ta, $2.2 \mu \mathrm{~F} \pm 20 \%, 20 \mathrm{~V}$ | 161927 | 56289 | $\begin{aligned} & \text { 196D222X0020 } \\ & \text { HA1 } \end{aligned}$ | 1 |  |  |
| C28, C29 | Cap, elect, $150 \mu \mathrm{~F}-10 /+50 \%, 16 \mathrm{~V}$ | 186296 | 73445 | ET151X016A5 | 2 | 1 |  |
| CR1 | Rectifier Bridge, mini | 428151 | 04713 | MDA922-1 | 1 | 1 |  |
| $\begin{aligned} & \text { CR2, } \\ & \text { CR3 } \end{aligned}$ | Diode, si, rectifier | 428144 | 04713 | 1N4006 | 2 | 1 |  |
| CR4 thru CR7, CR17, CR18, CR26, CR27 | Diode, si, hi-speed switching | 203323 | 07910 | 1N4148 | 8 | 2 |  |
| CR15 | Diode, si, rectifier | 343491 | 04713 | 1N4002 | 1 | 1 |  |
| CR16 | Diode, zener | 110726 | 07910 | 1N964B | 1 | 1 |  |



Figure 5-1. MAIN PCB ASSEMBLY

| REF <br> DESIG <br> OR <br> ITEM <br> NO. | DESCRIPTION |  | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\left\|\begin{array}{l} \mathrm{TOT} \\ \mathrm{OTY} \end{array}\right\|$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CR22 | Diode, si, rectifier | 347559 | 05277 | 1N5400 | 1 | 1 |  |
| DS1 | Display, LED | 418400 | 50522 | 03203 | 1 | 1 |  |
| $\begin{aligned} & \text { DS2 thru } \\ & \text { DS6 } \end{aligned}$ | Display, LED | 418392 | 50522 | 03202 | 1 | 1 |  |
| J14 | Jack, dc power | 423897 | 89536 | 423897 | 1 |  |  |
| K1 | Relay | 423707 | 89536 | 423707 | 1 |  |  |
| K2, K3 | Relay | 424408 | 89536 | 424408 | 2 |  |  |
| $\begin{aligned} & \text { Q1, Q2, } \\ & \text { Q3, Q7 } \end{aligned}$ | Xstr, J-FET, n-channel | 429977 | 89536 | 429977 | 4 | 1 |  |
| Q4, Q14 | Xstr, si, PNP | 195974 | 04713 | 2N3906 | 2 | 1 |  |
| $\begin{aligned} & \text { Q5, Q13, } \\ & \text { Q21 } \end{aligned}$ | Xstr, si, NPN | 218396 | 04713 | 2N3904 | 3 | 1 |  |
| Q6 | Xstr, J-FET, n-channel | 429969 | 89536 | 429969 | 1 | 1 |  |
| Q8, Q11 | Xstr, J-FET, dual, n-channel | 456483 | 89536 | 456483 | 2 | 1 |  |
| Q15 thru Q19 | Xstr, si, PNP | 340026 | 04713 | MPS6563 | 5 | 1 |  |
| Q20 | Xstr, si, PNP | 418707 | 04713 | MPS6562 | 1 | 1 |  |
| R3 | Res, var, cermet, $50 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285122 | 71450 | 360S500A | 1 | 1 |  |
| R6, R25 | Res, carbon, $100 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348920 | 80031 | $\begin{aligned} & \mathrm{CR} 251-45 \mathrm{P} 100 \\ & \mathrm{KT} \end{aligned}$ | 2 |  |  |
| R9 | Res, var, cermet, $500 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 291120 | 71450 | 360S501 A | 1 | 1 |  |
| R10 | Res, var, cermet, $100 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285130 | 71.450 | 360S101A | 1 | 1 |  |
| $\begin{aligned} & \text { R11, } \\ & \text { R107 } \end{aligned}$ | Res, comp, $9.1 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 281840 | 01121 | CB91G5 | 2 |  |  |
| R13 | Res, WW, $8.991 \pm 0.1 \%, 3 W$ | 441139 | 89536 | 441139 | 1 | 1 |  |
| R14 | Res, $\mathrm{mf}, 89.91 \pm 0.1 \%, 1 / 4 \mathrm{~W}$ | 424283 | 91637 | MFF1-489R91D | 1 |  |  |


