ORM \& AORM

Optical Recording Measurements/Advanced

Operator's
 Manual

LeCroy

LeCroy Corporation

700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499
Tel: (845) 578 6020, Fax: (845) 5785985
Internet: www.lecroy.com

Copyright © 2000 by LeCroy Corporation. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change.

LeCroy, ProBus and SMART Trigger are registered trademarks of LeCroy Corporation. Centronics is a registered trademark of Data Computer Corp. Epson is a registered trademark of Epson America Inc. $I^{2} \mathrm{C}$ is a trademark of Philips. Mathcad is a registered trademark of MATHSOFT Inc. MATLAB is a registered trademark of The MathWorks, Inc. Microsoft, MS and Microsoft Access are registered trademarks, and Windows and NT are trademarks of Microsoft Corporation. PowerPC is a registered trademark of IBM Microelectronics. DeskJet, ThinkJet, QuietJet, LaserJet, PaintJet, HP 7470, and HP 7550 are registered trademarks of Hewlett-Packard Company.
ORM-OM-E Rev E 1000

Contents

Chapter 1 - Introduction

What Can ORM Do? 1-1
Histogramming 1-1
Trending 1-1
Model of Optical Recording Processing 1-2
Parameter Measurements 1-2
Selecting Parameters 1-2
Custom Parameters 1-4
List by nT Mode 1-6
BES or EES Table 1-8
Chapter 2 - Setup and View Wizard
Screen Access 2-2
Setup Menu 2-3
View Wizard 2-6
Measurement Table 2-8
Chapter 3 - Parameters and Values
Doing Optical Data Measurements 3-1
Measurement Value Display 3-2
Parameter Configuration 3-2
Configuration Options 3-4
Configuration Menus 3-5
Setting Levels 3-7
Setting $n T$ 3-8
Configuration Tracking 3-9
Maximizing Performance 3-9
Pit or Space Identification 3-10
nT Pit/Space Categorization 3-12
Memory Limitations 3-13

Contents

Chapter 4 - Measurement Parameters

bes 4-1
bess 4-5
ees 4-7
eess 4-11
bees 4-13
$\Delta \mathrm{p} 2 \mathrm{c}$ Delta Pit to Clock 4-16
$\Delta p 2 c s$ Delta Pit to Clock Sigma 4-20
edgsh Edge Shift 4-22
Iper Local Period 4-26
paa Pit Average Amplitude 4-28
pasym Pit Asymmetry 4-30
pbase Pit Base 4-32
pmax Pit Maximum. 4-34
pmidl Pit Middle Level 4-36
pmin Pit Minimum 4-38
pmoda Pit Modulation Amplitude 4-40
pnum Pit Number 4-43
pres Pit Resolution 4-45
ptop Pit Top 4-48
pwid Pit Width 4-50
t@pit Time At Pit 4-55
timj Timing Jitter 4-61
Signals, Coupling and Threshold Settings. 4-65
Using Parameters with Trends and XY Plots 4-68
Improving Horizontal Measurement Accuracy. 4-72
Base and Top Calculation Details 4-74
Chapter 5 - Trending
Displaying Trends 5-1
To Configure a Trend. 5-1
The Trend Configuration Menus 5-2
Trend Calculation 5-6
Parameter Buffer 5-6
Parameter Events Capture 5-7
Reading Trends 5-8
Using Measurement Cursors 5-9
Chapter 6 - Histograms
Theory of Operation 6-1
LeCroy DSO Process 6-2
Parameter Buffer 6-3
Parameter Events Capture 6-4
Histogram Parameters 6-5
Zoom Traces and Segmented Waveforms 6-6
Histogram Peaks 6-6
Binning and Measurement Accuracy 6-7
Creating and Analyzing Histograms 6-10
Selecting the Histogram Function 6-10
Histogram Trace Setup Menu 6-12
Setting Binning and Histogram Scale 6-17
Histogram Parameters 6-20
Using Measurement Cursors 6-22
Zoom Traces and Segmented Waveforms 6-23
Chapter 7 - Histogram Parameters
Average (avg) 7-1
Full Width at Half Maximum (fwhm) 7-2
Full Width at $\mathrm{xx} \%$ Maximum (fwxx). 7-3
Histogram Amplitude (hampl) 7-4

Contents

Histogram Base (hbase) 7-5
High (high) 7-6
Histogram median (hmedian) 7-7
Histogram Root Mean Square (hrms) 7-8
Histogram Top (htop) 7-9
Low (low) 7-10
Maximum Population (maxp) 7-11
Mode (mode) 7-12
Percentile (pctl) 7-13
Peaks (pks) 7-14
Range (range) 7-16
Sigma (sigma) 7-17
Total Population (totp) 7-18
X Coordinate of xx'th Peak (xapk). 7-19
Chapter 8 - DVD Processing Model
Filtering 8-3
Slicer. 8-3
Clock Recovery 8-4
OR Data Configuration Menu 8-5
Setup of A 8-5
Optical Recording Setup 8-6
Chapter 9 - ORM Remote Control Commands
CURSOR_MEASURE, CRMS 9-1
CURSOR_SET, CRST 9-4
CURSOR VALUE?, CRVA? 9-6
DEFINE, DEF 9-7
PARAMETER_CLR, PACL 9-14
PARAMETER CUSTOM, PACU 9-15
PARAMETER_DELETE, PADL 9-19
PARAMETER LIST, PALI. 9-20
PARAMETER_LIST_VALUES?, PALV? 9-23
PARAMETER_STATISTICS?, PAST? 9-24
PARAMETER VALUE?, PAVA? 9-25
Appendix A - Notes on OR Data Math Function
Operational Notes A-3
How the Starting VCO Frequency and Phase are Determined A-15
\# \# \#

Contents

BLANK PAGE

What Can ORM Do?

The Optical Recording Measurement (ORM) Package for LeCroy digital oscilloscopes provides a set of waveform measurements and mathematical functions for the analysis of optical recording signals. Parameter measurements allow the categorizing and listing of measurement values in a variety of ways. The math functions (Histogramming and Trending) enable information to be revealed graphically.
In addition to all the capabilities of ORM, the Advanced Optical Recording Measurement (AORM) package provides parameter measurements for evaluating jitter due to intersymbol interface and emulation of DVD's equalizer, slicer, and PLL. This functionality helps you to perform clock and jitter measurements, independent of a specific Integrated Circuit, allowing you to concentrate on optical head or media performance only. It also provides you with a new Setup and View wizard, which simplifies the setup process and lets you see the waveforms and measurements - with a histogram, trend or XY plot of the measurements - at the press of a button. To support adv anced optical recording drives that have constant angular velocity (CAV) or zone constant linear velocity (ZCLV), parameter measurements support automatic determination of the clock period.

Histogramming	Histograms can be created for any wav eform parameter. They are displayed based on a set of user settings such as bin width or number of parameter events to be used. Histogram parameters are provided for measuring different histogram features such as standard dev iation, number of peaks, and most populated bin. Histograms are selected by defining a trace (A, B, C, or D) as a math function, and selecting Histogram as the math function. As with other
	Zoom traces, histograms can be positioned and expanded by using
the front panel POSITION and ZOOMknobs. See Chapters 6 and 7.	

The Trend functionality, coupled with other scope features, enables you to graph certain parameters against one another. See Chapter 5.

Model of Optical Recording Processing

In many applications, it is important to make timing and jitter measurements directly from the RF signal, independent of a specific DVD chip. The optical recording processing function in AORM can perform this processing and can let you view the equalized data, sliced data, threshold, and/or the recovered clock. You can control the cutoff frequency and boost of the equalizing filter, the closed loop bandwidth of the $1^{\text {st }}$ order integrating slicer, and the bandwidth of the phase lock loop (PLL). See Chapter 8.

Parameter Measurements Two measurement modes for wav eform parameters are available in the Optical Recording Measurement Package. These are "Custom" and "List by nT ." For each mode, you can select the parameter measurement(s) to be displayed.

Custom mode is a standard DSO parameter selection-and-display option in which up to five parameters can be selected and displayed simultaneously on individual lines. List by $\mathbf{n T}$ is a special wav eform measurement mode specifically designed for ORM. One measurement at a time is selected, and a list of values is displayed (indexed by multiples of the clock period). The parameter measurement values in the AORM package can also be viewed in a table. See Chapters 2 and 3.

Parameters are accessed by first pressing the Measure Tools or Cursors/Measure button on the scope front panel. The "Measure" menu group will appear on screen. Parameters must then be selected in order to display the menus shown in Figure 1.1.

Figure 1.1
The mode menu enables you to select a variety of parameter measurement modes. But for ORM, the modes of interest are Custom, shown selected in the above figure, and List by $\mathbf{n T}$.
Parameters allow measurements of the section of waveform lying between the parameter cursors, the broken vertical lines at left and right on the grid in Figure 1.1. The position of the parameter cursors is set by means of the from and to menus and is controlled by the associated rotary knobs on the front panel. When you set tracking On, you can move the parameter cursors across the waveform so that measurement results can be taken on different sections of the waveform.

Introduction

Custom Parameters

With Custom selected, the CHANGE PARAMETERS submenu appears, which, when selected, produces the CHANGE PARAM menu panel shown in Figure 1.2.

Figure 1.2
Up to five parameters can be selected, each displayed on its own line below the waveform display grid. Select a parameter display line from the "On line" menu.
Figure 1.2 has the Pit Width (pwid) parameter selected for line 1 and the Histogram Average (avg) parameter selected for line 2. The avg parameter provides the average value for the histogram between the parameter cursors. Notice that the parameter cursors are set in this example to surround the first histogram distribution. In this way the avg parameter displays the histogram average on the surrounded distribution only. No parameters are selected for lines 3 to 5 .
Selecting from "Category" determines which set of parameter measurements is displayed in the "Measure" menu.

Figure 1.2 shows the Optical-Data category and the pwid parameter selected. For all custom parameter measurements in ORM, Optical-Data must be chosen as the category. If a parameter has settings needed for performing measurements, the "MORE xxxx SETUP" menu appears.
The same figure shows that the pwid parameter requires you to provide additional settings. If none is required, a "DELETE ALL PARAMETERS" menu appears. Pressing the associated menu button causes all five lines of parameters to be cleared.

Note: All parameters in the ORM package require configuration. See the scope Operator's Manual for a complete description of front panel operations, including menu selection.

After you have selected a custom parameter, use the "of" menu to determine on which input channel ($1,2,3$, or 4) or trace (A, B, C, or D) the parameter measurement will be performed. Some parameters require two sources, with these appearing in the menu.

The results displayed for a selected parameter are dependent on whether statistics and the Sequence option have been selected. Depending on the parameter and these factors, results may be provided for a single acquisition (trigger) or multiple acquisitions. In all cases, only the waveform section between the parameter cursors is used in calculating a measurement value. If the waveform source is a memory ($\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$, or M 4), loading a new waveform into memory acts as a new acquisition. Similarly, if the waveform source is a ZOOM of an input channel, and Sequence is on, selection of a new segment or the All Segments menu option acts as a new acquisition.
Waveforms with statistics off display the parameter results for only the last acquisition. Those acquired with the timebase set for Sequence give results for the last segment acquired. For zoomed traces of segmented waveforms, selecting an individual segment causes the parameter value for the selected segment to be displayed; whereas, here, selection of All Segments provides the parameter results from the trace's last segment. For zoomed traces of segmented waveforms the statistics for the selected segment are displayed. Selecting a new segment or All Segments acts as a new sweep and causes the parameter calculations for the new segment(s) to contribute to the statistics.
Depending on the parameter, a single calculation or multiple calculations may be performed per acquisition. One example is the

Introduction

Pit Width parameter, which performs a calculation of the width of each pit and/or space when it is calculating a parameter value for a single acquisition. In this case, there will typically be many parameter results. With statistics off, if multiple values result from a parameter calculation, the parameter result displayed will be the average value of these calculations for the last DSO waveform acquisition. With statistics on, the display will show the average, low, high, and sigma of all the values calculated for all DSO acquisitions since the last time you pressed Clear Sweeps.

List by nT Mode

When you select List by $\mathbf{n T}$ from the "mode" menu, the "CHANGE MEASUREMENT" menu appears. Selecting this new choice causes the CHANGE MEAS menu panel to be displayed, as in Figure 1.3.

Figure 1.3

* There is one exception to this case, the $\mathbf{t} @$ pit parameter, which returns the value of the first calculation result.

ORM

One measurement type at a time is selected in this mode, its values displayed below the grid. Selection is made using the "Measure" menu. The values are displayed indexed up to 25 values. The column beneath the grid headed "Index" provides the first index value for the adjacent row of values.
Figure 1.3 shows Edge Shift (edgsh) selected, and the values for an index range of 3-11.
All measurements available in List by nT mode need to have configuration settings supplied in order to calculate values. Selecting the "MORE 'xxxx' SETUP" menu accesses the appropriate measurement configuration for the selected parameter.
The "of" menu determines the input channel (1, 2, 3, or 4) or trace (A, B, C, or D).

Introduction

BES or EES Table

When the selected measurement is Begin Edge Shift (BES), End Edge Shift (EES), or their sigmas (BESS or EESS), the results can be shown in a table. Press the Show Table key to display a full-page table of the average value of BES or EES for each subject $n T$ vs. each "preceded" or "followed" $n T$ (see Figure 1.4). This menu has the following softkeys:
Accumulate on/off - All entries in the table may not be captured in a single acquisition. Therefore, you can accumulate data over many acquisitions by selecting accumulate on.
Print - When this button is pressed, the BES or EES table is sent as ASCII text to a currently defined hardcopy device.

$\begin{aligned} & \text { 12-Apr-00 } \\ & 16: 42: 41 \end{aligned}$							ORM Table
		Begin Edge ShiFt by Subject					
Subj	Prec						
nT	nT	Values	(ns)				
3	3	8.	-47.1	14.6	-19.4	7.4	$\left[\begin{array}{c} \text { Accumulate- } \\ \text { On DFF } \end{array}\right.$
	8	33.6	39.8	- - -	- -		
4	3	-31.	-20.5	9.4	- -	-7.7	
	8	- - -	- - -	- - -	- -		
5	3	41.2	25.0	-36.9	-57.2	-30.7	PRINT
	8	- - -	- - -	-21.7	- - -		
6	3	98.1	-29.4	-89.9	39.0	-47.8	
	8	- - -	- - -	- - -	- - -		
7	3	41.4	61.4	41.8	-	- - -	
	8	- - -	- - -	- -	- - -		
8	3	6.6	43.9	- -	- - -	- -	
	8	- - -	- -	- - -	- -		
9	3	-	- - -	-22.7	- -	- -	
	8	- - -	- - -	- -	- - -		
10	3	- - -	- -	- -	-85.6	74.9	
	8	- - -	- -	- -	- - -		
11	3	- - -	- - -	- - -	-4	- - -	
	8	- - -	- - -	- - -	-79.6		

Figure 1.4
Scroll - Because the table can have 50 lines (1 to 25 T), a scroll knob is active when max n minus min n is greater than 8 .
Note: For EES "Following nT" is displayed instead of "Preceding nT ." The nT is the range specified, starting from the low T . The subject T (i.e., $\mathrm{s}(\mathrm{n})$) will also start from Low T to High T .

\# \# \#

Advanced ORM Setup and View Wizard

The Advanced ORM package provides a Setup and View wizard to simplify setup of the most common AORM parameters and processing functions. The View wizard allows you to quickly switch between different views of the information. In addition, a full-page setup menu allows you to specify information about the signal and the measurements to be made. When you exit this menu, the scope will execute the setup accordingly.
The wizard redefines parameters, math traces, and the display setup of the oscilloscope. Once the wizard has done its work, you can change the setup, using the standard scope menus and controls. However, if you re-enter the wizard, it may modify those changes, depending on the changes you made vis-a-vis its own predefined settings.

Screen Access

You can access the Setup and View Wizard by pressing the Analysis Packages button on the WavePro DSO (Cursor/Measure or Custom button on other scope models) and selecting Optical Recording. The "Optical Meas" menu panel is then displayed. If no measurement is currently defined, only the Setup menu appears, as shown below. Pressing the Setup button brings up a full-page menu that presents the common settings for the parameters.

Setup Menu

The current settings of the appropriate parameters and functions are displayed in the "Optical Measurement Setup" screen, as shown in the figure below. The bottom two sub-menus, and their associated knob and button, are used to navigate from one field to the next. No changes to the scope setup will be made until you exit the menu either by selecting SAVE \& EXIT or by pressing the front panel Return button. At that time, the scope configuration will be modified. CANCEL CHANGES exits the menu without saving any changes.

The following table explains the fields and their possible values:

Field	Description	
Measure	Selects the primary measurement to be made. The selected calculation is described at the bottom of the screen.	
Period	Indicates the period of the clock. The choices are: CD, DVD, DVD RW 2.6, DVD RW 4.7GB from Clock, from Data, Custom.	
	CD or DVD	When selected, the period is set to the value defined by the standard. You can also set a multiplier (e.g., 10x).
	From clock	Indicates that the period should be automatically measured from the clock provided. The clock must then be configured below.
	Custom	Allows you to specify the clock period
Data Type	Specifies what type of data is being acquired: RF is the raw, unfiltered data, Equalized is the data after the filter, Leveled is the data with the threshold subtracted, and Sliced is the output of the slicer. If RF data is input, the data will be equalized and lev eled before the measurements are made. If the input data is already Equalized, it will just be lev eled. No additional processing is performed if the input data is leveled or sliced. You must also specify the following information about the input data:	
	$\begin{aligned} & \hline \text { Source } \\ & \hline \text { Edge } \\ & \hline \end{aligned}$	The channel or memory that has the optical data.
		Polarity of the pits/spaces to use for the measurement, when appropriate. Positive polarity refers to pits, Negative polarity refers to spaces, All can be selected to use both pits and spaces.
	Gate	Optionally, you can specify a channel or memory that will be used to determine where to perform measurements on the input signal. If this is specified, you must also specify the active polarity of the gate (i.e., process when low or high).
Clock	The clock need only be specified if the parameter requires a clock for the calculation, or it is used as the source of the period.	
	Source	Channel or memory that has the clock, or the Extracted Clock may be selected, in which case the clock will be recovered from the data.
	Edge	Polarity of the clock edge to be used in the measurement. Near refers to the nearest clock edge to the data edge.
Hysteresis	Size of the hysteresis band (in screen divisions) with the thresholds at the center of the band. Any wav eform being analyzed must pass beyond this band before the next threshold crossing is recognized.	

ORM

Field	Description
Units	The units used for the horizontal parameter results. Time refers to absolute units. Percent refers to results being calculated as a percent of the clock period
Subject	For BES, EES, BEES, BESS, and EESS, this specifies the pit of interest. The results will be computed for each space/pit (pit/space) pair using subject pit and all the spaces within the range specified.
Analyzing from \ldots. to	Specifies the range of n indices that define the pits/spaces used in the calculation. The range of n coupled with T are used to categorize the pits/spaces based on their widths.
Filter cutoff and boost	If the input data is RF, an equalizer filter is applied prior to the measurements. You can adjust the cutoff frequency and boost of the filter.
Slicer Bandwidth a slicer to level	
If the input data is RF or Eqaalized, the data passes through the data (removes the threshold due to low frequency effects). You can set the bandwidth of the slicer.	
PLL Bandwidth	If you select Extracted as the clock source, a PLL is used to recov er the clock from the data wav eform. In that case, the bandwidth of the PLL can be adjusted.

AORM Setup \& View Wizard

View Wizard
OPTICAL MEAS

SHOW TABLE
Accumulate-
On OFF
from
0.00 div

Track DFF On
to
10.00 div

After the measurement setup is complete and you exit the setup page, the "View" wizard becomes available. The View Wizard allows you to determine how the results are be displayed. The choices are summarized in the following table:

View	Displays	Additional Keys	Cursors
Parameter	The source trace(s) will be displayed along with the custom parameters (see Measurement Table). If two traces are to be displayed, dual grids will be drawn.	Statistics - toggles the parameter statistics on/off. Show Table - for BES, EES, BESS, and EESS this brings up a full-page table of the measurements.	The parameter cursors are active.
List by nT	The source trace(s) will be displayed along with the list by nT parameter display. If two traces are to be displayed, dual grids will be drawn.	Accumulate - averages parameter values ov er multiple sweeps. Show Table - for BES, EES, BESS, and EESS this brings up a full-page table of the measurements.	The parameter cursors are active.
Histogram	The histogram of the selected parameter is shown. When Histogram is selected, it shows the source trace in a second grid.	Show Source - toggles the display of the source traces (and dual grid). Find Range - determines the best scaling for the histogram (center and width) based on up to the last 20000 samples collected.	Horizontal difference cursors are active.
Trend	Show Source - toggles the display of the source traces (and dual grid). Find determinge - the best scaling for the trend (center and height).	Horizontal parameter is shownere is selected, it shows the source trace in a second grid. active.	

View	Displays	Additional Keys	Cursors
Plot	Plots the trend of the selected measurement vs. either the trend t@pit or pwid as appropriate; not av ailable for all measurements (see Measurement Table for details).	XY only - toggles the display of the XY grid only and the XY grid plus the display of the trends. Find Range - determines the best scaling for trends (center and height).	Horizontal difference cursors are active.

Measurement Table

When the parameter view is selected, up to 4 additional parameters, which are related to the selected measurement, are displayed. The following table shows these additional parameters. For parameters that can be shown in the XY display, it also shows the parameter that is used for the X axis.

Measurement	Parameters	XY
	(setup for custom parameters)	(x axis)
dp2c (s)	t@pit,pwid,numt	t@pit
edgesh	t@pit,pwid,numt	t@pit
ees (s)	pwid,ptop,pbase,pnum	n/a
bes (s)	pwid,ptop,pbase,pnum	n/a
paa	pwid,ptop,pbase,pnum	n/a
pwid	t@pit, ptop,pbase,pnum	t@pit
timj	t@pit, ptop,pbase,pnum	t@pit
pbase	pwid,ptop,pbase,pnum	pwid
ptop	pwid,ptop,pbase,pnum	pwid
pmin	pwid,ptop,pbase,pnum	pwid
pmidl	pwid,ptop,pbase,pnum	pwid
pasym	pwid,ptop,pbase,pnum	n/a
pmax	pwid,ptop,pbase,pnum	pwid
pnum	pwid,ptop,pbase	n/a
	\#	
	$\mathbf{2 - 8}$	

Doing Optic al Data Measurements

The two modes available for Optical Recording Measurements, "Custom" and "List by nT," both display measurements either as waveform parameters or as a list of values. This chapter further describes these modes. The following table indicates which measurements can be made in each mode.

Measurement	Parameter	List by nT
Dp2c	V	V
$\Delta \mathrm{p} 2 \mathrm{cs}$	V	V
bes	V	V
bees	V	V
bess	V	V
ees	V	V
eess	V	V
edgsh	V	V
Iper	V	
paa	V	V
pasym	V	
pbase	V	V
pmax	V	V
pmidl	V	V
pmin	V	V
pmoda	V	
pnum	V	V
pres	V	
ptop	V	V

Measurement	Parameter	List by nT
pwid	v	V
t @pit	v	
timj	v	v

Measurement Value Display
When a measurement is configured for selecting a range of pit or space widths, the measurement values displayed in its calculation will be determined by the oscilloscope's display mode.
If Custom is selected, the normal DSO parameter calculation and display options are available. A single measurement value will be calculated and displayed for the range of nT values selected. Measurements performed in this mode are referred to in this manual as "parameter" measurements.

Howev er, if the mode selected is List by nT, a special ORM display mode is provided. In this case, a list of values corresponding to the measurements for each individual $n T$ in the selected range is displayed. Measurements performed in this mode are referred to as "List by nT" measurements.

Parameter Configuration

The configuration for most parameters is similar, although there are slight variations. Essentially, two categories (levels and nT) are set up. The levels setup determines how pits and spaces are to be extracted from the wav eform and involves the selection of threshold, polarity, and hysteresis. On the other hand, the nT setup determines how pits or spaces are categorized - which n index a pit or space belongs to based on its width, and which pit's or space's n values are to be used in the calculation and display.

This table gives the superset of configurable items for the av ailable parameters.

