DESCRIPTION

The Analogic model AN2574 is a high accuracy, high performance $4 \frac{1}{2}$. digit (± 19999 counts) digital panel instrument. Features such as a gigaohm differential input, microvolt sensitivity, and programmable TRI-STATE BCD outputs, place this high quality precision instrument into a class by itself.
Three power options including 110VAC, 220VAC and +5VDC, and fullscale ranges of ± 1.9999 Volts or $\pm 199.99 \mathrm{mV}$ make the AN2574 universally applicable. Instrumentation features include a unique, guarded and isolated analog front end with common mode rejection ratios (CMRR) as high as 140 dB , an auto-zeroed input circuit for long-term stability, FET input circuitry with low (picoAmp) input bias current and high (gigaohm) input resistance, and an optimized signal-enhancement filter which maximizes rejection of normal mode interference signals while providing input over-voltage protection of more than 100 V . Serial and word-programmable TRI-STATE BCD outputs provide the utmost versatility and satisfy virtually all instrumentation requirements.
The displays are designed for maximum readability. Up close, several feet away, or off at an angle, the five large (.43') red LED digits are bright, clear, crisp and free from glare and interpretation problems even under high ambient light conditions. When an input overload condition occurs, all five digits are automatically blanked to prevent an erroneous reading; however, the polarity sign and decimal point remain displayed to show that the instrument is working properly.

Among the many outstanding features that assure high reliability and lasting performance of the AN2574 are: Comprehensive quality control and reliability procedures, e.g., minimum 100-hour temperature-cycled burn-in from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, with asynchronous power on/off cycles, instantaneous warmup and display (no waiting for readings to settle), isolation that "floats" the measuring circuits up to 1400 volts from the power-line ground, maximum rejection of ripple and noise provided by optimized input signal filtering, and true dual-slope integration.
AC power is supplied through a dual-primary, high efficiency power transformer. Parallel or series-connected dual primaries are designed for extremely large power line variations and dual secondary windings separate analog and digital circuits.
Packaged in a rugged DIN/NEMA high-impact molded plastic case (UL94V-0 rated) with front-panel-accessible span control, every AN2574 is conformance and vibration tested prior to shipment. Rated performance is guaranteed by a Quality Control certificate and calibration report enclosed with every instrument.

Fig. 1. AN2574 Functional Block Diagram

FEATURES

- High Performance - Low Cost.
- Accuracy of $\pm 0.01 \%$ of Reading ± 1 Count.
- 10 microVolt Sensitivity (for $\pm 199.99 \mathrm{mV}$ FS).
- $\pm 0.005 \%$ Readout Resolution for 19999 Counts.
- Bipolar, Differential, Guarded FET input.
- Ultra Low Bias Current (Less Than 50 picoAmps).
- Automatic Zero for Long-Term Stability.
- Input Protection for more than 100 Volts.
- Floating \& Isolated Input (1400 Volts).
- High Input Impedance (1000 Megohms).
- CMRR Greater Than 140 dB .
- NMRR Greater Than 70 dB .
- 100 msec Integration Period for Highest NMRR and CMRR.
- DISPLAY TEST, HOLD, BLANK, OVERRANGE and EOC Control Signals.
- Serial BCD Output; Standard.
- TRI-STATE BCD Output, WordProgrammable; Optional.
- Ratiometric Capability, 3 or 4 -Wire: Optional.
- Large .43" (11mm) LED Display for Maximum Readability.
- Universal Power Options Include: $+5 \mathrm{VDC} \pm 5 \%$ @ 1.8 Watts. $110 \mathrm{VAC} \pm 20 \%$ @ 2.7 Watts. $220 \mathrm{VAC} \pm 20 \%$ @ 2.7 Watts.
- DIN/NEMA Standard Case; UL94V-0 Rated.
- 15-Month Recommended Recalibration Interval.
- Rear Screw Terminal Connector Available.

APPLICATIONS

- Precision Analytical Instrumentation.
- High Accuracy Digital Process Indicators With Universal Computer Bus Interface.
- Industrial Weighing and Scaling Systems.
- High Precision Thermocouple Digitizers.
- Laboratory Digital pH Meters.
- Portable Hanging-Scale Indicator.
- High Resolution Strain Gauge Digitizers.

ANALOGC.

