Commodore® Amiga®
A500/A2000
Technical Reference
Manual

Converted by H.YILDIZ

A2000/AS500 Technical Reference Manual

Section 1

Section 2

Section 3
3.1
3.2
3.3
3.4

Section 4
4.1
4.2
4.3

Section 5

Section 6

Section 7
7.1
7.2
7.3
7.4

Appendix A.
A-1

A-Z
A-3
A-4
A-5

Table of Contents

Summary of Differences
System Block Diagrams
Amiga Expansion

Designing hardware for the Amiga Expansion Architecture

Driver Documentation
Software for Amiga Expansion
Amiga Expansion Connectors
100 Pin
86 Pin
Video Slot
PC Bridgeboard

Description of the PC/XT emulator for the Amiga 2000

BIOS entry points
Janus library
Amiga Hard Disk/SCSI Controller
Custom Chips
Fat Agnus Chip
8520 Chip
Miscellaneous Hardware Information
Clock/calendar registers
Power budgets
AZ000 PAL equations
B2000 Jumpers

Diagrams

Backplane Example

PIC Example

A500 Exterior (86-pin expansion connector)
Amiga 2000 Expansion Board Layout

Amiga 2000 Form Factor

Amiga 2000 Video Card

86-Pin Slot Expansion Board

AZ2000/B2000 Keyboard Connector Pinout
Amiga 500/2000 Mouse Diagram and Pinout

Schematics
AZ2000 Schematics
B2000 Schematics
AB00 Schematics

13

17
51
55

75
87
101

109
121
131
159

AZ000-1
B2000-1
A500-1

COPYRIGHT

This manual is copyright © 1986, 1987 by Commodore-Amiga, Inc. All Rights Reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, translated or transferred to any
electronic medium or machine readable form without prior consent, in writing, from Commodore-
Amiga, Inc.

Amiga is a registered trademark of Commodore-Amiga, Inc.

Commodore and CBM are registered trademarks of Commodore Electronics Limited.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc,

iBM s a registered trademark of International Business Machines Corporation.

Maclintosh is a trademark of Apple Computer, Inc.

DISCLAIMER

THE INFORMATION IS PROVIDED “AS 15" WITHOUT WARRANTY OF ANY KIND. EITHER EXPRESSED OR
IMPLIED. THE ENTIRE RISK AS TO THE ACCURACY OF THE INFORMATION HEREIN ISASSUMED BY
YOU. COMMODORE-AMIGA DOES NOT WARRANT, GUARANTEE. OR MAKE ANY REPRESENTATIONS
REGARDING THE USE OF, OR THE RESULTS OF THE USE OF, THE INFORMATION IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, CURRENTNESS. OR OTHERWISE. IN NO EVENT WILL
COMMODORE-AMIGA, INC. BE LIABLE FOR DIRECT. INDIRECT, INCIDENTAL OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT iN THE INFORMATION EVEN IF IT HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY.

Schematics represent current machine which is subject to change without notice.

Credits

The material for this manual was produced by Engineering, Documentation,
and Technical Support staff at Commodore West Chester, Commodore
Braunschweig, and Commodore-Amiga. Individuals contributing major por-
tions of information and input are Dave Haynie, Jeff Porter, Phil Lindsay.
Carolyn Scheppner. Lisa Siracusa, George Robbins, Andy Finkel, Eric Cotton,
Jeff Boyer, Steve Ahlbom, Steve Beats, Dieter Preiss, Bernd Assmann, and
Torsten Burgdorf.

This manual was compiled and edited by Steve Finkel.

Manual design by Jo-Ellen Temple and Wilson Harp.

Section 1

Summary of Differences

KICKSTART IN ROM

This manual presents technical documentation for three different
Amiga models, comparing them to the original Amiga, referred to as
model A1000. Technical information included in this manual is rel-
evant for the following Commodore Amiga models:

® the Amiga 500 (AS00), a low-cost version of the origi-
nal Amiga computer, software-compatible with the
A1000. Unlike the A1000, the A500 has an integrated
keyboard, provision for internal memory expansion up
to 1 megabyte, new-style hardware connectors, and
Kickstart code in ROM.

Two versions of the Amiga 2000:

® the A2000 is software-compatible with the A100C and
has internal slots, real time clock/calendar and new-
style hardware connectors.

¢ the B2000, the cost-reduced version of the Amiga
2000, features some different custom chips, but is
otherwise similar to the A2000.

The B2000 is still under development, and the information present-
ed in this document is subject to change. The information included on
the B2000 is intended to aid developers in designing software and
peripherals that are applicable for both the current and upcoming
version of the Amiga 2000.

Unless differences are specifically noted, information presented for
the A2000 also holds true for the B2000. The differences between
the two Amiga 2000 models are mainly hardware differences which
will affect peripheral design, but not the way the computers function
with software. Section 2 contains system block diagrams for all
three new Amiga models.

Both the Amiga 2000 and the Amiga 500 feature version 1.2 of
Kickstart built into ROM. Kickstart 1.2 (currently version 33.180)
boots automatically when the Amiga is turned on.

EXTRA KEYS ON THE
KEYBOARD

meric keypad, and include:

KEY

Left parentheses

Right parentheses

Slash
Asterisk
Plus

+ W e

Both the Amiga 2000 and 500 feature 94-key keyboards, as com-
pared to the A1000’s 89-key keyboard. (The European versions of
the keyboards have 96 keys.) The new keys are all located on the nu-

SCAN CODE
$5A
$5B
$5C
$5D
$5E

In PC mode on the Amiga 2000 (using a Bridgeboard), these keys
assume typical PC functions, including Number lock {left parenthe-
sis), Print screen (asterisk) and Scroll lock (right parenthesis).

On some keyboards, the left Amiga key has been replaced by the
Commaodore key. This key performs identically in either case.

RAW KEY CODES ON
THE KEYBOARD

45 50 51 52 33 54 55 56 37 58 35

Keyboard Layout Showing Raw Key Codes

00 01 o 03 4 as 06 o7 08 09 DA 0B

oD

41

5F

SA 5B 5C

5D

D 3E 3F

4h

2D 2E 2F

SE

2 33 34 a5 36 37 38 ¥ 3A

61

4aF

4D

4E

67

65

Figure 1.1 Key Codes

oF 3

43

Note: On the U.S. keyboard, the keys with codes 44 and 60 are
extended to include the European keys with codes 2B and 30,
respectively. Also note that England uses the U.S. rather than
the European keyboard, but not the U.5. keymap.

See Table 1-1 at the end of this section for a table of the raw key

codes.

EXTERNAL SYSTEM 1/0

RS232 and MIDI Port

e
\;flf((!t!fz
00000002242

This section describes each I/0 interface in detail, and some of the
tradeoffs made with respect to A1000 compatibility.

The Amiga 2000 and Amiga 500 have differences in the serial and
parallel ports from the Amiga 1000, the main difference being
changes in the sex of each port (changing the serial to female and the
parallel to male), which allows the new Amigas to use standard inter-
face cables.

The RS232 connector on the AS00 and A2000 is form fit and func-
tion identical to a Commodore PC-10/20 with a few exceptions. This
is the OPPOSITE sex connector from the A1000. The connector
is a shielded male DB25P connector. The A1000 supplies various
non-standard RS232 signals on the DB25 connector. These non-
standard signals were removed wherever possible. The RS232 con-
nector is NOT physically compatible with some MIDI interfaces but is
compatible with the Amiga Modem/1200 RS {model 1680). Below is
a comparison chart between the RS232 standard, a Hayes Smart-
modem standard, the A1000 R5232, and the new Amiga 500/2000

RS232 connector.

A500/
PIiN RS232 A1000 A2000 PC10 HAYES® DESCRIPTION
1 GND GND GND GND GND Frame ground
2 TxD TxD TxD TxD TxD Transmit Data
3 RxD RxD RxD RxD RxD Receive Data
4 RTS RTS RTS RTS — Request to send
5 CTS CTS CTS CTS CTS Clear to send
6 DSR DSR DSR DSR DSR Data set ready
7 GND GND GND GND GND Signal ground
8 DCD DCD DCD DCD DCD Carrier detect
9 — — +12v +12v — + 12 volt power
10 — — —-12v —12v — - 12 volt power
11 — — AUDO — — Audio output
12 S.SD — — — S| ~ Speed Indicate
13 S.CTS — — — —
14 STxD —Bvde — — — ~5 volt power
15 TxC AUDO — — — Audio output
16 S.RxD AUDI — — — ~ Audio input
17 RxC EB — — — Port clock 716KHz
18 . INTZ2* AUDI — — Interrupt line/Audio input
19 S.RTS — — — —
20 DTR DTR DTR DTR DTR Data terminal ready
21 SQD +5vdc — —_ — + 5 volt power
22 RI — RI RI RI Ring indicator
23 S5 +12Vdc — S — — + 12 volt power
24 TxC1 ce* — — — 3.58MHz clock
25 — RESB*

— — — Buffered system reset

As you will notice, the AB00 and 2000 deletes clocks and interrupt
lines from the A1000. The +/-—5Vdc and reset lines are also de-
leted. The +/— 12Vdc lines are identical to a PC10/20.

The following signals (formerly on the RS232 connector) can be found
on other connectors:

ResB = parallel connector
C2 = video connector

Centronics Port The Centronics port also has some non-standard signals. Below is a
table comparing the A1000 Centronics port with the AS00/A2000

Centronics port. Again, this is the opposite sex from the A1000
and the same sex connector as an IBM®-PC (i.e., a female DB25

connector).
PIN A1000 AS00/A2000 PC10
1 DRDY* STROBE* STROBE*
2 Data O Data O Data O
3 Data 1 Data 1 Data 1
4 Data 2 Data 2 Data 2
c e s s ens s rerss 5 Data 3 Data 3 Data 3
x;;.‘..’-‘.;;-‘.;.‘/ 6 Data 4 Data 4 Data 4
7 Data 5 Data 5 Data 5
8 Data 6 Data 6 Data 6
9 Data 7 Data 7 Data 7
10 ACK* ACK* ACK*
11 BUSY(data) BUSY BUSY
12 POUT(clk) POUT POUT
13 SEL SEL SEL
14 GND + 5v pullup AUTOFDXT*
15 GND NC ERROR*
16 GND RESET* INIT*
17 GND GND SLCT IN*
18-22 GND GND GND
23 +5v GND GND
24 NC GND GND
25 Reset* GND ' GND
Video Output The ASC0 and A2000, like the A1000, use a DB23 video connector.