Data Source	The source wav eform for the optical data signal.
Clock Source	The source wav eform for the clock signal used for sampling the optical data signal.
Data Threshold	Voltage threshold used to identify pits and spaces. All 'qualified' threshold crossings identify the boundaries of a pit/space. Qualification of a threshold crossing is based on hysteresis.
Clock Threshold	Voltage threshold used to identify clock edge s. All 'qualified' threshold crossings of the clock wave eform identify clock edges. Qualification of a threshold crossing is based on hysteresis .
Hysteresis	Size of the hysteresis band (in screen divisions) with the thresholds at the middle location. Any wav eform being analyzed must pass beyond the band before the next threshold crossing is recognized.
Units	The units used for horizontal parameter results. Time refers to absolute time units. Percent refers to results being calculated as a percent of the clock period.
Data Polarity	Polarity of pits/spaces used in the measurement. Positive polarity refers to pits; Negative polarity refers to spaces. All can be selected to use both pits and spaces.
Clock Edge	Polarity of clock edges to be used in the measurement. Near refers to the nearest of either clock edge.
Single or	Specifies the single n or range of n indices that define pits/spaces used in the calculation. The range of n coupled with T are used to categorize the pits/spaces based on their widths.
Range of \mathbf{n}	The ideal clock period. The period, coupled with n is used to categorize pits/spaces based on their widths.
Period (T)	For automatic period determination, this specifies how the period is determined. The period can be measured from a clock provided, or entered by the user.
For AORM:	This specifies the $n T$ of interest for beginning and ending edge shift parameters. The measurements will be performed on pit/space pairs preceded (and followed) by this nT value.
Period from	
Subject \mathbf{n}	

Parameters and Values

Configuration Options
The following table is a comprehensive list of configuration options for each parameter．

Parameter				$\begin{aligned} & 0 \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \mathrm{C} \\ & \stackrel{亏}{亏} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	\％	0 $\frac{\square}{\square}$ $\frac{0}{0}$ $\stackrel{\square}{7}$
$\triangle \mathrm{p} 2 \mathrm{c}$	区	区	区	区	区	区	区	区	区	区	区	
$\triangle \mathrm{p} 2 \mathrm{cs}$	区	区	区	区	区	区	区	区	区	区	区	
bes	区	区	区	区	区	区	区	区	区	区	区	区
ces	区	区	区	区	区	区	区	区	区	区	区	区
bess	区	区	区	区	区	区	区	区	区	区	区	区
cess	区	区	区	区	区	区	区	区	区	区	区	区
bees	区	区	区	区	区	区	区	区	区		区	区
edgsh				区	区	区	区	区	区	区	区	
lper	区	区	区				区					
paa				区	区		区		区	区	区	
pasym				区	区		区			区	区	
pbase				区	区		区		区	区	区	
pmax				区	区		区		区	区	区	
pmidl				区	区		区		区	区	区	
pmin				区	区		区		区	区	区	
pmoda				区	区		区			区	区	
pnum				区	区	区	区		区	区	区	
pres				区	区		区			区	区	
ptop				区	区		区		区	区	区	

Parameter	¢09		$\begin{aligned} & \text { 응 } \\ & \text { 무 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { W } \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$				$\begin{aligned} & \stackrel{C}{亏} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$		$\begin{aligned} & \text { ग } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } \\ & \stackrel{0}{0} \\ & \vdots \end{aligned}$	¢ $\stackrel{\rightharpoonup}{\square}$ $\stackrel{\square}{\square}$ 1
pwid				区	区	区	区	区	区	区	区	
t＠pit				区	区	区	区		区	区	区	
timi				区	区	区	区	区	区	区	区	

Configuration Menus
The menus illustrated and described on the following pages show how to configure any parameter，using as representative examples the parameters $\Delta \mathrm{p} 2 \mathrm{c}$ and edgsh．

Parameters and Values

[^0]
Setting Levels

To identify pits or spaces, thresholds and hysteresis are set.

Parameters and Values

Configuration Tracking

Maximizing Performance

The ORM package has many configurable items, most of which are the same from parameter to parameter. To aid you in configuring parameters, a 'tracking' mechanism has been provided. This means that when tracking is on, all other ORM parameters track (follow) the configuration changes made.
The tracking menu is always visible when you are using ORM. For optimum ease of parameter configuration, you should define all of the parameters to be displayed prior to beginning parameter configuration. Turn tracking off when the changes affect only the parameter being set up.
In general, use tracking when configuring thresholds, hysteresis , and the clock period. Turn tracking off when configuring polarity and ranges/single n values unless you want the changes to be reflected in other parameters.

There are two restrictions to configuration tracking:

1. Changes to thresholds do not affect other ORM parameters that are not using the same source wav eform.
2. Changes to ranges/single n v alues on custom parameters do not affect the ranges of n values selected on 'list by $n T$ ' parameters.

Otherwise, all configuration changes track across all selected custom and list by nT parameters.

The ORM package is designed to make intelligent use of measurement similarities. This means that when multiple custom parameters are specified, the DSO will only recalculate necessary items when calculating parameters. This results in quicker calculations when correct configuration is performed. The speed of calculation is independent of the order of calculation.

A basic guideline that you should follow to maximize the performance of calculation in multiple parameter configurations is that precisely the same Value for the clock period ' T ', Threshold level, and Hysteresis value should be used.

Following this guideline ensures that parameters can make use of results obtained in previous parameter calculations. Howev er, in most cases there is no need for different configurations of the above three items in different parameter setups. Tracking can help in setting these values correctly.

Pit or Space Identification
This is determined uniquely by the threshold, hysteresis, and edge polarity of threshold crossings. A positive threshold crossing indicates the start of a positive polarity pit and the end of a negative polarity space. A positive threshold crossing followed by a negative threshold crossing fully delineates a pit. A negative crossing followed by a positive crossing fully delineates a space, as illustrated in Figure 3.1.

Figure 3.1
In order to prevent false pit and space identifications, hysteresis is provided. Hysteresis adds an additional condition that must be met before a threshold crossing is recognized as a pit/space edge. It requires that the wav eform make an excursion of a certain distance from the threshold before the next threshold crossing is recognized.

Figure 3.2 shows a threshold crossing that would result in incorrect pit identification without hysteresis.

Figure 3.2
The hysteresis band shown in Figure 3.3 is centered on the userselected voltage level threshold.

Figure 3.3
The hysteresis band divides the display into three zones. The ORM Package uses both the voltage threshold and hysteresis settings to identify pits and spaces.

Criteria for identifying a "feature" (pit or space):
> The first feature identified after the left parameter cursor can be either a pit or space. If the signal first enters Zone 1, the first feature identified (if additional constants are met) will be a pit. If the signal first enters Zone 3, it will be a space.
> After first crossing into Zone 1 or Zone 3, the next time the signal crosses the voltage threshold, it is recorded as the start time of a feature.
> If the first feature to be identified is a pit (signal entered Zone 1 first), after crossing the voltage threshold the signal must cross into Zone 3 and then pass the voltage threshold again to complete all conditions for identification as a pit. The first time that the signal crosses the voltage threshold after entering Zone 3 is recorded as the end time of the pit and the start time of the following space. The time between the start and end of the pit is recorded as the pit width. If the first feature to be identified is a space, the signal first entered Zone 3. The algorithm is used with directions reversed.
> For the entire signal, only a space can be identified after a pit, and only a pit can be identified after a space.
> All subsequent features are identified by crossing into the appropriate zone after the end of the previous feature. For a pit this is Zone 3, and for a space it is Zone 1. The end of the previous feature is the beginning of the current feature being identified. The subsequent first time the signal crosses the voltage threshold is recorded as the time of the feature being identified. At this point, the feature has been fully identified.
nT Pit/Space Categorization Because optical recording data is encoded using a pulse-width modulation mechanism, it is often useful to perform signal analysis for selected pulse widths. Exploiting the fact that optical recording data widths are ideally integral multiples of the data clock period ' T ', the ORM Package separates optical recording signal pits and spaces into groups whose widths fall into the same integral multiple of clock periods. As a result, ORMs can be configured to provide values for only pits or spaces, or both of these for a selected ' nT '

Memory Limitations

value (' nT ' denotes an integer multiple of the clock period) or for a range of ' $n T$'s.
The ideal clock period (T) is configured on the parameter $n T$ setup.
Categorization of pits and spaces by nT based on width is done using the following equation:

$$
(n-0.5) \cdot T \leq w<(n+0.5) \cdot T
$$

When this condition is met, the pit or space of width w is said to belong to the $\mathrm{n}^{\text {th }}$ index.

To make use of previous calculations, the ORM package maintains an internal buffer containing intermediate calculation results. The size of this buffer determines the number of pits/spaces that can be used for measurements in a given wav eform. The size is in turn determined by the amount of memory in the scope, and whether other options are installed. The following table shows the maximum number of features used per waveform vs. options and memory installed.

	Memory Installed	
Software Options Installed	8 MB memory	$=16 \mathrm{MB}$ memory
ORM only	5000	50000
ORM and DDM	2500	25000

Note: It is not the amount of memory alone that determines the buffer size, but rather the amount of free memory which changes with each new software version. These numbers are therefore subject to change. For best results, the ORM and associated packages should be used with the maximum amount of memory possible.

Parameters and Values

BLANK PAGE

Beginning Edge Shift

Description

BES provides a measurement of the time between the beginning edge of the subject n in a specified space/pit pair and the nearest specified clock edge. The measurement is calculated between the points where the data and clock signals cross selected voltage thresholds. The clock period T can be entered by the user, or measured from a user supplied clock signal, as described below.

The value calculated depends on the clock and data edges selected, as shown in the table below. The data edge menu selects the polarity of the subject \mathbf{n} pitspace. If Pos (positive) is selected, the measurement is performed from the beginning edges of positive polarity pits and categorized by the preceding space. If Neg (negative) is selected, the measurement is performed from the beginning edges of negative polarity spaces and categorized by the preceding pit. If All is selected, the beginning edges of both pits and spaces are used in the calculation and categorized by the preceding inv erse polarity space/pit. The sizes of pits or spaces used in the measurement are also detemined by the range of ' nT ' values chosen.

Clock Edge	Data Edge		
	Pos	Neg	All
Positive	time between beginning edge of positive polarity subject pit and nearest positive clock edge	time between beginning edge of negativ e polarity subject space and near- est positive clock edge	time between beginning edge of subject pits and spaces to nearest positive clock edge
Negative	time between beginning edge of positive polarity subject pit and nearest negativ e clock edge	time between beginning edge of negativ e polarity subject space and near- est negative clock edge	time between beginning edge of subject pits and spaces to nearest negative clock edge
Near	time between beginning edge of positive polarity subject pit and nearest clock edge	time between beginning edge of negative polarity subject space and near- est clock edge	time between beginning edge of subject pits and spaces and nearest clock edge

Measurement Parameters

Figure 4.1 demonstrates the measurement of the beginning edge shift on a single subject 4T pit preceded by a 3 T space. In this example, the clock is specified as the positive edge. For each space/pit combination, the beginning edge shift is calculated as the time difference between the beginning pit edge and the clock edge. Additionally, the measurements will be sorted by the space/pit pairs. For the positive polarity pit example shown in Figure 4.2, the measurements $t+$, and t - are for a single beginning edge shift measurement configured for positive edge, or negative edge. If nearest is selected, the smaller of t - or $\mathrm{t}+$ is used.

Figure 4.1: Beginning Edge Shift Measurement of subject 4Tpit

Figure 4.2: Zoom of Positive Polarity Pit Edge - example measurement.

The measurement has configurable units. If absolute time is specified, the v alue is simply the time indicated above. If percent is specified, the value of the measurement is the time normalized to the clock period:

$$
\begin{aligned}
& \text { bes }=\Delta t_{+} \cdot \frac{100 \%}{T} \\
& \text { or } \quad \Delta t_{-} \cdot \frac{100 \%}{T}
\end{aligned}
$$

For all pits, a valid measurement will be obtained only when both pit/space edges can be determined, (that is, there is a hysteresisqualified threshold crossing beginning and ending the pit/space pair of interest between the parameter cursors), and there is a clock edge of both polarities surrounding the leading pit or space edge between the parameter cursors.

Display Options
ORM parameter calculations can be displayed, histogrammed, and trended in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single v alue of the av erage time between beginning edge of the subject n pit (space) and nearest clock edges for all subject pits (spaces) preceded by the spaces (pits) within the selected ' nT' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the beginning edge shift calculated for all identified pit/space pairs within the selected 'nT' range for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of values of the av erage beginning edge shift for each ' nT ' space (pit) within the selected range preceding the subject pit (space) for the last acquisition.
Histogram Function	Histogram graph of the value of the beginning edge shift calculated for all pit/space pairs within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend graph of the value of the beginning edge shift calculated for all pit//space pairs within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.

Beginning Edge Shift Sigma

Description

BESS provides a measurement of the mean, normalized standard deviation of the Beginning Edge Shift measurements (see BES). When a single n is specified, or when you are in 'list by $n T^{\prime}$ display mode, the value calculated for the $\mathrm{n}^{\text {th }}$ index is calculated using the following equation for standard dev iation:

Beginning Edge Shift Sigma cannot be calculated for a given index n unless there are at least two Beginning Edge Shift values

$$
\begin{aligned}
& B E S S_{n}=\sigma\left(B E S_{n}\right) \\
& B E S S_{n}=\sqrt{\frac{\sum B E S_{n}^{2}-\frac{\left(\sum B E S_{n}\right)^{2}}{N_{n}}}{N_{n}-1}}
\end{aligned}
$$

calculated or that n index.
When Beginning Edge Shift is configured as a custom parameter with a range of n, the value calculated is the standard deviation of the distribution which results by normalizing each independent distribution categorized by the space (pit) $n T$ preceding the subject pit (space). Distributions are normalized by subtracting the mean of the distribution from all of the elements in the distribution. This results in the following equation for overall Beginning Edge Shift Sigma resulting from the individually categorized Beginning Edge Shift Sigma v alues:

$$
B E S S_{\text {overall }}=\sqrt{\frac{\sum\left(B E S S_{n}{ }^{2} \cdot\left(N_{n}-1\right)\right)}{\sum N_{n}-1}}
$$

Note: The value calculated by BESS will generally not be the same as the sigma of BES the measurement displayed on the parameter line when a range of n is used and statistics is on. This is because the two measurements are not the same. The BESS measurement normalizes the results for each n by subtracting the mean BES from each BES in the $\boldsymbol{n}^{\text {th }}$ distribution. This results in a superposition of mean-centered distributions, not a superposition of 0-centered distributions contributing to BES measurements. BESS will always be less than or equal to the standard deviation of BES measurements.

Measurement Parameters

Display Options
ORM parameter calculations can be displayed, histogrammed (see Chapter 6) and trended (Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single v alue of the standard dev iation of the mean normalized beginning edge shift values for pits/spaces of interest for last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the beginning edge shift sigma value calculated per acquisition for all acquisitions since the last CLEAR SWEEPS operation.
List by nT	List of values of the standard deviation of the beginning edge shift values for each 'nT' spaces (pit) within the selected range preceding the subject pit (space) for the last acquisition.
Histogram Function	Histogram of beginning edge shift sigma values calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend of the beginning edge shift sigma values calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.

Description

EES provides a measurement of the time between the ending edge of the subject n in a specified space/pit pair and the nearest specified clock edge. The measurement is calculated between the points where the data and clock signals cross selected voltage thresholds. The clock period T can be entered by the user or measured from a user supplied clock signal, as described below.

The value calculated depends on the clock and data edges selected, as shown in the table below. The data edge menu selects the polarity of the subject \mathbf{n} pit/space. If Pos (positive) is selected, the measurement is performed from the ending edges of positive polarity pits and categorized by the following space. If Neg (negative) is selected, the measurement is performed from the ending edges of negative polarity spaces and categorized by the following pit. If All is selected, the ending edges of both pits and spaces are used in the calculation and categorized by the following inverse polarity space/pit. The sizes of pits or spaces used in the measurement are also determined by the range of ' nT ' values chosen.

Clock Edge	Data Edge		
	Pos	Neg	All
Positive	time between ending edge of positive polarity subject pit and nearest positive clock edge	time between ending edge of negative polarity subject space and nearest positive clock edge	time between ending edge of subject pits and spaces to nearest positive clock edge
Negative	time between ending edge of positive polarity subject pit and nearest negative clock edge	time between ending edge of negative polarity subject space and nearest negative clock edge	time between ending edge of subject pits and spaces to nearest negative clock edge
Near	time between ending edge of positive polarity subject pit and nearest clock edge	time between ending edge of negative polarity subject space and nearest clock edge	time between ending edge of subject pits and spaces and nearest clock edge

Measurement Parameters

Figure 4.3 demonstrates the measurement of the ending edge shift on a single subject 4T pit followed by a 3T space. In this example, the clock is specified as the positive edge. For each pit/space combination, the ending edge shift is calculated as the time difference between the ending pit edge and the clock edge. Additionally, the measurements will be sorted by the pit/space pairs. For the positive polarity pit example shown in Figure 4.4, the measurements $t+$, and t - are for a single ending edge shift measurement configured for positive edge, or negative edge. If nearest is selected the smaller of t - or $\mathrm{t}+$ is used.

Figure 4.3: Ending Edge Shift Measurement of subject 4T pit

Figure 4.4: Zoom of Positive Polarity Pit Ending Edge - example.

The measurement has configurable units. If absolute time is specified, the value is simply the time as indicated above. If percent is specified, the value of the measurement is the time normalized to the clock period:

$$
\begin{aligned}
& \text { ees }=\Delta t_{+} \cdot \frac{100 \%}{T} \\
& \text { or } \quad \Delta t_{-} \cdot \frac{100 \%}{T}
\end{aligned}
$$

For all pits, a valid measurement will be obtained only when both pit/space edges can be determined (that is, there is a hysteresisqualified threshold crossing beginning and ending the pit/space pair of interest between the parameter cursors), and there is a clock edge of both polarities surrounding the ending pit or space edge between the parameter cursors.

Measurement Parameters

Display Options
ORM parameter calculations can be displayed, histogrammed, and trended in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage time between ending edge of the subject n pit (space) and nearest clock edge s for all subject pits (spaces) followed by the spaces (pits) within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the ending edge shift calculated for all identified pits/spaces pairs within the selected ' nT ' range for all acquisitions since the last Clear SWEEPS operation.
List by nT	List of values of the average ending edge shift for each ' nT ' space (pit) within the selected range following the subject pit (space) for the last acquisition.
Histogram Function	Histogram graph of the value of the ending edge shift calculated for all pit/space pairs within the selected ' nT' range for all acquisitions since the last Clear Sweeps operation.
Trend Function	Trend graph of the value of the ending edge shift calculated for all pit/space pairs within the selected ' nT ' range for all acquisitions since the last Clear Sweeps operation.

$$
\begin{aligned}
& E E S S_{n}=\sigma\left(E E S_{n}\right) \\
& E E S S_{n}=\sqrt{\frac{\sum E E S_{n}^{2}-\frac{\left(\sum E E S_{n}\right)^{2}}{N_{n}}}{N_{n}-1}}
\end{aligned}
$$

Description

EESS provides a measurement of the mean, normalized standard deviation of the Ending Edge Shift measurements (see EES). When a single n is specified, or when you are in 'list by $n T$ ' display mode, the value calculated for the $\mathrm{n}^{\text {th }}$ index is calculated using the following equation for standard dev iation:

Ending Edge Shift Sigma cannot be calculated for a given index n unless there are at least two Ending Edge Shift values calculated for that n index.

When Ending Edge Shift is configured as a custom parameter with a range of n, the value calculated is the standard deviation of the distribution which results by normalizing each independent distribution categorized by the space (pit) nT following the subject pit (space). Distributions are normalized by subtracting the mean of the distribution from all of the elements in the distribution. This results in the following equation for ov erall Ending Edge Shift Sigma resulting from the indiv idually categorized Ending Edge Shift Sigma values:

$$
E E S S_{\text {overall }}=\sqrt{\frac{\sum\left(E E S S_{n}{ }^{2} \cdot\left(N_{n}-1\right)\right)}{\sum N_{n}-1}}
$$

Note: The value calculated by EESS will generally not be the same as the sigma of EES measurement displayed on the parameter line when a range of n is used and statistics is on. This is because the two measurements are not the same. EESS measurement normalizes the results for each n by subtracting the mean EES from each EES in the $n^{\text {th }}$ distribution. This results in a superposition of mean-centered distributions, not a superposition of 0-centered distributions contributing to EES measurements. EESS will always be less than or equal to the standard deviation of EES measurements.

Measurement Parameters

Display Options
ORM parameter calculations can be displayed, histogrammed (see Chapter 6) and trended (Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single v alue of the standard dev iation of the mean normalized ending edge shift values for pits/spaces of interest for last acquisition.
Parameter Statistics On	average, minimum, maximum, and sigma of the ending edge shift sigma value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by nT	List of values of the standard dev iation of the ending edge shift values for each 'nT' spaces (pit) within the selected range following the subject pit (space) for the last acquisition.
Histogram Function	Histogram of ending edge shift sigma values calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend of the ending edge shift sigma values calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Description

BEES provides a measurement of both the beginning and ending edge shift for a subject n pit (space) preceded and followed by a specified space (pit) (see BES and EES). The measurement is calculated between the points where the data and clock signals cross selected voltage thresholds. The clock period T can be entered by the user, or measured from a user supplied clock signal, as described below.

The value calculated depends on the clock and data edges selected, as shown in the table below. The data edge menu selects the polarity of the subject \mathbf{n} pit/space. If Pos (positive) is selected, the measurement is performed from the beginning and ending edges of positive polarity pits and is preceded and followed by a space of the specified width. If Neg (negative) is selected, the measurement is performed from the edges of negative polarity spaces and is preceded and followed by a pit of the specified width.

Clock Edge	Data Edge	
	Pos	Neg
Positive	times between edges of positive polarity subject pit and nearest positive clock edge	times between edges of negative polarity subject space and nearest positiv e clock edge
Negative	times between edges of positive polarity subject pit and nearest negativ e clock edge	times between edges of negativ e polarity subject space and nearest negativ e clock edge
Near	times between edges of positive polarity subject pit and nearest clock edge	times between edges of negativ e polarity subject space and nearest clock edge

Measurement Parameters

Figure 4.5 demonstrates the measurement of the beginning edge shift on a single subject 4T pit preceded and followed by a 3T space. In this example, the clock is specified as the positive edge. The beginning edge shift is calculated as the time difference between the beginning pit edge and the clock edge while the ending edge shift is calculated as the time difference between the ending pit edge and the clock edge.

Figure 4.5: Beginning and Ending Edge Shift Measurement of subject 4T pit
The measurement has configurable units. If absolute time is specified, the value is simply the time as indicated above. If percent is specified, the value of the measurement is the time normalized to the clock period:

$$
\begin{aligned}
& \text { bees }=\Delta t_{+} \cdot \frac{100 \%}{T} \\
& \text { or } \quad \Delta t_{-} \cdot \frac{100 \%}{T}
\end{aligned}
$$

For all pits, a valid measurement will be obtained only when both edges of the leading and trailing pits/spaces can be determined (that is, there is a hysteresis-qualified threshold crossing beginning the
start pitspace and ending the end pit/space of interest between the parameter cursors), and there is a clock edge of both polarities surrounding the leading pit or space edge between the parameter cursors.

ORM parameter calculations can be displayed, histogrammed, and trended in a variety of ways.

Display Type	
Parameter Statistics Off	Single value of the av erage time between the edges of the subject n pit (space) and nearest clock edge s for all subject pits (spaces) that are preceded and followed by the specified space (pits) for the last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the beginning and ending edge shift calculated for all subject pits (spaces) that are preceded and followed by the specified space (pits) for all acquisitions since the last CLEAR SwEEPS operation.
List by nT	List of values of the beginning edge shift and the ending edge shift for all subject pits (spaces) that are preceded and followed by the specified space (pits) for the last acquisition.
Histogram Function	Histogram graph of the values of the beginning and ending edge shift calculated for all subject pits (spaces) that are preceded and followed by the specified space (pits) for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend graph of the value of the beginning and ending edge shift calculated for all subject pits (spaces) that are preceded and followed by the specified space (pits) for all acquisitions since the last CLEAR SwEEPS operation.

Δ p2c provides a measurement of the time between the leading edge of the pit (or spaces of interest) and the nearest specified clock edge . The measurement is calculated between the points where the data and clock signals cross selected voltage thresholds.
The value calculated depends on the clock and data edges selected, as shown in the table below. If in the "data edge" menu Pos (positive) is selected, the measurement is performed from the leading edges of positive polarity pits. If Neg (negative) is selected, the measurement is performed from the leading edges of negative polarity spaces. And if All is selected, the leading edges of both pits and spaces are used in the calculation. The sizes of pits or spaces used in the measurement are also determined by the range of ' nT ' values chosen.