Configuration
Full Scale Range
Input Resistance
Bias Current @ $25^{\circ} \mathrm{C}$
± 1.9999 VDC Full Scale $\pm 199.99 \mathrm{mVDC}$ Full Scale

Input Protection
± 1.9999 VDC Full Scale
$\pm 199.99 \mathrm{mVDC}$ Full Scale
Input Filter
Normal Mode Rejection
Ratio
Ratiometric Operation

COMMON MODE

Signal Return to Analog Ground
Voltage (CMV)
DC Rejection Ratio (CMRR) DC
AC Rejection Ratio
(CMRR) AC
Analog Ground to AC Power Line
Voltage (CMV)
AC Rejection Ratio
(CMRR) AC
PERFORMANCE
Accuracy
Resolution
Range Tempco

Zero Stability
Step Response

DISPLAY

Type of Display
Polarity Indication
OVERRANGE Indication

Decimal Points
Hold

Blank
Display Test

Bipolar, floating differential input $\pm 1.9999 \mathrm{VDC}$ or
$\pm 199.99 \mathrm{mVDC}$.
1000 Megohms
20pA typical, 50pA maximum.
50pA typical, 100pA
maximum
$\pm 100 \mathrm{VDC}$ or AC RMS continuous without damage. $\pm 20 \mathrm{VDC}$ or AC RMS continuous without damage. Single-pole, optimized signal-enhancement filter. 70 dB typical, 60 dB minimum @ 50 or 60 Hz .
Ratio input for use with external reference (Consult Factory)
$\pm 0.5 \mathrm{VDC}$ or AC peak. 120 dB typical, 100 dB minimum.
100 dB typical, 80dB minimum @ 50 to 60 Hz .

1400 VDC or AC peak. 160 dB minimum@ 50 to 60 Hz .
$\pm 0.01 \%$ of reading ± 1 count. $\pm 0.005 \%$ for 19999 counts.
$\pm 15 \mathrm{ppm}$ of reading $/{ }^{\circ} \mathrm{C}$ typical, $\pm 30 \mathrm{ppm}$ of reading/ ${ }^{\mathrm{C}} \mathrm{C}$ maximum.
Autozero, $\pm 0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical zero drift.
Less than 400 msec for $\pm 0.01 \%$ of reading accuracy for a "+" or " - " full-scale step input.

7-segment planar, red LED, $0.43^{\prime \prime}(11 \mathrm{~mm})$ high.
Automatic, "+" or "-" sign displayed
All digits blanked to prevent erroneous readout, "+" or "L" sign and decimal point remain on. 4-position, user-programmable. (See Fig. 6). Logic " 0 " (open collector or equivalent) holds last reading in display.
Logic "0" lopen collector or equivalent) blanks display. Logic " 0 " (sink 0.2 mA to digital ground). Tests 28 segments of display by displaying "8888".
ANALOG TO DIGITAL CONVERSION Technique

Input Integration Period

Rate
Dual-siope, 3-phase conversion with automatic zero correction, complete conversion each cycle. 2.5 conversions per sepcond nominal for best visual interpretation. For higher speed, consult factory.
100 milliseconds nominal for optimum 50 and 60 Hz noise rejection.

DIGITAL OUTPUTS

Serial BCD (Standard)

12 data lines provide multiplexed BCD data (serial by digit, parallel by bit), POLARITY and EOC, (End of Conversion). All outputs are low power TTL and CMOS compatible, 0 to +5 V . (One LP TTL load each)*
Logic " 0 " indicates that output exceeds ± 19999 counts, CMOS and low power TTLcompatible, 0 to +5 V .
EOC
Falling edge of "End of Conversion" signal indicates conversion complete, CMOS (0 to +5VDC.) and low power TTL-compatible.

110 VAC RMS $\pm 20 \%, 47$ to 500 Hz @ 2.7 watts nominal (88 to 132 VAC input range). 220 V AC RMS $\pm 20 \%, 47$ to 500 Hz @ 2.7 watts nominal (176 to 264 VAC input range). 5VDC $\pm 5 \%$ @ 1.8 watts nominal.
ENVIRONMENTAL \& PHYSICAL
Operating Temperature
$\begin{aligned} \text { Range } & -10^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \text {. } \\ \text { Storage Temperature Range } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text {. }\end{aligned}$
Relative Humidity
Case Case
POWER
Choice of 3 Power Inputs
Latched and buffered wordprogrammable TRI-STATE outputs are available for computer bus interfacing. The 20 bits of digital data are available as parallel output or organized for a $4,8,12,16$ or 20 bit data bus. A separate TRI-STATE ENABLE input (CMOS compatible 0 to +5 V) controls each of the 4 -bit bytes. BUSY and BUSY provide the user with output register status. All outputs are TTL and CMOS compatible. (One TTL load each). Positive True Logic.

OVERLOAD
(OVLD)

Pow Input

0 to 90%, noncondensing. DIN/NEMA standard, high- impact molded plastic case UL94V-O rated ; metal case available (See Ordering Guide).
DIN/NEMA (See Fig. 13). 10 oz. (300 grams) Shielding on five sides with metal case option.