| $\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R15 | Res, mf, $899.1 \pm 0.1 \%, 1 / 4 \mathrm{~W}$ | 424275 | 91637 | MFF1-4899R1D | 1 |  |  |
| R16, R17 | Res, comp, $47 \mathrm{k} \pm 5 \%$, 1 W | 150219 | 01121 | GB4735 | 2 |  |  |
| R18, R23 | Res, comp, $2.2 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 198390 | 01121 | CB2255 | 2 |  |  |
| R19 | Res, carbon, $1 \mathrm{M} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348987 | 80031 | CR251-45P1MT | 1 |  |  |
| R20 | Res, comp, $8.2 \mathrm{k} \pm 10 \%, 12 / 2 \mathrm{~W}$ | 109017 | 01121 | EB8221 | 1 |  |  |
| R21 | Res, comp, 100k $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 108126 | 01121 | EB1041 | 1 |  |  |
| R22 | Res, carbon, $220 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348953 | 80031 | CR251-45P220KT | 1 |  |  |
| R24 | Res, carbon, $62 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348904 | 80031 | $\begin{aligned} & \text { CR251-45P62 } \\ & \text { KTS } \end{aligned}$ | 1 |  |  |
| R26 | Res, comp, $6.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 221911 | 01121 | CB6225 | 1 |  |  |
| R27, R28 | Res, mf, $1 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{~W}$ | 168229 | 91637 | MFF1-81001F | 2 |  |  |
| R29 | Res, comp, $1.2 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 190371 | 01121 | CB1225 | 1 |  |  |
| R36, R45 | Res, $\mathrm{mf}, 10 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{~W}$ | 168260 | 91637 | MFF1-81002F | 2 |  |  |
| R37 | Res, carbon, $2.2 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{~W}$ | 343400 | 80031 | $\begin{aligned} & \text { CR251-45P2E } \\ & \text { 2TS } \end{aligned}$ | 1 |  |  |
| R46 | Res, carbon, $470 \mathrm{k}+5 \%, 1 / 4 \mathrm{~W}$ | 342634 | 80031 | CR251-45P470KT | 1 |  |  |
| R93 | Res, carbon, $22 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348870 | 80031 | CR251-45P22K | 1 |  |  |
| R94 | Res, carbon, $220 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 342626 | 80031 | CR251-45P221T | 1 |  |  |
| R95 | Res, carbon, $4.7 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348821 | 80031 | CR251-45P4E7KT | 1 |  |  |
| $\begin{aligned} & \text { R96, R99, } \\ & \text { R110 } \end{aligned}$ | Res, carbon, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348839 | 80031 | CR251-45P10KT | 3 |  |  |
| R97 | Res, carbon, $1 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 343426 | 80031 | CR251-45P1KT | 1 |  |  |
| R98 | Res, comp, $820 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 148015 | 01121 | CB8215 | 1 |  |  |
| R111 | Res, comp, $27 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 148148 | 01121 | CB2735 | 1 |  |  |
| RV5 | Res, varistor | 423475 | 89536 | 423475 | 1 | 1 |  |


| REF DESIG OR ITEM NO. | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \mathrm{TOT} \\ & \mathrm{QTY} \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1 thru S10 | Switch Assembly, pushbutton | 418905 | 89536 | 418905 | 1 | 1 |  |
| S12 | Switch, slide | 423129 | 10389 | 43-100-113 | 1 | 1 |  |
| Tl | Transformér, inverter | 423590 | 89536 | 423590 | 1 |  |  |
| U1, U4 | IC, linear, op amp | 418913 | 12040 | LM4250CN | 2 | 1 |  |
| U22 | IC, digital, C MOS hex buffer/inverter (8) | 381848 | 95303 | CD4049A | 1 | 1 |  |
| U25 | IC, digital, P MOS (plugs into XU25) (8) | 407734 | 70203 | C2506/407734 | 1 | 1 |  |
| U27 | IC, digital, lo-pwr, Schottky, bcd-to-seven seg decoder/driver | 418632 | 01295 | SN74LS47N | 1 |  |  |
| U28 | IC, digital, C MOS, quad bilateral switch ( | 434506 | 89536 | 434506 | 1 | 1 |  |
| U29 | IC, linear, PNP, xstr array | 419002 | 07263 | CA3086N | 1 | 1 |  |
| U30 | Res Network | 424531 | 89536 | 424531 | 1 | 1 |  |
| U32 | Res Network | 424325 | 89536 | 424325 | 1 | 1 |  |
| U33 | Res Network | 424309 | 89536 | 424309 | 1 | 1 |  |
| XF1 | Fuse Guide, plastic | 438119 | 89536 | 438119 | 1 | 1 |  |
| XF2 | Fuse Contact, metal | 418491 | 89536 | 418491 | 1 | 1 |  |
| XU25 | Socket, IC | 376244 | 01295 | C934002 | 1 |  |  |
| Y1 | Crystal, 1.000 MHz | 423418 | 89536 | 423418 | 1 | 1 |  |