Clock Edge	Data Edge		
	Pos	Neg	All
positive	time between leading edge of positive polarity pit and nearest positive clock edge	time between leading edge of negative polarity space and nearest positive clock edge	time between leading edge of pits and spaces to nearest positive clock edge
negative	time between leading edge of positive polarity pit and nearest negativ e clock edge	time between leading edge of negative polarity space and nearest negative clock edge	time between leading edge of pits and spaces to nearest negative clock edge
near	time between leading edge of positive polarity pit and nearest clock edge	time between leading edge of negative polarity space and nearest clock edge	time between leading edge of pits and spaces and nearest clock edge

For the positive polarity pit example shown as the zoom of the measurement (Figures 4.6 and 4.7), the measurements $t+, t-$, n are for
a single Delta Pit-to-Clock measurement configured for positive edge, negative edge, or nearest edge, respectiv ely.

Figure 4.6: Delta Pit-to-Clock Measurement

Figure 4.7: Zoom of Positive Polarity Pit Edge — example measurement.

Measurement Parameters

The measurement has configurable units. If absolute time is specified, the value is simply the time as indicated above. If percent is specified, the value of the measurement is the time normalized to the local clock period. The local clock period is calculated as the time between the two clock edge s bracketing the clock edge used for the delta time measurement:

$$
\begin{aligned}
& \Delta p 2 c=\Delta t_{+} \cdot \frac{100 \%}{T_{+}} \\
& \text {or } \quad \Delta t_{-} \cdot \frac{100 \%}{T_{-}} \\
& \text {or } \quad \Delta t_{n} \cdot \frac{100 \%}{T_{n}}
\end{aligned}
$$

For all pits, a valid measurement will be obtained only when both pit/space edges can be determined (that is, there is a hysteresis qualified threshold crossing that begins and ends the pit/space of interest between the parameter cursors), and when there is a clock edge of both polarities surrounding the leading pit or space edge between the parameter cursors.

Display Options

ORM parameter calculations can be displayed, histogrammed and trended in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage time between leading pit/space edges and nearest clock edge s for all pits/spaces within the selected ' nT range for the last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the Delta Pit-to- Clock calculated for all identified pits/spaces within the selected nT' range for all acquisitions since the last CLEAR SwEEPS operation.
List by nT	List of values of the av erage Delta Pit-to-Clock for each group of pits/spaces of common ' nT ' width for the last acquisition.
Histogram Function	Histogram graph of the v alue of the Delta Pit-to-Clock calculated for all pits/spaces within the selected ' nT' range for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend graph of the value of the Delta Pit-to-Clock calculated for all pit/space within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.

Description

Δ p2cs provides a measurement of the mean, normalized standard deviation of the Delta Pit-to-Clock measurements (see $\Delta \mathbf{p} 2 \mathbf{c}$). When a single n is specified, or in 'list by nT ' display mode, the value calculated for the $\mathrm{n}^{\text {th }}$ index is calculated using the following equation for standard dev iation:

$$
\begin{aligned}
& \Delta P 2 C S_{n}=\sigma\left(\Delta P 2 C_{n}\right) \\
& \Delta P 2 C S_{n}=\sqrt{\frac{\sum \Delta P 2 C_{n}^{2}-\frac{\left(\sum \Delta P 2 C_{n}\right)^{2}}{N_{n}}}{N_{n}-1}}
\end{aligned}
$$

Delta Pit-to-Clock Sigma cannot be calculated for a given index n unless there are at least two Delta Pit-to-Clock values calculated for that n index.

When Delta Pit-to-Clock is configured as a custom parameter with a range of n, the value calculated is the standard deviation of the distribution which results by normalizing each independent distribution categorized by nT. Distributions are normalized by subtracting the mean of the distribution from all of the elements in the distribution. This results in the following equation for overall Delta Pit-to-Clock Sigma resulting from the individually categorized Delta Pit-to-Clock Sigma values:

$$
\Delta P 2 C S_{\text {overall }}=\sqrt{\frac{\sum\left(\Delta P 2 C S_{n}^{2} \cdot\left(N_{n}-1\right)\right)}{\sum N_{n}-1}}
$$

Note: the value calculated by $\triangle P 2 C S$ will generally not be the same as the sigma of $\Delta P 2 C$ measurement displayed on the parameter line when a range of n is used and statistics is on. This is because the two measurements are not the same. \triangle P2CS measurement normalizes the results for each n by subtracting the mean $\triangle P 2 C$ from each $\triangle P 2 C$ in the $n^{\text {th }}$ distribution. This results in a superposition of mean centered distributions, not a superposition of 0 centered distributions contributing to $\triangle P 2 C$ measurements. \triangle P2CS will always be less than or equal to the standard deviation of $\triangle P 2 C$ measurements.

Display Options

ORM parameter calculations can be displayed, histogrammed (see Chapter 6), and trended (see Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the standard dev iation of the mean normalized Delta Pit-to-Clock v alues for pits/spaces of interest for last acquisition.
Parameter Statistics On	Average, minimum, maximum and sigma of the Delta Pit-to- Clock sigma value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of values of the standard dev iation of the Delta Pit-to-Clock values for each indiv idual 'nT' in the selected range of 'nT' for the last acquisition.
Histogram Function	Histogram of Delta Pit-to-Clock sigma values calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend of the Delta Pit-to-Clock sigma values calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Description

Edge Shift provides a measurement of the difference between the width of pits, spaces, or both, and their ideal widths. These ideal widths are integer multiples of the clock period ' T '. The width of the pit or space is determined by the time between crossings of the selected voltage threshold (see pwid).
When a single n is specified for the Edge Shift custom parameter, for each pit-width value calculated, the Edge Shift is calculated as:

$$
\text { edgsh } h_{i}=\left(w_{i}-n_{i} \cdot T\right) \text { when absolute time units are specified }
$$

or

$$
e d g s h_{i}=\left(w_{i}-n_{i} \cdot T\right) \cdot \frac{100.0 \%}{T} \text { when percent is specified, }
$$

where n_{i} is the n that makes the width closest to $n T$ (i.e., n is the n category to which the width belongs). Thus:

$$
\left(n_{i}-0.5\right) \cdot T \leq w_{i}<\left(n_{i}+0.5\right) \cdot T
$$

where T is the configured period. It is very important for this parameter calculation that you enter exactly the ideal T .
For 'list by nT ' display mode, or custom mode with one n specified, the value displayed for the $\mathrm{n}^{\text {th }}$ index is the av erage of all of the edge shift values calculated that belong to that index:

$$
e d g s h_{n}=\left(\frac{\sum w_{i}}{N_{n}}-n \cdot T\right) \cdot \frac{100.0 \%}{T}
$$

Where N_{n} is the number of pits belonging to the $n^{\text {th }}$ index. When edge shift is configured as a custom parameter with a range of n, the overall edge shift is calculated and displayed as the weighted av erage of the edge shift values calculated above:

$$
e d g s h_{\text {overall }}=\frac{\sum\left(e d s h_{n} \cdot N_{n}\right)}{\sum N_{n}}
$$

The measurement calculation is compliant with the definition of Edge Shift as defined by ISO/IEC JTC1.23.14517 Section 22.4.

Display Options

ORM parameter calculations can be displayed, histogrammed (see Chapter 6), and trended (see Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the ov erall edge shift for all pits/spaces within the selected 'nT' range for last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the single ov erall edge shift value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of values of the ov erall edge shift for each group of pits/spaces of common ' nT ' width for the last acquisition.
Histogram Function	Histogram of the single ov erall edge shift value calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend of the single ov erall Edge Shift value calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Example

The example shows the CD data signal measured at the selected voltage threshold containing, in sequence, a 5 T pit, 3T space, 3T pit and 4 T space. If the clock period ' T ' is 231.5 ns , then the 5 T and 4 T edge shift value is simply the difference between the width calculated and the ideal width (since there is only one pit/space of that ' $n T$ ' width), thus:

$$
\begin{aligned}
& e d g \operatorname{sh}(4 T)=(920-4 \cdot 231.5) \cdot \frac{100 \%}{231.5}=-2.59 \% \\
& e d g \operatorname{sh}(5 T)=(1160-5 \cdot 231.5) \cdot \frac{100 \%}{231.5}=+1.08 \%
\end{aligned}
$$

The 3T edge shift value is the av erage difference:

$$
\operatorname{edgsh}(3 T)=\frac{\left((690-3 \cdot 231.5) \cdot \frac{100 \%}{231.5}\right)+\left((695-3 \cdot 231.5) \cdot \frac{100 \%}{231.5}\right)}{2}=+0.86 \%
$$

In a list by nT display, these three values would be shown in the appropriate n T location. In custom display, the ov erall edge shift is calculated as the weighted av erage edge shift:

Measurement Parameters

$$
e d g s h_{\text {overall }}=\frac{-2.59+1.08+2 \cdot-0.86}{4}=-0.81 \%
$$

More On Edge Shift

A good approach to understanding the operation of the edge shift parameter with different modes of operation starts by considering Figure 4.8, a histogram of 3 T to 5 T pit widths.

Figure 4.8
The Edge Shift parameter takes on each of these distributions separately. For each distribution, the ideal width (nT) is subtracted from the pit widths and the difference is calculated in percent. As a result, the Edge Shift distributions are calculated, shown in Figure 4.9.

Figure 4.9
The $3 \mathrm{~T}, 4 \mathrm{~T}$, and 5 T distributions are obtained when the Edge Shift custom parameter is configured for single n values and histogrammed. The final superposition distribution is obtained when the Edge Shift custom parameter is configured for ranges of n values (in this case 3 T to 5 T) and histogrammed.

The value displayed on the custom parameter line (with statistics off) is the mean of any of the resulting distributions for the last acquisition only. This average edge shift value is calculated internally without actually histogramming the values. The values displayed in 'List by nT' mode are the mean of the Edge Shift distributions resulting from each nT distribution for the last acquisition.

Note: The standard deviation of superimposed Edge Shift distributions is not the same as Timing Jitter.

Local Period

Description	Local Period prov ides a measurement of the clock period of each clock cycle (up to the maximum number of cycles gov erned by memory limitations). Histogramming and statistics can be used to prov ide a clock jitter measurement. The starting edge (the edge that begins each cycle) is configurable.
Display Options	ORM parameter calculations can be displayed, histogrammed (see Chapter 6), and trended (Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of av erage period for all clock cycles for last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the clock period for all clock cycles for all acquisitions since last CLEAR SWEEPS operation.
Histogram Function	Histogram graph of the value of the period for all clock cycles for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend graph of the value of the period for all clock cycles for all acquisitions since the last CLEAR SwEEPS operation.

ORM

Example
Histogramming the local period jittery clock signal shows that there are two frequency modes, one at a period of about 292 ns and the other at around 308 ns.

Description

Display Options

Pit Average Amplitude provides a measurement of the av erage amplitude of pits and spaces. The calculation is performed by calculating the difference between the average value of the base (pbase) for spaces of a particular ' $n T$ ' width and the average value of the top (ptop) of pits of the same ' nT ' width. For example, the av erage value of the base for all 3T spaces is subtracted from the average value of the top for all $3 T$ pits to obtain the 3T pit av erage amplitude. If a range of ' nT ' v alues is selected and is displayed as a parameter, the measurement provides the weighted av erage amplitude based on the number of occurrences of each ' nT ' pit/space width.
ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage amplitude for all pits/spaces of interest for last acquisition.
Parameter Statistics On	Overall average, minimum, maximum, and sigma of the single av erage amplitude v alue calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of the av erage amplitude values for each group of pits/spaces of common 'nT' width for the last acquisition.
Histogram Function	Histogram of the single av erage amplitude value calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend of the single average amplitude value calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.

Example

Consider this persistence plot of an optical data waveform. Using cursors, the average amplitude of the $3 T$ pits/spaces can be estimated using the measurement cursors. In this case, the value obtained is 47.2 mV .

When the parameter paa is configured for $3 T$ widths, the measurement result is also 47.2 mV . This value is calculated automatically.

Description

Display Options

Pit Asymmetry provides a measurement of the asymmetry of the middle voltage level for the high nT index pits/spaces compared to the middle voltage level of the low ' nT ' index pits/spaces. The measurement calculation is compliant with the definition of Pit Asymmetry as defined by IEC 908:1987 Section 3.1. The negative value of the measurement is referred to as Pit Symmetry as defined by ISO/IEC 10149:1995 (E) Section 12.2. Pit Asymmetry is calculated by the formula:

$$
P A S Y M=\frac{\text { pmidl }_{\text {high_n }}-\text { pmidl }_{\text {low_n }} \cdot 100 \%}{p a a_{\text {high_n }}}
$$

where paa is the average peak-peak amplitude. The low (smallest) and high (largest) ' nT ' values to use in performing the calculation are provided by the user through the associated measurement configuration options. Midpoint designates the midpoint value between the av erage top and base for a specified ' nT .' The value shown is in units of percent.

ORM parameter calculations can be displayed, histogrammed, and trended in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the asymmetry for the last acquisition.
Parameter Statistics On	Average, minimum, maximum and sigma of the single asymmetry value calculated per acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Histogram Function	Histogram of asymmetry value calculated per acquisition for all acquisitions since last CLEAR SWEEPS operation.
Trend Function	Trend of single asymmetry value calculated per acquisition for all acquisitions since last CLEAR SWEEPS operation.

Example

This persistence plot of a bandwidth limited, smooth waveform illustrates asymmetry.

Notice that the midlevel of the $3 T$ waveform is offset from 0 V , and that the midlevel of the $11 T$ waveform is approximately 0 V .

Since the $3 T$ middle level is offset, the expected asymmetry value is negative. This is the asymmetry calculated from a waveform with several thousand widths. The values are the asymmetry, the $3 T$ middle level, the 11T middle level, and the 11T average amplitude.

Description

Display Options

Pit Base provides a measurement of the best estimate of the bottom amplitude of a space. The concept of the base calculation is to automatically provide the same measurement that would be obtained from a persistence plot. The base of each space is determined through histogramming techniques described under Base and Top Calculation Details, page 4-74.

When pbase is configured as a custom parameter, all bases within the single $n T$ or range of $n T$ are calculated. Histogramming or trending such a configuration would result in one value per space in the $n T$ range contributing a value to the histogram or trend. The value displayed on the custom parameter display line is the av erage of all such base calculations. 'List by nT' mode provides an av erage base measurement for each n index.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways. The following table provides a concise description of the value or v alues displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage base for all spaces within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the base for all spaces that are within the selected ' nT ' range for all acquisitions since the last CLEAR SWEEPS operation.
List by $\mathbf{n T}$	List of values of the av erage base for each group of spaces of common ' nT ' width for the last acquisition.
Histogram Function	Histogram graph of the value of the base for all spaces within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend graph of the value of the base calculated for space that is within the selected ' n ' range for all acquisitions since the last CLEAR SWEEPS operation.

Example

The following persistence waveform is created by setting a SMART Trigger ${ }^{\oplus}$ to capture only $4 T$ spaces. The 4T base computed is -27.0 mV .

Description

Display Options

Pit Maximum provides a measurement of the maximum voltage value of pits of interest. It provides a comparison of how the maximum point in the waveform corresponds to the ptop value When pmax is configured as a custom parameter, all maximums within the single $n T$ or range of $n T$ are calculated. Histogramming or trending such a configuration would result in one value per pit in the nT range contributing a value to the histogram or trend. The value displayed on the custom parameter display line is the average of all such maximum calculations. 'List by $n T$ ' mode prov ides an av erage maximum value for the pits in each n index.
ORM parameter calculations can be displayed, histogrammed (Chapter 6) and trended (Chapter 5) in a variety of ways. The table provides a concise description of the value or values displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage maximum for all pits within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the maximum for all pits that are within the selected ' nT ' range for all acquisitions since the last CLEAR SWEEPS operation.
List by $\mathbf{n T}$	List of values of the av erage maximum for each group of pits of common ' nT ' width for the last acquisition.
Histogram Function	Histogram graph of the value of the maximum for all pits within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend graph of the value of the maximum calculated for each pit that is within the selected ' nT ' range for all acquisitions since the last CLEAR SWEEPS operation.

Example:

This waveform contains a single pit, whose max is computed as 34.1 mV .

The same measurement is verified using the measurement cursors.

Description

Display Options

Pit Middle Level provides a measurement of the middle voltage level of pits or spaces. It is performed by first calculating the midpoint of the average value of the base (pbase) for spaces and the average value of the top of pits (ptop). If only $3 T$ pits are specified, the resulting measurement is the 'decision level' (see ISO/IEC 10149:1995 (E) Section 12.1). If a range of ' T ' ' values is selected and is displayed as a parameter, the measurement provides the weighted average midpoint based on the number of occurrences of each ' nT ' pit/space width. The measurement value can be used to determine not only the differences of the midpoint of different ' $\mathrm{n} T$ ' width pits, but also the ov erall best data wav eform voltage threshold setting to use for all ORMs.

ORM parameter calculations can be displayed, histogrammed, (Chapter 5) and trended (Chapter 4) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the middle lev el for all pits/spaces of interest for last acquisition.
Parameter Statistics On	Overall average, minimum, maximum, and sigma of the single middle lev el value calculated per acquisition,for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of the middle lev el values for each group of pits/spaces of common 'nT' width for the last acquisition.
Histogram Function	Histogram of the single middle level value calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend of the single middle level value calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Example

This waveform contains thousands of pits. In 'list by nT' mode, the middle levels are displayed for each $n T$ index. These values are the midlevels of the tops and bases for pits/spaces within the $n T$ indices.

The overall middle level is calculated based on a weighted average of the middlle level for each $n T$. This value is the overall best threshold value for all pits/spaces within the $3 T$ to 11T range.

Description

Display Options

Pit Minimum provides a measurement of the minimum voltage value of pits of interest, and a comparison of how the minimum point in the wav eform corresponds to the ptop value. When pmin is configured as a custom parameter, all minimums within the single nT or range of nT are calculated. Histogramming or trending such a configuration would result in one value per pit in the $n T$ range contributing a value to the histogram or trend. The value displayed on the custom parameter display line is the av erage of all such minimum calculations. 'List by $n T$ ' mode provides an av erage minimum value for the pits in each \underline{n} index.
ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a v ariety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single v alue of the av erage minimum for all pits within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the minimum for all pits that are within the selected ' $n T$ ' range for all acquisitions since the last CLEAR SWEEPS operation.
List by $\mathbf{n T}$	List of values of the av erage minimum for each group of pits of common ' nT ' width for the last acquisition.
Histogram Function	Histogram graph of the value of the minimum for all pits within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend graph of the value of the minimum calculated for each pit that is within the selected ' nT ' range for all acquisitions since the last CLEAR SwEEPS operation.

Example

This waveform contains a single space. The pit min is computed as -29.7 mV .

The measurement can be verified with the measurement cursors.

Description

> Note: this measurement must be performed on the DC-coupled optical data waveform, otherwise incorrect values will result.

Display Options

Pit Modulation Amplitude provides a measurement of the ratio of the Pit Average Amplitude (paa) for the low ' nT ' pits/spaces in the data signal to the Pit Top (ptop) of the high ' nT ' pits in the data signal:

$$
P M O D A=\frac{p a a_{l o w _n}}{\operatorname{avg}(t o p)_{\text {high } _n}}
$$

The low and high ' nT ' values to be used for performing the calculation are provided by the user through the associated measurement configuration options. Some measurements of modulation amplitude require the low and high n index to be identical. The value is shown is decimal. The measurement calculation is compliant with the definition of Modulation Amplitude as defined by IEC 908:1987 Section 9.2 and ISO/IEC 10149:1995 (E) Section 12.2.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a v ariety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the modulation amplitude for the last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the single modulation amplitude value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Histogram Function	Histogram of the modulation amplitude value calculated per acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend of the single modulation amplitude value calculated per acquisition for all acquisitions since the last CLEAR SWEEPS operation.

Example

The following persistence plots were generated using the DC-coupled signal.

In the first plot, the amplitude measurement cursor is reading the $11 T$ top voltage of 76.7 $m V$

In the second, the cursor reads the difference between the $11 T$ top and base of 67.2 mV .

In the third plot, the cursor reads the difference between the $3 T$ top and base of 47.2 mV .

The last plot shows the waveform with the parameters calculated automatically.

1. pmoda3T paaz11Ttop

2 pmoda 11Tpaa11Ttop
3. paa3T
4. paa11T
5. top $11 T$

Line 1 contains the ratio of line 3 to line 5 . Line 2 contains the ratio of line 4 to line 5 .

Description

Display Options

Pit Number provides a measurement of the number of pits or spaces of interest or both. When pnum is selected as a parameter measurement the total number of pits and/or spaces for the selected ' nT ' range is displayed. In the List by nT mode the number for each ' $n T$ ' v alue is displayed.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways. The table provides a concise description of the value or values displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the total number of pits/spaces within the selected ' $n T$ ' range for the last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the single value of the total number of pits/spaces within the selected ' nT ' range, calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by nT	List of values of the number pits/spaces for each individual ' $n T$ ' in the selected range of ' nT ' for the last acquisition.
Histogram Function	Histogram graph of the single value of the number of pits/spaces within the selected ' $n T$ ' range calculated each acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend graph of the single value of the number of pits/spaces within the selected ' $n T$ ' range calculated each acquisition for all acquisitions since the last Clear SwEeps operation.

Example

In this waveform, each of the 3 pits/spaces is easily identified. There is a $4 T$ pit, a $6 T$ space, and a $5 T$ pit. Each is counted and displayed in 'List by nT' mode.

This is the long waveform showing the number of pits/spaces obtained: approx. 9,000.

Description

Display Options

Pit Resolution measures the ratio of the Pit Av erage Amplitude (see paa measurement description) of the smallest of the ' nT ' pits or spaces in the data signal to that of the largest:

$$
\text { PRES }=\frac{p a a_{l o w_{_} n}}{p a a_{\text {high_n}}} \cdot 100 \%
$$

The low and high ' nT ' v alues for performing the calculation must be provided by the user through the associated measurement configuration options. The value shown is in units of percent. The measurement calculation is compliant with the definition of Pit Resolution as defined by IEC 13549:1993 Section 15.3.1.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways. The table provides a concise description of the value or values displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the pit resolution for the last acquisition.
Parameter Statistics On	Overall average, minimum, maximum, and sigma of the single pit resolution value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Histogram Function	Histogram of the single pit resolution value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
Trend Function	Trend of the single pit resolution value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Example

Consider the following persistence plots. In the first, the amplitude measurement cursor reads the difference between the $3 T$ top and base of 47.3 mV .

In the second, the cursor reads the difference between the 11T top and base of 67.3 mV .

Therefore, the resolution is:
$\frac{47.3}{67.3} \cdot 100 \%=70.3 \%$

This is the same waveform with the parameters calculated automatically.

1. pres3Tpaa/11Tpaa
2. paa3T
3. paa11T

Line 1 contains the ratio of line 2 to line 3 in percent.

Description

Display Options

Pit Top provides a measurement of the best estimate of the top amplitude of a pit. The concept of the top calculation is to automatically provide the same measurement which would be obtained from a persistence plot. The top of each pit is determined through histogramming techniques described in detail under Base and Top Calculation Details, page 4-74. When ptop is configured as a custom parameter, all tops within the single nT or range of $n T$ are calculated. Histogramming or trending such a configuration would result in one value per pit in the $n T$ range contributing a value to the histogram or trend. The value displayed on the custom parameter display line is the average of all such top calculations. 'List by $\mathrm{nT}^{\text {' }}$ mode prov ides an av erage top measurement for each n index.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage top for all pits within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the top for all pits within the selected ' nT ' range for all acquisitions since last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of values of the av erage top for each group of pits of common 'nT' width for the last acquisition.
Histogram Function	Histogram graph of the value of the top for all pits within the selected 'nT' range for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend graph of the value of the top calculated for pit that is within the selected ' nT ' range for all acquisitions since last CLEAR SWEEPS operation.

Example
This persistence waveform was created by setting a SMART Trigger to capture only $3 T$ pits. The computed $3 T$ top is 25.8 mV .

When the same measurement is taken with the parameter cursors, it seems that 25.8 mV is a reasonable value for the top.

Description

Display Options

Pit Width provides a measurement of the width of pits or spaces or both of interest. The width of the pit or space is determined by the crossing of the selected voltage threshold. When pwid is selected as a parameter measurement it is generally useful to display the measurement calculation for a single ' nT ' value. Otherwise the measurement will calculate the av erage width of 3 T pits, 4 T pits, and so on, which is meaningless. Howev er, it is also often desirable to histogram the width of all pits and/or spaces. In this case the range of ' nT ' values should be set to include all pit/space widths of interest.
ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways. The table provides a concise description of the value or values displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single value of the av erage pit width for all pits/spaces within the selected ' nT ' range for the last acquisition.
Parameter Statistics On	Average, minimum, maximum, and sigma of the pit width for all pits/spaces that are within the selected ' nT ' range for all acquisitions since the last CLEAR SWEEPS operation.
List by nT	List of values of the av erage pit width for each group of pits/spaces of common ' nT ' width for the last acquisition.
Histogram Function	Histogram graph of the value of the pit width for all pits/spaces within the selected 'nT' range for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend graph of the value of the pit width for all pits/spaces within the selected ' nT ' range for all acquisitions since the last CLEAR SWEEPS operation.