Provision made for surge suppressor varistor and line input passive Pi filtering for industrial applications. (Consult factory).

RELIABILITY

MTBF
Burn-In

Vibration

Calibration

Recalibration
Warranty
$\geqslant 100,000$ Hours, calculated. 100 hours with 0 to $+55^{\circ} \mathrm{C}$ temperature cycles and power on/off cycles.
Each unit vibrated at 5 g 's for 30 seconds.
NBS traceable, detailed certificate of calibration shipped with each unit.
Recommended at 15 -month intervals.
$J 1$
(BOTTOM OF CASE)
Ratio Input Analog GND HOLD DISPLAY TEST Most Significant Digit Digit 2 Strobe Digit 3 Strobe BCD 1 BCD 2 Decimal Point 1 Decimal Point 2 Digital GND No Connection AC Power In

A	1
B	2
C	3
D	4
E	5
F	6
H	7
J	8
K	9
L	10
M	11
N	12
P	13
R	14
S	15

Signal In (+)
Signal Return (-)
Guard
BLANK/OVERLOAD
Option
Polarity
Digit 4 Strobe
Digit 5 Strobe
BCD 4
BCD 8
Decimal Point 3
Decimal Point 4
+5 Volts
No Connection AC Power In
$J 2$
(TOP OF CASE) TRI-STATE BCD OUTPUTS

-100	A	1	$\left.\begin{array}{l} 1 \\ 2 \end{array}\right]_{\mathrm{BCD}}$	
BCD 200	B	2		
Digit $3^{-} 400$	C	3	4	- Digit 1
-800	D	4	8	
Enable Digit 3	E	5	Enable Digit 9	
[1K	F	6	10	
BCD - 2 K	H	7	20	-BCD
Digit $4^{-1} 4 \mathrm{~K}$	J	8	40	Digit 2
- 8 K	K	9	80.	
Enable Digit 4	L	10	Enable Digit 2	
BUSY	M	11	10K 20K OVERRANGE Polarity Enable Digit 5	
Dig. Gnd.	N	12		
BUSY	P	13		
+5 Volts	R	14		
Spare	S	15		

Fig. 14. Internal View.

Fig. 15. Rear Panel Connectors.

NEED APPLICATION HELP?

CONSULT NEAREST ANALOGIC SALES OFFICE OR REPRESENTATIVE.

ANALDGE

ANALOGIC CORPORATION • Audubon Road - Wakefield, Massachusetts 01880 Tel. (617) 246-0300 - TWX (710) 348-0425- Telex 94-9307
ANALOGIC INTERNATIONAL Audubon Road Wakefield, Massachusetts 01880
Tel. (617) 246-0300- TWX (710) 348-0425-Telex 94-9307
ANALOGIC AG E Kanalstrasse 15 . Postfach CH-8152 Glattbrugg - Switzerland Tel. (41) 1-810-0666 - Telex 845-59699
ANALOGIC LIMITED = 68 High Street - Weybridge, Surrey KT13 8BN - England Tel. (44) 932-41251-Telex 851-928030
ANALOGIC REGIONAL OFFICES • Jericho, New York (516) 938-8333
Cincinnati, Ohio (606) 371-0064 • San Jose. Calif. (408) 247-6401
Tustin, Calif. (714) 838-7243 - Garland, Texas (214) 681-0483
Houston. Texas (713) 777-6360
Houston. Texas (713) 777-636

AVAILABLE FROM:

PRINCIPLES OF OPERATION

The AN2574 utilizes an autozeroed, 3-phase dual-slope analog-to-digital converter which includes an input filter, a buffer stage, an integrator and a comparator. The input filter is optimized* and provides over-voltage protection with FET input clamp diodes. The input buffer is a voltage follower with a FET input stage which features high (gigaohm) input impedance and low (picoAmp) bias currents. A gain of 10 is provided in the buffer for the $\pm 199.99 \mathrm{mV}$ full-scale option.
In each conversion cycle, the internal offset voltages are sensed and compensated for automatically (Autozero Phase). The displayed data is the digitized ratio of the input signal to the precision reference located in the instrument. Optionally, the user may introduce his own reference (scaled for +1 volt DC), where the output count of 10000 would represent an input equal to the full value of the external reference. (Display $=$ $V_{\text {in }} / V_{\text {ref }} \times 10000$).
A front panel-accessible span control permits the user to calibrate the precision internal reference to system standards. Analogic's precision reference is calibrated and traceable to NBS standards.
Signal return is separated from digital ground through the CMOS logic interface between the analog and digital circuits. Counting, latching, and control logic is contained in a custom, proprietary CMOS integrated circuit which drives the LED display in a multiplexed BCD format.
*Maximum filtering, while allowing a full-scale input step to settle to 1 count within 1 conversion period (400 msec).