Figure 5-2. DIGITAL CONDITIONER PCB ASSEMBLY



Figure 5-3. ANALOG CONVERTER PCB ASSEMBLY

| REF DESIG OR ITEM NO. | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A3 | ANALOG CONVERTER PCB ASSEMBLY |  |  |  |  |  |  |
| C10, C14 | Cap, mica, $22 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 148551 | 72136 | DM15C220J | 2 |  |  |
| C11, Cl 3 | Cap, elect, $47 \mu \mathrm{~F}-10 /+50,25 \mathrm{~V}$ | 168823 | 73445 | ET470X025A4 | 2 | 1 |  |
| C13 | Cap, mica, $270 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 148452 | 72136 | DM15F271J | 1 |  |  |
| C15 | Cap, polycarbonate, $0.47 \mu \mathrm{~F} \pm 10 \%, 100 \mathrm{~V}$ | 288860 | 01281 | X4630W47491W | 1 |  |  |
| C16 | Cap, Ta, $1 \mu \mathrm{~F} \pm 20 \%, 35 \mathrm{~V}$ | 161919 | 56289 | $\begin{aligned} & \text { 196D105X0035 } \\ & \text { JA1 } \end{aligned}$ | 1 |  |  |
| C17 | Cap, mica, $150 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$ | 148478 | 72136 | DM15F151J | 1 |  |  |
| C18, C19 | Cap, mica, $5 \mathrm{pF} \pm 10 \%, 500 \mathrm{~V}$ | 148577 | 72136 | DM15C050K | 2 |  |  |
| C20 | Cap, Ta, $2.2 \mu \mathrm{~F} \pm 10 \%, 15 \mathrm{~V}$ | 364216 | 56289 | $\begin{aligned} & \text { 196D225X9015 } \\ & \text { HA1 } \end{aligned}$ | 1 |  |  |
| C22 | Cap, polypropylene, $0.47 \mu \mathrm{~F} \pm 10 \%, 50 \mathrm{~V}$ | 363085 | 89536 | 363085 | 1 |  |  |
| C23 | Cap, Ta, $0.47 \mu \mathrm{~F} \pm 20 \%, 35 \mathrm{~V}$ | 161349 | 56289 | $\begin{aligned} & \text { 196D474X0035 } \\ & \text { HA1 } \end{aligned}$ | 1 |  |  |
| C25 | Cap, Ta, $0.22 \mu \mathrm{~F}+20 \%, 35 \mathrm{~V}$ | 161331 | 56289 | $\begin{aligned} & \text { 196D224X0035 } \\ & \text { HA1 } \end{aligned}$ | 1 |  |  |
| CR8 | Diode, zener | $\square$ |  |  |  |  |  |
| CR9 | Diode, FET | 393454 | 07910 | TCR5290 | 1 | 1 |  |
| CR10, CR13, CR14, CR23, CR24, CR25 | Diode, hi-speed switching | 203323 | 07910 | 1N4148 | 6 | 2 |  |
| $\begin{aligned} & \text { CR11, } \\ & \text { CR12 } \end{aligned}$ | Diode, si | 375907 | 07263 | FD7222 | 2 | 1 |  |
| Q9 | Xstr, si, NPN | 218396 | 04713 | 2N3904 | 1 | 1 |  |
| Q10 | Xstr, dual FET, n-channel | 419283 | 89536 | 419283 | 1 | 1 |  |
| R31 | Res, var, cermet, $50 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285122 | 71450 | 360S500A | 1. | 1 |  |
| R32 | Res, selected |  |  |  |  |  |  |


| REF DESIG OR ITEM NO. | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\left\|\begin{array}{l} \mathrm{TOT} \\ \mathrm{OTY} \end{array}\right\|$ | $\begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R38, R42 | Res, var, cermet, $100 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285130 | 71450 | 360 S101A | 2 | 1 |  |
| R41, <br> R104 | Res, carbon, $47 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348896 | 80031 | CR251-45P47KT | 2 |  |  |
| R47 | Res, var, cermet, $20 \mathrm{k} \pm 10 \%$, $1 / 2 \mathrm{~W}$ | 291609 | 71450 | 360S203A | 1 | 1 |  |
| R48, R57 | Res, carbon, $10 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 340075 | 80031 | CR251-45P10 | 2 |  |  |
| R51 | Res, mf, 100k $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 248807 | 91637 | MFF1-81003F | 1 |  |  |
| R52 | Res, mf, $100 \pm 1 \%, 1 / 8 \mathrm{~W}$ | 168195 | 91637 | MFF1-8A100F | 1 |  |  |
| R54, R68 | Res, carbon, $100 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348920 | 80031 | CR251-45P100KT | 2 |  |  |
| R55 | Res, carbon, $100 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348771 | 80031 | CR251-45P100T | 1 |  |  |
| R56 | Res, mf, $2.67 \mathrm{k} \pm 1 \%, 1 / 8 \mathrm{~W}$ | 289587 | 91637 | MFF1-82671F | 1 |  |  |
| $\begin{aligned} & \text { R58, R61, } \\ & \text { R63 } \end{aligned}$ | Res, mf, $20.0 \mathrm{k}+0.25 \%, 1 / 8 \mathrm{~W}$ | 442970 | 91637 | MFF1-82002C | 3 |  |  |
| R59 | Res, mf, 130k $\pm 1 \%, 1 / 8 \mathrm{~W}$ | 221648 | 91637 | MFF1-81303F | 1 |  |  |
| $\begin{aligned} & \text { R60, R66, } \\ & \text { R88, } \\ & \text { R100 } \end{aligned}$ | Res, var, cermet, $100 \mathrm{k} \pm 10 \%, 1 / 2 \mathrm{~W}$ | 288308 | 71450 | 360S104A | 4 | 1 |  |
| R62 | Res, mf, 9.90k $\pm 0.25 \%, 1 / 8 \mathrm{~W}$ | 446419 | 91637 | MFF1-89901C | 1 |  |  |
| R64 | Res, carbon, $20 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 441477 | 80031 | CR251-45P20KT | 1 |  |  |
| R65 | Res, carbon, $10 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348839 | 80031 | CR251-45P10KT | 1 |  |  |
| $\begin{aligned} & \text { R67, R83, } \\ & \text { R87, } \\ & \text { R102 } \end{aligned}$ | Res, comp, $4.7 \mathrm{M} \pm 5 \%$, $1 / 4 \mathrm{~W}$ | 220046 | 01121 | CB4755 | 4 |  |  |
| R69, R91 | Res, carbon, $3.3 \mathrm{k} \pm 5 \%$, $1 / 4 \mathrm{~W}$ | 348813 | 80031 | CR251-45P3K3T | 2 |  |  |
| R72 | Res, carbon, $330 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348961 | 80031 | CR251-45P330KT | 1 |  |  |
| R80 | Res, comp, $62 \pm 5 \%, 1 / 4 \mathrm{~W}$ | 261842 | 01121 | CB6205 | 1 |  |  |
| R86 | Res, var, cermet, $200 \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285148 | 71450 | 360S201A | 1 | 1 |  |
| R89 | Res, carbon, $470 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 342634 | 80031 | CR251-45P470KT | 1 |  |  |