Example

The example shows that, measured at the selected voltage threshold, the CD data signal contains sequentially a 5 T pit, 3T space, 3T pit, and 4T space. If the measurement is configured to select only 3 T pits or spaces then the value displayed will be:

$$
\text { pwid }=(694 \mathrm{~ns}+696 \mathrm{~ns}) / 2=695 \mathrm{~ns}
$$

Example 2: Histogramming

Consider the problem of determining the error margin in an optical recording system. As the data is encoded in the widths of the pits/spaces, it would be ideal for the widths to be exact integer multiples of the period of the clock used to sample the data signal. In practice this is not the case, but in order to ensure error-free data recovery, it is important for the widths to be grouped and separated.

Histogramming (Chapter 6) can be used to analyze the grouping of pit widths and to determine whether the separation is acceptable.

The scope is set up to acquire the optical data wav eform by assigning Channel 1 to the data signal at a time/div of 0.2 ms , so that many pits/spaces can be gathered quickly. The signal is ACcoupled, so the threshold is set to 0 mV .

Measurement Parameters

The pwid custom parameter is assigned to line 1 and configured in the following manner:

$$
\begin{aligned}
& \text { hysteresis }=0.5 \text { div isions } \\
& \text { threshold }=0 \mathrm{mV} \\
& \text { polarity }=\text { All } \\
& \text { range of } n \\
& \text { low } n=3 \\
& \text { high } n=11 \\
& \text { period }=231.5 \mathrm{~ns} \text {. }
\end{aligned}
$$

Trace A is defined as a zoom of channel 1 (by turning math off), so that the wav eform can be viewed expanded and the pits and spaces can be identified.

Using the Math Setup, Trace B is defined as the histogram of the pwid parameter on line 1 , and is set up as follows:

1. Use the maximum number of v alues (2000000000)
2. Classify into 2000 bins
3. Linear vertical scale.

The trigger is set up to trigger on a pit edge and operated in normal trigger mode.

Note: Prior to acquisition, select each trace and press the RESET button to ensure that all the traces are reset.

In normal trigger mode, multiple waveforms are acquired and processed. The histogram will typically have data which is not well centered or is off screen. Press the FIND CENTER AND WIDTH menu button (page 6-15) to see the pit width distributions as they accumulate. After enough measurements hav e been taken, stop the triggering. The screen will look as follows after the histogram has been centered:

The optical data waveform is on the top and the histogram is on the bottom of the screen. Notice the clustering of width distributions.

As we are interested in measuring the spacing of the distributions set, relative time cursors should be chosen.

By setting cursor tracking to On, the difference cursors are swept across the histogram. As expected, the space between the $3 T$ and 4T distributions is the shortest, because of inter-symbol interference and the many $3 T$ widths. The spacing is 138 ns .

Measurement Parameters

To measure the spread of widths for the distributions, set the cursor/measure mode to Parameters and configure the parameters:

1. line 2 : av erage of trace B
2. line 3: high of trace B
3. line 4: low of trace B
4. line 5: range of trace B

Because parameter measurements are performed only on those portions of the wav eform between the parameter cursors, activate tracking so that they can be swept across the histogram. Set the difference between the cursors so that they encompass one clock period. In this case, the histogram is shown at $0.2 \mu s$ per division. Set the difference between the parameter cursors to:

$$
\frac{231.5 \cdot 10^{-9}}{.2 \cdot 10^{-6}}=1.16 \text { divisions }
$$

This screen shows the histogram statistics taken on the 57 distribution. The distribution has the largest spread of values: 102.5 ns . The mean is $1.1659 \mu \mathrm{~s}$, which is 3.6% higher than the ideal of 1.1575 $\mu \mathrm{s}$.

Description

Example

The Time-at-Pit parameter provides the time of each leading edge of every pit or space within the nT range specified from the trigger point (time $=0$). The value displayed is the time of the first pit only.

The usefulness of this parameter is not in the displayed value, but in its trending. The intent is that two parameters (t@pit and another ORM parameter) can be configured with identical configurations precisely the same number of pits or spaces are found in the waveform, and precisely the same number of parameter measurements are made. When both of these parameters are trended, the two trends will have the same number of events, and there will be a one-to-one correspondence between each ev ent in each trend. If both trends are displayed, and time cursors are swept over each, values will be displayed for the ORM parameter value and the time within the acquisition where the parameter measurement was made. These times are useful when searching for abnormal ev ents within a wav eform.

Not only can the trend of \mathbf{t} @pit provide the actual event time, it can be used as the x axis in an XY plot to examine modulation characteristics of particular parameter measurements.

This example typifies the usage of the \mathbf{t} @pit parameter. Step-by-step instructions are given.

A large optical recording waveform is to be acquired, and the ordinary pit/space widths that can cause errors in the system need to be found. The wav eform contains pits/spaces that have widths that are ideal integer multiples of the clock period 231.5 ns in a range from 3 to 11 times this clock period.
The scope is set up to acquire this wav eform by assigning Channel 1 to the data signal at a time/div of 0.2 ms . This signal will contain approximately 1800 pits/spaces. The ideal threshold (determined by the pmidl parameter) is 1.9 mV .

Measurement Parameters

The pwid custom parameter is assigned to line 1 and the t@pit parameter to line 2. Using configuration tracking, both parameters are configured in the following manner:

$$
\begin{aligned}
& \text { hysteresis }=0.5 \text { div isions } \\
& \text { threshold }=1.9 \mathrm{mV} \\
& \text { polarity }=\text { All } \\
& \text { range of } \mathrm{n} \\
& \text { low } n=0 \\
& \text { high } n=25 \\
& \text { period }=231.5 \mathrm{~ns} \text {. }
\end{aligned}
$$

Using math setup, Trace A is defined as the trend of the pwid parameter, and Trace B as the trend of the t@pit parameter. For later use, C is defined as a zoom of Channel 1. We are expecting 1800 pits/spaces, so make sure that the trends are set to use up to 2000 v alues for each math setup.
The trigger is set up to trigger on a pit edge and is operated in single-shot mode. For conv enience, the wav eforms are ordered on the screen in a particular manner:

1. Trace B: Trend of t @pit
2. Trace A: Trend of pwid
3. Trace C: Zoom of optical recording wav eform

The reason for this order will become apparent.
Press the single-shot trigger button to acquire the wav eform. The wav eform should be centered on the screen. Typically the trends will have data that is not well centered or is off screen. Centering is done by pressing the FIND CENTER AND HEIGHT menu button in each trend setup menu.

The next screen shows what each trace looks like after the wav eform has been acquired and the trends centered.

The waveforms are displayed in Quad grids mode. The trend of t@pit is basically linear, as expected because the time at each pit from the trigger is ascending. The trend of the pit widths looks basically as expected. Notice that there are exactly as many events inside both trends, a necessary condition.

Set the display mode to XY (see next page and refer to the scope Operator's Manual for details on the available display modes). Bands of pit widths corresponding to widths that are ideal integer multiples of the clock period will be evident. Select Trace B (the trend of \mathbf{t} pit) and zoom to expand the time scale. Then select Trace A (the trend of pwid) and use the vertical ZOOM knob to adjust the band spacing. The vertical POSITION knob can be used to position the display vertically.

The next screens show the XY plot.

The XY plot has been adjusted so that all the pit widths are displayed vs. time. Notice that all form bands. This is because all but two are ideal integer multiples of the clock period. The two pit widths dissimilar to the others are sitting just below the $3 T$ pit width band, and between the 4T and the $5 T$ band. These strange pit widths, circled on the screen, occurred around the middle of the waveform.

Using time cursors, it can be seen that the beginning of this problematic pit width occurred at pit \# 973, 859.61μ s from the trigger. This smaller-than-normal pit is 245.40 ns .

Now that a problem has been identified, we would like to view the portion of the wav eform in which the problem occurred. Change the display mode to Standard and the grid to Single. Turn off the two trend traces, leaving only Trace C, which is the expanded trace of Channel 1. Move the absolute time cursor to the position in the trace at $859 \mu \mathrm{~s}$; and, using the ANALYSIS CONTROL position controls, position the wav eform so that the cursor on the trace is at the center of the screen. Expand the wav eform using the horizontal zoom control.

Here is the waveform zoomed in a bit with the measurement cursor placed at $859.600 \mu \mathrm{~s}$. As can be seen, there is some kind of aberration at the center of the trace.

Further zooming clearly identifies the problem: a burst error that prevented the positive polarity width that starts at $859.61 \mu \mathrm{~s}$ from reaching its peak value. This defect caused the reflectivity to drop and to erratically fluctuate throughout the duration of the burst error. The defect affected the width of the next pit as well, which created the pit width centered between the $4 T$ and $5 T$ band of the XY plot.

Description

Display Options

Timing Jitter provides a measurement of the standard deviation of the difference of the width of pits and/or spaces from the mean width. The width of the pit/space is determined by the crossing of the selected voltage threshold. The measurement calculation is compliant with the definition of Timing Jitter as defined by ISO/IEC JTC1.23.14517 Section 22.4.

ORM parameter calculations can be displayed, histogrammed (Chapter 6), and trended (Chapter 5) in a variety of ways. The table provides a concise description of the value or values displayed using each approach.

Display Type	Value Displayed
Parameter Statistics Off	Single v alue of the ov erall timing jitter for pits/spaces of interest for last acquisition.
Parameter Statistics On	Av erage, minimum, maximum, and sigma of the ov erall timing jitter value calculated per acquisition for all acquisitions since the last CLEAR SwEEPS operation.
List by $\mathbf{n T}$	List of values of the timing jitter for each indiv idual ' $n T$ ' in the selected range of ' $n T$ ' for the last acquisition.
Histogram Function	Histogram of the ov erall timing jitter values calculated for each acquisition for all acquisitions since the last CLEAR SWEEPS operation.
Trend Function	Trend of the ov erall timing jitter v alues calculated for each acquisition for all acquisitions since the last CLEAR SwEEPS operation.

Measurement Parameters

Example
A wav eform is acquired which has $3 \mathrm{~T}, 4 \mathrm{~T}$, and 5 T pit width s as follows:

3T	4T	5T
695 ns	925 ns	$1.16 \mu \mathrm{~s}$
690 ns		$1.18 \mu \mathrm{~s}$
696 ns		

T is 231.5 ns , and the timing jitter parameter has been configured for a range of 3 T through 5 T .

The 3T mean is 693.66 ns . The 4T mean is 925 ns . The 5T mean is $1.17 \mu \mathrm{~s}$.
The 3T timing jitter is calculated by taking the standard deviation of the difference between each width and the 3T mean. This is 3.214 ns , normalized by:

$$
\operatorname{Timj}_{3 T}=3.214 \cdot \frac{100 \%}{231.5}=1.389 \%
$$

The 4T timing jitter cannot be calculated because there is only one value (at least two values are required).
The 5T timing jitter is $+6.109 \%$.
The ov erall timing jitter is calculated using a weighting formula, which results in the standard deviation of the mean centered distributions. In this example, it is calculated as:

$$
\text { Timj }_{\text {overall }}=\sqrt{\frac{1.389^{2} \cdot(3-1)+6.109^{2} \cdot(2-1)}{(3+2-1)}}=3.208 \%
$$

More On Timing J itter

In order to understand the operation of the timing jitter parameter with different modes of operation, consider the histogram of 3T to 5T pit widths in Figure 4.10.

Histogram of Pit Widths

Figure 4.10

The Timing Jitter parameter considers each of these distributions separately. For each distribution the standard deviation is calculated. This is the timing jitter displayed for each nT distribution. Overall timing jitter is calculated by subtracting the mean width of each distribution from the widths in those distributions and considering the resulting superposition :
The sigma of the $3 \mathrm{~T}, 4 \mathrm{~T}$, and 5 T distributions are what is obtained when the Timing Jitter custom parameter is configured for single n values (the sigmas are the same as the sigma of the edge shift calculation). The sigma of the resulting superposition is what is obtained when the Timing Jitter custom parameter is configured for ranges of n values (in this case 3T to 5T).

Figure 4.11
The value displayed on the custom parameter line (with statistics off) is the sigma of any of the resulting distributions for the last acquisition only. This timing jitter value is calculated internally without having to actually histogram the values. The values displayed in List by nT mode are the sigma of the width distributions resulting from each nT distribution for the last acquisition.

Note: Timing Jitter is always less than or equal to the standard deviation of superimposed Edge Shift distributions.

Signals, Coupling, and Threshold Settings

Which optical recording signal, or combination of signals should be used in a calculation? How should the signal be coupled, or the threshold set? The answers to these questions are sometimes uncertain. This appendix offers tips on how to answer them.

Choice of signals

Generally, the choice of signals depends on the aim of the measurement. For example, if the quality of the signal direct from the media is being examined, generally the signal at the output of the photo-detector should be used. Alternativ ely, a conditioned signal could serve the purpose.
A "sliced" or logic conditioned signal should normally be chosen when precise timing measurements are desired and propagation delay through the logic dev ice (comparator) is not an issue. Timing measurement accuracy is improved when a fast signal is used, as opposed to the slower signals at the photo-detector, for the following reasons:
> A fast edge usually results in more accurate timing measurements because of interpolation algorithms, as long as points are sampled along the edge.
> A fast edge provides a threshold crossing time - and, therefore, measurement accuracy - more immune to noise.
> The use of the signal at the output of a logic device or comparator decreases the sensitivity of the measured threshold-crossing time to the exact value of the threshold lev el selected.
> The use of the signal at the output of a logic device or comparator typically solv es other threshold problems as well, in systems that dynamically adjust the threshold based on the optical recording data signal. Sliced or logic signals facilitate the use of a fixed threshold.

Coupling

Threshold Selection

DC coupling is required only for measurements of absolute DC values. Measurements requiring it include ptop, pbase, pmin, pmax, and pmoda. Otherwise, AC coupling is best used on signals that are not outputs of logic devices or comparators those that might have varying thresholds.
If DC coupling must be used, there are some further considerations for threshold selection. While all of the optical recognition measurements specify thresholds used to extract the pits/spaces (by recording threshold crossings), there is a v ariance in the sensitiv ity of parameters to the exact threshold value selected. The sensitive parameters are those that are time related or whose values depend on the exact time of the threshold crossing. Those insensitive to the exact threshold value are parameters that use the threshold crossing time only to categorize the parameter result according to width (that is, they use the crossing time only to find the width for determining the nT index to which the pit/space belongs).

In the case of threshold-insensitive parameters, it usually suffices to use a fixed threshold somewhere in the middle of the optical recognition wav eform. Even if the signal middle shifts, the fixed threshold is usually adequate.
Additionally, if the signal is AC coupled, it will tend not to shift much, and the fixed threshold will be perfectly adequate.

The problem arises when what is required is a DC-coupled signal with a threshold that changes dynamically throughout the waveform. There remains a possible solution, but the scope setup is slightly more complicated.
Consider the fact that AC coupling can be regarded as rejection of the DC component of a signal, or subtracting it from the signal. In many systems, the threshold is determined in precisely this manner by applying a low-pass filter to the signal, and then applying this value, with the signal itself, to the input of a comparator. If a threshold value determined in this manner is available in the circuit, the threshold signal, along with the optical recognition data signal itself, should be acquired. Wav eform math can then be used to subtract the threshold signal. This is done by defining a trace as the Arithmetic

Difference of the raw data signal and the threshold signal. The new trace is then used as the optical recognition data signal in the parameter calculations.

Regardless of how the signal is coupled, there are other considerations involved in determining the appropriate threshold. If wav eform math is used, the threshold is always 0 V . Otherwise, the optimum threshold is best determined using the pmidl parameter.

Some optical recognition standards define the middle level of the 3T signal as the "decision level." Pmidl configured for the single 3T pits/spaces is an ideal candidate for the best threshold v alue. Another candidate is the pmidl value calculated using the entire range of n indices possible. In this way, pmidl calculates the best ov erall threshold lev el as a weighted av erage of middle lev els calculated for each n index.

In AORM, the OR DATA function can be used to remove these effects. The "lev eled" output subtracts the "threshold" (low frequency content of the signal) from the input data. When using this function, you should set the threshold to 0 V .

Using Parameters with Trends and XY Plots

X axis	\boldsymbol{Y} axis
t@pit	p 2 c edgsh pbase pmax pmin ptop pwid
pwid	pbase pmax pmin ptop
ptop	pmax
pbase	pmin

Example and Step-byStep Instructions

We saw in the $\mathrm{@}^{\text {@pit parameter description (page 4-55) how the }}$ ORM parameters have certain unique characteristics that make particular measurements useful when trended together with XY plots. And how the t@pit parameter is essential to those measurements. Plots that can be generated on single acquisitions include those listed in the table at left.
The reason that these plots are considered useful on single acquisitions is because the parameters are guaranteed to be configurable in a manner that meets the following criteria:

1. Each parameter is capable of providing multiple values per acquisition.
2. Each parameter pair is configurable in a manner that guarantees the same number of ev ents per wav eform.
3. Each parameter pair must be configurable in a manner that guarantees a one-to-one correspondence between parameter calculation values.

Here is an example typifying the use of XY plots without the t@pit parameter. A complete example using t@pit has been prov ided in the section dedicated to this parameter description.
Consider a situation in which it is desirable to find the relationship of the pit top value to the pit width in an optical recognition data wav eform:
The scope is set up to acquire this wav eform by assigning Channel 1 to the data signal at a time/div of 0.2 ms . This signal will contain approximately 1800 pits/spaces. The ideal threshold has been determined by the pmidl parameter as 1.9 mV .

The ptop custom parameter is assigned to line 1, and the pwid parameter is assigned to line 2. Use configuration tracking to configure both parameters in the following manner:

```
hysteresis \(=0.5\) div isions
threshold \(=1.9 \mathrm{mV}\)
polarity \(=\) Pos
range of \(n\)
low \(n=3\)
high \(n=11\)
period \(=231.5 \mathrm{~ns}\)
```

In math setup, Trace A is defined as the trend of the ptop parameter and Trace B as the trend of the pwid parameter. Because we are expecting 1800 pits/spaces, make sure that for each math setup the trends are set to use up to 20000 values, the maximum amount.

Note: If configuration tracking is used on the ptop parameter, the pwid parameter must be visited in order to set the polarity to positive because ptop inherently implies positive polarity pits.

The trigger is set to trigger on a pit edge and is operated initially in single-shot mode. For conv enience, the wav eforms are ordered on the screen in a particular manner so that they will automatically work correctly with XY display mode:

1. Trace B: Trend of $t @ p i t$
2. Trace A: Trend of pwid
3. Channel 1: optical recognition data signal

Note: Prior to acquisition, select each trace and press the ReSET button to ensure that all the traces are reset.

The single-shot trigger button is pressed and the wav eform acquired. The waveform should be centered on the screen. The trends will typically have data not well centered or off-screen. These traces can be positioned on the grid by pressing the FIND CENTER AND HEIGHT menu button in each trend setup menu. The screen shown here is what each trace looks like after the wav eform has been acquired and the trends centered.

The waveforms are displayed in Quad grid mode. Notice that there are exactly as many events inside both trends, a necessary condition. Although the trends are very short (containing only 902 out of the total 20,000 pits allowed) repeated triggering will eventually fill in both trends sufficiently.

Set the display mode to XY. Clusters of pit top values will be apparent: clustered because the tops tend to be approximately the same amplitude and the pit widths approximate multiples of the clock period. Select Trace B (the trend of pwid) and use the vertical ZOOM control to expand the X -axis scale. Select Trace A (the trend of ptop) and use the ZOOM knob to adjust the vertical scale. The vertical POSITION knob can be used to position the display vertically.

This is what the XY plot looks like:
The XY plot has been adjusted so that all of the pit tops are displayed vs. Pit width. Notice that all of the pit widths form clusters.

Press normal trigger, and the clusters will become even more dense. You can have up to 20,000 points in the XY plot.

Improving Horizontal Measurement Accuracy

Horizontal measurement accuracy pertains to timing-related measurements. In the ORM package, these are $\Delta \mathrm{p} 2 \mathrm{c}, \Delta \mathrm{p} 2 \mathrm{cs}$, edgsh, Iper, pwid, t@pit, and timj. In many cases, measurement accuracy can be improved by considering certain items pertaining to how a DSO operates and how parameters are measured.

DSOs sample the signal, building a wav eform that consists of points at intervals determined by the sample rate. One obvious consideration for maximizing horizontal measurement accuracy is to ensure that the highest sample rate possible is used. On low time/divs, wav eforms become long. Thus it is important to set the Record up to value for the timebase menu to the largest possible value. This ensures the highest sample rate based on the time/div setting.

Times are calculated for optical recognition parameters by interpolating between points that straddle the threshold specified. Measurement accuracy is improv ed when the edge is:

1. fast enough to enable points straddling the threshold that are far from the threshold, and
2. slow enough, and the sample rate high enough, to enable points to be sampled on the edge.

In most cases, these considerations are taken into account by sampling at the highest rate possible and by ensuring that the volts/div setting is as low as practically possible.

Note on RIS (Random Interleaved Sampling)

RIS is a mechanism used by the oscilloscope to increase the effective sample rate by interleaving samples taken over multiple waveform acquisitions. The scope enters RIS mode when the time/div setting is set extremely low.
Because multiple acquisitions are interleaved in RIS, a highly stable trigger signal must be maintained, and precisely the same waveform acquired on each acquisition.

For most ORMs, RIS is neither appropriate nor recommended. If not used properly, it will result in erroneous measurements.
(For more on RIS, see your scope's Operator's Manual.)

Base and Top Calculation Details

The base and top are designed to emulate results in the past obtained from persistence plots. In general, the top was calculated by examining the most intense region near the top of a waveform in an eye-pattern persistence map. The ORM package improves on this in that the tops of all pits are calculated independently: rogue amplitude variations in the waveform can be identified.

The waveform in Figure 4.12 contains two pits. We need only consider the first of these.

Optical Data Acquisition

Figure 4.12

The ORM package histograms the values inside each pit to determine the most likely amplitude: the most densely populated region.

Figure 4.13 shows the histogram of the pits' amplitudes. It is easily seen that the most likely amplitude is approximately 32 mV (exactly 31.9 mV). The top is calculated by av eraging all of the wav eform data points at or above this, to give a result of 32.89 mV .

Histogram of Waveform Points

Figure 4.13

In Figure 4.14 (next page), the top bisects the two flattest regions at the top of the wav eform and, in effect, calculates the value that would be estimated from examination of an eye-pattern persistence map.

Figure 4.14
\# \# \#

Displaying Trends

Abstract

The Trend function for processing waveforms enables the creation of graphs of successive waveform parameter measurement values. It provides useful visual information on waveform parameter variation. Used together with other scope features, it allows you to graph certain parameters compared to others.

To Configure a Trend:

1. Select and configure a custom parameter, which will be used to perform the measurement that is to be trended. This can be done either by:
> choosing "Custom" mode from the "MEASURE" "Parameters" menu group as for histograms (see the oscilloscope Operator's Manual), or
$>$ accessing the same menu group using the "PARAMETER SETUP" menu from the "TREND..." group (see this section).
Then select the desired parameter from the "CHANGE PARAM" menus that will be displayed.
2. Define one of the definable traces - A, B, C, or D - as using Math, and select "Trend" as the "Math Type" (see page 5-4).
3. Select the custom parameter line to be used in the trend.
4. Choose the number of values to be placed in the generated trend (page 5-5).
5. Decide whether all the parameters generated from the waveform or only the average of all parameter calculations for each waveform acquisition should be placed in the trend.
6. If desired, you can also configure the center and height of the trend at this stage, in the base units of the parameter being trended. However, this is not a requirement and "FIND CENTER AND HEIGHT" can be used to center the trend once the trend has been calculated.

The Trend Configuration Menus

Press the MATH TOOLS button to access the ZOOM + MATH menus (see the "MATH SETUP" Chapter of the scope's Operator's Manual). These allow the redefinition of each of the four traces (A, B, C, and D) and access their "SETUP" menus.

This is illustrated in this example with Trace A defined as a trend of the parameter amplitude, and Trace B as a trend of period. C and D

REDEFINE A

Defined as the trend of the custom parameter performed on Channel 1, Trace A can be set up by pressing the button corresponding to this menu.