This 23 pin connector contains all the signals necessary to work with
a Genlock, but the current Genlock will need to be redesigned in or-
der to meet the physical requirements of the ASOO and A2000, in-

Mouse and Joystick
Ports

A500 Expansion Port

AS500 RAM Expansion

A500 Power Supply
Connector

stead of the A1000. An AS00 genlock will also have to supply its
own power. Power will not be provided for the Genlock. All signals
on the 23 pin connector are the same except for the power.

In addition to the 23 pin video connector, the AS00/B2000 provides
a monochrome composite video output, unlike the A1000. This pro-
vides the capability of using a low-cost, high persistence mono-
chrome monitor with the AS00 for viewing 640 X 400 interlaced
video without as much flickering.

Power is provided for the A520 modulator and composite video
adapter. :

The mouse and joystick ports of the AS00 and A2000 are identical
to the A1000, except that the current limiting protection circuitry
has been eliminated. The AS00 and A2000 use a different mouse
than the one the A1000 uses. A diagram and information on this
mouse is included in Appendix A of this manual.

The expansion port is electrically compatible with the A1000, but be-
cause of its physical location, it cannot accept any A1000 expansion
peripherals without some further adapter. Power is supplied to this
connector, but only enough for a ROM cartridge. The exact pinout of
this 86 pin edge connector appears later in this document, in the sec-
tion of Amiga expansion. The A500 diagram in Appendix A shows the
new positioning of this port (relative to A1000) and the pin num-
bers.

Associated with the built-in 512KB of RAM is a header socket to al-
low an additional 512KB of RAM and a battery backed-up real time
clock board to be added. This small PCB {the A501 RAM Expansion
Cartridge) can easily be installed by the user. The clock in this unit
functions the same as that built into the A2000, which is reviewed in
Section 7-1.

The AS00 power supply connector is similar to that of the C128. The

pinout of the square 5 pin DIN connector is as follows:

PIN SIGNAL

+5Vdc @ 4.3A
Shield Ground
+12Vdc @ 1.0A
Signal Ground
—12vdc @ .1A

U ARWN—

External Disk Interface
Connector

The 23 pin D-type connector with sockets (DB23S) at the rear of the
Amiga is nominally used to interface to MFM devices.

The second disk drive port is similar to the A1000, and is therefore
compatible with the 1010 or the 1020 disk drive. The CPU will pow-

er one external 1010 disk drive.

External Disk Connector Pin Assignment

Pin
1

o~

10

11

12

13

14

Name Dir
RDY* 110
DKRD* |
GND

GND

GND

GND

GND

MTRXD* oC
SELZB*/SEL3B* OC
DRESB* ocC
CHNG* /0
+5V

SIDEB* 0

WPRO* I/0

6

Notes

H motor on, indicates disk
installed and up to speed.

If motor not on, Identification
mode. See below.

MFM input data to Amiga.

Motor on data, clocked into
drive’s motor on flip flops by
the active transistion of
SELxB*.

Guaranteed setup time is 1.4
JLSEC.

Guaranteed hold time is 1.4
p.sec.

AS500:Select drive 2/A2000:
Select drive 3.

Amiga system reset. Drives
should reset their motor on
flip flops and set their write
protect flip flops.

Note: Nominally used as an
open collector input. Drive’s
change flop is set at power-up
or when no disk is installed.
Flop is reset when drive is
selected and the head stepped,
but only if a disk is instalted.
270 ma maximum; 410 ma
surge.

When below 3.75V, drives are
required to reset their motor
on flops, and set their write
protect on flops.

Side 1 if active, side O if
inactive.

Asserted by selected, write
protected disk.

15 TKO* /0 Asserted by selected drive
when read/write head is
positioned over track O.

16 DKWEB* OC Write gate (enable) to drive.

17 DKWDB* 0oC MFM output data from
Amiga.

18 STEPB* oC Selected drive steps one

cylinder in the direction
indicated by DIRB.

19 DIRB - 0C Direction to step the head.
Inactive to step towards
center of disk (higher
numbered tracks).

20 SEL3B*/ oC AB0O0: Select drive 3/A2000:

Not Used Not used.

21 SEL1B/SEL2B OC ABQO: Select drive 1/A2000:
Select drive 2.

22 INDEX* 110 Index is pulse generated once

per disk revolution, between
the end and beginning of
cylinders. The 8520 can be
programmed to conditionally
generate a level & interrupt to
the 68000 whenever the
INDEX* input goes active.

23 +12V ' 160 ma maximum; 540 ma
surge.

Note: * in signal name denotes active low signal.

External Disk Connector Identification Mode

An identification mode is provided for reading a 32 bit serial identifi-
cation data stream from an external device. To initialize this mode,
the motor must be turned on then off. See pin 8, MTRXD* for a
discussion of how to turn the motor on and off. The transition from
motor on to motor off reinitializes the serial shift register.

After initialization, the SELxB* signal should be left in the inactive
state,

Now enter a loop where SELxB* is driven active, read serial input
data on RDY* (pin 1), and drive SELXB* inactive. Repeat this loop a
total of 32 times to read in 32 bits of data. The most significant bit is
received first.

Full Bus Termination

Internal RAM Expansion
on the AS00

EIA Ring Indicate
Support

External Disk Connector Defined Identifications

$0000 0000 — no drive present
SFFFF FFFF — Amiga standard 3.25 diskette
$5555 5555 — 48 TPI double density double sided

As with other peripheral ID’s, users should con-
tact Commodore Technical Support for 1D Assign-
ment.

The serial input data is active low and must there-
fore be inverted to be consistent with the above
table.

External Disk Connector Limitations

1. The total cable length including daisy chaining
must not exceed 1 meter.

2. A maximum of 3 external devices may reside
on this interface (2 for the A2000).

3. Each device must provide a 1000 Ohm pullup
resistor on every open collector input.

Unlike the A1000 and the AS00, both versions of the Amiga 2000
have an internal expansion bus, as a function of having an internal
card cage. :

On the AS00, memory at $CO0000 is “slow” RAM (the processor is
locked out by the custom chips) rather than fast RAM as suggested
by A1000 external expansion. Thus, when ExecBase is transferred to
SCO0000 to free up chip RAM, there is no speed advantage. Howev-
er. you would still be making real chip RAM available for other pur-
poses. The B200O0 functions as the AS00 does in this regard.

The AS00, A2000 and B2000 support the RS232 Rl lead to allow
operation with modem standards. When the RI signal is asserted, the
parallel port SEL line will be driven low. If this function is not de-
sired, the Rl lead should be disconnected in the modem cable.

Time of Day Clock

Light Pen

Monochrome

Composite Video

Audio Filter Cut-out

AS00 Reset

A2000 Expansion Bus
IPL Lines

In the AS00, the Time of Day clock is tied to the VSYNC signai rather
than the power line. This results in the theoretical error of several
minutes a day. For more precise timing, use the optional real-time
clock.

In genlock mode, the genlock peripheral provides a 30 Hz V/Z signal,
which results in the clock running half speed.

The light pen input on the A500 and B200Q has been moved to the
second mouse port to allow use without a pass-thru mouse adapter.
On a B20Q0, the light pen can be jumpered to port O.

The A500 and B2000 provide a full-bandwidth 16-level grey-scale
composite video output. Color compoasite is available with an optional
AB20 composite color/rf video adapter.

The A500 and B2000 can cut out the anti-aliasing filter by prograrm-
matically turning off the “power on” LED. External bandwidth limit-
ing to below 15 KHz will be required for most applications. This per-
mits wider frequency response by using faster sampling rates.

The AS00 implements a “hard-wired” Control/Commodore/Amiga
key reset rather than the “soft” A1000/A2000 keyboard reset.
“Shut down™ keyboard messages are not transmitted.

The A2000 does not run the processor IPL tines beyond the 86 pin
MMU connector. [nstead, additional interrupt request lines are allo-
cated for future expansion devices. These lines are not supported by
the current software.

Raw
Key
Number

00
01
02
03
04
05
06
07
08
09
0A
0B
oC
oD
OE
OF

10
11
12
13
14

T OoOwWNOURWN —

Table 1-1

Keycap
Legend

I —~— %o , BQ.u}:ﬂ:@-—-?

—+

—C<-SHIDIMmMEzO o A

e 1
w—u-h-uo

o xX-TOaomounrx W

10

RAW KEY CODES

Unshifted Shifted
Default Default

Value Value

" (Accent grave) ~ (tilde)

1 !

2 @

3 #

4 $

5 %

6 -

7 &

8 *

9 (

0)

- (Hyphen) — (Underscore}
= T4

N |

(undefined)

0 0 (Numeric pad)
q 0 Q

w W

e E

r R

t T

y Y

u U

i [

0 0

p P

[{

] }

(undefined)

1 1 {Numeric pad)
2 2 (Numeric pad)
3 3 (Numeric pad)
a A

s S

d D

f F

g G

h H
] J

k K

l L

' (single quote} ”

Raw
Key
Number

2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
A7
4B
4C
4D
4E
4F

Unshifted

Keycap Default

Legend Value
(RESERVED)
(undefined)

4 4

5 5

6 6
(RESERVED)

Z z ‘

X X

C c

v v

B b

N n

M m

, < , (comma)

> . (period)

/? /
(undefined)

7 7

8 8

9 9

{Space bar) 20

BACK SPACE 08

TAB 09

ENTER oD

RETURN 0D

ESC 1B

DEL 7F

' (undefined)

(undefined)
{undefined)
(undefined)

Up Arrow <CSI>A

Down Arrow <CSI>B

Forward Arrow <CSI>C
Backward Arrow <CSI>D

Shifted
Default
Value

(RESERVED)

4 (Numeric pad)
5 {Numeric pad)
6 (Numeric pad)

(RESERVED)

Z
X
C
v
B
N
M
<
>
?

. (Numeric pad)
7 (Numeric pad)
8 (Numeric pad)
9 {Numeric pad)

20
08
09
0D {Numeric pad)
oD

1B
7F

- (Numeric Pad)

<CSI=T
<CS]=>5
<CSl> A
<CSI> @

Un shifted Forward Arrow and Backward Arrow. note blank space after <CSI>.
<CSI=> stands for Command Sequence [nitiator.

11

Raw Unshifted Shifted

Key Keycap Default Default
Number Legend = . Value Value

50 F1 <CSl>0~ <CS[>10~
51 F2 <C5l>1~ <CS[=>11~
52 F3 <(Sl=2~ <CSI=12~
53 F4 <CSI>3~ <CS[>13~
54 F5 <CSl=>4~ <CSl=>14~
55 F6 <CSl>5~ <(CS]>15~
56 F7 <CSI>6~ <(CSI>16~
57 F8 <CSI=>7~ <CS1=>17~
58 Fg <CS1=>8~ <CSl>18~
59 F10 <CSI>9~ <CSl=>19~
SA (((

5B)))

5C / / /

SD * * *

5E + + +

5F HELP <CS|>7?~ <CS[>7?~

12

o~

Section 2

System Block Diagrams

INTRODUCTION

This section features system block diagrams for each new Amiga, the
A2000, B2000 and AS50Q, in that order.