| $\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R90 | Res, comp, $6.8 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 148098 | 01121 | CB6825 | 1 |  |  |
| R101 | Res, var, cermet, $2 \mathrm{k} \pm 10 \%, 1 / 2 \mathrm{~W}$ | 285163 | 71450 | 360S202A | 1 | 1 |  |
| R103 | Res, carbon, $15 \mathrm{k} \pm 5 \%, 1 / 4 \mathrm{~W}$ | 348854 | 80031 | CR251-45P15KT | 1 |  |  |
| R105 | Res, mf, $35.7 \mathrm{k} \pm 0.25 \%, 1 / 8 \mathrm{~W}$ | 446427 | 91637 | MFF1-83572C | 1 |  |  |
| R106 | Res, mf, $10.0 \mathrm{k}+0.25 \%, 1 / 8 \mathrm{~W}$ | 446435 | 91637 | MFF1-81002C | 1 |  |  |
| R108 | Res, carbon, $13 \mathrm{k} \pm 5 \%$, 1/4W | 441394 | 80031 | CR251-45P13KT | 1 |  |  |
| R109 | Res, selected | 2 |  |  |  |  |  |
| U2 | IC, linear, op amp, quad | 402669 | 12040 | LM324N | 1 | 1 |  |
| U3 | Res Network | 442814 | 89536 | 442814 | 1 | 1 |  |
| U5, U10 | IC, linear, op amp | 352930 | 89536 | 352930 | 2 | 1 |  |
| U6, U7 | IC, digital, CMOS, quad bilaterial switch (1) | 408062 | 95303 | CD4066AE | 2 | 1 |  |
| U8, U9 | IC, digital, CMOS, quad bilaterial switch, selected | 428466 | 89536 | 428466 | 2 | 1 |  |
| U11 | IC, xstr array | 2 |  |  |  |  |  |
| U13 | IC, linear, op amp, dual | 4 |  |  |  |  |  |
| U14 | 1C, linear, 5-xstr array | 418954 | 95303 | CA3096E | 1 | 1 |  |
| U31 | Res Network, 2 res | 424341 | 89536 | 424341 | 1 | 1 |  |
| U34 | Res Network, 11 res | 1 |  |  |  |  |  |
| U38 | IC, linear, op amp, programmable <br> 1 CR8, R32, and U34 are a matched set order P/N 456426 <br> 2 U11 and R109 are a selected set order P/N 456434 | $3$ |  |  |  |  |  |
|  | 3 U38 and R109 are a selected set order P/N 456442 <br> 4 U13 and R109 are a selected set order P/N 456459 <br> Indicates MOS device which may | When necess <br> be damage | U11, U38 ry to res <br> by stat | or U13 is replaced lect R109 <br> ic discharge | may |  |  |


| $\begin{gathered} \text { REF } \\ \text { DESIG } \\ \text { OR } \\ \text { ITEM } \\ \text { NO. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { FLUKE } \\ \text { STOCK } \\ \text { NO. } \end{gathered}$ | MFG <br> FED <br> SPLY <br> CDE | MFG PART. NO. OR TYPE | $\left\|\begin{array}{l} \text { TOT } \\ \text { QTY } \end{array}\right\|$ | $\begin{aligned} & \text { REC } \\ & \text { QTY } \end{aligned}$ | $\begin{aligned} & \text { USE } \\ & \text { CDE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A4 | VOLT-OHM INPUT PCB ASSEMBLY |  |  |  |  |  |  |
| C30 | Cap, cer, $47 \mathrm{pF} \pm 10 \%, 2 \mathrm{kV} / 3.5 \mathrm{kV}$ | 282145 | 00656 | HVD347K2KV1 | 1 |  |  |
| R1 | Res, comp, 100k $\pm 10 \%, 1 / 2 \mathrm{~W}$ | 108126 | 01121 | EB1041 | 1 |  |  |
| R2 | Res, hi-voltage, $9.95 \mathrm{k} \pm 0.25 \%, 4 \mathrm{~W}$ | 424317 | 89536 | 424317 | 1 |  |  |
| RV1 thru <br> RV4, <br> RV6 | Res, varistor | 423475 | 89536 | 423475 | 5 | 1 |  |



Figure 5-4. VOLT-OHM INPUT PCB ASSEMBLY

## Section 6

## Option \& Accessory Information

## 6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the options and accessories available for your instrument. Each of the options and accessories are described under separate major headings containing the model or option number. The option descriptions contain applicable operating and maintenance instruction, and field installation procedures. Replaceable parts and schematics for all options are given in Sections 5 and 7, respectively.

## 6-3. RECHARGEABLE BATTERY PACK, 8040A-7005

## 6-4. Introduction

6-5. The rechargeable battery pack, item (1) in Figure 6-1, is recommended when the 8040 A is to be used extensively as a portable multimeter. Four nickel cadmium (Ni-Cad) batteries allow typically 8 -hours of portable operation before they require recharging. The batteries may be recharged, in about 14 hours, by connecting the Charger/Eliminator accessory to the 8040A with the instrument's power switch in OFF position.

## 6-6. Operation

6-7. The battery pack, as delivered, has four Ni-Cad batteries mounted to an 8040A battery cover. One of the battery retainers that secure the batteries to the cover has a peg extending from it that mates with a hole in the back of the 8040 A . The peg, when the battery pack is in place on the 8040 A , closes the charging path allowing
the batteries to be recharged. Recharge the batteries as follows:

1. Connect the charger/eliminator to the BATTERY jack on the left side of the 8040A.
2. Turn the 8040A POWER switch to the OFF position.
3. Allow at least 14 hours of recharging a discharge battery pack. Recharge at ambient temperatures $<30^{\circ} \mathrm{C}$ to achieve full charge.