REDEFINE B

Defined as the trend of the custom parameter performed on Channel 1, Trace B can be set up by pressing the button corresponding to this menu.

REDEFINE C

Defined as a zoom of Channel 1, Trace C can be set up by pressing the button corresponding to this menu.

REDEFINE D

Defined as a zoom of Channel 2, Trace D can be set up by pressing the button corresponding to this menu.

Multi-Zoom

When On, this enables zoom and position controls on all traces at once.

for Math Use

Use this to set the number of points in certain math functions, using the associated menu knob.

Trending

Note for Display of Trends:

$>$ Expansion, or zooming, and positioning of traces is controlled by the horizontal and vertical ZOOM and POSITION knobs.
$>$ When Multi-zoom is on, the ZOOM and POSITION knobs are coupled and control all displayed traces at once. This is particularly useful when multiple trends of related parameters are displayed.
$>$ The button resets the multiplier for the trace expansion to ' 1 ' and the offset positioning to '0.' The button should be pressed for each reconfigured trace in order that traces can be cleanly and correctly positioned onscreen.

SETUP OF A

MORE
TREND SETUP

```
FIND CENTER
    AND HEIGHT
```

 Trend of -
 custom line 1
ampl(1)
-using up to-
20000
(values)

This allows the selected trace (here Trace A) to be set up for trending.

use Math?

Use this to define the trend as using math, which is necessary for the trend itself to be defined. Traces can be defined to use math or as zooms of other traces. Because trending is a math function, "use Math?" should be set to Yes by using the corresponding menu button.

Math Type

This is for selecting Trend.

MORE TREND SETUP

Use this to access more trend setup options and the final trenddedicated menu (next page).

FIND CENTER AND HEIGHT

This is for positioning the trend automatically once it has been calculated. FIND CENTER AND HEIGHT places the trace appropriately, centering and scaling the trend without affecting the zoom and position settings. But ensure that these settings have been reset (as described on the previous page).

Trend of

Use this to select the parameter for trending, using the corresponding menu button or associated knob. Choose any of the configured parameters displayed on the line beneath the grid.

Using up to

Using the associated button or knob, this is for selecting the number of values in the trend. A maximum of 20000 values can be chosen for any one trend. When this maximum is exceeded, the parameter results scroll off the trend.

Trending

TRENDA

This menu group appears when "MORE TREND SETUP" is selected (previous page).

Values

Use this to select All, which is for every parameter calculation on each waveform to be placed in the trend. Or use it to select Average, which is to trend only the average of all the given values calculated on a given acquisition, and to obtain one point in the trend per acquisition. Or All/Trace, which for each acquisition, clears the buffer and places all parameter calculations from the new data in the trend. Unless this is specifically required, All should be selected.

PARAMETER SETUP

Use this to access the setup menus for the selected parameter, the same menus as the "CHANGE PARAM" group.

FIND CENTER AND HEIGHT

This is for positioning the trend automatically after it is calculated. FIND CENTER AND HEIGHT places the trace appropriately, centering and scaling the trend without affecting the zoom and position settings. But ensure that these settings have been reset (as described in the panel on page 5-1).

Center

This is for selecting the mantissa, exponent, or number of digits resolution, using the associated knob. The configuration is the value at the horizontal center line on the grid, while units are those of the parameter trended.

Height

Using button or knob, this selects the vertical value of each vertical screen division. Units are those of the parameter trended.

Note: Press the RESET button after you have configured the parameter in CHANGE PARAM to return to the menus shown on this page.

Trend Calculation

Once the trend has been configured, parameter values will be calculated and trended on each subsequent acquisition. Immediately following the acquisition, its trend values will be calculated. The resulting trend is a waveform of data points that can be used the same way as any other waveform. Parameters can be calculated on it, and it can be zoomed, serve as the x or y trace in an XY plot, and be used in cursor measurements.
The sequence for acquiring trend data is:

1. trigger
2. wav eform acquisition
3. parameter calculation(s)
4. trend update
5. trigger rearm

If the timebase is set in non-segmented mode, a single acquisition occurs prior to parameter calculations. However, in segment mode, an acquisition for each segment occurs prior to parameter calculations. If the source of trend data is a memory, storing new data to memory effectiv ely acts as a trigger and acquisition. Because updating the screen can take significant processing time, it occurs only once a second, minimizing trigger dead-time (under remote control the display can be turned off to maximize measurement speed).

Parameter Buffer
The oscilloscope maintains a circular parameter buffer of the last 20000 measurements made, including values that fall outside the set trend range. If the maximum number of events to be used in a trend is a number ' N ' less than 20000 , the trend will be continuously updated with the last ' N ' events as new acquisitions occur. If the maximum number is greater than 20000 , the trend will be updated until the number of events is equal to ' N .' Then, if the number of bins or the trend range is modified, the scope will use the parameter buffer values to redraw the trend with either the last ' N ' or 20000 values acquired, whichever is less.

Trending

The parameter buffer thereby allows trends to be redisplayed using an acquired set of values and settings that produce a distribution shape with the most useful information.

In many cases, the optimal range is not readily apparent, so the scope has a powerful range-finding function. If necessary, it will examine the values in the parameter buffer to calculate an optimal range, and redisplay the trend using it. The instrument will also give a running count of the number of parameter values that fall within, below and above the range. If any fall below or above the range, the range-finder can then recalculate to include these parameter values, as long as they are still within the buffer.

Parameter Events Capture The number of events captured per wav eform acquisition or display sweep depends on the parameter type. Acquisitions are initiated by the occurrence of a trigger event. Sweeps are equivalent to the wav eform captured and displayed on an input channel ($1,2,3$, or 4). For non-segmented waveforms, an acquisition is identical to a sweep. Whereas for segmented wav eforms, an acquisition occurs for each segment, and a sweep is equiv alent to acquisitions for all segments. Only the section of a wav eform between the parameter cursors is used in the calculation of parameter values and corresponding trend events. For each standard parameter and for a wav eform section between the parameter cursors, the following table provides a summary of the number of trend events captured per acquisition or sweep.

Parameters (plus others, depending on options)	Number of Events Captured
data	All data values in the region analyzed.
duty, freq, period, width	Up to 49 events per acquisition.
ampl, area, base, cmean, cmedian, crms, csdev, cycles, delay, dur, first, last, maximum, mean, median, minimum, nbph, nbpw, over+, over-, phase, pkpk, points, rms, sdev, Δ dly, Δ @@lv	One event per acquisition.
f@level, f80-20\%, fall, r@level, r20-80\%, rise	Up to 49 events per acquisition.

Reading Trends: A trend is like any other waveform: its horizontal axis is in units of events, with earlier events in the leftmost part of the waveform and later events to the right. And its vertical axis is in the same units as the trended parameter. When the trend is displayed, trace labels like the ones below (for Trace A in these examples) appear in their customary place on the screen, identifying the trace, the math function p fif: Iamplif horizontal and vertical information :

```
A:Tampl(1)
    20 #
    200 \mu
        49.731 mu
    -inside 200
```

 « \# number of events per horizontal division
 \& Units per vertical division, in units of the parameter being measured
 \(<\) Vertical value at point in trend at cursor location when using cursors
 \& Number of events in trend that are within unzoomed horizontal
display range.
$\left(\begin{array}{c}\text { A: Tampl }(1) \\ 20 \# \\ 200 \mu \\ \downarrow 1 \% \pi 0 \% \\ \text { inside } 193\end{array}\right]$
\& Percentage of values lying beyond the unzoomed vertical range when not in cursor measurement mode.

Trending

Using Measurement Cursors
The parameter cursors can be used to determine the value and population of selected areas.
Figure 5.1 shows the Time cursors (item ©) positioned on the selected trend vertex, whose order number (©) and value (3) are also shown.

Figure 5.1
\# \# \#

BLANK PAGE

Theory of Operation

Abstract

An understanding of statistical variations in parameter values is needed for many waveform parameter measurements. Knowledge of the average, minimum, maximum, and standard deviation of the parameter may often be enough, but in many other instances a more detailed understanding of the distribution of a parameter's values is desired.

Histograms provide the ability to see how a parameter's values are distributed over many measurements. They divide a range of parameter values into sub-ranges called bins. A count of the number of parameter values calculated (events) that fall within its sub-range is maintained for each bin.
While the range can be infinite, for practical purposes it need only be defined large enough to include any realistically possible parameter value. For example, in measuring TTL high-v oltage values a range of $\pm 50 \mathrm{~V}$ is unnecessarily large, whereas one of $4 \mathrm{~V} \pm 2.5 \mathrm{~V}$ is more reasonable. It is this 5 V range that is subdivided into bins. And if the number of bins used were 50, each would have a sub-range of 5 V per 50 bins or $0.1 \mathrm{~V} / \mathrm{bin}$. Events falling into the first bin would then be between 1.5 V and 1.6 V . While the next bin would capture all ev ents between 1.6 V and 1.7 V . And so on.
After several thousand events, the graph of the count for each bin - its histogram - provides a good understanding of the distribution of values. Histograms generally use the ' x ' axis to show a bin's sub-range value, and the ' y ' axis for the count of parameter values within each bin. The leftmost bin with a nonzero count shows the lowest parameter value measurement(s). The vertically highest bin shows the greatest number of events falling within its sub-range.
The number of events in a bin, peak, or histogram is referred to as its population. Figure 6.1 shows a histogram's highest population bin as the one with a sub-range of 4.3 to 4.4 V , which is to be expected of a TTL signal. The lowest value bin with events is that with a sub-range of 3.0 to 3.1 V . Because TTL
high voltages need to be greater than 2.5 V , the lowest bin is within the allowable tolerance. However, because of its proximity to this tolerance and the degree of the bin's separation from all other values, additional inv estigation may be desirable.

LeCroy DSO Process

LeCroy digital oscilloscopes generate histograms of the parameter values of input waveforms. But first, the following must be defined:
> The parameter to be histogrammed
> The trace on which the histogram will be displayed
> The maximum number of parameter measurement v alues to be used in creating the histogram
> The measurement range of the histogram
> The number of bins to be used
Once these are defined, the oscilloscope is ready to make the histogram.

Figure 6.1

The sequence for acquiring histogram data is:

1. trigger
2. wav eform acquisition
3. parameter calculation(s)
4. histogram update
5. trigger re-arm.

If the timebase is set in non-segmented mode, a single acquisition occurs prior to parameter calculations. However, in Sequence mode an acquisition for each segment occurs prior to parameter calculations. If the source of histogram data is a memory, storing new data to memory effectively acts as a trigger and acquisition. Because updating the screen can take significant processing time, it occurs only once a second, minimizing trigger dead-time (under remote control the display can be turned off to maximize measurement speed).

Parameter Buffer

The oscilloscope maintains a circular parameter buffer of the last
20000 measurements made, including values that fall outside the set histogram range. If the maximum number of events to be used in a histogram is a number ' N ' less than 20000 , the histogram will be continuously updated with the last ' N ' events as new acquisitions occur. If the maximum number is greater than 20000 , the histogram will be updated until the number of events is equal to ' N '. Then, if the number of bins or the histogram range is modified, the scope will use the parameter buffer values to redraw the histogram with either the last ' N ' or 20000 v alues acquired, whichev er is less. The parameter buffer thereby allows hist ograms to be redisplayed using an acquired set of values and settings that produce a distribution shape with the most useful information.

In many cases the optimal range is not readily apparent, so the scope has a powerful range-finding function. If necessary, it will examine the values in the parameter buffer to calculate an optimal range, and redisplay the hist ogram using it. The instrument will also give a running count of the number of parameter values that fall within, below, and above the range. If any fall below or above the range, the range-finder can then recalculate to include these parameter values, as long as they are still within the buffer.

Parameter Events Capture The number of events captured per waveform acquisition or display sweep depends on the parameter type. Acquisitions are initiated by the occurrence of a trigger event. Sweeps are equiv alent to the wav eform captured and displayed on an input channel (1, 2, 3, or 4). For non-segmented waveforms an acquisition is identical to a sweep. Whereas for segmented wav eforms an acquisition occurs for each segment and a sweep is equiv alent to acquisitions for all segments. Only the section of a waveform between the parameter cursors is used in the calculation of parameter values and corresponding histogram ev ents.
The following table provides, for each parameter and for a wav eform section between the parameter cursors, a summary of the number of histogram events captured per acquisition or sweep.

Parameters (plus others, depending on options)	Number of Events Captured
data	All data v alues in the region analyzed
duty, freq, period, width	Up to 49 ev ents per acquisition
ampl, area, base, cmean, cmedian, crms, csdev, cycles, delay, dur, first, last, maximum, mean, median, minimum, nbph, nbpw, over+, over-, phase, pkpk, points, ms, sdev, $\Delta \mathbf{d l y}, \Delta \mathbf{t} @ \mathbf{l}$,	One ev ent per acquisition
f@level, f80-20\%, fall, r@level, r20-80\%, rise	Up to 49 ev ents per acquisition

Histogram Parameters

Once a histogram is defined and generated, measurements can be performed on the histogram itself. Typical of these are the histogram's:
> Av erage value, standard dev iation
> Most common value (parameter v alue of highest count bin)
$>$ Leftmost bin position (representing the lowest measured wav eform parameter v alue)
> Rightmost bin (representing the highest measured wav eform parameter value).
Histogram parameters are provided to enable these measurements. Accessible by selecting Statistics from the Category menu, they are calculated for the selected wav eform section between the parameter cursors (for a full description of each parameter, see Chapter 7):

avg	av erage of data values in histogram
fwhm	full width (of largest peak) at half the maximum bin
fwxx	full width (of largest peak) at $\mathrm{xx} \%$ the maximum bin
mpl	histogram amplitude between two largest peaks
base	histogram base or leftmost of two largest peaks
high	highest data value in histogram
median	median data v alue of histogram
rms	rms v alue of data in histogram
htop	histogram top or rightmost of two largest p eaks
low	lowest data v alue in histogram
maxp	population of most populated bin in histogram
ode	ue of most populated bin in histogram
pctl	data value in histogram for which specified ' x ' \% of population is smaller
k	number of peaks in histogram
range	difference between highest and lowest data values
sigma	standard deviation of the data values in histogram
totp	total population in histogram
xapk	position of specified largest peak.

Zoom Traces and Segmented Waveforms

Histograms of zoom traces display all events for the displayed portion of a wav eform between the parameter cursors. When dealing with segmented waveforms, and when a single segment is selected, the histogram will be recalculated for all events in the displayed portion of this segment between the parameter cursors. But if All Segments is selected, the histogram for all segments will be di splayed.

Histogram Peaks

Example
Because the shape of histogram distributions is particularly interesting, additional parameter measurements are av ailable for analyzing these distributions. They are generally centered around one of several peak value bins, known (with its associated bins) as a histogram peak.

In Figure 6.2, a histogram of the voltage value of a five-volt amplitude square wave is centered around two peak value bins: 0 V and 5 V . The adjacent bins signify variation due to noise. The graph of the centered bins shows both as peaks.

Figure 6.2

Determining such peaks is very useful because they indicate the dominant values in a signal.
However, signal noise and the use of a high number of bins relative to the number of parameter values acquired can give a jagged and spiky histogram, making meaningful peaks hard to distinguish. The scope analyzes histogram data to distinguish peaks from background noise and from histogram definition artifacts such as small gaps, which are due to very narrow bins.

For a detailed description on how the scope determines peaks see the pks parameter description on page 7-14.

Binning and Measurement Accuracy

Histogram bins represent a sub-range of waveform parameter values, or ev ents. The events represented by a bin may have a value anywhere within its sub-range. However, parameter measurements of the histogram itself, such as av erage, assume that all events in a bin have a single value. The scope uses the center value of each bin's sub-range in all its calcul ations. The greater the number of bins used to subdivide a histogram's range, the less the potential deviation between actual event values and those values assumed in histogram p arameter calculations.

Nevertheless, using more bins may require performance of a greater number of wav eform parameter measurements in order to populate the bins sufficiently for the identification of a
characteristic histogram distribution.
In addition, very fine-grained binning will result in the creation of gaps between populated bins that may make determination of peaks difficult.
Figure 6.3 shows a histogram display of 3672 parameter measurements divided into 2000 bins. The standard dev iation of the histogram sigma (item $\mathbf{(}$) is 81.17 mV . Note the histogram's jagged appearance.

Figure 6.3
The oscilloscope's 20000 -parameter buffer is very effective for determining the optimal number of bins to be used. An optimal bin number is one where the change in parameter values is insignificant, and the histogram distribution does not have a jagged appearance. With this buffer, a histogram can be dynamically redisplayed as the number of bins is mod ified by
the user. In addition, depending on the number of bins selected, the change in wav eform parameter values can be seen.

In Figure 6.4, the histogram shown in the previous figure has been recalculated with 100 bins. Note how it has become far less jagged, while the real peaks are more apparent. Also, the change in sigma is minimal ($81.17 \mathrm{mV} \mathrm{vs}$.81 mV).

Figure 6.4

ORM

Creating and Analyzing Histograms

The following provides a description of the oscilloscope's operational features for defining, using, and analyzing histograms. The sequence of steps is typical of this process.

Selecting the Histogram Function

Histograms are created by graphing a series of waveform parameter measurements. The first step is to define the wav eform parameter to be histogrammed. Figure 6.5 shows a screen display accompanying the selection of a frequency (freq) parameter measurement (item ©) for a sine waveform on Channel 1.

Figure 6.5

The preceding figure shows four wav eform cycles, which will provide four freq parameter values for each histogram on each sweep. With a freq parameter selected, a histogram based on it can be specified.

But first the wav eform trace must be defined as a histogram. This is done by pressing the MATH TOOLS button. Figure 6.6 shows the resulting display. To place the histogram on Trace A, press the menu button corresponding to the REDEFINE A menu.

Figure 6.6

Once a trace is selected, the screen shown in Figure 6.7 appears. Selecting Yes from the use Math? menu enables mathematical functions, including histograms.

Figure 6.7

Histogram Trace Setup Menu Figure 6.8 (next page) shows the display when Histogram is selected from the "Math Type" menu. Here, the freq parameter only has been defined. However, if additional parameters were to be defined, the individual parameter would need to be selected by pressing the corresponding menu button or turning the associated knob until the desired parameter appeared in the "Histogram custom line" menu.

Figure 6.8
Each time a wav eform parameter value is calculated it can be placed in a histogram bin. The maximum number of such values is selected from the "using up to" menu. Pressing the associated menu button or turning the knob allows the user to select a range from 20 to 2 billion parameter value calculations for histogram display.

To see the histogram, turn the trace display on by pressing the appropriate button. You will see a display similar to that shown in Figure 6.9.

Figure 6.9
You set each histogram to capture parameter values falling within a specified range. As the scope captures the values in this range, the bin counts increase. Values not falling within the range are not used in creating the histogram.

Information on the histogram is provided in the Displayed Trace Field (item ©) for the selected trace. This shows:
> The current horizontal per division setting for the histogram (" 1 Hz " in this example). The unit type used is determined by the waveform parameter type on which the histogram is based.
> The vertical scale in \#bin counts per division (here, "200 m ").
> The number of parameter values that fall within the range ("inside 0").
$>$ The percentage that fall below (" $\leftarrow 0 \%$ ").
> The percentage of values above the range (" $100 \% \rightarrow$ ").
This figure shows that 100% of the captured events are above the range of bin values set for the histogram. As a result, the baseline of the histogram graph (item (2) is displayed, but no v alues appear.
Selecting the "FIND CENTER AND WIDTH" menu allows calculation of the optimal center and bin-width values, based on the up to the most recent parameter values calculated. The number of parameter calculations is chosen with the "using up to" menu (or 20000 v alues if this is greater than 20000). Figure 6.10 shows a typical result.

Figure 6.10

If the trace on which the histogram is made is not a zoom, all bins with events will be displayed. Otherwise, press RESET to reset the trace and display all histogram ev ents.

The Information Window (item (1)) at the bottom of the previous screen shows a histogram of the freq parameter for Channel 1 (designated as "A:Hfreq(1)") for Trace A. The "1000 $\rightarrow \mathbf{1 0 0}$ pts" in the window indicates that the signal on Channel 1 has 1000 wav eform acquisition samples per sweep and is being mapped into 100 histogram bins.
Selecting MORE HIST SETUP allows additional histogram settings to be specified, resulting in a display similar to that of Figure 6.11 below.

Figure 6.11

Setting Binning \& Histogram Scale

The "Setup" menu allows modification of either the Binning or the histogram Scale settings. If Binning is selected, the classify into menu appears, as shown in the figure above.
The number of bins used can be set from a range of 20 to 2000 in a 1-2-5 sequence, by pressing the corresponding menu button or turning the associated knob.
If Scale is selected from the "Setup" menu, a screen similar to that of Figure 6.12 will be displayed.

Figure 6.12

Three options are offered by the "v ertical" menu for setting the vertical scale:

1. Linear makes the vertical scale linear (see previous figure). The baseline of the histogram designates a bin value of 0 . As the bin counts increase beyond that which can be displayed on screen using the current vertical scale, this scale is automatically increased in a 1-2-5 sequence.
2. Log makes the vertical scale logarithmic (Figure 6.13). Because a value of ' 0 ' cannot be specified logarithmically, no baseline is provided.

Figure 6.13
3. LinConstMax sets the vertical scaling to a linear value that uses close to the full vertical display capability of the scope (Figure 6.14). The height of the histogram will remain almost constant.

Figure 6.14

For any of these options, the scope automatically increases the vertical scale setting as required, ensuring that the highest histogram bin does not exceed the vertical screen display limit.
The "Center" and "Width" menus allow specification of the histogram center value and width per division. The width per division multiplied by the number of horizontal display div isions (10) determines the range of parameter values centered on the number in the "Center" menu, used to create the histogram.

In the previous figure, the width per division is 2.000×10^{3} (item (0). Because the histogram is of a frequency parameter, the units of the measurement parameter is hertz.
The range of parameter values contained in the histogram is therefore:
($2 \mathrm{kHz} /$ div ision) $\times(10$ div isions $)=20 \mathrm{kHz}$
with a center of $2.02 \mathrm{E}+05 \mathrm{~Hz}($ (2).
In this example, all freq parameter values within 202 kHz $\pm 10 \mathrm{kHz}$ (from 192 kHz to 212 kHz) are used in creating the histogram. The range is subdiv ided by the number of bins set by the user. Here, the range is 20 kHz , as calculated above, and the number of bins is 100 . Therefore, the range of each bin is:
$20 \mathrm{kHz} / 100 \mathrm{bins}$, or
0.2 kHz per bin

The "Center" menu allows you to modify the center value's mantissa (here 2.02), exponent ($\mathrm{E}+05$) or the number of digits used in specifying the mantissa (three). The display scale of $1 \mathrm{kHz} / \mathrm{div}$ ision, shown in the Trace Display Field, is indicated by item (3. This scale has been set using the horizontal zoom control and can be used to expand the scale for visual examination of the histogram trace.
The use of zoom in this way does not modify the range of data acquisition for the histogram, only the display scale. The range of measurement acquisition for the histogram remains based on the center and width scale, resulting in a range of $202 \mathrm{kHz} \pm 10$ kHz for data acquisition.
Any of these can be changed using the associated knob. And the width/division can be incremented in a 1-2-5 sequence by selecting Width, using button or knob.

Histogram Parameters

Once the histogram settings are defined, selecting additional parameter values is often useful for measuring particular attributes of the histogram.

Selecting the "PARAMETER SETUP" menu shown in the previous figure accesses the "CHANGE PARAM" menus, shown in Figure 6.15.

Figure 6.15
New parameters can now be selected, or prev ious ones modified. In this figure, the histogram parameters maxp and mode (item ©) have been selected. These determine the count for the bin with the highest peak and the corresponding horizontal axis value of that bin's center.
Note that both "maxp" and "mode" are followed by "(A)" on the display. This designates the measurements as being made on the signal on Trace A, in this case the histogram. Note:
$>$ The value of $\operatorname{maxp}(\mathbf{A})$ " is "110 \#," indicating that the highest bin has a count of 110 ev ents.
> The value of $\operatorname{mode}(\mathbf{A})$ is " 203.90 kHz ," indicating that this bin is at 203.90 kHz .
> The $\mathbf{\Delta}$ icon to the left of "mode" and "maxp" parameters indicates that the parameter is being made on a trace defined as a histogram.
However, if these parameters were inadv ertently set for a trace with no histogram they would show '---'.

Using Measurement Cursors
The parameter cursors can be used to select a section of a histogram for which a histogram parameter is to be calculated.
Figure 6.16 shows the average (item (0) of the distribution between the parameter cursors for a histogram of the frequency ("freq") parameter of a waveform. The parameter cursors (©) are set "from" 4.70 divisions (3) "to" 9.20 divisions (©) of the display.

