INSTRUCTION MANUAL MODEL 530
 TYPE.ALL SYSTEM

warranty

We warrant each of our products to be free from defects in material and workmanship. Our obligation under this warranty is to repair or replace any instrument or part thereof which, within a year after shipment, proves defective upon examination. We will pay local domestic surface freight costs.
To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and shipping instructions.

repairs and calibration

Keithley Instruments maintains a complete repair and calibration service as well as a standards laboratory in Cleveland, Ohio. A service facility is also located in Los Angeles for our west coast customers.

A Keithley service facility at our Munich, Germany office is available for our customers throughout Europe. Service in the United Kingdom can be handled at our office in Reading. Additionally, Keithley representatives in most countries maintain service and calibration facilities.

To insure prompt repair or recalibration service, please contact your local field representative or Keithley headquarters directly before returning the instrument. Estimates for repairs, normal recalibrations and calibrations traceable to the National Bureau of Standards are available upon request.
 28775 AURORAROAD. CLEVELAND. OHIO 44139 TELEPHONE (216) 248-0400, TELEX 98-5469

CONTENTS

Section Page
SPECIFICATIONS ii

1. GENERAL DESCRIPTION 1
2. OPERATION 5
3. CIRCUIT DESCRIPTION 6
4. REPLACEABLE PARTS 7
APPENDIX A 8
APPERDIX B 9
SCHEMATIC 10

SPECIFICATIONS

```
VOLTMETER RANGE: +1 microvolt per digit to }\pm1000\mathrm{ volts full scale
    in seven decade ranges
VOLTMETER ACCURACY: }\pm0.1% of reading, \pm1 digit on all ranges
CURRENT SOURCE RANGE: }1\mp@subsup{0}{}{-7}\mathrm{ ampere full range to 10 10-1 ampere in
    seven decade ranges
CURRENT SOURCE ACCURACY: }\pm0.5%\mathrm{ of reading, }\pm0.05% of ful1 range
RANGE OF TYPING MODE: }1\mp@subsup{0}{}{-3}\mathrm{ to }1\mp@subsup{0}{}{4}\mathrm{ OHM-CM
    TYPING MODES: Rectification
    Thermoelectric
PROBE CONFIGURATION REQUIRED: Four-point in-line probe
EQUIPMENT SUPPLIED:
    Keithley Model 225 Current Source
    Keithley Model 163 Digital Voltmeter
    Keithley Model 530 Type-All Switching
    Keithley Model 8201 Cable Assembly
SUPPLIED ACCESSORY:
    Model 5301 Test Lead (two pieces).
```


SECTION 1. GENERAL DESCRIPTION

1-1. GENERAL. The Keithley Model 530 Type-All System is an electronic system designed for measurement of resistivity and determination of conductivity type of a semiconductor. The Keithley System contains a precision current source, digital microvoltmeter, and other circuitry needed for resistivity and typing determinations. The Model 530 must be used with a standard four-point in-line probe to make contact to the sample.

1-2. RESISTIVITY MEASUREMENT. Resistivity of a semiconductor material can be easily determined by applying a known current through the sample. The resultant voltage drop across the sample is then measured using a sensitive microvoltmeter. However, since the resistivity is a function of slice geometry and probe spacing, several correction factors must be used. These correction factors are explained in ASTM Designation: F84-70*. The basic factors which need to be considered are:

Slice diameter	D	mm
Average probe separation	\bar{S}	mm
Specimen thickness	W	mm

NOTE: All dimensions are assumed to be in metric units unless otherwise specified.
The Keithley Model 530 System provides the convenfence of selectable current so that the voltage reading can be scaled to read directly in terms of OMM-CM (where $1 \mathrm{mV}=1 \mathrm{OH}-\mathrm{CM})$. A computer program and printout (see Table 2-1) are provided in the Appendix of this Instruction Manual for calculating the proper current using BASIC language.
 Silcee Witi: folilinear Four-Probe Arrau.
ACTN FES-7