13

0 { [oA { { «t . . f { { {
0002 VOIWY EZi109]
LI B = MZTS ST S 434404 iafipnt ———
HYd — dIHD e XA S HOd v v v 353Q0ay w wy
ss3dqqn | Y ¥ @ w
LUULS felmmm &
WY ; a 00089 o Y
T z =
ard % | ADTA w o
=4
z d¥2Lang >
A344nd o, e ooy T Tat-e
AT TIOALNOD -y 2 IHal 2 T041HO) M|
D2 THISHD Sr3a0ae e .
—_—] g
- SE3aTan M.__ um_
vl a
nd> 8 ¢
2
RKER|
HITIOALNDD |eg w—
: 434ang
yua Lid at €53 :@8>a1 ar wing |Q PPN S B PR it b
a a a - ay av
- i
SNNDY 1) ICHSYTT]
: ®
aly Yl dly 51 Q 0 “
2 FALAINNDD -0 b HLIM MO0 5 L
. ADVAMLINT 014Ny DIFALS Laod 1a0d Mv Iy
JOUIEILNT ADILS - AOr INIL BT AR M
HOVJHALNT ASH0H AdAOTd TITIVEYd - :
HATTOALNOD 03dIn AOVAUALN] TVIAES L
i o
IS I NZ3QJ v 1 nvd q
< Pt :
W -
g8 3
1 | e
x ol od
Q Q
= =
N S
a
a
F Y Y ¥ Y g
51 - 0IaIn ADLLS-ADC ASNOM D1GMW ZEZ SH TRUR XD RIAOT WAINIAd L]

JO3DIN0D ~ YI[HY uld @t

l Jojoauun) — 34 uwid 29 l ['uuog urd gg] [

14

RS 232

CONTROL FLOPPY -
m — KEYBOARD N RS 232 E.ﬂ, COMPOSITE/MONOCHROME
t FRINTER FLOPPY CONTROL DATA AUDIO POTS VIDEO - RGB MOUSE
!] b ! f D
1B
£ £ o L
Sl |2 =
a . Video ’ n,u)
= X Hybrid 5 | Video 1
H = =]
[£ >
ik d
PAULA DENISE 36
L SERIAL INTERFACE VIDEQO CONTROLLER PIN
) [] , . T MOUSE INTERFACE)
B PARALIEL FLOPIY 1Oy - STICK INTERFACE Video
£ 5 BATTERY - R STERED AUDIO INTERFACE
M2 COCK PuR PORT WITH 4 IvA CONVERTER ﬁl
A H
< < 1 1) I 1A i 1A 1)
. FAT
ol] AGNUS
Al Al AT " i o
] I3 DATA W 1D BIT DMA
BUFFER - CONTROLLER
HUFFER ID<0:15:
2 % : cpPL BLITTER
! Z g GRAPHIC
= acte | s | coNron [o=l ¢ CONTROLLER
Z ez -—n_ .
Z Z RUFI LR =
- Z -
£ B = D RA
= = = KICK
= = x
- D) 13
68 i START DRAM
A
AA AA ADDRESS A A N ROM CHIP - RAM
e — ~— - 512K * B BIT
BUFEER
o - DRAM
BUFFER
CONIROL NONCHIP - RAM
i 512K * 8 BT
A=T123%
BUS CONTROL
& BUSTER
ARBITRATLON 2000

15

ndo
00089

{ | (({ ({ ({ { {
|euondo giN L
"PIS MZIS
Wvya
ol 2
2
(721 7
2| gla
(1)
(91) sng ereq sng eleq
2F uole" SlEIS L _\/_
) = | &5 uoiRang 19
1sanbay ¥iNg 2lig mou
S |
(L=}
A Sng SSaIPPY
=
vInvd 3siNag e
. SNNDY) IO S¥20|D
vd i |03uoD) AHYD MOVIQ
) M ~ M
Sy 5V
_ ﬁ 4 : #0012
2yW 82
{8) ssaippy Jeisiboy — yoy
QIYSAH O3TIA 16ued ZE2SH - AI_ T
jonuon ysig 4 (2) SAIHD 0258 (saika wa o dn) INLL
| vod om 14Od NOISNVAX3 vau sng
| | 00089 |in<
T »r C O < g D= Sz » H H
%8 2 g 54 RF @3
M S 3 88 8 S8 QUYOdA3N
5

16

Section 3.1

Designing Hardware for the Amiga Expansion

Architecture

INTRODUCTION

This section gives guidelines for designing hardware to reside on the
Amiga expansion bus. The Amiga expansion bus is a relatively
straightforward extension of the 68000 bus.

Hardware for the bus can be viewed as two categories: backplanes
and PICs. Backplanes interface to the 86 pin connector of either
another backplane or the Amiga itself. Backplanes buffer the bus and
provide 100 pin connectors for PICs to plug into.

PIC is an acronym for plug-in card. A PIC is usually a card that plugs
into the standard 100 pin Amiga connectors.

A sub-type of PIC is a combination of backplane and PIC integrated
into one package. These combination products should follow ail of
the applicable backplane and PIC rules, especially auto-configuration.

Software never sees backplanes; all expansion hardware appears to
the software as PICs.

WARNING

These specifications represent “worst case” design targets.
Products that do not comply with these specifications can be ex-
pected to fail on worst case production units.

Following conservative design practices and allowing the widest
safety margins is your best assurance against problems in the
field.

17

>O0—Z e

EXPANSION

As shown in Figure 3.1, “"Expansion Architecture Overview,” the ex-

ARCHITECTURE pansion bus is implemented as backplane (an expansion box) which
OVERVIEW accept PICs (boards). The recommended number of PICs to a back-
plane is five.
Due to timing considerations, it is not possible to daisy-chain more
than two buffered backplanes without inserting wait states.
NOTE
You should also take extreme care in controlling signal
radiation from your product, in order to pass FCC class 8
regulations.
DOWNSTREAM BACKPLANE UPSTREAM BACKPLANE
PIC PIC PIC _ PIC PIC PIC
5
I.
AO
B VW
U EN
i -
F A A A A i i H 4 1 13
E
o A |
=l DATA < X
- < A] ADDRESS
¥ F ¥ ¥))
COLLISION g = ~SLAVE® - = {— ===] COLLISION
BUS STEERING and ENABLE - DMA*___ 1] BUS STEERING and ENABLE
BUS ARBITRATION BUS ARBITRATION

Figure 3.1. Expansion Architecture Overview

18

GLOSSARY

Active Active high signals are considered active when they are in

the “one state™ or “high state”. Active low signals are considered ac-
tive when they are “low” or in the “zero state”. Active high signals
do not have barred signal names. Active low signals do have barred
signal names. Active means that the signal is

1. is true (non-barred) and is currently in the one state, or
2. is a barred signal name and is currently in the zero state.

An example is AS* (the * =bar). AS# is active when it is equal to zero.
A counter example is the signal AS (the inverse of AS+), which is
active when it is in the one state.

Auto Configuration The protocol (specified in this section) that
Amiga uses to configure expansion cards into the system.

Downstream Downstream means closer to the Amiga. For in-
stance, if two backplanes are daisy chained on the bus, the closer-in
backplane is downstream from the further-out backpiane. The con-
cepts of upstream and downstream are important in determining
which direction the address and data drivers should drive.

Master A PIC which is capable of initiating DMA cycles on the bus.

PIC A PIC is a plug-in card or a product which behaves in the sys-
tem as a plug-in card. That is. it provides a resource that resides on
the expansion bus, and follows the rules for auto-config, master pro-
tocol, slave protocol, etc. _

Slave A slave is a PIC that can only respond to bus cycles. A slave
cannot initiate bus cycles: in other words, it does not drive the ad-
dress lines on the backplane, nor AS*, UDS*, LDS+*.

Upstream Upstream means further away from the processor. For
instance, all PICs are upstream from the buffers on the backplane
that they are plugged into because the buffers are between the PIC
and the Amiga. -

19

DESIGN GUIDELINES
FOR BACKPLANES

Collision Detection
Circuit

Bus Arbitration Logic

In this context, collisions are defined as any instance of two slaves at-
tempting to respond to the same bus cycle.

All backplanes must have a collision detect circuit. The reason is that
the PICs are auto-configurable and can be accidently instructed by
software to respond to overlapping address spaces. Without collision
detection, erroneous software can damage the hardware by causing
bus contention.

Coltision detect works in the following way: As soon as a PIC knows
that it has been selected as the slave for this bus cycle, it asserts
SLAVE+ low and holds SLAVE* low until the end of the bus cycle
(AS* going high).

The collision detect circuit (usually part of a PAL) detects whether
more than one slave is responding and, if 50, asserts BERR=. All data
drivers on the expansion bus must be designed to enter high imped-
ance mode whenever BERR=* is active. Because data drivers are not
turned on until S4 (ASDELAYED+ active), BERR* will have disabled
the drivers before the contention can begin.

Note that in order to detect all cases of multiple stave response, the
circuit must watch A23-A19 for Amiga address spaces and also
watch SLAVEIN* from the next box out. See discussion of the ex-
ample schematic for specific PAL equations that implement collision
detect.

Because BERRx is listened to by all PICs, it will in some systems be
heavily loaded, so it should be driven with a hefty open collector or
tri-state driver. Each backplane should provide a 1000-ohm pull-up
resistor on BERRx,

The bus arbitration logic is based on the 68000 BR=, BG*, BGACK*
protocol as described in the 68000 manual. In order to avoid meta-
stabie states in the backplane latches, all changes in state of the BR#
lines from the PICs must be clocked by the rising edge of 7M,

The example design gives our current recommended bus arbitration
logic. Refer to the ARBITRATE PAL equation in Table 3-3.

20

Buffer Control Logic

Data Driver Timing

Clock Buffers, 7M, and
ASDELAYED*

THE PROTOCOLS

Read or Write Cycle
With Amiga as Master

The buffer control logic controls output enable and direction of the
bidirectional tri-state bus drivers. See the STEERING PAL equation,
Table 3-2. -

It should be noted that the backplane drivers must not turn on until
the rise of $4 during a read. This is okay because data from the
Amiga internal RAMSs is not valid during S4 anyway. 50 nothing is to
be gained by turning the data buffers on earlier.

There are three clocks coming from the Amiga. These are CDAC,
C1*, and C3*. The backplane must generate 7M (equivalent to the
Processor clock) by the following equation: 7M = C1* XNOR C3+.