Figure 6.16

It is recommended that this capability be used only after the input wav eform acquisition has been completed. Otherwise, the parameter cursors will also select the portion of the input wav eform used to calculate the parameter during acquisition. This will create a histogram with only the local parameter values for the selected wav eform portion.

Zoom Traces and Segmented Waveforms

Histograms can also be displayed for traces that are zooms of segmented wav eforms. When a segment from a zoomed trace is selected, the histogram for that segment will appear. Only the portion of the segment displayed, and which lies between the parameter cursors, will be used in creating the histogram. The corresponding Displayed Trace Field will show the number of ev ents captured for the segment.
Figure 6.17 shows "Selected" a histogram of the frequency ("freq") parameter for Segment 1 (item (1) of Trace "A," which is a zoom of a 10-segment wav eform on Channel 1.

Figure 6.17
The Displayed Trace Field shows that 24 parameter events (item (2) have been captured into the histogram. The average
value for the freq parameter is displayed as the histogram parameter, "avg(B)."
Figure 6.18 shows the result of selecting All Segments.

Figure 6.18
Note that the Displayed Trace Field indicates 30 events in the histogram for all segments, and the change in " $\operatorname{avg}(\mathbf{B}) . "$
Histogram events can be cleared at any time by pushing the Clear Sweeps button. All ev ents in the 20k parameter buffer are cleared at the same time. The vertical and horizontal Position and Zoom control knobs can be used to expand and position the histogram for zooming in on a particular feature of it. The resulting vertical and horizontal scale settings are shown in the Displayed Trace Field. Howev er, the values in the "Center" and "Width" menus do not change, since they determine the range of the histogram and cannot be used to determine the parameter
value range of a particular bin. If the histogram is repositioned using the horizontal Positionknob, the histogram's center will be moved from the center of the screen. Horizontal measurements will then require the use of Cursors.
The scope's measurement cursors are useful for determining the value and population of selected bins. Figure 6.19 shows the "Time" cursor (©) positioned on a selected histogram bin. The value of the bin (©) and the population of the bin (3) are also shown.

Figure 6.19
A histogram's range is represented by the horizontal width of the histogram baseline. As the histogram is repositioned vertically the left and right sides of the baseline can be seen. In this final figure of the chapter, the left edge of the range is visible (©).

> \# \# \#

BLANK PAGE

ORM: Histogram Parameters

avg

Average

Definition

Description

Av erage or mean value of data in a histogram.
The av erage is calculated by the formula:

$$
\operatorname{avg}=\sum_{i=1}^{n}(\text { bin count })_{i}(\text { bin value })_{i} / \sum_{i=1}^{n}(\text { bin count })_{i}
$$

where n is the number of bins in the histogram, bin count is the count or height of a bin, and bin value is the center value of the range of parameter values a bin can represent.

Example

The av erage value of this histogram is:

$$
(4.1 * 2+4.3 * 3+4.4 * 1) / 6=4.25
$$

fwhm

Full Width at Half Maximum

Determines the width of the largest area peak, measured between bins on either side of the highest bin in the peak that have a population of half the highest's population. If sev eral peaks have an area equal to the maximum population, the leftmost peak is used in the computation.

Description First, the highest population peak is identified, and the height of its highest bin (population) is determined (for a discussion of how peaks are determined see the pks parameter description). Next, the populations of bins to the right and left are determined, until a bin on each side is found to have a population of less than 50% of that of the highest bin's. A line is calculated on each side, from the center point of the first bin below the 50% population to that of the adjacent bin, towards the highest bin. The intersection points of these lines with the 50% height value is then determined. The length of a line connecting the intersection points is the value for fwhm.

Example

fwxx

Full Width at xx\% Maximum

Definition	Determines the width of the largest area peak, measured between bins on either side of the highest bin in the peak that have a population of xx\% of the highest's population. If sev eral peaks have an area equal to the maximum population, the leftmost peak is used in the computation.
Description	First, the highest population peak is identified, and the height of its highest bin (population) determined (see the pks description). Next, the bin populations to the right and left are determined until a bin on each side is found to have a population of less than xx\% of that of the highest bin. A line is calculated on each side, from the center point of the first bin below the 50\% population to that of the adjacent bin, towards the highest bin. The intersection points of these lines with the xx\% height value is then determined. The length of a line connecting the intersection points is the value for fwxx.
Parameter SettingsSelection of the fwxx parameter in the "CHANGE PARAM" menu group causes the "MORE fwxx SETTUP" menu to appear. Pressing the corresponding menu button displays a threshold setting menu that enables the user to set the ' xx' value to between 0 and 100\% of the peak. fwxx with threshold set to 35\%:	
Example	

hampl

Definition

Description

Histogram Amplitude

The difference in value of the two most populated peaks in a histogram. This parameter is useful for wav eforms with two primary parameter values, such as TTL voltages, where hampl would indicate the difference between the binary ' 1 ' and ' 0 ' voltage values.

The values at the center (line dividing the population of peak in half) of the two highest peaks are determined (see pks parameter description). The value of the leftmost of the two peaks is the histogram base (see hbase). While that of the rightmost is the histogram top (see htop). The parameter is then calculated as:
hampl = htop - hbase

Example

In this histogram, hampl is $152 \mathrm{mV}-150 \mathrm{mV}=2 \mathrm{mV}$.

hbase

Definition

Description

Histogram Base

The value of the leftmost of the two most populated peaks in a histogram. This parameter is primarily useful for waveforms with two primary parameter values such as TTL voltages where hbase would indicate the binary ' 0 ' voltage value.

The two highest histogram peaks are determined. If several peaks are of equal height, the leftmost peak among these is used (see pks). Then the leftmost of the two identified peaks is selected. This peak's center v alue (line that divides population of peak in half) is the hbase.

high

Definition

Description

The value of the rightmost populated bin in a histogram.
The rightmost of all populated histogram bins is determined: high is its center value, the highest parameter value shown in the histogram.

Example

In this histogram, high is 152 mV .

hmedian

Histogram Median

The value of the ' x ' axis of a histogram, dividing the histogram population into two equal halves.

The total population of the histogram is determined. Scanning from left to right, the population of each bin is summed until a bin that causes the sum to equal or exceed half the population value is encountered. The proportion of the population of the bin needed for a sum of half the total population is then determined. Using this proportion, the horizontal value of the bin at the same proportion of its range is found, and returned as hmedian.

The total population of a histogram is 100 and the histogram range is div ided into 20 bins. The population sum, from left to right, is 48 at the eighth bin. The population of the ninth bin is 8 and its sub-range is from 6.1 to 6.5 V . The ratio of counts needed for half- to total-bin population is:

2 counts needed $/ 8$ counts $=.25$
The value for hmedian is:

$$
6.1 \text { volts }+0.25^{*}(6.5-6.1) \text { volts }=6.2 \text { volts }
$$

ORM

hrms

Definition The rms value of the values in a histogram.
Description

Example

The center value of each populated bin is squared and multiplied by the returned as hrms.

Using the histogram shown here, the value for hrms is:

Histogram Root Mean Square

 population (height) of the bin. All results are summed and the total is divided by the population of all the bins. The square root of the result is$$
\text { hrms }=\sqrt{\left(3.5^{2} * 2+2.5^{2} * 4\right) / 6}=2.87
$$

htop

Definition

Description

Histogram Top

The value of the rightmost of the two most populated peaks in a histogram. This parameter is useful for wav eforms with two primary parameter values, such as TTL voltages, where htop would indicate the binary ' 1 ' voltage value.

The two highest histogram peaks are determined. The rightmost of the two identified peaks is then selected. The center of that peak is htop (center is the horizontal point where the population to the left is equal to the area to the right).

Example

Iow

Definition

Description

Example

In this histogram, low is 140 mV .

maxp

Maximum Population

Definition The count (vertical value) of the highest population bin in a histogram.
Description
Each bin between the parameter cursors is examined for its count. The highest count is returned as maxp.

Example

In this example, maxp is 14 .

mode

Mode

Definition
Description

The value of the highest population bin in a histogram.
Each bin between the paramete r cursors is examined for its population count. The leftmost bin with the highest count found is selected. Its center value is returned as mode.

Example

In this example, mode is 150 mV .

Percentile

Definition	Computes the horizontal data value that separates the data in a histogram, so that the population on the left is a specified percentage ' $x x$ ' of the total population. When the threshold is set to 50%, pctl is the same as hmedian.
Description	The total population of the histogram is determined. Scanning from left to right, the population of each bin is summed until a bin that causes the sum to equal or exceed ' $x x$ '\% of the population value is encountered. A ratio of the number of counts needed for ' $x x$ '\% population/total bin population is then determined for the bin. The horizontal value of the bin at that ratio point of its range is found, and returned as pctl.
Example	The total population of a histogram is 100 . The histogram range is divided into 20 bins and ' $x x$ ' is set to 25%. The population sum at the sixth bin from the left is 22 . The population of the seventh is 9 and its sub-range is 6.1 to 6.4 V . The ratio of counts needed for 25% population to total bin population is: 3 counts needed $/ 9$ counts $=1 / 3$.
	The value for pctl is: $6.1 \text { volts }+0.33 \text { * }(6.4-6.1) \text { volts }=6.2 \text { volts. }$
Parameter Settings	Selection of the pctl parameter in the "CHANGE PARAM" menu group causes the "MORE pctl SETUP" menu to appear. Pressing the corresponding menu button displays a threshold setting menu. With the associated knob, you can set the percentage value to between 1% and 100% of the total population.

Peaks

Definition
Description

The number of peaks in a histogram.
The instrument analyzes histogram data to identify peaks from background noise and histogram binning artifacts such as small gaps.

Peak identification is a three-step process:

1) The mean height of the histogram is calculated for all populated bins. A threshold (T1) is calculated from this mean where:

$$
\mathrm{T} 1=\text { mean }+2 \text { sqrt(mean) }
$$

2) A second threshold is determined based on all populated bins under T1 in height, where:

$$
\text { T2 = mean + } 2 \text { * sigma }
$$

where sigma is the standard deviation of all populated bins under T1.
3) Once T2 is defined, the histogram distribution is scanned from left to right. Any bin that crosses above T2 signifies the existence of a peak. Scanning continues to the right until one bin or more crosses below T2. However, if the bin(s) cross below T2 for less than a hundredth of the histogram range, they are ignored, and scanning continues in search of a peak(s) that crosses under T2 for more than a hundredth of the histogram range. Scanning goes on over the remainder of the range to identify additional peaks. Additional peaks within a fiftieth of the range of the populated part of a bin from a prev ious peak are ignored.

Note: If the number of bins is set too high a histogram may have many small gaps. This increases sigma and thereby T2, and in extreme cases can prevent determination of a peak, even if one appears to be present to the eye.

Histogram Parameters

Example

The example below shows that two peaks have been identified. The peak with the highest population is peak \#1.

range

Range

Definition

Description

Example

In this example, range is 2 mV .

Definition The standard deviation of the data in a histogram.
Description

Example

For the histogram:

totp

Definition

Description

Total Population

Calculates the total population of a histogram between the parameter cursors.

The count for all populated bins between the parameter cursors is summed.

Example

The total population of this histogram is 9 .

xapk

Definition

Description

Example

X Coordinate of xx'th Peak

Returns the value of the xx'th peak that is the largest by area in a histogram.

First the peaks in a histogram are determined and ranked in order of total area (for a discussion on how peaks are identified see the description for the pks parameter). The center of the $\mathrm{n}^{\text {th }}$ ranked peak (the point where the area to the left is equal to the area to the right), where n is selected by the user, is then returned as xapk.

The rightmost peak is the largest, and thus the first-ranked, in area (1). The leftmost peak, although higher, is ranked second by area (2). The lowest peak is also the smallest in area (3).

\# \# \#

BLANK PAGE

DVD Processing Model

In many applications, it is important to make measurements directly from the RF signal, independent of a specific DVD chip. The OR Data processing function provided in the Advanced ORM package can emulate the filter, slicer, and/or phase-locked loop (PLL) of a typical optical recording drive. A schematic of this function is shown in the following diagram. You can view the equalized data, leveled data, threshold, sliced data, or the extracted clock.
You can control the cutoff frequency and boost of the equalizing filter, the closed loop bandwidth of the slicer, and the bandwidth of the PLL. Alternatively, you can input the equalized signal and still look at the slicer or PLL output of the function.
Additionally, some of the adv anced optical drives have a header and data section. A Gate signal differentiates the header and data sections. The OR Data function lets you input a gate signal, and allows you to choose when to analyze the data (gate high or low), so that either the header or the data area can be analyzed.

DVD RAM
For noisy signals if less than three width peaks are found, the PLL start frequency is set so that T is the nearest value to the expected bit rate for which the first width peak is an integer multiple of T. Also, the PLL start phase is derived from the first two edges instead of the first one.

Where:

- Equalized - applies a low pass filter with boost to the input data. This should not be used if the input data is already equalized (filtered).
- Lev eled - Applies the filter (if the input data is raw RF) and then subtracts the sliced threshold from it.
- Sliced - This is the output of the slicer. It is similar to Lev eled except the amplitude of each pulse is normalized to " 1 " and " 0 ."
- Threshold - this wav eform comprises the low frequency components of the original signal.
- Extracted CLK - the sliced data is passed through a PLL and the recov ered clock signal is produced.

DVD Processing Model

FILTERING

SLICER

A low-pass filter that removes high-frequency noise and provides equalization is needed for the newer optical recording systems (e.g., DVD). In the DVD read-only and recordable specifications are given the frequency characteristics of the low pass filter (LPF) and equalizer (EQ) as a graph. The combination of these must meet within 1 dB below 7 MHz , and it is recommended to meet it up to 10 MHz . Also, group delay variation for frequencies $=6.5 \mathrm{MHz}$ must be $= \pm 3 \mathrm{~ns}$, and gain at 5.0 MHz minus gain at 0 Hz must be 3.2 $\pm 0.3 \mathrm{~dB}$. For the LPF, it gives an example implementation to achieve these characteristics as a $6^{\text {th }}$ order Bessel filter with a cutoff frequency fc $(-3 \mathrm{~dB})=8.2 \mathrm{MHz}$, and an example for the EQ is a three-tap transv ersal filter.
The OR Data function implements the $6^{\text {th }}$ order Bessel filter as a FIR filter to provide the low-pass filter capability. The number of coefficients of the FIR depends on the ratio between the cutoff frequency fc and the sample rate fs. For a 1x DVD with an fc of 8.2 MHz , sampled at $500 \mathrm{MS} / \mathrm{s}$, approximately 220 taps are required. Sampling at $1 \mathrm{GS} / \mathrm{s}$ is about twice that. Ideally, the sampling rate should be 10 to 20 times the clock rate. For a 1 x DVD with a clock period of 37 ns , the sample rate should be 500 MS/s.

The three-tap equalization filter (EQ) is applied to the data after it has been low-pass filtered. The three samples input to the EQ are not adjacent; they are at 0 and $\pm 2 \mathrm{~T}$, where T is a $1 /$ channel bit rate.
Because the spacing in DSO samples depends on data rate and sample rate, T is likely to be a non-integer number of samples. In this case, interpolation is used to find the values at -2 T and +2 T .

The Slicer is a $1^{\text {st }}$ order integrating slicer with a programmable closed loop bandwidth (e.g., 5 kHz for 1x DVD as specified in DVDR Annex G and DVD Annex H). Besides producing the sliced data, the slicer can output the difference of the input signal and the slicer threshold level. The slicer threshold will be determined by an exponential average of data samples computed as:
New thresh $=(n-1) / n$ * old thresh $+1 / n$ * new data
Where n is chosen to meet the bandwidth requirement at the curren t sample rate.

The Clock recovery function emulates a PLL with an open-loop transfer function, as specified in DVD-R Annex G and DVD Annex H (12 dB per octave at low frequencies, would intercept 0 dB gain at 6 kHz except it breaks to 6 dB per octave, the $6 \mathrm{~dB} /$ octave line intercepts 0 dB gain at 9 kHz). The emulation of the VCO directly implements the edge comparators, charge pump, loop filter, and VCO.

A detailed description of the PLL calculation and its limitations is given in Appendix A.

DVD Processing Model

OR Data Configuration Menu

Press the Math Tools front panel button or the MATH SETUP soft button to access the "ZOOM+MATH" menus (see the MATH SETUP chapter of the scope Operator's Manual). These menus allow you to redefine each of the four traces (A, B, C, and D) and to access their "SETUP" menus. Pressing the button that corresponds to one of the traces allows that trace (here Trace A) to be set up.

SETUP OF A

Math Type
Functions
Histogram
D.R. Date

Resample
Trend
Produce-
RF (input)
Equalized
Leveled
Threshhold Sliced

MORE O.R. SETUP
of
1234 B C D M1 M2 M3 M4

This allows the selected trace (here Trace A) to be set up.

use Math?

Use this to enable math on the trace. Traces can be set to use math or as zooms of other traces. Because OR Data is a math function, "use Math?" should be set to "Yes."

Math Type

Use this to select "O.R. Data."

MORE O.R. SETUP

Use this to access more OR Data setup options and the final OR dedicated menu (see next page).

OPTICAL RECORDING SETUP

Input
This allows you to specify whether the input is connected to raw or already equalized RF data.

Set
This allows you to control "circuit" parameters.

Parameter	Description	Possible Values			
LP fc	Cutoff frequency for the Equalizer (low-pass filter)	10 kHz to 800 MHz			
Boost	Boost for the Equalizer	0 to 20 dB			
Slicer BW	Controls the bandwidth of the Slicer	1 to 200 kHz			
PLL BW	Controls the bandwidth of the PLL (used for clock recov ery only)	1 to 200 kHz			
Gate	Optionally, you can specify a channel that will be used to gate the input signal. When specified, you must also specify the polarity of the gate (i.e., process when low or high).	None, C1, .. C4, M1, M4, other traces			
High or Low			$	$	Ler
:---					

\# \# \#

ORM Remote Control Commands

Using ORM Remotely

This chapter lists the commands for performing remote programming of the Optical Recording Measurement package. Refer to your Remote Control Manual for a complete description of the oscilloscope's remote control capabilities.

CURSOR

CURSOR_MEASURE, CRMS Command/Query

DESCRIPTION

The CURSOR_MEASURE command specifies the type of cursor or parameter measurement to be displayed and is the main command for displaying parameters and pass/fail.
The CURSOR_MEASURE? query indicates which cursors or parameter measurements are currently displayed.

Notation	
ABS	absolute reading of relative cursors
CUST	custom parameters
FAIL	pass/fail: fail
HABS	horizontal absolute cursors
HPAR	standard time parameters
HREL	horizontal relative cursors
OFF	cursors and parameters off
PARAM	synonym for VPAR
PASS	pass/fail: pass
SHOW	custom parameters (old form)
STAT	parameter statistics
VABS	vertical absolute cursors

Notation	
VPAR	standard voltage parameters
VREL	vertical relative cursors

Note: The PARAM mode is turned OFF when the $X Y$ mode is ON.

COMMAND SYNTAX	CuRsor_MeaSure <mode>[,<submode>] <mode> : = \{CUST, FAIL, HABS, HPAR, HREL, OFF, PARAM, PASS, SHOW, VABS, VPAR, VREL $\}$ <submode> : = \{STAT, ABS\} Note 1: The keyword STAT is optional with modes CUST, HPAR, and VPAR. If present, STAT turns parameter statistics on. Absence of STAT turns parameter statistics off. Note 2: The keyword ABS is optional with mode HREL. If it is present, ABS chooses absolute amplitude reading of relative cursors. Absence of ABS selects relative amplitude reading of relative cursors.
QUERY SYNTAX	CuRsor_MeaSure?
RESPONSE FORMAT	CuRsor_MeaSure <mode>
EXAMPLE (GPIB)	The following command switches on the vertical relative cursors: CMD $\$=$ "CRMS VREL": CALL IBWRT (SCOPE\%, CMD\$) The following command determines which cursor is currently turned on:
	CMDS $\$=$ "CRMS?": CALL $\operatorname{IBWRT}(S C O P E \%, C M D \$):$ CALL IBRD (SCOPE\%,RD\$) : PRINT RD\$
	Example of response message: CRMS OFF

Remote Control Commands

RELATED COMMANDS CURSOR SET, PARAMETER STATISTICS, PARAMETER_VALUE, PASS_FAIL_CLEAR, PASS_FAIL_CONDITION, PASS_FAIL_DELETE, PASS_FAIL_MASK

ADDITIONAL INFORMATION To turn off the cursors, parameter measurements or Pass/Fail tests, use:

CURSOR_MEASURE OFF
To turn on a cursor display, use one of the following four forms:
CURSOR_MEASURE HABS
CURSOR_MEASURE HREL
CURSOR_MEASURE VABS
CURSOR_MEASURE VREL

To turn on parameter measurements without statistics, use one of the following three forms:

CURSOR_MEASURE CUST
CURSOR_MEASURE HPAR CURSOR_MEASURE VPAR

To turn on parameter statistics, add the keyword STAT to the above three forms.

To turn on Pass or Fail tests on parameter or mask tests, use:
CURSOR_MEASURE PASS
CURSOR_MEASURE FAIL
Use the command:
PASS_FAIL_CONDITION
to select parameters in the Custom mode, and to modify the test conditions in the Pass/Fail mode.

CURSOR_SET, CRST

 Command/Query
DESCRIPTION

COMMAND SYNTAX

The CURSOR_SET command allows you to position any one of the eight independent cursors at a given screen location. The positions of the cursors can be modified or queried even if the required cursor is not currently displayed on the screen.
When setting a cursor position, you must specify a trace, relative to which the cursor will be positioned.
The CURSOR_SET? query indicates the current position of the cursor(s). The values returned depend on the grid type selected.
Note: If the parameter display (or the pass/fail display or extended parameters display) is turned on, the parameters of the specified trace will be shown, unless the newly chosen trace is not displayed or has been acquired in sequence mode. These conditions will produce an environment error. If you change only the trace without repositioning the cursors, the CURSOR_SET command may be given with no argument (for example, TB:CRST).

Notation			
HABS	horizontal absolute	PREF	parameter reference
HDIF	horizontal difference	VABS	vertical absolute
HREF	horizontal reference	VDIF	vertical difference
PDIF	parameter difference	VREF	vertical reference

<trace> :CuRsor_SeT <cursor>,<position>[,<cursor>,<position>,<cursor> ,<position>]
<trace> : $=\{T \mathrm{TA}, \mathrm{TB}, \mathrm{TC}, \mathrm{TD}, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C4}\}$
<cursor> : = habs, VAbs, href, hDIf, VREF, VDIf, PREF, PDIF\}
<position> : = 0 to 10 DIV (horizontal)

Remote Control Commands

<position> : = -29.5 to 29.5 DIV (vertical)

Note 1: The suffix DIV is optional.

Note 2: Parameters are grouped in pairs. The first parameter specifies the cursor to be modified, and the second one gives its new value. Parameters may be grouped in any order, and may be restricted to those items to be changed.

QUERY SYNTAX
RESPONSE FORMAT
AVAILABILITY
EXAMPLE (GPIB)

```
<trace> : CuRsor_SeT? [<cursor>,...<cursor>]
<curSOr> := {HABS, VABS, HREF, HDIF, VREF, VDIF, PREF,
    pDIF, ALL}
```

<trace> : CuRsor_SeT <Cursor>, <position>[, <cursor>, <position>, ...
<cursor>, <position>]

If <cursor> is not specified, ALL will be assumed. If the position of a cursor cannot be determined in a particular situation, its position will be indicated as UNDEF.
<trace> : \{C3, C4\} av ailable only on four-channel oscilloscopes.
The following command positions the VREF and VDIF cursors at +3 DIV and -7 DIV respectiv ely, using Trace A as a reference:

CMD $=$ ="TA: CRST VREF, 3DIV, VDIF,-7DIV":
CALL IBWRT (SCOPE\%, CMD\$)
RELATED COMMANDS CURSOR_MEASURE, CURSOR VALUE, XY_CURSOR_SET
CMD $=$ ="TA: CRST VREF, 3DIV, VDIF,-7DIV":
CALL IBWRT (SCOPE\%, CMD\$)

PARAMETER_VALUE, PER_CURSOR_SET,

CURSOR_VALUE?, CRVA?

Query

DESCRIPTION

QUERY SYNTAX

RESPONSE FORMAT

AVAILABILITY

EXAMPLE (GPIB)

The CURSOR_VALUE? query returns the values measured by the specified cursors for a given trace. (The PARAMETER_VALUE? query is used to obtain measured wav eform parameter values.)