NOTE
Recharge the batteries when the battery test ( $V-\Omega$ test lead inserted into the BTRY TEST jack) indicates 4.4 volts or less.

## 6-8. BATTERY COVER KIT, 8040A-7004

6-9. The Battery Cover Kit consists of the molded plastic battery cover and four "C" size alkaline batteries (not rechargeable). The kit is provided for those who may wish to convert an 8040A equipped with the rechargeable Ni -Cad batteries to use the less expensive alkaline batteries. These alkaline batteries will typically provide 10 hours of operation before they need replacing.

## 6-10. BATTERY COVER, 8040A-7007

6-11. This accessory is intended to be a replacement cover for lost or damaged battery covers. The cover does not include the battery retainers used to secure the rechargeable Ni -Cad batteries to the cover.


Figure 6-1. 8040A ACCESSORIES

## 6-12. CARRYING CASE (C88)

6-13. The Model C88 Carrying Case, item (2) in Figure 6-1, is a soft vinyl container designed to provide protection for the 8040 A multimeter as well as increased convenience during portable operation. A detachable storage pouch provides room for test leads, spare batteries, the operators manual and small accessories.

## 6-14. BATTERY CHARGER/ELIMINATOR

6-15. The Battery Charger/Eliminator, item (3) in Figure 6-1, may be ordered in one of four input power configurations. Each power configuration has a unique model number which must be used when ordering this accessory. Refer to Table 6-1 for the description of each model number.

Table 6-1. BATTERY CHARGER/ELIMINATOR INPUT POWER CONFIGURATIONS

| MODEL NO. | INPUT POWER |
| :--- | :--- |
| A81-100 | $100 \mathrm{~V} \mathrm{ac}, 50$ to 60 Hz |
| A8I-115 | $115 \mathrm{~V} \mathrm{ac}, 50$ to 60 Hz |
| A8I-230-1 | 230V ac, 50 to 60 Hz <br> (U.S. type plug) <br> A81-230 |
| 230V ac, 50 to 60 Hz <br> (European type plug) |  |

## 6-16. TEMPERATURE PROBE (80T-150)

## 6-17. Introduction

6-18. The Model 80T-150 Temperature Probe is a self-contained temperature-to-voltage converter. It is designed to provide a direct temperature reading on the display of any high impedance voltmeter ( $>1 \mathrm{M} \Omega$ ) capable of 1 mV resolution, and at least 300 full-scale readout. The probe can be configured to provide either one of two temperature displays; -50 to $+150^{\circ} \mathrm{C}$ or -58 to $+300^{\circ} \mathrm{F}$.

6-19. Operating power for the probe is provided by an internal lithium battery. Typically, the battery will provide up to 1000 hours of continuous operation before replacement is necessary. An ON/OFF switch is provided to conserve the battery when the probe is not in use.

## 6-20. Operating Notes

## 6-21. PROBE LIMITATIONS

6-22. The 80T-150 probe is constructed of highly durable plastic and is suitable for measuring the temperature of inert liquids, gases and solids up to $150^{\circ} \mathrm{C}$. When making the temperature measurements, observe the following precautions to prevent damage to the probe:

1. Do not expose the probe end (probe tip plus $\approx 2$ inches of probe body) to temperatures in excess of $+150^{\circ} \mathrm{C}$. The remainder of the probe body should not be exposed to temperatures above $+70^{\circ} \mathrm{C}$.
2. Most corrosive agents will not damage the probe body. However, the aluminum probe tip will deteriorate under long term exposure to corrosive environments.

## CAUTION

Long term exposure of the probe to corrosive environments will result in pitting and deterioration of the aluminum probe tip.

## 6-23. MEASUREMENT ERROR SOURCES

6-24. Techniques used when making the temperaure measurements can affect the accuracy of the reading. The following information will aid in making more accurate temperature measurements.

1. When the probe tip is applied to a solid surface it draws or sinks heat from the surface. Therefore, if the measured surface has a low mass (e.g., a transistor case), the indicated temperature may be lower than the actual temperature.
2. Similarly, a steady-state error or gradient exists between the measured surface and the sensing device in the probe tip. This is due to the flow of heat from the measurement surface to the probe body. The effect of the steady-state error increases as the differential between ambient and surface temperature increases.
3. To determine the actual surface temperature of a device, both the heat-sinking and steady-state errors must be considered. The correction curve given in Figure 6-2 approximates the effect of both error sources on TO-3, TO-5 and TO-18 transistor cases.


Figure 6-2. INITIAL CASE TEMPERATURE ABOVE AMBIENT versus METER READING ABOVE AMBIENT
4. RF signals applied to the $80 \mathrm{~T}-150$ probe tip can also cause errors in temperature measurement. Figure 6-3 defines the of signal limits that can be tolerated without degrading measurement accuracy.

## 6-25. Operating Instructions

6-26. The following instructions should be adhered to in order to obtain the best results from the $80 \mathrm{~T}-150$ probe.