The bus protocols are basically the same as standard 68000 proto-
cols: however, the timing margins are tighter due to the potentially
long paths of Amiga and PICs talking to each other across two buf-
fered backplanes.

One unusual feature is that when you are doing a DMA transfer into
or out of the Amiga display RAM (the half megabyte starting at
address 000000), the DTACK= circuit will synch the master up with
C1. Because C1 is twice as slow as 7M, there are two possible phase
relationships between C1 and the beginning of the DMA bus cycle. If
AS is asserted during the last quartile of C1 (C1 low and C3 low, see
Fig. 3.2, System clock timing diagram), we call this an “in sync™ bus
cycle, and DTACK» is given in time to do a normal 4-clock {7M) bus
cycle. (Note: Occasionally, DTACK= is delayed due to contention with
the graphics chips, but that does not matter in this discussion.)

However, DTACK works differently if the DMA controller asserts
AS+ in the other phase. In the second quartile {C1 high and C3 high),
the DTACK= circuit holds off DTACK* long enough to insert one wait
state, thus synching up the “out of sync™ bus cycle.

Since the Amiga bus master is a 68000, the bus cycle is a 68000
cycle. However, the responding stave does not pull DTACK+. Our in-
ternal circuitry pulls DTACK* unless the slave pulls XRDY low.

Also, the slave (PIC) must pull its SLAVE+ output low as soon as it is
selected, and at the end of the cycle, disassert SLAVE* when AS#*
goes away.

21

Read or Write Cycle
with a PIC as Master

Bus Arbitration

SYSTEM LEVEL
ORGANIZATION (AND
IDIOSYNCRASIES)

Address Override (OVR*)

INTERRUPTS

A PIC as master must drive the bus using the same protocol as the
68000. Some of the timing margins must be better than those from
the 68000, because the PIC is driving through several levels of buff-
ers, and the Amiga logic is designed to the 68000 (8 megahertz
part) specs. Specific timing requirements can be found in the tables
later in this section.

The bus arbitration scheme is based on the 68000 BR*,BG* BGACK*
protocol. PICs are required to assert BR* clocked by the rising edge
of 7M. This makes it less expensive to design bus arbitration logic
that will be reliable. Specifically, synchranous arbitration logic can be
clocked on 7M without danger of going metastable.

Pin 17 OVR* can only be used in between address $200000 and
AQ0OD, and implies you have to supply your own DTACK*, OVR= is
not supported for the purpose of disabling system decoding in the
CO0000 to DFFFFF range. Worst case 68000 timing requires modi-
fications to the system decode gate array to accomplish this reliably.
Other uses of OVR* are not supported.

USE INTZ+ OR INT6* (DON'T There are two interrupt input lines on the

. Amiga: INTZ+» and INTG+*. INT2* = pin
PULL IPLO=-IPLZ~) 19, INT6e = pin 22. these lines assert

levels 2 and 6 to the processor.
Do not assert the [PLO+ thru [PL2+ lines,

because they are already driven by
internal logic,

22

-

VPA Is Not
Recommended

Do Not Use Pins Marked
EXP

TIMING GENERAL
DISCUSSION

Interrupt latency on the Arniga is highly
application software dependent, this is
because the Blitter can be operated in
“nasty mode” at the software’s option.
If the blitter is “nasty” and is given a lot
of work to do, the processor receives
very few memory cycles. sc the
interrupt latency will suffer.

INTERRUPT LATENCY—
BLITTER, MASKED INTS

The software can also mask out
interrupts using on-board interrupt
control logic.

We recommend that you design your peripherals to run asynchro-
nously on the 68000 bus, that is, a slow peripheral should be mem-
ory mapped and use puliing XRDY low as a means of making the
68000 run a slower cycle. The use of XRDY to delay DTACK is dis-
cussed elsewhere in this document.

We do not recommend using VPA. If you decide to use VPA, you
must pull OVR* low 30ns before asserting VPA=* low. Pulling OVR*
low will tri-state VPA* in the current design PAL, thus allowing your
logic to drive VPA*. Pulling OVR* will also prevent DTACK* from
being asserted by the PAL. However, this will not disable the on-
board 8520 CIA chips.

If your slave uses the VPA VMA protocol to be synchronous with the
68000's E clock, you must only use addresses in which A12 and A13
are high. This is because we have synchronous ports on board which
are activated by (A12+ AND VMA), also (A13+ AND VMA).

Do not drive or load pins marked EXP or RESERVE.

Timing specifications are listed in Table 3-1.

There are two main problems to be dealt with in the expansion archi-
tecture timing: propagation delays and skews in the clock, address,
data, and control paths. The timing is tight: thus, we recormmend us-
ing FAST and AS parts to buffer these lines. To guarantee meeting
the timing requirements, you must be careful to not exceed the rec-
ommended operating conditions of the parts you chose, for example
the capacitive loading. In calculating your loading. note that all PICs
are specified to present no more than two “F” loads plus minimal
trace capacitance to each connector pin. Backplanes are specified to
present no more than one “F" load plus trace capacitance to the
Amiga. Do not use “typical” numbers; reliable systems can be built by
using “worst case” numbers.

23

Expansion Notes

1)

The loading, buffering and layout requirements specified for the
A1000/A500 expansion connector must be strictly followed for

reliable operation. Unbuffered devices and bus line extension are
known problem areas.

Unbuffered daisy-chaining of multiple external expansion devices
is not supported.

The A500 provides only nominal amounts of power for expan-
sion devices. All devices having significant power requirements
are expected to be self-powered and shouid not make connec-
tions to the power pins on the expansion connector.

DESIGN GUIDELINES
FOR PICs

Auto Configuration

General Description of
Auto Configuration

All PICs implement the auto-configuration protocol. The auto config
protocol is designed so that system auto-config software can inter-
rogate the PICs ID locations, build a system table of the installed
PICs, and place the PICs in the 68000 memory space.

If it is difficult to imagine how to implement this protocol while it's
being described, don't worry. The design requires one PAL, one latch,
and one address match circuit. Complete details are given in the
example design.

Upon reset, all PICs come up in the unconfigured state. In the uncon-
figured state, the PIC responds to the 64 kilobyte address space
starting at location EBOOOQO, if CONFIGIN= is active to the PIC. If
CONFIGIN=* is not active, the PIC does not respond to any bus cycles.

The processor comes out and reads nibbles of ID data on D15-D12
from the PIC. The table of 1D data and the locations of control
latches is detailed later in this section. This data includes such things
as size of address space required, manufacturer’s product number,
and whether to add the PIC to the free memory pool (if it is a
memory PIC.)

Under normal conditions, the processor determines how much ad-
dress space the PIC requires and then loads the PIC's address latch
with an appropriate base address. This permanently relocates the
PIC at its new address (until Reset), and passes CONFIGOUT=* out to
the next PIC’s CONFIGIN*, whereupon the process is enacted again
until all PICs are configured.

The smallest unit of memory that a PIC can ask for is 64 kilobytes.
The largest is eight megabytes. All PICs should be designed to be
based on boundaries that match their space requirements; for exam-
ple, one megabyte PICs should be designed to reside on one mega-
byte boundaries {match circuit matches A23-AZ20). There are two ex-
ceptions to this rule, however. Four megabyte PICs must be capable
of being placed on four megabyte boundaries, as well as at hex
200000 and at hex 600000. Eight megabyte PICs should be capable
of being placed on eight meg boundaries and at hex 200000. This

25

requirement is because the eight megabyte space reserved for ex-
pansion in the current machine begins at hex 200000 (See auto-con-

fig notes below).

Auto-Config Notes

1) There is currently no provision for 6MB PICs. Designers of 8 MB
memory boards should consider auto-configs as two PICs to al-

low partial loading flexibility.

2) PIC size/alignment rules are subject to change. If so. bit(s) will be
defined to allow a PIC to specify that it is more flexible than the
old rules require.

3) The address map is subject to change. A PIC should assume that
it may be placed anywhere in the address space.

4) All expansion devices are strongly encouraged to use the auto-
config protocols. Assignment of fixed [/O addresses is subject to
negotiation.

Address Specification Table
All nibbles except 00, 02, 40 and 42 should be inverted.
Descriptions:

(00/02) 76 54 32 10 Board type and size
L_J

Memory size

000 = 8 megabytes
001 = 64 kilobytes
010 = 128 kilobytes
011 = 256 kilobytes
100 = 512 kilobytes
101 = 1 megabyte
110 = 2 megabytes
111 = 4 megabytes

Chained conflg request, indicates that the next
auto-config device in the daisy chain is physically
tied to this device.

Optional ROM vector valid

Link into memory free list

Board type

00 = Reserved
01 = Reserved
10 = Reserved

11 = Current style board

26

(04/06)

(O8/0A)

(OC/OE)

(10/12)
(14/16)

(18/1A
(1C/E
(20722
(24/26

Pinair a2 M-

(28/24)
(2C/2E)

(30/32)

(34/36)
(38/3A)
(3C/3E)

Product number, this number is defined by the
manufacturer of the board and is used by auto-
config software to initialize drivers for the
board.

Reserved, must be as specified

Bits are currently zero

O means this board can be shut up

1 means this board cannot be shut up
0 means any space okay

7 6 54 3210
7 6 54 32 10

I l

{

76 54 3210
7 6 54 3210
7 6 54 32 10
76 54 3210
7 6 54 32 10
765 4 3210
7 6 54 3210
7 6 54 3 210
7 654 3210
7 6 54 32120
7 6 54 3210
7654 3210
76 54 3210

27

1 means preference to be put in the 8 Meg
space

Reserved, must be O

Mfg # high byte

Mfg # low byte; These 2 bytes are assigned Dy
CBM. They are used by the auto-config software
to initialize drivers for boards.

Optional serial number, byte O {msb)
Optional serial number, byte 1
Optional serial number, byte 2
Optional serial number, byte 3 (Isb)

Optional ROM vector high byte

Optional ROM vector low byte. If the 'ROM addr
valid’ bit {4 of nibble O} is set, then these 2
bytes are the offset from the board's base ad-
dress at which the start of the ROM code infor-
mation is located (e.g., the hard disk driver). If
the bit it not set, then these 2 bytes have no
meaning.

Reserved, read must be O; write resets base
address register

Reserved, must be O

Reserved, must be O

Reserved, must be O

(40/42)

(44/48)

(48/4A)

(4C/4E)

(74/76)
(78/7A)
(7C/7E)

765 4 3210 Optional control status register
Write Read
Interrupt enable Interrupt enable
User definable don't care
Local reset must be O
User definable don't care
User definable INTZ pending
User definable [NTE pending
User definable INT7 pending
User definable lam pulling INT
765 4 3 210 Reserved
Write : Read
Not defined must be 00
765 4 3210 Base address register, write only

X X X X X X X X

[N [P IS N N (RN I (NG N N
OO DADDDN
IV UG WU Ul
F N NN N N N N NN N N

These bits are compared with AZ23 through A16

WWwWwwwwwwwwww

MMNoMNMNNNNMNDMNNDNDTDY

{or fewer) to determine the base address of this
board.