Notation			
HABS	horizontal absolute	VABS	vertical absolute
HREL	horizontal relative	VREL	vertical relative

<trace> : CuRsor_VAlue? [<mode>, ...<mode>]
<trace> : =\{TA, TB, TC, TD, C1, C2, C3, C4\}
<mode> : $=$ HABS, HREL, VABS, VREL, ALL $\}$
<trace> : CuRsor_VAlue HABS, <abs_hori>, <abs_vert>
<trace> : CuRsor_VAlue HREL, <delta_hori>, <delta_vert>, <absv ert_ref>, <absv ert_dif>
<trace>: CuRsor_VAlue VABS, <abs_vert>
<trace>: CuRsor_VAlue VREL, <delta_vert>
For horizontal cursors, both horizontal as well as vertical values are giv en. For v ertical cursors only vertical values are giv en.
Note: If <mode> is not specified or equals ALL, all the measured cursor values for the specified trace are returned. If the value of a cursor cannot be determined in the current environment, the value UNDEF will be returned.
<trace> : $=\{\mathrm{C} 3, \mathrm{C} 4\}$ av ailable only on four-channel oscilloscopes.

The following query reads the measured absolute horizontal v alue of the cross-hair cursor (HABS) on Channel 2:
CMD\$="C2:CRVA? HABS": CALL IBWRT (SCOPE\%, CMD\$) : CALL IBRD (SCOPE\%,RSP\$) : PRINT RSP\$
Response message:
C2:CRVA HABS, 34.2E-6 S, $244 \mathrm{E}-3 \mathrm{~V}$

Remote Control Commands

RELATED COMMANDS CURSOR_SET, PARAMETER_VALUE, PER_CURSOR_VALUE, XY_CURSOR_VALUE

DESCRIPTION

COMMAND SYNTAX

QUERY SYNTAX
RESPONSE FORMAT

The DEFINE command specifies the mathematical expression to be ev aluated by a function. This command is used to control all functions in the standard oscilloscope and WPOX processing packages.
<function> : DEFine EQN, '<equation>'
[, <param_name> , <v alue>, ...]
Note 1: Parameters are grouped in pairs. The first in the pair names the variable to be modified, <param_name>, while the second one gives the new value to be assigned. Pairs can be given in any order and can be restricted to the variables to be changed.
Note 2: Space (blank) characters inside equations are optional.
<function> : DEFine?
<function> : DEFine EQN, '<equation>'[,MAXPTS, <max_points>]
[, SwEEPS, <max_sweeps>][, wEIGHT, <weight>][, BITS, <bits>]

<param_name>	<value>	Description
EQN	<<equation>'	Function equation as defined below
MAXPTS	<max_points>	Max. number of points to compute
Parameters To Support Additional Functions in WP01		
BITS	<bits>	Number of ERES bits
UNITS	<units>	Physical units
WEIGHT	<weight>	Continuous Average weight

Remote Control Commands

Parameters To Support Additional Functions in WP02			
WINDOW	<window_type>		FFT window function
Parameters To Support Additional Functions in WP03 or DDM			
MAXBINS	<bins>		Number of bins in histogram
MAX_EVENTS	<max_values>		Max. no. of values in histogram
CENTER	<center>		Horizontal center position for histogram display.
WIDTH	<width>		Width of histogram display
VERT	<vert_scale>		Vertical scaling type
Parameters To Support Additional Functions in PRML			
LENGTH	<length>		No. points to use from first waveform
START	<start>		Starting point in second waveform
Function Equations And Names Available On All Models			
<source>		Identity	
+<source>		Identity	
-<source>		Negation	
<source1> + <source2>		Addition	
<source1> - <source2>		Subtraction	
<source1><source2>		Multiplication	
<source1>/<source2>		Ratio	
AVGS(<source>)		Average Summed	
RESAMP(<source>)		Resample (deskew)	
SINX(<source>)		$\operatorname{Sin}(\mathrm{x}) / \mathrm{x}$ interpolator	
ZOOMONLY (<extended_source>)		Zoom only (No Math)	
Extended Functions Available On Instruments With WP01 Processing Firmware			
ABS(<source>)		Absolute Value	

AVGC(<source>)	Continuous Average
DERI(<source>)	Derivative
ERES(<source>)	Enhanced Resolution
EXP(<source>)	Exponential (power of e)
EXP10(<source>)	Exponential (power of 10)
EXTR(<source>)	Extrema (Roof and Floor)
FLOOR(EXTR(<source>))	Floor (Extrema source only)
INTG(<source>[\{+,-\} <addend>])	Integral
LN(<source>)	Logarithm base e
LOG10(<source>)	Logarithm base 10
RESC([\{+,-\}][<multiplier>*]<source>[\{+,-\}<addend>])	Rescale
ROOF (EXTR(<source>))	Roof (Extrema source only)
1/<source>	Reciprocal
SQR(<source>)	Square
SQRT(<source>)	Square Root
FFT Functions Available on Instruments with WP02 Processing Firmware Note: The source waveform must be a time-domain signal, single segment.	
FFT(<source>)	Fast Fourier Transform (complex result)
REAL(FFT(<source>))	Real part of complex result
IMAG(FFT(<source>))	Imaginary part of complex result
MAG(FFT(<source>))	Magnitude of complex result
PHASE(FFT(<source>))	Phase angle (degrees) of complex result
PS(FFT(<source>))	Power spectrum
PSD(FFT(<source>))	Power density
$\text { RESC }\left([\{+,-\}]\left[<\text { multiplier }>^{\star}\right]<\text { source }>[\{+,-\}<\text { addend }>]\right.$	Rescale

Remote Control Commands

Power Average Functions Available on Instruments with WP02 Processing Firmware Note: The source waveform must be another function defined as a Fourier transform.

MAG(AVGP(<function>))	PS(AVGP(<function>))	PSD(AVGP(<function>))
Function Equations and Names Available on Instruments with WP03 or DDM		
Firmware		

Source values

Note: The numbers in CUST1, CUST2, CUST3, CUST4, and CUST5 refer to the line numbers of the selected custom parameters.
<sourceN> : = \{TA, TB, TC, TD, M1, M2, M3, M4, C1, C2,
C3, C4\}
<function>: $=\{T A, T B, T C, T D\}$
<custom_line> : = \{CUST1, CUST2, CUST3, CUST4, CUST5\}
<extended_source> : = $\mathbf{\{ 1 , ~ C 2 , ~ C 3 , ~ C 4 , ~ T A , ~ T B , ~ T C , ~}$
TD, M1, M2, M3, M4
Values to define number of points/sweeps
<max_points> : = 50 to 10000000
<max sweeps> : = 1 to 1000 (For standard instruments)
<max_sweeps> : = 1 to 1000000 (For WP01 only)
<max_sweeps> : = 1 to 50000 (WP02 Power Spectrum only)
Values for ORDATA Function
<OR_boost> : $=0$ to 10 dB
$<O R _f c>:=10 e 3$ to 800 e 6 Hz
<OR_gate> : = \{NONE, TA, TB, TC, TD, M1, M2, M3, M4, C1, C2, C3, C4\}
<OR_gate_state> : = \{HIGH, LOW $\}$
<OR_in> : = \{RF, EQUALIZED $\}$
<OR_OP> : = \{NOOP, EQUALIZED, LEVELED, THRESHOLD, SLICED, EXTRACTED_CLOCK\}
<OR_PLL_BW> : = 1 e 3 to 200 e 3 Hz
<OR_SLICER_bw> : = 1e3 to 200 e 3 Hz
AVAILABILITY
<sourceN> : = \{C3, C4\} av ailable only on 4-channel scopes.

ORM

<extended_source>:= \{C3, C4\} av ailable only on 4-channel scopes
Values for Resample Function
<delay> : = -2e-6 to $+2 \mathrm{e}-6$ seconds
Values for Rescale Function
<addend> : $=0.0$ to 1 e 15
<multiplier> : $=0.0$ to 1 e 15
Values for Summation Average and ERES
<weight>: $=\{1,3,7,15,31,63,127,255,511,1023\}$
<bits> : $=\{0.5,1.0,1.5,2.0,2.5,3.0\}$
Values for FFT window function
<window_type> : $=\{$ BLHA, FLTP, HAMM, HANN, RECT $\}$

FFT Window Function Notation	
LHA	Blackman-Harris window
FLTP	Flat Top window
HABMM	Hamming window
HANN	von Hann window
RECT	Rectangular window

Remote Control Commands

```
Values for WP03 histogramming <max bins> : = \{20, 50, 100, 200, 500, 1000, 2000\} <max_events> : = 20 to 2e9 (in a 1-2-5 sequence) <center> : = -1e15 to 1e15 <width> : \(=1 \mathrm{e}-30\) to 1 e 30 (in a 1-2-5 sequence) <vert_scale> : = \{LIN, LOG, CONSTMAX \(\}\)
```

Histogram Notation	
LIN	Use linear vertical scaling for histogram display
LOG	Use log vertical scaling for histogram display
CONSTMAX	Use constant maximum linear scaling for histogram display

Values for PRML correlation
<length> : = 0 to 10 div isions
<start> : = 0 to 10 divisions

AVAILABILITY

EXAMPLE (GPIB)

WP01 EXAMPLE
<sourceN> : = \{C3, C4\} only on four-channel instruments.
<extended_source> : = \{C3, C4\} only on four-channel instruments

SWEEPS is the maximum number of sweeps (Average and Extrema only).

Note: The pair SWEEPS, <max_sweeps>, applies only to the summed averaging (AVGS).

The following instruction defines Trace A to compute the summed average of Channel 1 using 5000 points over 200 sweeps:

CMD\$="TA:DEF EQN, `AVGS (C1)', MAXPTS, 5000, SWEEPS, 200": CALL IBWRT (SCOPE\%, CMD\$)

The following instruction sets up Trace A to compute the product of Channel 1 and Channel 2 , using a maximum of 10000 input points:

CMD\$="TA:DEF EQN, 'C1*C2', MAXPTS, 10000":
CALL IBWRT (SCOPE\%, CMD\$)

WP02 FFT EXAMPLE (GPIB)	The following instruction sets up Trace A to compute the Power Spectrum of the FFT of Channel 1. A maximum of 1000 points will be used for the input. The window function is Rectangular. CMD $=$ ="TA:DEF EQN, 'PS (FFT (C1))', MAXPTS, 1000, WINDOW, RECT": CALL IBWRT (SCOPE\%,CMD\$)
WP02 PS EXAMPLE (GPIB)	The following instruction defines Trace B to compute the Power Spectrum of the Power Av erage of the FFT being computed by Trace A, ov er a maximum of 244 sweeps. CMD $\$=$ "TB:DEF EQN, 'PS(AVGP (TA))', SWEEPS, 244": CALL IBWRT (SCOPE\%, CMD $\$$)
WP03 EXAMPLE	The following command sets up Trace C to construct the histogram of risetime measurements made on source Channel 1. The risetime measurement is defined on custom line 2. The histogram has a linear vertical scaling, and the risetime parameter values are binned into 100 bins. ```CMD$="PACU 2,RISE,C1":CALL IBWRT (SCOPE%,CMD$) CMD$="TC:DEF EQN, 'HIST (CUST2)',VERT,LIN,MAXBINS,100": CALL IBWRT (SCOPE%,CMD$)```
RELATED COMMANDS	FIND_CTR_RANGE, FUNCTION_RESET, INR?, PARAMETĒR_CUSTOM, PARAMETER_VALUE?, PASS FAIL CONDITION

Remote Control Commands

PARAMETER_CLR, PACL
Command

DESCRIPTION	The PARAMETER_CLR command clears all the current parameters from the fiv e-line list used in the Custom and Pass/Fail modes.
	Note: This command has the same effect as the command PASS_FAIL_CONDITION, given without any arguments.
COMMAND SYNTAX	PArameter_cLear
RELATED COMMANDS	PARAMETER_DELETE, PARAMETER_VALUE,
	PASS_FAIL_CONDITION

CURSOR

PARAMETER_CUSTOM, PACU

 Command/QueryDESCRIPTION

COMMAND SYNTAX

The PARAMETER_CUSTOM command controls the parameters that have customizable qualifiers, (for example, Dt@lev or r@level) and may also be used to assign any parameter for histogramming.

Note: The measured value of a parameter setup with PACU may be read using PAVA?

PArameter_Custom <line>, <parameter>, <qualifier>
[, <qualifier>, ...]
<line> : $=1$ to 5
<parameter> : = \{a parameter from the table below or any parameter listed in the PAVA? command\} <qualifier> : = Measurement qualifier(s) specific to each <param>. See following table.

<param>	definition	<qualifier> list
Parameters available on instruments equipped with ORM processing firmware		
BEES	beginning and ending edge shift	<subject n>, <data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high $n>$, <unit>
BES	beginning edge shift	<subject n>, <data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high $\mathrm{n}>$, <unit>,
BESS	beginning edge shift sigma	<subject n>, <data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high $n>$, <unit>
EES	ending edge shift	<subject n >, <data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high

Remote Control Commands

<param>	definition	<qualifier> list
		$n>,<$ unit>

<param>	definition	<qualifier> list
EESS	ending edge shift sigma	<subject n>, <data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low $\mathrm{n}>$, <high n>, <unit>
DP2C	delta pit to clock	<data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high n>, <unit>
DP2CS	delta pit to clock sigma	<data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high n>, <unit>
EDGSH	edge shift	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>, <unit>
LPER	local period	<clock source>,<clock edge>,<clock threshold>,<hysteresis>
PAA	pit average amplitude	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PASYM	pit asymmetry	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PBASE	pit base	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMAX	pit maximum	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMIDL	pit middle level	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMIN	pit minimum	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMODA	pit modulation amplitude	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>

ORM

<param>	definition	<qualifier> list
PNUM	pit number	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PRES	pit resolution	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PTOP	pit top	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
T@PIT	time at pit	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
TIMJ	timing jitter	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>, <units>
PWID	pit width	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>, <units>

Histogram and Trend Parameters available on instruments equipped with ORM processing firmware

AVG	average value	
FWHM	full width at half maximum	
FWXX	full width at $x x \%$ of max	<source>, <threshold>
HAMPL	histogram to minus histogram base	
HBASE	lower of two most probable histogram states	
HIGH	largest value	
HMEDI	median value	
HRMS	rms value	
HTOP	higher of two most probable histogram states	
LOW	lowest value	
MAXP	highest population in all histogram bins	

Remote Control Commands

<param>	definition	<qualifier> list
MODE	histogram bin with highest population	
PCTL	percentile	<source>,<threshold>
PKS	number of histogram peaks	
RANGE	range of histogram or trend	
SIGMA	standard deviation of histogram	
TOTP	total histogram population	<source>,<rank>
XAPK	x position at peak	

QUERY SYNTAX

RESPONSE FORMAT

AVAILABILITY

EXAMPLE 1
Command Example
<sourceN> : = \{C1, C2, C3, C4,TA, TB, TC, TD $\}$
<slopeN> : = \{POS, NEG, FIRST\}
<edgeN> : = \{POS, NEG\}
<clock edge> : = \{POS, NEG, ALL $\}$
<levelN>, <low>, <high> :=1 to 99 if level is specified in percent (PCT), or
<lev elN>, <low>, <high> : = Level in <sourceN> in the units of the wav eform.
<delay> : = -100 PCT to 100 PCT
<freq> : = 10 to 1 e 9 Hz (Narrow Band center frequency).
<hysteresis> : $=0.01$ to 8 div isions
<length> : $=1 \mathrm{e}-9$ to 0.001 seconds
<rank> : = 1 to 100
<threshold> : = 0 to 100 percent
<angular unit> = \{PCT, DEG, RAD $\}$

PArameter_CUstom? <line>

PArameter_Custom
<line>, <parameter>, <qualifier>[, <qualifier>, ...]
<sourceN> : $=\{\mathrm{C} 3, \mathrm{C} 4\}$ only on four-channel instruments.
BEES
PACU 1, BEES, 3,TA,POS, 0,TB,POS, 0,1,231NS,4,4,TIME

Query/Response Examples	PACU? 1 returns: PACU 1, BEES, $3, T A$, POS, $0 E-6, T B$, POS, OE-3, 1 DIV, 231E-9 S,4,4,TIME PAVA?CUST1 returns: TA: PAVA CUST1,-14.9E-9 S,OK
EXAMPLE 2	EES
Command Example	PACU 2,EES, 3, TA, POS, 0 , TB, POS, 0, 1, 231NS, 3, 11, \%
Query/Response Examples	PACU? 2 returns: PACU 2,EES, 3,TA, POS, OE-6,TB, POS, OE-3, 1 DIV, 231E-9 S,3,11, РCT PAVA? CUST2 returns: TA:PAVA CUST2,-14.639 PCT,OK
EXAMPLE 3	PTOP
Command Example	PACU 3, PTOP, TA, 0, 1, 231NS, 3,11
Query/Response Examples	PACU? 3 returns: PACU 3, PTOP,TA, 0E-6,1 DIV,231E-9 S,3,11 PAVA? CUST3 returns: TA: PAVA CUST3,28.8E-3 V,OK
RELATED COMMANDS	PARAMETER_DELETE, PARAMETER_VALUE, PASS_FAIL_CONDITION

Remote Control Commands

CURSOR

PARAMETER_DELETE, PADL
 Command

DESCRIPTION

COMMAND SYNTAX

EXAMPLE (GPIB)

RELATED COMMANDS

The PARAMETER_DELETE command deletes a parameter at a specified line from the list of parameters used in the Custom and Pass/Fail modes.

Notation		
$\mathbf{1}$	line 1	of Custom or Pass/Fail display
$\mathbf{2}$	line 2	of Custom or Pass/Fail display
$\mathbf{3}$	line 3	of Custom or Pass/Fail display
$\mathbf{4}$	line 4	of Custom or Pass/Fail display
$\mathbf{5}$	line 5	of Custom or Pass/Fail display

PArameter_DeLete <line>
<line> : = \{1, 2, 3, 4, 5\}
Note: This command has the same effect as the command PASS_FAIL_CONDITION <line>, given without any further arguments.

The following instruction deletes the third test condition in the list:

CMD\$="PADL 3": CALL IBWRT (SCOPE\%,CMD\$)

PARAMETER_CLR, PARAMETER_VALUE, PASS_FAIL_CONDITION

DESCRIPTION

COMMAND SYNTAX

The PARAMETER LIST command controls the ORM parameters that have 'list by nT ' calculation modes. Only ORM package parameters shown here.

PArameter_LIst <parameter>, <qualifier>, [<qualifier>,...] <parameter> := \{a parameter from the table below \} <qualifier>:= Measurement qualifier(s) specific to each <param>. See the following table.

| <param> | definition | <qualifier> list |
| :--- | :--- | :--- | :--- |
| Parameter Names (available on instruments equipped with ORM processing firmware) | | |

Remote Control Commands

<param>	definition	<qualifier> list
EESS	Ending edge shift sigma	<subject n>,<data source>, <data polarity>, <data threshold>, <clock source>, <clock edge>, <clock threshold>, <hysteresis>, <period>, <low n>, <high n>, <unit>
PAA	pit average amplitude	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PBASE	pit base	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMAX	pit maximum	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMIDL	pit middle level	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PMIN	pit minimum	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PNUM	pit number	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PTOP	pit top	<data source>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>
PWID	pit width	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>, <units >
TIMJ	timing jitter	<data source>, <data polarity>, <data threshold>, <hysteresis>, <period>, <low n>, <high n>, <units >

<data source>:= $\quad\{\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{TA}, \mathrm{TB}, \mathrm{TC}, \mathrm{TD}\}$
<clock source>:= \{C1, C2, C3, C4, TA, TB, TC, TD $\}$
<data polarity>:= \{POS, NEG, ALL\}
<clock edge>:= \{POS, NEG, NEAR\}
<data threshold>:= Lev el in <data source> in the units of the wav eform.
<clock threshold>:= Lev el in <clock source> in the units of the
wav eform.
<hysteresis>:= $\{0.5,1,2,5\}$ divisions
<period>:= 1e-9 to 0.001 seconds
<low $n>:=1-25$
<high $n>:=1-25$
<units>:= \{PCT, TIME $\}$
<subject $n>:=1-25$

QUERY SYNTAX	PArameter_LIst?
RESPONSE FORMAT	PArameter_List <parameter>, <qualifier>, [<qualifier>,...]
AVAILABILITY	<sourceN>:= \{C3, C4\} only on four-channel oscilloscopes.
EXAMPLES	DP2C
Command Example	PALI DP2C, C1, ALL, 20E-3, C2, NEAR, 0E-3, 0.5, 231.5E-9, 3, 11, TIME
Query/Response Examples	PALI? returns:
	PALI DP2C,C1,ALL, OE-3,C2,NEAR, OE-3, 0.5 DIV, 231.5E9 S, 3,11,TIME
	PALV? returns:
	PALV DP2C, 1.45E-9 S,9.84E-9 S, $8.88 \mathrm{E}-9 \mathrm{~s}, 2.34 \mathrm{E}-9$
	s, -1E-9 S, 15.2E-9 s, -16.02E-9 s, $7.69 \mathrm{E}-9 \mathrm{~s},-1.9 \mathrm{E}-9$
	PWID
Command Example	PALI PWID, C1, POS, 25E 3, 1, 231.5E-9, 3, 11, РСт
Query/Response Examples	PALI? returns:
	PALI PWID, C1, POS, $0 \mathrm{E}-3,1 \mathrm{DIV}$, 231.5E-9 S,3,11, PCT
	PALV? returns:
	PALV PWID, 289.402 PCT, 393.383 PCT, 497.709
	PCT, 603.318 PCT, 698.435 PCT, 804.229 РCT, 905.015
	РСт, $1.003959 \mathrm{E}+3$ РСТ, $1.110306 \mathrm{E}+3$ РСТ
RELATED COMMANDS	PARAMETER_DELETE, PARAMETER_VALUE, PARAMETER_LIST_VALUES, PARAMETER_CUSTOM, PASS_FAIL_CONDITTION