1-3. CONDUCTIVITY TYPE DETERMINATION. The conductlvity type, or sign of the majority carrier is a fundamental property of a semiconductor sample. The Model 530 Syster utilizes two methods for quickly determining the semiconductor type. This system is basically described in an article entitled "Iype-All Syster f, Determining Semiconductor Conductivity Type" frotr Solid State Technology/March, 1971*. The Syster incorporates rectification and thermoelectric typing techriques in a system that makes the two methode compatibl. A four-point in-line probe is used to contact the sample.
a. Rectification Mode. Rectification is the mode of operation initially used. An ac voltage is imposed across two of the probe points as shown in Figure 3d. A second set of probe points is used to sense the polarity of the generated voltage. The polarity depends on how the voltage is generated and on the conductivity type of the material. It the probe points are providing a rectification effect at the contact point te the
semiconductor, then a dc voltage between points B and D will result. The polarity of the rectification depends on the conductivity type of the material. Back biasing is achleved on a metal-tom-type semiconductor diode when the semiconductor is at a positive potential with respect to the metal. A negative potential results in a back-biased junction for p-type semiconductor. Thus, the semiconductor type is simply a function of the polarity of the voltage monitored by the microvoltmeter. For certain resistivities the quality of rectification degenerates such that the usefulness of this mode decreases. An acceptable rectification action occurs for voltage readings above 0.5 mV . For voltages less than 0.5 mV the thermoelectric mode should be used.
*h'. A. Keenar, C. P. Scineider, C. A. Piliue, "Typetil . . .", Solid State Iechnology, Morch 2972, pg. $5 l-5 \varepsilon$.
b. Thermoelectric Mode. In this mode the ac voltage impressed across the input probe points increases the temperature near the point of contact by joule heating of the semiconductor. A Seebeck voltage is generated between a hot and cold probe point where ΔV is the voltage generated across two regions of material whose temperatures differ by ΔI. The physical process that generates the Seebeck voltage is the diffusion of the thermally generated carriers from the hot region of the material to the cold region. The carriers will diffuse from high-to-low-concentration regions, in particular from the hot to the cold probe. This diffusion creates a non-equilibrium carrier concentration in the cold region which generates an electric field, opposing further diffusion. This diffusion of carriers from the hot to the cold probe continues untid the generated electric field is sufficient to overcome the tendency of the carriers to aiffuse. For example, in p-type material, the therwally generated holes diffuse to the cold probe, building up a positive space charge which retards further diffusion. As a result, the cold probe is more positive than the hot probe. The use of four probe points permits a separation of the ac power source and the volt-age-detection functions. In the Model 530 the voltage sensing is performed by the Model 163 digital voltmeter which provides speec and convenience of a digital display with automatic polarity indication. The thermoelectric mode utilizes all four probe points as shown in Figure $3 e$.

TABLE 1-1.
Summary of Model 530 Controls.

Control	Functional Description	Circuit Desig.
POWER Switch	Applies power to Model 530 System including auxiliary power receptacles.	S 101
PROBE Switch	Selects either " A " or " B " probe inputs on the rear panel.	S105
FUNCTION Switch	Selects function for resistivity or typing determination.	S103
STANDBY Position	No connections are made to probe.	
CURRENT Position	Connects current source to enable a calibration check.	
$V_{\text {FWD }}$ Position	Connects probe to measure resistivity.	
$\mathrm{V}_{\text {REV }}$ Position	Connects probe to measure resistivity. (reversed polarity)	
TYPE (RECT)	Connects probe for typing using Rectification Method.	
TYPE (THERM)	Connects probe for typing using Thermal Method.	
CURRENT SHUNT Switch	Sets resistivity range.	
HI Terminal	Voltmeter High Input	$J 106$
10 Terminal	Voltmeter Low Input	J107

FIGURE 1. Controls and Terminals

FIGURE 2. Rear Panel Connections.

SECTION 2. OPERATION

2-1. Resistivity Determination: The measurement of resistivity is accomplished through the use of 1) a constant current source, 2) a microvolt meter and 3) a four-point resistivity probe. Resistivity is scaled to give a direct reading in OMM-CM on a 100 mV scale (1 mV = $1 \mathrm{OH}:-\mathrm{CN}$). Procedure:
a. Power. Connect the Model 530 to either 117 or 234 V (Set line switch Sl02 to proper position). Check fuse FlOl for proper rating. The Model 163 and 225 line cords should be connected to auxiliary power receptacles J104 and J105.

b. Control Settings.

1. Set the Model 225 as follows:

OUTPUT SELECTOR	-- STANDBY
FILTER	-- OFF
VOLTAGE COMPLIANCE	-- 50
Decade Switches	- 0-0-0
Range	-- 100 NA
Power On	-- ON

2. Set the Model 163 as follows:

$$
\begin{array}{ll}
\text { Range } & --100.0 \mathrm{mv} \\
\text { Power on } & --\mathrm{ON}
\end{array}
$$

3. Set the Model 530 as follows:

FUNCTION	-- STANDBY
PROBE	$--A$
CURRENT SHLNT	$--1 K$
POWER	$--~ O N$

c. Connections.