Optional “shut up” address, a write to this ad-
dress will cause the board to pass its config out
and then never again respend to any address.
RESET will re-enable the board. The actual ad-
dress that has this effect is 4C. Awrite to 4E is
ignored. This is write only.

Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
- Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00
Reserved, must be 00

ek ek e))t)) e b b i
OO0OOCO0OO0OO0O0COOoO OO

Note: The actual reserved values will be FF rather than 00, because the system will invert them. See
the section on reading /0 locations for more information.

28

EXAMPLE BACKPLANE
DESIGN

Backplane Schematic
Overview

The Bus Buffers and
Their Control Logic

The Address and
Control Buffers

Generating DMAQUT

We have designed a backplane as an example implementation of our
expansion architecture. This section is a detailed description of the
schematic of that backplane. The schematic appears as Figure A-1 in
Appendix A.

While reading this section, refer to the backpiane schematics for the
AZ000 and PALS to see what is being described. The B2000O uses a
gate array to handle steering; however, this example backplane de-
sign is functicnally equivalent, and should be useful in that sense.

The bus comes in an the left from the processor via J10. Note that
both the data bus and address bus are buffered through bi-direction-
al buffers. The buffers are bi-directional in order to allow external
DMA controllers.

This subsection describes the bus buffers, their timing and control
logic. In this discussion, “upstream™ means away from the processor,
and "downstream’ means toward the processor. For instance. if you
daisy chain two devices on the bus, the further away of the two is
“upstream’” from the closer (downstream) device.

Throughout this document, there are references to signals going ac-
tive. Active is defined in the glossary for this section.

The address lines, function codes, UDS#, LDS*, R/W, and AS* are all
buffered in the same manner by 74F2485s. Their buffer direction is
determined by DMAQUT. They are enabled by ADDR_OE* (address
output enable bar). '

This section explains the PAL equation for DMAQUT found in the
STEERING PAL equations. {Table 3-2, later in this section).

DMAQUT active means that the current bus master is upstream of
the buffers. Since the buffers are at the extreme downstream end of
this backplane, the master is either on this backplane or upstream
from this backplane. Thus when DMAOUT is high, the drivers drive
the address and control lines downstream (toward the Amiga).

The PAL equation for DMAQUT is very straightforward:

DMAQUT = DMAIN + OWN

29

Generating ADDR OE*

The Data Buffers

Generating DBOE*

DMAIN is active when the bus master is upstream from this back-
plane. So when DMAIN is active, DMAQUT must go active.

OWN= is the wire OR'ed signal which means that this backplane has
the current bus master. Thus, because all PICs on this backplane are
upstream from the address (and data) buffers, DMAQUT must be
active when OWN (or OWN=) is active.

This section explains the PAL equation for ADDR_OE=, Refer to the
STEERING PAL equation to see the equation (AOE).

ADDR.QE* is active {enabling the address drivers) most of the time.
It only disables the drivers when ownership of the bus is changing
(for example, a new master takes control). At these transition times,
ADDR_OE* is inactive so that the tri-state drivers will not fight the
drivers on the next backplane while they are changing direction.

Refer ta the equation for AOE in the STEERING PAL equation (Table
3-2). AOE = ADDR_OEx inverted. The inverter is in the output stage

of the PAL.

BGACK is asserted {BGACK* pulled low) by all bus masters {except
the 68000) when they are the current master, so ADDR_OE* is
active when BGACK is active.

The term (BG* * DMAOUT*) is true most of the time that the 68000
owns the bus. However, when the 68000 is about to give up the bus,
BG* will go active and thus (BG* * DMAOUT=} will go inactive. It is
important that the address drivers remain on until the end of the fi-
nal 68000 bus cycle when the 68000 is giving up the bus, so the
term AS holds AOE active when BG goes active during the bus cycle.

AS does not last quite long enough, so ASQSQ (which is a slightly de-
layed AS) holds AOE active long enough to finish the cycle.

This section describes when and why the data drivers are turned on
and off. It also describes control of data direction.

Refer to the STEERING PAL equation for DBOE.

Note that all the bus drivers are enabled for every bus cycle unless
BERR* is asserted. This allows for easier use of bus-monitoring tools
such as state analyzers.

Generating D_TO_PROC*

Collision Detection

it is fairly difficult to avoid tri-state fights on the data buffers. In or-
der to get data out to dynamic RAM PICs at an early enough time, we
do not use the data strobes to enable the data drivers, because these
strobes can go active very late in a write cycle.

On a read cycle we use the data strobes, so that in case the cycle
turns out to be a Read-Modify-Write cycle, the drivers will be turned
off (to avoid tri-state fight) while the R/W line is changing state.

Refer to the PAL equation for DBOE in the STEERING PAL appendix,
The term (AS * RD#) turns on the drivers for ali write cycles, includ-
ing the write portion of Read-Modify-Write cycles. Note that since
AS turns off the data drivers, the data hold time is not guaranteed
beyond AS going inactive, so it is poor design practice to try to use
the rising edge of AS*, UDS+, or LDS* to latch data.

The terms (UDS * RD * ASQ) and (LDS * RD * ASQ) turn on the driv-
ers for all read cycles. The UDS and LDS turn off the drivers in the
middle of a Read-Modify-Write cycle.

The ASQ (ASDELAYED equivalent) keeps the data buffers from turn-
ing on until after there has been enough time for the collision detect
circuit to assert BERR+ low and thus disable the data drivers before
they fight (see collision detection).

The inverse of the D_TO_PROC+ signal is called D2P in the PAL equa-
tion.

Each backplane or device that passes the bus or allows more than
one slave device must have a coilision detect circuit. This circuit will
usually be implemented in a PAL. This circuit must detect any in-
stance of two slaves responding to the same bus cycle and assert
BERR=* immediately upon detecting such an error.

The collision circuit has an input (see schematic) SLAVEIN* which

is passed from the upstream backplane or device (if any is present).
If no upstream device is present, the pull-up resistor will hold
SLAVEIN= inactive (high). SLAVEIN= tells the circuit whether or not
an upstream PIC is responding to the current bus cycle as a slave.

The circuit also has one input for each slot on this backplane. If any
PIC on this backplane is responding as a slave, the corresponding
SLAVEn=* will be active.

31

Generating the PROC
Term

Generating NOTCOLIS

The collision circuit also monitors A23 through A19 and OVR* on the
bus, so that the internal reserved address spaces of the Amiga can be
checked. An access to any of the internal address spaces will make
the Amiga respond as the slave unless OVR* (override) is asserted.

Any two slave responses on the same cycle constitute a collision.

Refer to the COLLISION PAL equation in Table 3-5 for this discus-
sion.

Before generating the collision detection equation, we must make
the equation that detects whether the Amiga processor board is re-
sponding to this cycle as a slave. This signal is cailed PROC internally
to the PAL. While it comes out on pin 18, it is not used external to
the PAL.

The term BAS * /A23 * /A22 + /AZ21 * /RESET * /OVR will be true
when the processor board memory is responding to the 2 megabyte
space starting at hex 000000.

Sirnilarly, the next term will be true when the processor board is re-
sponding to the 2 megabyte space that starts at hex AQOOOO.

The next term detects the processor board responding to the 2
megabyte space starting at COO000.

The next term detects the processor board responding to the 1/2
megabyte space starting at EQO0QCO.

And the last term detects the proc board responding to the 1/2
megabyte space starting at FBOO0O0. This takes care of all the spaces
used by the processor board.

Why the inverted name? We would have preferred to call this signal /
COLLISION but our PAL assembler does not allow a NOT sign in the
name on the left side of the equal sign. NOTCOLIS goes out through
the output inverter and becomes/NOTCOLIS which is logically equiv-
alent to NOTNQTCOLIS = COLLISION, so NOTCOLIS being true
inside the PAL will make COLLISION false outside the PAL.

Now that PROC will tell us when the responding slave is inside the
Amiga, we are ready to do collision detection.

In our example, we have seven possible slaves to keep track of. They
are the Amiga board (PROC), five PICs on this backplane, and
SLAVEIN* from the upstream backplane or device. If six of the seven
are inactive at all times, we know that no two are active at the same
time.

Because the slave lines go inactive between bus cycles, there should
not be a case of one slave going active before the previous one went
inactive.

32

Bus Arbitration Circuit

RES* and RESB*

CONFIG_IN*
CONFIG_OUT* Daisy
Chain

By the way, don't worry about two slaves colliding on the upstream
of the backpiane; that backplane has a collision detect circuit of its
own.

Thus. each of the seven product terms indicates that a collision is not
happening at this time. Only one of them needs to be true to know
that a collision is not happening at this time.

The bus arbitration circuit’s main job is to determine which PIC will
recejve BG+ active (Bus Grant) when the 68000 asserts BG*. The cir-
cuit we recommend does this based on priority, where the closest
PIC to the 68000 is the highest priority. You could implement some-
thing fancier as long as only one PIC owns the bus at a time.

PICs are only allowed to assert BR* off the rising edge of 7M. This
allows the bus arbitration circuit to operate synchronously, clocked
by the rising edge of 7M.

The output of the bus arbitration circuit only changes when the
68000 changes the state of BG=. If the 68000 is asserting BG+, the
arbitration circuit passes BG* active to the highest priority active re-
quester. When the 68000 disasserts BG+, the arbitration disasserts
BG* also. Therefore no PIC has a grant.

Note that there are two reset lines going to every PIC, RES* on pin
53 and RESB* on pin 94. The RESB= line is intended to be the nor-
mal reset input to the PIC. All normal PICs will use this line as an in-
put, so it is buffered.

RES* is intended only to be used by thase FICs which are designed to
have the capability of resetting the system. Normal PICs will not
drive nor load this line. Note that because RES* is not buffered, it can
reset the Amiga, as well as resetting ail PICs (via RESB+).

The CONFIG_IN=* signal will be passed to CONFIG_OUT=* at the appro-
priate time if there is a PIC plugged in the slot. On this backplane, we
have used 74LS32s to pass CONFIG.OUT=* to the next slot if there is
no PIC. The pull down resistor allows the CONFIG_IN# signal to pass
directly through the gate to CONFIG_IN* of the next slot if there is

no PiC installed, thus bypassing the empty slot. if a PIC is installed,

the PIC's CONFIG_OUT= driver overrides the pull down resistor.