Remote Control Commands

CURSOR	PARAMETER_LIST_SET_NT, PALSNT Command/Query
DESCRIPTION	The PARAMETER_LIST_SET_NT command is used to set or query the subject nT of the AORM list parameter. It is only av ailable with the AORM package. The command provides a way to change the subject $n T$ without resetting statistics.
	In order to remotely collect a table of edge shift data for a set of pit/space pairs ov er a range of pit sizes, it is necessary to issue a series of PALV? queries for a sequence of nT subject values. If the PALI command is used to change the $n T$ subject value, statistics are reset. Not only is it impossible this way to collect accumulated data, but also each line of the table comes from a different acquisition.
	The PALSNT command solves the problem by setting only the subject $n T$ value for the list parameter and doesn't reset the accumulated data.
	The only parameters for which this command is useful are BES, BESS, EES and EESS.
	Note: It is possible for a trigger to occur during the collection of the table data. When accumulation is on, additional data shouldn't affect the values in the table if the number of sweeps is large. If it is important that the data read out by multiple queries be totally consistent, stop the trigger before issuing the queries.
	Note: Measuring edge shifts in percent will cause data variation if the period is being determined from the data, and fluctuates.
	Note: This command will not work when the ORM table is being displayed.
COMMAND SYNTAX	Parameter_List_Set_NT <subject nT value>
	```<subject nT value> = The value to set the subject nT, from 0 to 25.```
QUERY SYNTAX	Parameter_List_Set_NT?

## RESPONSE FORMAT

EXAMPLE (GPIB)

PALSNT <subject nT>
The following sequence of commands obtains the values for a $3 \times 3$ array of beginning edge shifts:

PALI BES,4,C1,POS,0E-3,C1,POS,0E-3,1 DIV, 1E-9 S,3,5,TIME Wait for the desired number of sweeps and then send:

PALSNT 3
PALV?
PALSNT 4
PALV?
PALSNT 5
PALV?
The output will appear as:
PALV BES, 0.1E-9,-0.8E-9,-0.4E-9
PALV BES,-0.3E-9,-0.2E-9,0.9E-9
PALV BES,-1.1E-9,0.6E-9,1.3E-9

## Remote Control Commands

\left.| CURSOR | PARAMETER_LIST_VALUES?, |
| :--- | :--- |
| PALV? Query |  |$\right]$

RELATED COMMANDS CURSOR_MEASURE, CURSOR_SET, PARAMETER_LIST, PARAMETER_STATISTICS

## DESCRIPTION

## QUERY SYNTAX

EXAMPLE (GPIB)

## RESPONSE FORMAT

RELATED COMMANDS

The PARAMETER_STATISTICS? query returns the current values of statistics for the specified pulse parameter mode and the result type for all five lines of the pulse parameters display.

Notation	
AVG	average
CUST	custom parameters
HIGH	highest value
HPAR	horizontal standard parameters
LOW	lowest value
PARAM	parameter definition for each line
NUM_ACQ	number of contributing acquisitions
NUM_VALUES	number of measurements taken for parameter
SIGMA	sigma (standard deviation)
SWEEPS	number of sweeps accumulated for each line
VPAR	vertical standard parameters

PArameter_STatistics? <mode>, <result>
<mode> : = \{CUST, HPAR, VPAR\}
<result> : = \{AVG, LOW, HIGH, NUM_ACQ, NUM_VALUES, SIGMA, SWEEPS, PARAM\}
Note: If keyword PARAM is specified, the query returns the list of the five pairs <parameter_name>, <source>.

The following query reads the average values of the five standard vertical parameters:
CMD $=$ ="PAST? VPAR, AVG": CALL IBWRT (SCOPE\%, CMD\$) : CALL IBRD (SCOPE\%,RD\$) : PRINT RD\%

PAST VPAR, AVG, 13v, 26v, 47v, 1v, $0 v$
PARAMETER_VALUE

## Remote Control Commands

CURSOR	PARAMETER_VALUE?, PAVA?
Query	

## DESCRIPTION

The PARAMETER_VALUE query returns the current value(s) of the pulse wav eform parameter(s) and mask tests for the specified trace. Traces do not need to be displayed or selected to obtain the values measured by the pulse parameters or mask tests.

Parameters Available on All Models					
ALL	all parameters	DUTY	duty cycle	OVSP	positive overshoot
AMPL	amplitude	FALL	falltime	PER	period
AREA	area	FALL82	fall 80 to 20\%	PKPK	peak-to-peak
BASE	base	FREQ	frequency	PNTS	points
CMEAN	mean for cyclic waveform	FRST	first point	RISE	risetime
CMEDI	median for cyclic   waveform	LAST	last point	RISE28	rise 20 to 80\%
CRMS	root mean square for   cyclic part of waveform	MAX	maximum	RMS	root mean square
CSDEV	standard deviation for   cyclic part of waveform	MEAN	mean	SDEV	standard deviation
CYCL	cycles	MEDI	median value	TOP	top
DLY	delay	MIN	minimum	WID	width
DUR	duration of acquisition	OVSN	negative overshoot		
	Custom Parameters Defined using PARAMETER_CUSTOM Command 1				
CUST1	CUST2		CUST3	CUST4	
Parameters Available on Instruments with WP03 or DDM Processing Firmware					
AVG	average of distribution	HMEDI	median of a histogram	PKS	number of peaks
DATA	data values	HRMS	histogram rms value	RANGE	range of distribution
FWHM	full width at half max	HTOP	histogram top value	SIGMA	sigma of distribution
HAMPL	histogram amplitude	LOW	low of distribution	TOTP	total population

[^1]| HBASE | histogram base ${ }^{\text {a }}$ MAXP | maximum population |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| HIGH | high of histogram | mode of dis | stribution |  |  |
| Parameter Computation States |  |  |  |  |  |
| AV | averaged over several (up to 100) periods | OF | signal partially in overflow |  |  |
| GT | greater than given value | OK | deemed to be determined without problem |  |  |
| IV | invalid value (insufficient data provided) | OU | signal partially in overflow and underflow |  |  |
| LT | less than given value | PT | window has been period truncated |  |  |
| NP | no pulse waveform | UF | signal partially in underflow |  |  |
| Mask Test Names |  |  |  |  |  |
| ALL_IN | all points of waveform inside mask (TRUE = 1, FALSE = 0) | SOME_IN | some points of waveform inside mask (TRUE = 1, FALSE = 0) |  |  |
| AL_OUT | all points of waveform outside mask ( $\mathrm{TRUE}=1$, FALSE $=0$ ) | SOME_OUT | some points of waveform outside mask (TRUE = 1, FALSE = 0) |  |  |

## QUERY SYNTAX

```
<trace> : PArameter_VAlue? [<parameter>,..,<parameter>]
<trace> :={TA, TB, TC, TD, C1, C2, C3, C4}
<parameter> := See table of parameter names on previous
 page.
```


## Alternative forms of query for mask tests:

```
<trace> : PArameter_VAlue? <old_mask_test>
```

<trace> : PArameter_VAlue? <mask_test>, <mask>
<mask_test> : = \{ALL_IN, SOME_IN, ALL_OUT, SOME_OUT\}
<old_mask_test> : = \{ALLI, ANYI, ALLO, ANYO $\}$
<mask> : $=\{$ TA, TB, TC, TD $\}$

Note: Old mask test keywords ALLI, ANYI, ALLO, ANYO imply testing of <trace> against the mask waveform TD. Old mask test keywords INSIDE and OUTSIDE are equivalent to ALL_IN and SOME_OUT; they are only supported for compatibility with oldermodel instruments.

Remote Control Commands	
RESPONSE FORMAT	```<trace> : PArameter_VAlue<parameter>, <value>, <state> [, ..., <parameter>, <value>, <state>] <value> : = A decimal numeric value <state> : = \(\mathbf{A O K}, \mathrm{AV}, \mathrm{PT}, \mathrm{IV}, \mathrm{NP}, \mathrm{GT}, \mathrm{LT}, \mathrm{OF}, \mathrm{UF}, \mathrm{OU}\}\)```
	Note: If <parameter> is not specified, or is equal to ALL, all the standard voltage and standard time parameters followed by their values and states are returned.
AVAILABILITY	<trace> : = \{C3, C4\} only av ailable on four-channel instruments.
EXAMPLE (GPIB)	The following query reads the risetime of Trace B (TB):
	CMD $\$=$ "TB: PAVA? RISE": CALL IBWRT (SCOPE\%,CMD\$) :   CALL IBRD (SCOPE\%,RD\$): PRINT RD\$
	Response message:
	TB:PAVA RISE, 3.6E-9S, OK
RELATED COMMANDS	CURSOR_MEASURE, CURSOR_SET,   PARAMETER CUSTOM, PARAMETER STATISTICS

> \# \# \#

## Notes on OR Data Math Function

The ORDATA math function can accept as input either unequalized or already equalized data, and produce:

- RF (input): just a copy of the input wav eform.
- Equalized: If the Input data is RF (not already equalized), as set on the "MORE O.R. SETUP" menu, it applies equalization using the "LP fc" and "Boost" settings from the "MORE O.R. SETUP" menu. The result is low-pass filtered such that -3dB frequency, without boost, is "LP fc," and has high frequency boost applied such that the specified boost is reached at about $61 \%$ of "LP fc." The default values for LP fc ( 8.2 MHz ) and boost ( 3.2 dB ) are the correct settings for 1x DVD and DVD-R.
- Lev eled: If the input is not equalized, equalization is applied as described above. Then, the equalized data is fed to a $1^{\text {st }}$ order integrating low-pass filter whose bandwidth is set by "Slicer BW" on the "MORE O.R. SETUP" menu. The default for "Slicer BW" ( 5.0 kHz ) is correct for 1x DVD and DVD-R. The output of this filter is subtracted from the wav eform to move the correct slice level to zero. "Leveled" output may be used for pit width measurements, etc. The correct lev el for the parameter threshold is always zero volts when it is used on Lev eled data.
- Threshold: This is similar to Leveled, but when "Threshold" is selected the output of the function is the slicer threshold, instead of the equalized wav eform minus the slicer threshold.
- Sliced: The leveled data is passed through a (software) high gain comparator. The result appears to be a noise-free wav eform where all peaks are the same height. Each edge has two samples that are not at the railed lev els, and are positioned such that linear interpolation between these points will give exactly the same zero lev el cross time as linear interpolation between points on the equalized wav eform. The Sliced output, therefore, may also be used for pit width measurements, etc.
- Extract Clk: The Sliced data is sent through a PLL emulation, and the output is the PLL's VCO output. This uses the "PLL BW" setting on the "MORE O.R. SETUP" menu. The default PLL Bandwidth ( 9 kHz ) is the correct setting for 1x DVD and DVD-R. The VCO's starting frequency and phase are preset to attempt to start the PLL in a "locked" condition on each sweep.

This appendix contains more information about each of these operations, including known limits on their operations. Extracting the clock from the data has the most dependencies; if you plan to use that function, please see the appropriate following section.

## RF (input)

It is worth noting that the O.R. DATA function does not use the setting on the "for Math use max points" menu field or the value following MAXPTS in the DEFINE remote command. The copy has all the points of the input wav eform.

## Equalized

Equalization can be applied if three conditions are met:

- We can make the low-pass filter.
- We can apply boost.
- The wav eform is large enough to still have valid points after the filtering.

A warning message is displayed if any of these conditions is not met. If one of the following warning messages appears, the wav eform is NOT equalized:

- "LP fc low \& sample rate too high, can't LP filter" - The number of coefficients needed for the finite impulse response (FIR) low-pass filter exceeded the maximum number supported. The maximum is adequate for $1 \times$ DVD at $16 \mathrm{GS} / \mathrm{s}$, which means the maximum ratio of sample rate to LP fc is $16 e 9 / 8.2 \mathrm{e} 6=1951.22$. This is far above the maximum it is reasonable to use. See the note on computation time under "operational notes."
- "Acquisition too small to apply EQ filters" - The valid region of the wav eform is reduced by "EQ spacing" (see following explanation) on each side. This error message means that the result would then have no valid points.
- "LP fc low \& sample rate too high, can't EQ filter" - This message is shown if current EQ spacing is greater than 8191 samples, an implementation restriction. The EQ spacing is set to correspond to 2 T , assuming that the LP fc is correctly set; it is calculated from LP fc as follows:

EQ spacing in samples $=2.0 /(\mathrm{fc}$ * 26.16/8.2) * sample interv al

## Operational notes

1. Even if the input data is already equalized, it is often helpful to tell the O.R. DATA function that it is not, but set the boost to zero. This greatly reduces noise. White noise has power per Hz of bandwidth, and reducing the scope's 1 GHz bandwidth to around 8.2 MHz gets rid of $99 \%$ of white noise.
2. Applying high-frequency boost makes short pulses larger and has less effect on longer pulses. The correct boost should not greatly increase the signal's ov erall amplitude.
3. The output of the Equalization is not delayed, as it would be by an analog filter. We compensate for the known delay through the digital filter and replace each input point with the corresponding equalized point.
4. The FIR LP filter plus 3.2 dB boost from the three-tap EQ filter produces the transfer function shown in Figure 1 when the FIR fc is set to 8.2 MHz . The highest peak is $20 \log (\mathrm{~dB})$ magnitude. The bowed trace below it is the real component of the TF. The flat line at zero is the imaginary component of the TF. It is zero indicating that there is no delay at all from input to output.
5. The computation time for the low-pass filter is generally longer than the time required for the sum of the rest of the computations done by the OR DATA math function. This is because the low-pass filter is a finite impulse response filter (emulating the shape of a $6{ }^{\text {th }}$ order Bessel filter). It can require hundreds of multiplies-and-adds per sample in the wav eform. The higher the sample rate relative to the bit time, T, the longer the FIR is. It is adequate to sample at least 10 to about 20 times in the channel bit time, T. For $1 \times$ DVD, T is 26.16 MHz . Twenty times that is 523 MHz , so $500 \mathrm{MS} / \mathrm{s}$ is a good sample rate.
The OR DATA math function supports the "progress bar" capability. The progress bar shows the progress of applying the LP FIR filter only. To enable the progress bar, either send the command "PMSG LR_CORNER" (other choices are CENTER and STD) or put that command in file "autoexec.dso" on a floppy so the DSO will execute it at boot-up.
Here are some measured times to produce equalized data for a 1 ms acquisition of 1x DVD data. The LP fc is set to 8.2 MHz and the boost is set to 3.2 dB , the default values. These times were measured on a LeCroy DDA120.

	acquired	
$250 \mathrm{MS} / \mathrm{s}$	250,000	1 trace
$500 \mathrm{MS} / \mathrm{s}$	500,000	3 second
$1 \mathrm{GS} / \mathrm{s}$	$1,000,000$	10 seconds
$2 \mathrm{GS} / \mathrm{s}$	$2,000,000$	36 seconds

This shows that as the sample rate is doubled (which doubles the number of samples), the time required nearly quadruples because the number of multiplies-and-adds to filter each point also doubles.
6. The three-tap EQ filter uses as input the point to be replaced and the points $2 T$ away on each side. Since 2 T may not correspond to an integer number of scope samples, linear interpolation between scope samples is used to get the values at exactly 2 T away on each side.


Figure 1: Simulation result showing transfer function of the digital low-pass filter and 3tap EQ (boost) filter, set to 8.2 MHz LP fc and 3.2 dB boost.

## Leveled

There are no additional conditions to produce leveled data. The threshold is calculated and subtracted ev en if the equalization could not be applied for the reasons described above.

## OR DATA Math Function

## Threshold

There are no additional conditions to produce the slicer threshold. The threshold is calculated ev en if the equalization could not be applied for the reasons described above.

## Sliced

The slicer uses a fixed hysteresis around zero, which corresponds to half a division (+ and - 1/4 div ision) when not vertically zoomed. (Remember that the slicer works on Lev eled data, so zero is the correct threshold; the dynamically computed threshold has already been subtracted.) This means a peak must cross zero and exceed it by a quarter of a division or it will be ignored, as if it were noise after the previous crossing. A signal that is four divisions high (half of full scale) should hav e no problem meeting this requirement, as shown in Figure 2.


Figure 2: Leveled DVD data, with cursors showing the approximate hysteresis requirements for Sliced data.

The slicer produces wav eforms that are exactly five divisions high. Each edge has two samples that are between the high and low lev els and are positioned 2.5 div isions apart such that the zero cross time of the sliced output edge is the same as the zero cross time of the lev eled data.

## Extract Clk

It is usually not possible to get data and clock signals correctly aligned from an optical drive to visualize how the data edges align with the clock; in some cases, the clock may not be av ailable at all. This function produces a clock wav eform from the data by passing it through a software PLL. This output may be overlapped on the display with Lev eled or Sliced output on another trace; and it can be used for measurements of the clock frequency. If the JTA option is present, a JitterTrack of Frequency of the extracted clock may give interesting insight into timing variation in the input signal.

The only user-set parameter for clock extraction is the "PLL BW" setting on the "MORE O.R. SETUP" menu. The PLL Bandwidth is the unity gain intercept of the open loop transfer function of the PLL. The closed loop -3 dB frequency is approximately 1.274 time that. The loop filter meets the specification shown in Annex H of the DVD Physical specifications (or Annex G of the DVD-R Physical specifications). For 1x DVD the PLL BW should be set to 9 kHz . In that case the software PLL has this closed loop response:


Figure 3: PLL closed-loop transfer function when "PLL BW" is set to 9 kHz .
The bandwidth of any PLL is a trade-off between jitter (phase noise) and desirable properties like a wide locking range and fast tracking. The "lock range" is the maximum frequency step for which the PLL can acquire lock without slipping a cycle. If we set up the VCO to start at other than the correct frequency (which corresponds to a frequency step), the PLL must change frequency to match the data. With PLL BW set to 9 kHz , the lock range is only about 25 kHz , slightly less than $0.1 \%$ of the expected clock frequency. The pull-in range is much broader but the pull-in time can be quite long. If we start the VCO just $0.4 \%$ away from the correct frequency, it would take hundreds of microseconds for the PLL to lock.

Since the acquired data may be a millisecond or less in duration, extracting the clock depends critically on the scope's ability to determine T (1/clock frequency) from the data and on starting the PLL's VCO at that frequency and at about the right phase. When it can do that, the VCO starts up locked and does not have to settle noticeably. If it cannot find the frequency, the
warning message: "ORDATA VCO start freq is $3.19 * \mathrm{LP}$ fc, didn't find it" will be displayed. As the message says, if the scope cannot find the frequency, it starts the VCO at 3.19024 * LP fc. That ratio is 26.16/8.2 (to six significant digits). That is correct for DVD according to the specification, however it may not be within $0.1 \%$ for a real drive. In our experience, drives read a couple of percent fast.
To make the clock extraction successful, the scope must be successful in finding the starting frequency from the data. Here are some things you should do to make this successful:

1. Capture as clean a signal as possible. Remember that a passive probe is 10 MO resistive only at low frequencies and, therefore, may significantly load a high-speed signal. A passive probe's response will roll off well below the scope's DC 50 O bandwidth. Consider using a differential probe such as the AP033 or AP034, or an FET probe such as the AP020. Remember to attach the ground lead.
2. Equalize properly. If the signal you are probing is already equalized but not very clean, you can tell OR DATA that it is RF anyway and set the boost to zero. That way the data will be low-pass filtered, which greatly reduces noise. If you don't equalize when you need to, or if you apply boost to an already equalized signal, the scope will probably not be able to determine the starting VCO frequency from the data, you will see the warning described above, and the extracted clock may not be good.
3. Sample at about 20 times the expected clock frequency. If you sample closer to 10 times the clock or below that, the extraction algorithm may not be able to correctly separate the peaks in the width distribution to determine the frequency at which to start the PLL. If you sample much more than 20 times the clock, the widths (in samples) may be too spread out from detectable peaks in the distribution. (See the following explanation "How the Starting VCO Frequency is Determined" for more details.) Example: CD data has $T=231 \mathrm{~ns}$, about 4.33 MHz. We can extract the clock from CD data at $100 \mathrm{MS} / \mathrm{s}$ (23x) and 200MS/s (46x) or $250 \mathrm{MS} / \mathrm{s}(58 x)$. At $50 \mathrm{MS} / \mathrm{s}(11.5 x)$ and at $500 \mathrm{MS} / \mathrm{s}(115 \mathrm{x})$, it sometimes does not find the right starting frequency. Another example: DVD has $T=1 / 26.16 \mathrm{MHz}$, about 38.2 ns . We can extract the clock from DVD data at $500 \mathrm{MS} / \mathrm{s}$ (19x), 1 GS/s (38x), and $2 \mathrm{GS} / \mathrm{s}$ (76x). At $250 \mathrm{MS} / \mathrm{s}(9.5 \mathrm{x}$ ) and at $4 \mathrm{GS} / \mathrm{s}$ (153x), it sometimes does not find the right starting frequency.

Following are some interesting pictures to show what can be handled:

## OR DATA Math Function



Figure 4: A small section of a 1 ms long noisy DVD waveform. Acquired with an ungrounded AP020 probe at 500 MS/s.


Figure 5: Same piece of the same signal, equalized and leveled. TC is set to O.R. DATA, Produce Leveled.

## OR DATA Math Function



Figure 6: $C$ is now "Sliced," $A$ is "Extract Clk" of channel 1, showing the same data as the left side of Figure 5. Note that the edges of the 3T pulses are somewhat shifted, those of the longer pulse are better.

As you look at Figure 6, we should mention that the extracted clock output is also exactly five divisions high (without vertical zoom), and its edges are linear from -0.1 to $+0.1^{*} \mathrm{~T}$ and from +0.4 to +0.6 * T . Therefore, if there are 20 samples per T , each edge of the extracted clock signal has four samples between the top and base. These samples are placed proportional to phase, so that the edge crosses 0 at exactly 0 and 180 degrees VCO phase.

The phase steering target for the VCO is, roughly speaking, that the data transitions should happen on the falling edge of the VCO output. To be more precise, we steer such that the VCO phase will be 180 degrees at the sample where a zero crossing in the data is detected. Because the software VCO works on a sample-by-sample basis, there is, on av erage, a half sample delay from the VCO falling edge's zero cross to the data zero cross. At 20 samples per T , this half sample error is $2.5 \%$ of T , not noticeable without zooming in. At 10 samples per T , it is $5 \%$ of T . The following small figure shows part of a zoom on a rising data edge and a falling clock edge sampled at $500 \mathrm{MS} / \mathrm{s}$ (2 ns per sample). The horizontal scale is 2 ns per division. The samples are bold. Note that the data crosses zero at 1 ns after the falling edge of the VCO output crosses zero. This is the expected result.

The signal used for this picture is a 4.36 MHz square wave, which has a transition ev ery 3 T when $1 / \mathrm{T}=26.16 \mathrm{MHz}$. During the first $50 \mu \mathrm{~s}$ or so the phase settles in from initial startup, after that all the zero crossings are half a sample apart, as shown in this picture.

## OR DATA Math Function



Figure 7: JitterTrack of Frequency (requires JTA option) of the extracted clock. The startup frequency was correct to within a few kHz, and the PLL did not slip. It is possible that the starting frequency was precise but the starting phase was not; the effect would be the same. JitterTrack shows frequency as a function of time. The vertical scale is 20 kHz per division; the cursor is positioned at 27.107 MHz . The horizontal scale is $0.1 \mathbf{~ m s ~ p e r ~}$ division.


Figure 8: $C$ and $A$ expansion from near the beginning of the input, at the highlighted position, showing that the alignment of the extracted clock to the sliced data is good.

## How the Starting VCO Frequency and Phase are Determined

The PLL's VCO is started at a frequency of $1 / \mathrm{T}$. Due to the accuracy required, we determine T in two steps. The first step produces an estimate of T starting with very few assumptions. The second step starts with the estimate of T and refines it. The information used in both steps is the sample at which a transition (through zero) occurred in the sliced data, for up to the first 2000 edges. If the source wav eform has less than 2000 edges, the accuracy of this procedure may be reduced.

If the source wav eform has less than 50 edges, we will not ev en attempt to estimate T. The PLL will start at 3.19024 * LP fc. Because of the low bandwidth of the PLL, it does not make much sense to try to extract the clock from a v ery short wav eform; the PLL will not have time to react.
The first step calculates the width of the first (up to) 2000 pulses, sorts the widths, and finds the first three peaks in the distribution of widths. The distribution is "smoothed" by a five-bin wide boxcar filter to prevent small local ev ents from misleading the peak detection. This is the primary reason why the signal must be over-sampled by greater than 10x. The distribution of widths is similar to a histogram of pwid (pit width) on "lev eled" output of the O.R. DATA function, using a
threshold of 0.0 mV and measuring All widths. The spacing between the peaks is approximately T , close enough to determine the lowest nT . We calculate our estimate of T from the means of the first three peaks, which are assumed to be lowest $n$, lowest $n+1$, and lowest $n+2$ (i.e., 3T, 4 T , and 5 T ). This estimate is generally good to better than $1 \%$.
The second step uses the location of the first (up to 2000) transitions, in order. It uses the estimate of $T$ to calculate $n$ between each pair of same-polarity edges. If the estimate is within $1 \%$, we have at least $50 \%$ margin. A $50 \%$ margin occurs if a pair of same-polarity edges is 25T apart. On a good wav eform, the count is likely to be exact. On a noisy or distorted wav eform, it may be that some peaks are miscounted, but as long as some are long and some are short, the final total will be nearly correct. Finally, T is computed as:
(time at the last transition - time at the first transition)/(total $n$ between them)
If there are 2000 edges, an av erage of 4T apart, the separation between first and last edge is 8000 T . If our count of $n$ is off by 1 , that is a $0.0125 \%$ error. We can tolerate up to 7 counts error ( $0.0875 \%$ ) before the PLL will not start locked. When the wav eform is correctly equalized, this does not happen.
A highly asymmetric wav eform will not have clean peaks in the distribution of its pulse widths, which also means that many of the pulses will be nearly $(\mathrm{n}+0.5) \mathrm{T}$. On such a wav eform, we may not be able to determine T . The possible reasons for failing to determine T (and therefore the VCO start frequency) are:

1) Less than 50 edges in the wav eform.
2) Could not distinguish the first three peaks in the distribution of widths.

As mentioned above, you should sample at about 20x to 50 x the clock frequency to make clock extraction work reliably.
An attempt is made to start the VCO not only at the correct frequency but also at the correct phase. The phase is pre-set such that the first edge in the wav eform will occur on a falling edge of the VCO output. The first edge is just as likely to be out of place as any other edge in the wav eform, of course. If the VCO starts significantly at the wrong phase it will either slow down or speed up for a short while until it gets to the right phase. A JitterTrack shows this clearly. On a 4x DVD wav eform we captured, which just happens to have a significantly out-of-place first edge, the frequency is disturbed slightly for the first $15 \mu \mathrm{~s}$ or so; the frequency shift during this time is very small, on the order of $0.1 \%$, as the phase adjusts.
\# \# \#


[^0]:    For all OR measurements other than $\Delta$ p2clk, set source waveform to use input channel (1, 2, 3, 4) or Zoom (A, B, C, D) for performing measurements on the data signal.

[^1]:    1 The numbers in the terms CUST1, CUST2, CUST3, CUST4 and CUST5 refer to the line numbers of the selected custom parameters.