1. Connect the banana plugs on the $80 \mathrm{~T}-150$ to the $V-\Omega$ and COMMON input terminals. Observe polarity.


Figure 6-3. MAXIMUM RF SIGNAL LIMITS (V RMS) AT PROBE TIP
2. Select the 2 range on the 8040 A .
3. Set the 80T-150 power switch to the ON position and energize the 8040A.
4. Firmly touch the probe tip to the surface to be measured, or expose it to th gas or liquid. The 8040A will display the temperature in kilodegrees. Vary the probe angle and pressure when measuring solid surface temperatures; the highest stable reading will be the most accurate.

## CAUTION

The force exerted on the probe tip should not exceed 20 pounds.

## 6-27. DELUXE TEST LEAD KIT (A80)

6-28. The deluxe test lead kit, shown in Figure 6-4, contains two test leads with probes (red and black), and five pairs of universal probe tips. The probe tips include: alligator clips, test probe tips, pin tips, banana plug tips, and binding post lugs. A convenient plastic pouch is provided for storing the contents of the test lead kit.


Figure 6-4. DELUXE TEST LEAD KIT

## 6-29. CURRENT TRANSFORMER, CLAMP-ON (801-600)

## 6-30. Introduction

6-31. The Model 801-600, as shown in Figure 6-5, is a clamp-on current transformer which is used to extend the current measurement capabilities of the 8040 A . The probe is designed to measure current of 2 to 600 amperes at frequencies of up to 1 kHz with $+3 \%$ accuracy. The clamp-on feature allows current to be measured without breaking the circuit under test.


Figure 6-5. 801-600 CURRENT TRANSFORMER

## 6-32. Operation

6-33. Use the following procedure for operating the 8040A with the 80I-600 transformer:

1. Plug the $80 \mathrm{I}-600$ dual-banana plug into the mA and COMMON input terminals on the 8040 A .
2. Depress the AC and mA pushbuttons.
3. Select the desired current range in accordance with Table 6-2.
4. Clamp 80I-600 around current carrying conductor to be measured.
5. Observe ac current reading in amperes on the 8040A readout.

## NOTE

Clamping the 801-600 around more than one current carrying conductor at a time procedures a reading that is the vector sum of the currents in the conductors.

Table 6-2. 8040A RANGES FOR CURRENT TRANSFORMER (801-600)

| 8040A RANGE <br> SELECTED | 8040A CURRENT RANGE <br> WITH 801-600 TRANSFORMER |
| :---: | :---: |
| 2000 | 200 A to 600 A |
| 200 | 20 A to 200 A |
| 20 | 2 A to 20A |

## 6-34. HIGH VOLTAGE PROBE (80F-5)

## 6-35. Introduction

6-36. The Model 80F-5 Voltage Divider shown in Figure 6-6 allows measurement of up to 5 k volts dc to be made using Fluke 800,900 , and 8000 series voltmeters. Division ratio of this accessory is $1000: 1$. Accuracy and stability of the division ratio is ensured using special metal film resistors having matched temperature coefficients.


Figure 6-6. 80F-5 VOLTAGE DIVIDER

6-37. Physical design of the Model 80F-5 allows direct mating to the input terminals of the Fluke voltmeters. A high voltage probe facilitates connection to the measurement source. Maintenance is minimized by encapsulation of the divider components.

6-38. Three versions of the Model 80F-5 are available. The basic Model $80 \mathrm{~F}-5$ is used with voltmeters having a 10 megohm input resistance. An (01) Option is provided for voltmeters having an 11 megohm input resistance, and an (02) Option is provided for voltmeters having an infinite input resistance ( $10^{3}$ megohms or greater) at null.

## 6-39. Cleaning

6-40. Accumulation of dust or dirt particles between the output terminals of the Model 80F-5 can be removed using clean dry pressurized air. Stubborn particles can be removed following an application of isopropyl alcohol.

## 6-41. Calibration

6-42. The Model 80F-5 division ratio should be checked every month or every year depending on the accuracy requirement. Ratio accuracy stability is
specified at $\pm 0.01 \%$ per month and $\pm 0.05 \%$ per year. Calibration should be accomplished only after the Model $80 \mathrm{~F}-5$ has been in non-operating state for at least four hours at a temperature of $23^{\circ} \mathrm{C}$.

6-43. Test equipment requirements are a stable 1000 volt dc source such as the Fluke Model 332B Voltage Calibrator and the Fluke voltmeter. To calibrate the Model 80F-5 perform the following steps:

## NOTE

The input resistance of the voltmeter must reach that of the $80 F-5$.

1. Calibrate the Fluke voltmeter.
2. Install the Model 80F-5 on the Fluke voltmeter input terminals.
3. Unscrew the strain relief on the input cable of the Model 80F-5 and remove the front cover.
4. Select the appropriate dc voltage range on the Fluke voltmeter.
5. Apply 1000 volts dc to the Model 80F-5 high voltage probe.
6. Adjust the variable resistor on the Model 80F-5 for a 1.0 volt dc indication on the Fluke voltmeter
7. Remove the voltage from the Model 80F-5 high voltage probe.
8. Install the Model 80F-5 front cover and strain relief.

## 6-44. HIGH VOLTAGE PROBE (80F-15)

## 6-45. Introduction

6-46. The Accessory Model 80F-15 Voltage Divider, shown in Figure 6-7, allows measurement of up to 15 k volts dc to be made using Fluke 800, 900, and 8000 series voltmeters. Division ratio of this accessory is $1000: 1$. Accuracy and stability of the division ratio is ensured using special metal film resistors having matched temperature coefficients.

6-47. Physical design of the Model 80F-15 allows direct mating to the input terminals of the Fluke voltmeters. A high voltage probe facilities connection to the measurement source. Maintenance is minimized by encapsulation of the divider components.