Another method that would work is to use special pins on the con-
nector at pins 11 and 12, such that 11 and 12 short to each other
when there is no PIC inserted in the connector. This would eliminate
the need for the 74L532 gates.

33

BACKPLANE TIMING
GENERATION

Generating 7M

DOE, ASDELAYED*,
ASQ90*

Clock Buffers

The clock buffers for C1*, C3*, and CDAC were chosen for minimum
propagation delay and minimum skew. Notice that buffered clocks
are passed to the 100 pin edge connectors, but that the unbuffered
clocks are passed to the 86 pin connector that goes on to the next
box in order to minimize propagation delay to the next backpiane.

We generate 7M (equivalent to the processor clock) by:
7M = C1* XNOR C3+

This yields a 7.16Mhz clock which is used to generate ASDELAYED+,
DOE, and ASQO0*. 7M is also passed to the PICs on pin 82 of the
edge connectors, so they will have a cheap clock for accessing the
bus.

DOE (Data output enable) and ASDELAYED+ are the compliment
of each other. ASDELAYED+ is used in the steering PAL (ASQ =
ASDELAYED in the PAL equations) to time turning on of the data
drivers during a read cycle. DOE is passed to the PICs on pin 93 of
the edge connectors, to tell the PICs when to turn on data drivers
during a read cycle. :

Amiga 7™M I I I | I I I

13905 ———3> |

Backplane 7M

CDAC

ASs I

ASMID=

ASDELAYED»

DOE

ASOSC

Backplane Timing Signals

EXAMPLE PIC DESIGN

The PIC at System

Startup

Reading the ID
Locations

This section is a description of the schematic for a small 16 kilobyte
RAM board that we designed as our first test PIC for the expansion
architecture. The schematic for this board is Figure A2, in Appendix A,
[t is valuable as an example because it implements all of the basic fea-
tures of a slave PIC.

The heart of auto-config is in U1 (address register), U2 (address
comparatoer), and U3 (1D PAL and control PAL),

When the board comes out of Reset, CONFIG_OUT* is inactive, and
does not pass the config token on to the next PIC. CONFIG_IN* may
or may not be active at first. If it is not active, the board will not re-
spond to any bus cycles. For instance, we can see at U11 that SLAVE+*
is disabled when CONFIG_IN= is inactive (high), because this does not
allow BOARD_SEL=* to go active.

In turn, BOARD_SEL+* is an input to U3, the control PAL. Without
BOARD_SEL=, all ten of the PAL outputs are held inactive (see PAL
equations for test ram).

Eventually, during execution of the auto config code, CONFIG_IN=*
will be asserted to this PIC between bus cycles (AS# inactive). Notice
that the address latch is tri-stated off so that the pull-up and pull-
down resistors are inputing a pattern of E8 to the address compara-
tor. When the backplane addresses E8xxxx, this board will now re-
spond because CONFIG_IN=* is active but CONFIG_OUT=* is not yet
active. In other words, CONFIGLIN* is enabling board select, and
CONFIG_OUT=* has not yet aliowed the address latch to move the
board to a different address space.

Notice that whenever BOARD_SEL* goes active, SLAVE* will go ac-
tive unless SHUT_UP_FOREVER is latched active. SHUT_UP_FOR-
EVER=* is a feedback latch in the PAL. It is only set by the software if
the board cannot be configured into the system (for instance, if the
user has plugged in toc many large address space PICs and there is
no room left for this one).

If you analyze the PAL equations for BD15 through BD12, you will
see that their data drivers turn on for all reads ANDed with BOARD-
_SEL active, until CONFIG_OUT* is set active (or some exception hap-
pens such as reset, bus error, or shutup).

By the way, if you're not used to PALs, it’s normal old Boolean: *

means AND, / is negation, + is OR. IF(term) means “If the term eval-
uates to TRUE then turn on the tri-state driver”.

35

Further analysis of the BD15-BD12 equations will show that almost
all addresses put out ones; however, remember that most of the nib-
bles are inverted because the spec says they have to be. The inversion
makes it possible to implement the codes in active low PALs; it is just
a cost reduction.

Analysis of the equations shows that the only nibbles (we don't care
about above HEX 80) outputting any zeros are:

00/02 1100 0001
04/06 1111 1001
10/12 11111110
40/42 0000 000C

To interpret this code, we need to remember that the spec says that
all nibbles get inverted except 00, 02, 40, and 42. So our new table
looks like this:

00/02 1100 0001
04/06 00000110
10/12 0000 0001
40/42 0000 0000

And all the other nibbles that were ones are now inverted to zeros.

To illustrate, let’s look at what these codes mean:

Nibble
00/02

04/06
10/12

Data

1100 0001

LIl 001 = 64 kilobytes, the smallest size that

can be requested.

0 = There are no more PICs on this physical
board. It is possible to put more than
one PIC on a physical board, but in
most cases {including this one), we don’t.

0 = This board does not have any Init or

diagnostic code.

0 = Don't link into memory free list, since

the processor might try to use it
and it is only 16 kilobytes masquerading to
the system as 64 kilobytes.

11 = Required by the spec. -

oooo 0110
0000 0001

= Product number = 6

= High byte of manufacturer's number

36

14/16 0000 0000
40/42 0000 0000

Passing CONFIG_OUT*

= Low byte of manufacturer’s number
= Because this PIC does not generate INTs

When you want to program your own [D PAL, just work back to the
equations. First determine what ID pattern you need by reading
about the nibbles in the spec. Write down a table of ones and zeros.
Invert all of these except nibbles 00, 02, 40, and 42. Then, doing one
data line at time, write a product term for each binary zero that you
want to output from the ID PAL. :

The equations for CONFIG_OUT* in this implementation make two
feedback latches in the PAL. The first latch PRE_CONFIG_OUT* is set
during the bus cycle in which the processor does a write to the ad-
dress register. In fact, in this design the rising edge of PRE_CONFI-
G_OUT latches the final Address value into the address latch.

The second latch outputs CONFIG_OUT=. This latch goes active after
AS* goes inactive at the end of the bus cycle in which the new ad-
dress was written. Notice that CONFIG_.OUT=* enables the address
latch U1, so it now provides the new address range to the compara-
tor.

CONFIG_OUT* enables the next PIC in the chain, and remains active
until a system reset or power down occurs. :

TABLE 3-1 —TIMING SPECIFICATIONS

Timing Requirements for Backplane

TIMING REQUIREMENTS FOR BACKPLANE

Num Characteristic Min Max Unit
1 AS+ UDS* LDS* Delay 2 8 ns
2 Address 23-1 delay. 2 8 ns
3 "7M(S4 RISE) to Data Enable during Read 0 ns
4 7M (54 RISE) to Data Valid 35 ns
5 Data 15-0 Delay to Qutput 8 ns
6 SLAVEIN or SLAVE to SLAVEOUT Delay 0 25 ns

37

Timing Requirements for PIC

TIMING REQUIREMENTS FOR PIC AS SLAVE (RD & WR CYCLES)

Num Characteristic Min Max Unit
1 AS+ low to SLAVE* Low 0 35 ns
2 AS+ high to SLAVE* high 0 50 ns
3 AS* low to XRDY low (to insert wait) 0 60 ns
4 Read Data Valid to local 7M low (57) 60 ns
5 AS+ low to OVR* low 0 50 ns
6 AS+ high to OVR* high 0 50 ns

TIMING REQUIREMENTS FOR PIC AS MASTER (RD & WR CYCLES)

Num Characteristic Min Maix Unit
1 7M high(S2) to AS* low 0 67 ns
2 Address 23-1 Valid to AS+* low 30 ns
3 7M high (54) to Data Valid Wr Cycle 0 ns

Timing to Backplane
TIMING TO BACKPLANE

Num Characteristic Min Max Unit
1 AS* Low to CDAC Low (Setup) 20 ns
2 AS+ High to CDAC High (Setup) 20 ns

Timing to PIC
TIMING TO PIC (PIC IN SLAVE MODE)

Num Characteristic Min Max Unit
1 Valid Address to AS* Low 10 ns
2 Valid Data from 7M High(S4) on Wr to PIC 35 ns

TIMING TO PIC (PIC IN MASTER MODE)

Num Characteristic Min Max Unit

1 Valid Data setup to Local 7M low(57) 15 ns

2000 SYSTEM BUS
LOADING

The following numbers and notations are used for standard load and
drive values:

From A2000 To A2000
Type (IC input load) (1C output drive)
F-Driver TTL FD 20pA @27V fd 20V@ —15mA
—1.6mA @ 05V 0.5V @ 64mA
F-Series TTL F 20uA @27V f 27V @ —1mA
—0.6mA @ 0.5V 05V @ 20mA
LS-Driver TTL LSD 20pnA @27V Isd 20V@ —15mA
—0.4mA @ 0.4V 05V @ 24mA
LS-Series TTL LS 200A @27V Is 2.7V @ —400pA
—0.4mA @ 04V 0.5V @ 8mA
MOS MOS 10pA @ 24V mos 24V @ —200pA
_ —10pA @ 04V 04V @ 3.2mA
Open Collector oc FROM RESISTOR
' 05V @ 8mA

Any lesser input load can be used on a signal in place of a greater
load or equivalent load. Varying the number of load eiements while
still meeting the DC loading criteria can be done if necessary, but it is
not a good idea, as it can still exceed the expected capacitive loading
on the signal.

A final type of drive is the open collector (oc). Some PIC outputs
must be open collector, as they are in a wired-or configuration with
the same output from other PICs or motherboard signals.

Most of the system bus signals provide a standard drive to their re-
spective connectors. If your drivers can meet the input specification,
don’t worry about what is actually required. However, even if your
loading doesn't exceed the specified drive capacity of slot signal men-
tioned above, consult the following chart for specific signals that may
provide less drive than a standard signal of that type. Signals that
match the STANDARD loading are not separately listed.