Fig. 2. Simplified Schematic Diagram.

Fig. 3. Input Configurations and Common Mode Voltages.

Fig. 4a. AN2574 Timing Diagram for Conversion Cycle.

BCD Data is Valid During Positive Transition of Digit Strobe.
Fig. 46. Display Timing Diagram for Serial Data.

The TRI-STATE ENABLE input controls for each of the five 4 -bit bytes are CMOS compatible (0 to +5 V). Multiple lines may be tied together and enabled simultaneously.
The BCD output is automatically enabled by an internal 100K ohm pull-down resistor and can be disabled by an external 10K ohm pull-up resistor, connected between the appropriate ENABLE input and $J 2$ pin R (+5 V) as shown. This allows data to be controlled by a mechanical switch, TTL, DTL or CMOS Iogic (Note: External 10Kohm resistor not required for CMOS interface).

Fig. 5. Interfacing to BCD Enable Inputs.

To display the desired decimal point, simply connect the appropriate pin as shown to Digital Ground (J 1, Pin P) using a jumper lead.

Fig. 6. Decimal Point Position Terminals

$\begin{array}{\|c\|c} \\ \hline A N B 74 \\ 1 & \\ & \\ \end{array}$		
Word Programming		
Bits/Word	Enable Pins	Digits Enabled
20	N/A	All Digits plus OVLD and Polarity
$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{gathered} 5 \& 10 \& E \& L \\ 15 \end{gathered}$	1 \& 2 \& 3 \& 4 5, OVLD, Polarity
$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} 5 \& 10 \& E \\ L \& 15 \end{gathered}$	$\begin{aligned} & 1 \& 2 \& 3 \\ & 4 \& 5, \text { OV LD, Polarity } \end{aligned}$
$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} 5 \& 10 \\ E \& L \\ 15 \end{gathered}$	$\begin{aligned} & 1 \& 2 \\ & 3 \& 4 \\ & 5, \text { OVLD, Polarity } \end{aligned}$
4 4 4 4 4	$\begin{array}{r} 5 \\ 10 \\ E \\ L \\ 15 \end{array}$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5, \text { OVLD, Polarity } \end{aligned}$

When the word-programmable TRI-STATE BCD option is installed, 20 -bits of latched and Buffered Parallel BCD outputs are available on connector J 2 and are automatically enabled. BUSY and $\bar{B} U S Y$ indicate when data is valid. The same BCD option can be used when the AN 2574 must interface with a data bus structure which requires data in $4,8,12,16$ or 20 bit bytes. This can be accomplished simply by jumpering the DIGIT ENABLE lines together, according to word size (see chart). A high level (Logic 1) disables the BCD output.

Data Bus
4,8,12,16 or 20 Bits

The TRI-STATE BCD outputs of the AN2574 may be tied together into a common data bus and individually enabled for input to a single recording device, such as a printer, digital comparator, computer or other peripheral equipment. This eliminates costly external switching of multiple BCD lines and simplifies system interfacing.

Fig. 8a. Mulitple Station Monitor.

Fig. 7. Word-Programming Tri-State BCD Output.

The TRI-STATE BCD outputs of the AN2574 may be tied together into a common data bus and individually enabled for input to a single recording device, such as a printer, digital comparator, computer or other peripheral equipment. This eliminates costly external switching of multiple BCD lines and simplifies system interfacing.

Fig. 8b. Multiple Channel Data Acquisition.

Fig. 9a. Using AN2574 for 3-Wire Ratiometric Measurements.

Fig. 9b. Using AN2574 for 4-Wire Ratiometric Measurements.

NOTE: (Consult Factory for Ratiometric Option).
A voltage ratio measurement can eliminate the need for a costly precision power supply to provide transducer excitation. This is accomplished by the dual-slope integrating A / D converter which displays the digitized ratio of $V_{\text {in }} / V_{\text {ref }} \times 10000$. Thus, if the external reference varies, the signal voltage will change proportionally. This makes the long term accuracy of the external reference supply noncritical and it need only be stable during the measurement period.

Fig. 10. Holding The Display.

Fig. 12. Input Current Scaling.

For signal voltages V_{S} greater than 2 Volts, select R_{A} and R_{B} for proper scaling such that $V_{\text {in }}$ is $\leqslant 2$ Volts for a "1.9999" Display.* Program Decimal Point accordingly (See Fig. 6).

* According to $V_{I N}=\left(\frac{R_{B}}{R_{A}+R_{B}}\right) \times V_{s}$.

Fig. 11. Input Scaling.

Fig. 13. Panel Mounting and Outline Dimensions.