Figure 6-7. 80F-15 VOLTAGE DIVIDER

6-48. Three versions of the Model 80F-15 are available. The basic Model $80 \mathrm{~F}-15$ is used with voltmeters having a 10 megohm input resistance. An (01) Option is provided for voltmeters having an 11 megohm input resistance, and an (02) Option is provided for voltmeters having an infinite input resistance ( $10^{3}$ megohm or greater) at null.

## 6-49. Cleaning

6-50. Accumulation of dust or dirt particles between the output terminals of the Model $80 \mathrm{~F}-15$ can be removed using clean dry pressurized air. Stubborn particles can be removed following an application of isopropyl alcohol.

## 6-51. Calibration

6-52. The Model 80F-15 division ratio should be checked every month or every year depending on the accuracy requirement. Ratio accuracy stability is specified at $\pm 0.01 \%$ per month and $\pm 0.05 \%$ per year. Calibration should be accomplished only after the Model 80F-15 has been in the non-operating state for at least four hours at a temperature of $23^{\circ} \mathrm{C}$.

6-53. Test equipment requirements are a stable 1000 volt dc source such as the Fluke Model 332B Voltage Calibrator and the Fluke voltmeter. To calibrate the Model 80F-15, perform the following steps:

## NOTE!

The input resistance of the voltmeter must match that of the 80F-15, see paragraph, REQUIRED VOLTMETER INPUT RESISTANCE, under specifications.

1. Calibrate the Fluke voltmeter.
2. Install the Model $80 \mathrm{~F}-15$ on the Fluke voltmeter input terminals.
3. Unscrew the strain relief on the input cable of the Model 80F-15 and remove the front cover.
4. Select the appropriate dc voltage range on the Fluke voltmeter.
5. Apply 1000 volts dc to the Model 80F-15 high voltage probe.
6. Adjust the variable resistor on the Model 80F15 for a 1.0 volt de indication on the Fluke voltmeter.
7. Remove the voltage from the Model $80 \mathrm{~F}-15$ high voltage probe.
8. Install the Model 80F-15 front cover and strain relief.

## 6-54. HIGH VOLTAGE PROBE ( $80 \mathrm{~K}-40$ )

## 6-55. Introduction

6-56. The Accessory Model 80K-40 Voltage Divider, shown in Figure 6-8 allows measurement of up to 40 k volts de to be made using Fluke 8000 series voltmeters. Division ratio of this accessory is $1000: 1$. Accuracy and stability of the division ratio is ensured using special metal film resistors having matched temperature coefficients.


Figure 6-8. 80K-40 VOLTAGE DIVIDER
6-57. Physical design of the Model $80 \mathrm{~K}-40$ allows direct mating to the input terminals of the Fluke voltmeters. A high voltage probe facilities connection to the measurement source. Maintenance is minimized by encapsulation of the divider components.

## 6-58. HIGH FREQUENCY PROBE (81RF)

## 6-59. Introduction

6-60. The Model 81RF High Frequency Probe, Figure 6-9, extends the frequency range of the DVM/DMM to include 100 kHz to 100 MHz for ac


Figure 6-9. 81RF HIGH FREQUENCY PROBE
voltage measurements from 0.25 to 30 V rms . The 81 RF operates in conjunction with the dc voltage ranges, and is connected to the DVM/DMM using a shielded dualbanana plug and, when necessary, a dual banana adaptor.

## 6-61. HIGH FREQUENCY PROBE (82RF)

## 6-62. Introduction

6-63. The Model 82RF High Frequency Probe, Figure 6-10, allows measurements over a frequency range of 100 kHz to 500 MHz from 0.25 to 30 V rms . It is designed to be used with voltmeters having an input impedance of 10 megohms $\pm 10 \%$. It may be used with a voltmeter having an input impedance higher than 10 megohms provided the input is externally shunted to make the equivalent input impedance equal to 10 megohms.


Figure 6-10. 82RF HIGH FREQUENCY PROBE

6-64. Circuitry within the 82 RF consists of a capacitor-coupled rectifier circuit which responds to the peak value of the input waveform. The output is positive polarity dc which is calibrated to be equivalent to the rms value of a sine wave.

## Section 7 Schematic Diagrams

FIGURE TITLE PAGE
7-1 Analog Schematic Diagram ..... $7-2 \& 7-3$
7-2 Digital Schematic Diagram ..... $7-4 \& 7-5$



Figure 7-1. ANALOG SCHEMATIC DIAGRAM



Figure 7-2. DIGITAL SCHEMATIC DIAGRAM

## United States

CALIFORNIA
Burbank
Fluke Western Tecnical Center
Mike Nagy, Service Manager
2020 N . Lincoln St
Zip: 91504
Tel. (213) 849-464
Santa Clara
Fluke Western Technical Center
Tom Marshall, Service Manager
2359 De La Cruz Blvd.
Tip: 95050
COLOR 985.1200
COLORADO
Denver
Fluke Southwestern
Technical Center
Mel Suelzle, Service Manager
1980 S. Queber St.
Unit 4
Tep: (303) 750-1228
FLORIDA
Orlando
Fluke S.E. Technical Center
Jesse Morse, Service Manger
P.O. Box 6578