Named Expansion Coprocessor Video
Signals DIR Slots (each) Slot Slot
STANDARD I 2F 1F 1F
STANDARD 0 10f 10f 10f
/DTACK] 1F 1F

0 10f 10f
/OVR 0 oc oc
XRDY 0 ot oc
/INT2 0 oc oc
/INTE 0 oC ac
/EINT1 0 oc
/EINT4 0 ocC
/EINTS 0 ocC

39

Named Expansion Coprocessor Video

Signals DIR Slots (each) Slot Slot
{EINT7 0 oc
/SLAVED] 2f
/CFGOUTn 0 2f
/COPCFG 0 2f
E Clock | 1F 1F
7MHz Clock [1F 1F
/BERR | 1F 1F
0 oc oc
VPA 1 1F 1F
9] o ocC
/VMA | 1F 1F
0 10f 10f
/RST I IF - 1F
0 oc oc
HLT] 1F 1F
0 oc oC
/OWN 0 oc¢
/BRn 0 2f
/CBR I 2F
0 2f
fCBG | 2F
0 2f
/BGACK i 1F 1F
G ocC _ oc
/BOSS 0 ' 2f
XCLK 0 2f
FXCLKEN 0 2f

40

TABLE 3-2

PAL16L8
STEERING150R17 REV3
11-17-85

AMIGA

/SLVOUT RD /ASQ /ASQS0 COLLIS /BG /AS /BGACK /DMAIN GND
JOWN /AQE /UDS /BERR /DMAOUT /LDS /DBOE /RES /D2P VCC

= AS =/RD * /BERR +
UDS * RD = ASQ * /BERR +
LDS =+ RD = ASQ) = /BERR

DBOE

D2P = /DMAOUT = SLVOUT * RD +
DMAQCUT * /SLVOUT * /RD +
DMAOUT * SLVOUT

= BGACK +
/BG = /DMAOUT +
AS + -
ASQS0

ACE

DMAOUT = DMAIN + OWN
IF (/RES = COLLIS) BERR = VCC

DESCRIPTION

:DATA DRIVERS DURING WRITE CYCLE
:TURN ON DRIVERS LATE FOR RD

:UDS AND LDS PROTECT RD MOD WR

:TO AVOID TRI__STATE FIGHT
:DOWNSTREAM READS UPSTREAM SLAVE
:UPSTREAM WRITES DOWNSTREAM SLAVE
:MASTER AND SLAVE ARE UPSTREAM

:AS KEEPS ADDR WHEN /BG DROPS
:ASQ90 MAINTAINS VALID ADDR ON
. LAST PROC CYCLE

SLVOUT = SLAVEOUT,ASQ = AS DELAYED,ASQ90 = AS CLKD ON LOW EDGE OF 7M,

BG = BUS GRANT,OWN = LOCAL OWN

COLLIS = BUS COLLISION,AQE = ADDR OUTPUT EN,DOE = DATA OE

RES = RESET.DZ2P = DATA TO PROCESSOR

UDS LDS PROTECT AGAINST RDMODIFYWRITE 3STFIGHT & BERR= /DOE

41

TABLE 3-3

PAL16R6
ARBITRATE REV1
1-6-86

AMIGA

7M /BRIN /RES /BGIN /BR5 /BR4 /BR3 /BRZ /BR1 GND
GROUND /BGOUT /BGOLD /BG5S /BG4 /BG3 /BG2 /BG1 /BR VCC

BG1 = BGIN = /BGOLD * BR1 + /RES + GENERATE BG1
BGIN * BG1 * /RES ;HOLD UNTIL /BG
BG2 = BGIN = /BGOLD * BRZ * /BR1 * /RES +
BGIN = BGZ * /RES
BG3 = BGIN * /BGOLD * BR3 = /BR1 */BRZ. * . /RES +
BGIN * BG3 = /RES
BG4 = BGIN = /BGOLD * BR4 * /BR1 * /BRZ * /BR3 * /RES +
BGIN * BG4 * /RES
BG5 = BGIN * /BGOLD *= BRS * /BR1 * /BR2 * /BR3 + /BR4 * /RES +
BGIN * BG5 * /RES
BGOLD = BGIN STORE OLD STATE OF BG
BR = BRIN */RES +) :BR IS RQST TC 68K
BR1 = /RES +
BRZ = /RES +
BR3 =« /RES +
BR4 = /RES +
BR5 =/RES

BGOUT = BGIN » BGOLD = /BG1 */BG2 * /BG3 * /BG4 = /BG5S
DESCRIPTION

BG1 1S HIGHEST PRIORITY

42

TABLE 3-4

PALZOL10

TESTRAM

9-11-85
COMMODORE-AMIGA

/ASQ /ASQQ RD /BDSEL /BERR A6 A5 A4 A3 AZ
A1 GND /RES BD12 BD13 BD14 BD15 /PRECON /CONOUT /SHUTUP

/RAMOE /WP /DBOE VCC

DBOE = /RES*BDSEL+BERR+/SHUTUP+/RD + :WRITES TURN ON
/RES*BDSEL+BERR*SHUTUP* RD*ASQ %%LBE[AYS THE READ

WP = /RES*ASQ*ASQQ*BDSEL*CONOUT*/SHUTUP+/RD+BERR

RAMOE = /RES=ASQ+RD+CONOUT»/BERR*BDSEL

SHUTUP = /RES*BDSEL*/RD*ASQ+/CONOUT+AG*/AS+A4+*A3*AZ +
/RES*SHUTUP

PRECON = /RES=SHUTUP +
/RES+/RD*BDSEL*ASQQ*AG+/AS+AD*A3+/AZ¥/A1 +
/RES*PRECON

CONOUT == /RES*ASQ+PRECON +
/RES*CONOUT

IF (/RES*BDSEL»/CONOUT*RD*/BERR+/SHUTUP) /BD15 =
TABH/AS*/AAx/AZ+/AZ*AT1 +
AG+/AS*/ Ad+/A3+/AZ

IF (/RES*BDSEL+/CONOUT*RD*/BERR*/SHUTUP) /BD14 =
/AB*/AS+/A4+/A3*A1 +
AG*/AS#/Ad+/A3+/AZ

IF (/RES*BDSEL+CONOQUT=*RD+/BERR+/SHUTUP) /BD13 =
/AE+/AS*/AA*/A3+/AZ +
IAG*/AD+/ AQ+/A3*AZ*AT1 +
AB*/AD*/ Ad*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP) /BD12 =
IAGH/ASHAAX/ A3/ AZ*AT +
JAG*/AS*A4+/A3+/AZ*A1 +
AB*/AS*/AL+/A3*/AZ

DESCRIPTION

43

TABLE 3-5

PAL16GLS
COLLISION
11-17-85
AMIGA

/BAS /SLV1 /SLV2 /SLV3 /SLV4 /SLVE /SLVIN AZ23 AZ22 GND
AZ21 /SLVOUT AZ20 A19 /OVR /RESET P17 /PROC /NOTCOLIS VCC

SLVOUT = SLV1 + SLv2 + SLV3 + SLv4 + SLV5 + SLVIN

NOTCOLIS =

/SLV1 * /SLVZ * /SLV3 * /SLV4 * /SLV5 * /SLVIN +
/PROC * /SLVZ = /SLV3 = /SLV4 = /SLVB = /SLVIN +
/PROC = /SLV1 * /SLV3 = /SLV4 * /SLVE * /SLVIN +
/PROC * /5LV1 = /5LV2 * /SLV4 * /SLV5 = /SLVIN +
/PROC * /SLV1 * /SLVZ2 * /SLV3 * /SLV5 # /SLVIN +
/PROC = /S5LV1 * /SLVZ * /SLV3 * /SLV4 * /SLVIN +
/PROC * /SLV1 = /SLVZ2 * /SLV3 * /SLV4 * /SLV5

PROC = BAS * /A23 x /AZ22 + [A21 * /RESET = /OVR +
BAS * AZ23* /AZZ2 = AZ1 * /RESET = /OVR +
BAS * AZ23+ AZZ * /AZ] * /RESET * /OVR +
BAS + A23+ A22 * A21 */A20 * /A19 /RESET » /OVR +
BAS + AZ3» A22 + AZ1 » A20 = A19 = /RESET = /OVR

DESCRIPTION

EMPTY

INTERFACING TO THE
68K BUS CONNECTOR
ON THE AMIGA 500

TIMING
Clocks

This section gives the necessary information for interfacing to the
68000 bus connector on the left side of the Amiga AS00 (or the
right side of the A1000).

THE CONNECTOR ON THE AMIGA

The connector is a standard dual row 86 finger (43 on a side} edge
connector, spaced on .1" centers. Here are some part numbers of
connectors that are compatible:

solder tail AMP 2-530841-1
wire wrap AMP 4-530396-7
card extender AMP 1-530826-2

See accompanying drawing for physical dimensions of this connec-
tor on the A500, Figure A-3 in Appendix A.

For this discussion, see Figure 3.2.

The entire computer board is run synchronously to the 3.57954Mhz
color clock {C1). This is accomplished by generating a number of
sub-multiple frequencies from our master 28.63636Mhz crystal os-
cillator. The following are the primary clocks on the board:

Name Description

C1 The 3.579545Mhz Color Clock

c2 C1 shifted 45 degrees later

C3 C1 shifted 90 degrees later

4 C1 shifted 135 degrees later

™ C1 XORed with C3* {7.15909Mhz)

DAC 7M shifted 90 degrees later

7M is the processor clock for the 68000 microprocessor. C1-C4 and
DAC are used to clock the custom chips and for determining the tim-
ing of signals to the memory arrays.

The above frequencies are true for NTSC Amigas. A PAL Amiga will
operate slightly slower, with a main clock of 28.37516Mhz. This i3
divided down to get 7M =7.09379Mhz and C1 =3.546895Mhz. A
special circuit is required to take five fourths of C1 to derive the PAL
colorburst frequency of 4.43361875Mhz.

The following clocks are available at the edge connector:
Name Pin Description

C3+ 14 C3 inverted
CDAC 15 DAC equivalent
Ci» 16 C1 inverted

Note that 7M {the processor clock) is not available at the connector;
it can be easily generated by:

C3* XNOR C1* = 7M equivalent

45

¥ you need a 14.31818Mhz synchronous clock, you can generate it
by:

(7Mequiv) XOR (CDAC) = 14M equivalent

14M | j | | | | | | | [1 | | |

™ | [Syecasal__ T L [
— 13y ————>

coac LT L I L
o1 i fi1stQrel 1 '
a | | } l
I P | L] L
ch l L | |
Cls | L |
P | [| I

Fig. 3.2 Amiga System Clocks

Bus Timing The 68000 is connected directly to the 86 pin connector, there are
| no buffers between the 68000 and the connector. Two control in-
puts, VPA= and DTACK= are driven by logic on the Amiga and should
not be driven by your circuitry, unless OVR+ is used to disable this
logic.

Many boxes are being designed which pass the bus (buffered) out in
daisy chain fashion.

In order to allow your device to be the second in the chain, take into
account an extra level of signal buffers on:

AS=, UDS*, LDS*, Address, Data. Clocks

Furthermore, if you are designing a DMA device, the Amiga provides
data in response to a Read very late (50ns prior to the fall of S6). If
your DMA device is looking at this data through two or three
74F245's (7ns each), this data will not be valid at your DMA control-
ler until approximately 25ns prior to the fall of S6.

46

Slave Bus Timing

CPU bus timing is based on an 8Mhz 68000, with only one excep-
tion: under normal operation, the bus control PAL asserts DTACK+
for you. DO NOT ASSERT DTACK=; do not attach any outputs to the
DTACK= line.

Details of 68000 timing are available in the Motorola 68000 hard-
ware manual. If you are designing a bus slave, most bus timing is per
the 68000 spec, except that the CPU will pull DTACK# for you. If you
need to delay our assertion of DTACK*, you must pull XRDY (Pin 18)
no later than 60ns after the assertion of AS=. You should release
XRDY when you are ready to compiete the bus cycle.

Also remember that in the expansion architecture, data drivers
should not turn on during a Read cycle until 54.

For those of you who have not designed anything on the 68K bus be-
fore, this description is intended to make looking at the Motorola
timing diagrams easier. For more details and timing specs see
Motorola hardware manual (fold out timing diagrams in the back

of the book.}

See Figure 3.2 in this section. Motorola labels the states of the pro-
cessor clock SO-S7. The processor starts driving the address lines
during S1, and asserts AS* (Address Strobe) during S2. If the cycle is
a read, the data strobes (UDS#,LDS*) are asserted during S2 also
{they are delayed until S4 on a write).

The board responds to AS* by asserting DTACK#* (unless you delay
DTACK by pulling XRDY low). In order to run a normai 4 clock bus
cycle, DTACK* meets the setup time prior to S5. DTACK= is the ac-
knowledge to the bus cycle. If DTACK= is not asserted, the 68000
stays in the middle of the bus cycle until DTACK+ (or BERR* or
VPA#) is asserted. Once DTACK= is asserted, the processor completes
the read (or write) and ends the cycle by disasserting the strobes
(AS*,UDS*LDS#) and tri-stating its bus drivers.

If the slave you are designing cannot respond fast enough to success-
fully complete a 4 clock bus cycle, it must pull XRDY low within 60ns
after the assertion of AS* (and of course the correct address). Our
board then will not assert DTACK=* until you release XRDY. You
should drive XRDY with an open collector output; we provide a 1K
pullup resistor on our board.

47

™ = CLK

A23-Al

AS*

UDSx»,LDS=*

D15-DO

R/W

DTACK=»

M = CLK

A23-Al

ASs

UDSx,LDS+

D15-DO

R/W

DTACK»

SO 51 82 53 54 §5 36 57 S0 etc

SN/ S S

XXXXXXX AXXX

—— —
—\ —

XXXXXX XXXX

—/

\ .

Fig. 3.3 Standard 4 Clock Read Cycle

0 s1 sz s3 s& S5 S6 ST SO o
N/ _/ /S
XXXXXXX XXXX

— —
\ /

XXXXX XXX

\ /

Fig. 3.4 Standard 4 Clock Write Cycle

48

S0 S1

82 S3 54 SW 5w S5 56 57 S0 ete

7M = CLK / \ J___/_\ / \ / __/—_J—

A23-Al XXXXXXX XXXX
AS» \ /
]
XRDY N\ /
60ns Max =——» ‘ — |
DTACK+ —\ /
D15-D0 XXXX XXX
Fig. 3.5 Using XRDY to Delay DTACK«
Master Bus Timing All bus masters must run synchronously to 7M (equivalent), as does

BGACK* and OWN+*
Timing to Avoid Bus
Contention

the 68000 in the Amiga.

The necessary information for designing & bus master is in the
68000 hardware manual. A master must meet all of the bus timing
specs of an 8Mhz 68000; for example, valid address must precede
AS* by at least 30ns.

If you are designing a bus master card that will plug into a box, re-

member that the address will have to propagate through the address
drivers built into the box; you should probably allow for the prop de-
lay of three 74F245's in addition to the required 30ns.

The strobes, such as AS+ UDS*,LDS*, must all function as they would
basically on the 68000 spec. A master must also respond to DTACK=,
HALT*, and BERR* correctly.

The basic timing for bus arbitration conforms very closely to the
68000 and the 68440. When the new master has received BG* and
all other signals necessary to take mastership, it must assert OWN+
before it asserts BGACK*. This gives the address drivers on the bus
time to change direction, if necessary, before BGACK+ turns them
on.

At the end of the DMA cycle, BGACK* must be disasserted before
OWNs is disasserted.

BR* should always be asserted off the rising edge of 7M, and should
be valid no later than 60ns after that edge.

49

Section 3.2

Driver documentation

OVERVIEW

This section discusses how the “binddrivers” program finds your
driver and links it into the system. It also hints on how to write your
code to take advantage of this.

First off, the expansion library goes out and configures the expan-
sion boards in the system. It puts each board in its own address
space, and links memory boards into the memory free pool. This is
done by the expansion library's ConfigChain entry point. This code is
intended to be run early on in system startup, before any other code
is around.

Later on, after the DOS is running, the binddrivers program should
be run. This program searches the directory “SYS:Expansion™ for
workbench icon files. If it finds one with a tooltypes variable “PROD-
UCT" then it parses the rest of the line (see below) and looks for an
unconfigured board that matches the description.

This method makes user installation of a new driver trivial: the user
only has to copy a workbench icon into the expansion directory on
his sys disk. Everything else is automatic the next time he boots.

In addition, the bootdrivers program may be run repeatedly without
ill effect. Devices will not be configured twice, so binddrivers may be
run after a new driver is installed (so the user does not have to re-
boot after instailing a driver).

Here is an overview of the process.

search:
for each file that ends in .info, do test ().

test:

1. Call GetDiskObject() on this file. If not a workbench object, re-
turn.

2. Call FindToolType () to see if there is a PRODUCT definition. If
not, return.

3. If the description does not match an unconfigured board, return.
if there are boards, link them ali together and record them in a
static area.

4. LoadSeg {) the code file. If LoadSeg fails, return.

5. Search the first hunk for a Resident structure. [f no structure,
UnLoadSeg () the segment and return.

51

6. InitResident () the loaded code. If an error {NULL) is returned,
UnLoadSeg () the segment.

your driver code:
Find the list of boards. Mark them a configured, and record your
driver in them (for system debugging). Return non-zero value if
everything went ok. If something went wrong (or you just want
to be unloaded) then return NULL.

Now for some more detail.

1. GetDiskObject () is a routine in icon.library. [t will read in the disk
object, and return a pointer to it. Part of a disk object structure
is a “tooltypes” field.

2. The FindToolType () routine (also in the icon.library) searches
the tooltypes database associated with the disk object. If there is
an entry for PRODUCT then it is assumed that this is an info file
for a driver. The PRODUCT field is of the format:

PRODUCT = <idlist>

<idlist> == <id> | <idlist>BAR<id>

<id>> == <manufacturer> | <manufacturer>SLASH<product>
< manufacturer> :: = <{a decimal number>

<product> = <Ca decimal number>

BAR ::= <a vertical bar — *|'>

SLASH ::= <Ca forwards slant char — /">

Spaces are not legal. Some examples:

PRODUCT = 1000/30 ; matches man 1000, product 30

PRODUCT = 1000 ; matches any man 1000 board

PRODUCT = 1000/20/1000/21 ; matches man 1000, product 20
ar 21

3. Each unconfigured beard in the system is searched. An unconfi-
gured board has the CDB_CONFIGME bit set in the cd_Fiags byte.
Search all these unconfigured boards to find the ones that match
any of the product codes. Link ail these boards together using the
cd_NextCD field of the ConFigDev structure. Record the head of
this list, along with the product fieid and the name of the file that
was loaded in a CurrentBinding structure. This structure may be
retrieved via the GetCurrentBinding () call.

4. Attempt to load in the driver. The driver may be a devices, library,

task, process, or anything else that you may want. The only re-
quirement is that it have a Resident structure in its first hunk. (By
the way, this means that you can not directly use startup.obj).

52

HINTS FOR WRITING
YOUR DRIVER CODE:

This is why we refer to loading a “driver” rather than a “device”
— you can write any sort of code you want to handie your device.

_ Binddriver will search the first hunk for a Resident structure. [f it

cannot find one, it will assume some awful mistake has been
made, and will unload the segment.

. Finally we get to running some of YOUR code. InitResident (} is

used to start you off and running. The return value from InitResi-
dent (and therefore the return value from your init entry point)
will be checked on exit. If it is zero then the segment will be un-
loaded. This can be useful if you only need to do a bit of initializa-
tion and then can go away, such as allocate additional expansion
memory for a non-expansion architecture board.

Your driver will be launched via InitResident {) as discussed
above. If you use the underdocumented, but very useful RTF_AU-
TOINIT option you will have a library node constructed for you,
and then have the code you specified enter. If you don't use
RTF_AUTOINIT, then your code will be entered directly.

You should (among everything else you might be doing) open the
expansion.library and ask for the current buildings {GetCurrent-
Binding()). In this structure will be the head of a singly linked list
of ConfigDev structures. The structures are linked via the cd
NextCD field. You should deal with each member of the list —
they are for youl

There are two actions you must take. One is to unset the CDB
CONFIGME bit in the cd_Flags. If you do not do this then the
board is still available for other drivers (of course, you may actu-
ally want this . ..). If you do unset the CONFIGME bit, please also
record your “node” in the cd_Driver structure. It is assumed that
this is in an exec node, whose LN_ZNAME field points your name,
and LN_TYPE field is your type of “thing” — library. resource, de-
vice, task, etc. | know that this will not always apply to you, but
try it anyway. It will help the rest of us debug the system when
something goes wrong.

You have now done everything you wanted to. Your init routine is

about to return. If you return a zero, then your code wili be un-
loaded. If you return non-zero, then you will stay around.

53

Section 3.3

Software for Amiga Expansion

EXPANSION.LIBRARY/
ADDDOSNODE

This section contains listings and information on the following
expansion software commands:

expansion.library/AddDosNode
expansion.library/MakeDosNode
Systemy/Libraries/Expansion/AddConfigDev
Systerry/Libraries/Expansion/AllocBoardMem
Systemy/Libraries/Expansion/AllocConfigDev
Systemy/Libraries/Expansion/AllocExpansionMem
System/Libraries/Expansion/ConfigBoard
System/Libraries/Expansion/ConfigChain
System/Libraries/Expansion/FindConfigDev
System/Libraries/Expansion/FreeBoardMem
System/Libraries/Expansion/FreeConfigDev
System/Libraries/Expansion/FreeExpansionMem
System/Libraries/Expansion/GetCurrentBinding
System/Libraries/Expansion/ObtainConfigBinding
Systemy/Libraries/Expansion/ReadExpansionByte
Systemy/Libraries/Expansion/ ReadExpansionRom
Systemy/Libraries/Expansion/ReleaseConfigBinding
Systerm/Libraries/Expansio