940 N. Fern Creek Ave.
Zip: 32803
Tel. (305) 896-2296

ILLINOIS
Des Plaines
Fluke Midwestern
Technical Center
Bruce Hunt, Service Manager
1287 N. Rand Road
Zip: 60016
Tel. (312) 298-7470
MARYLAND
Kensington
Fluke Mideastern
Technical Center
JohnHines, Service Manager
11501 Huff Court
Zip: 20795
Tel (301) 881-5300
MASSACHUSETTS
Lexington Fechnical Center
Dick Zemba, Service Manager
Dick Zemba, Service Man
109 Massachusetts Ave.
Zip: 02173
Tel. (617) 861-8620

## MINNESOTA

Minneapolis
Fluke Midwestern
Technical Center
Robert Wayne, Br. Manager
10800 Lyndale Ave. So.
Zip: 55420
Tel. (612) 884.4541

NEW JERSEY
Fluke Eastern Technical Center Al La Fleur, Service Manager
500 Union Blvd.
Zip: 07512
Tel. (201) 742-3215

## NEW YORK

Farmingdale, LI
Fluke Eastern Technical Center
Charles Vanek, Br. Manager
59 Central Ave. Unit 3
Zip. 11735
Tel. (516) 752-1078
Rochester
Fluke Eastern Technical Center
Wayne Roth, Br. Service Manager
4515 Culver Road
Zip: 14622
Tel. (716) 342-6940
NORTH CAROLINA
Greensboro
Fluke S.E. Technical Center
Dwain Cox, Service Manager
P.O. Box 9619

1310 Beaman Place
Zip: 27408
Tel. (919) 273-1918

## WASHINGTON

Mountlake Terrace
Bill Fetrow, Tech. Service Spur
$7001-220 \mathrm{th}$ Ave. S.W.
Zip: 98043
Tel. (206) 774-2206

## Canada

ALBERTA
Calgary
Fluke Canadian Technical Center
Dave Racinsky, Service Manager
$3829 \cdot 12$ th St. N.E.
Zip: T2E 6M5
Tel. (403) 261.0780

## ONTARIO

Mississauga
Fluke Canadian Technical Center
Herb Duval, Service Manager
6427. Northam Drive

Zip: LAV 1 J 5
Tel. (416) 678-1500

Fluke European Sales and Service Locations

Supplied and supported by Fluke (Nederland) B.V.,
P.O. Box 5053 , Zevenheuvelenweg 53, Tilburg, Netherlands.

## AUSTRIA

Kontron $\mathrm{GmbH} \& \mathrm{Co} \mathrm{KG}$
Ameisgasse 43
1140 Vienna, Austria
Tel: 222-945646
BELGIUM
C.N. Rood S/A

37 Place de Jamblinne de Meux
B-1040 Brussels, Belgium
Tel: 02-27352135
CYPRUS
Chris Radiovision Ltd.
P.O. Box 1989

Nicosia, Cyprus
Tel: 66121

## DENMARK

Tage Olsen A/S
Teglvaerksgade 37
DK-2100 Copenhagen 0, Denmark
Tel: 01-294800 Tel: 01-294800

## FINLAND

Oy Findip AB
02700 Kauniainen, Finland
Tel: 080-502255
FRANCE
M.B. Electronique S.A

Rue Fourney
ZAC deBU
78530 BUC, France
Tel: 9563130

GERMAN FEDERAL
REPUBLIC
Fluke (Deutschland) GmbH
4-Dusseldorf
Meineckestrasse 53
West Germany
Fluke (Deutschland) GmbH
8000 Munich 80
Mutschellestrasse 1
West Germany
Tel: 089-433021
GREECE
Hellenic Scientific
Representations Lid.
10, Nympheou Street
Tel: 021-7792320/705960

## ISRAEL

R.D.T. Electronics

Engineering Ltd.
46, Sokolov Street
Ramat Hasharon 47235, Israel
Tel: 483211
ITALY
Sistrel S.p.A.
Via Giuseppe Armellini No. 37 00143 Rome, Italy
Tel: 5915551
Sistrel S.p.A.
20099 Sesto 6 Giovan (Milan)
20099 Sesto S. Giovanni (Milan)
Tel: 02-2485233

NETHERLANDS
C.N. Rood, B.V

Cort van der Lindenstraat 11-13
Rijswijk (Z.H.) 2100
Netherlands
Tel: 070-996360

## NORWAY

Morgenstierne \& Co. A/S
Konghellegate 3
P.O. Box 6688, Rodelokka

Oslo 5, Norway
PORTUGAL
Equipamentos
De Laboratorio Ltda.
P.O. Box 1100

Tel: 019-976551

## SPAIN

Ataio Ingenieros S.A.
Enrique Larreta 10-12
Madrid 16, Spain
Tel: 01-7330562

SWEDEN
Teleinstrument AB
P.O. Box 490

S-162 Vallingby-4
Tel: 08-380370
SWITZERLAND
Traco Electronic AG
Jenatschstrasse 1
8002 Zurich
Tel: 01 36071I

TURKEY
M. Süheyl Erkman

Necatibey Cad 92/2
Necatibey Cad 92/2
Karakoy/Istanbul
Tel: 441546,447651
UNITED KINGDOM
Fluke International Corp.
Warnet Close
Tel: 0923-33066

Customers in the following countries:
Bulgaria, Czechoslovakia, Hungary, Poland, Romania, U.S.S.R. and Yugoslavia

Contact: Amtest Associates Ltd., P.O. Box 55, Addlestone, Surrey, KT 15 1DU, England. Tel: 0932-52121.


P/N 427138
OCTOBER 1976
LITHO IN U.S.A.

John Fluke Mig. Co., Inc. • P.O. Box 43210 • Mountlake Terrace, WA 98043