1. Connect Model 225 output to J101 on Model 530. (Connect shorting link between LO-GND on rear panel of Model 225.)
2. Connect Model 163 terminals to J106 (Red) and J107 (Black).
d. Calibration. Set the Model 225 for proper current depending on the slice dimensions of the sample. Table 2-1 gives the current setting for particular slice thickness and diameter (with probe tip spacing = 1.60 MM or 0.0630 inch).
e. Connection Check. Connect the probe and lower onto slice, Set the Model 530 to CURRENT function (Position 2). Adjust the Model 530 CURRENT SHUNT Switch to give the maximum on-scale reading on the Model 163. The voltage displayed on the 163 is a function of the current $x \mathrm{R}_{\text {SHINT. }}$ The Model 163 should indicate the output which has been set on the Model 225 decade dials. For example, if the current has been set to 173.1 JA , the Model 163 should indicate 173.1 mV with the Model 530 Shunt Resistor set to 1 K . Since the Model 163 is scaled for direct reading of resistivity,
the reading could also be interpreted as 173.1 OHM-CM.
NOTE
If the Model 163 does not indicate the proper current the probe is probably not taking proper contact to the slice. If the Model 225 LIMIT lamp is lighted then the probe connections are probably open.
f. Resistivity Measurement. Set the Model 530 to $V_{\text {FWD }}$ function (Position 3) and record the reading on the Nodel 163. The display is scaled to indicate directly in terms of $O H M-C M$ resistivity ($1 \mathrm{mV}=1$ OHMCM). Since the resistivity measurement is dependent on slice geometry (thickness, etc.) the scaling is valid for the particular current selected from Table 2-1. If the slice dimensions are changed, a new current should be dialed out on the Model 225 to provide direct reading in OHM-CM, Set the Model 530 to $V_{R E V}$ function (Position 4) to obtain a reading with opposite polarity applied. The CURRENT SHUNT switch can be in any position since it does not affect the resistivity measurement.
$2-2$. Type Determination: The conductivity type can be determined by 1 of 2 methods: Rectification Mode or Thermoelectric Mode.
a. Rectification Mode. Set the Model 530 to TYPE (RECT) (Position 5). If the Model 163 indicates greater than 0.5 mV then the material type is determined by the polarity indicated on the Model 163.

Positive Polarity $=$ P-type
Negative Polarity $=$ N-type
If the reading is less than 0.5 mV then proceed to the Thermoelectric Mode.
b. Thermoelectric Mode. Set the Model 530 to TYPE (THERM) (Position 6). The Model 163 should indicate greater than 0.5 mV . The material type is determined by the polarity indicated on the Model 163.

Positive Polarity $=P$-type
Negative Polarity $=\mathrm{N}$-type

TABLE 2-1.
Typical Current Settings in μA.

Slice Diameter in MM	0.1	0.2	0.3	0.4	0.5
16	41.7	83.4	125.0	166.6	208.2
17	42.1	84.1	126.1	168.1	210.1
18	42.4	84.8	127.1	169.4	211.7
19	42.7	85.3	127.9	170.5	213.1
20	42.9	85.8	128.7	171.5	214.3

(For other slice dimensions refer to Appendix.)

SECTION 3. CIRCUIT DESCRIPTION

3-1. GENERAL. The Model 530 provides all the controls, interconnections, and circuits necessary for making resistivity and semiconductor typing determinations using the "TypenAll" system.

3-2. EQUIPMENT USED. The Model 530 utilizes a Keithley Model 225 Current Source, a Model 160 or 163 Digital Voltmeter, and auxiliary ac power source. Separate circuit descriptions are provided in the individual Instruction Manuals for Models 163 and 225 . The remaining circuits are described in the following paragraph.

3-3. SWITCHING OPERATION.

a. Standby Position. In this position the probe terminals are completely disconnected from the Model 530 circuitry.
b. Current Position. In this position the Model 163 and 225 are connected such that the Model 163 will indicate the voltage drop across one of the Shunt Resistors. For example, with the Model 225 set at $100 \mu \mathrm{~A}$ and a 1 kilohm Shunt Resistor selected, the Model 163 should indicate 100 mV if the probe points are making satisfactory contact.
c. VFWD Position. In this position the Model 163 is connected so as to read the voltage drop across the semiconductor sample. The resistivity is indicated directly in terms of $0 \mathrm{HM}-\mathrm{CM}$ when the current setting is scaled properly.
d. VREV Position. In this position the Model 225 polarity is reversed automatically so as to permit a reverse voltage across the sample. The Model 163 indicates the resistivity in terms of $O H M-C M$ when the current setting is scaled properly.
e. Type (Rect) Position. In this position an ac voltage is impressed between terminals A and B. The Model 163 is connected between pins B and D.
i. Type (Therm) Position. In this position the Model 163 is connected between terminals C and D, The voltage which results from the Seebeck effect is measured at points separate from the impressed ac voltage points.

3-4. AC POWER SUPPI.Y. An ac voltage is provided by the 12.6 V secondary winding of transformer TlOl . The primary windings are connected in parallel or in series depending on the position of the line Switch Sl02. Resistor RlOl provides short circuit protection for the secondary. Fuse FlOl provides over-current protection for the primary of Tlol.

FIGURE 3. Type-All Circuit Connections

SECTION 4. REPLACEABLE PARTS

Circuit Desis.	Value	Rating	Type	Mfr. Code	Mfr. Desig.	Keithley Part No.
R1O1	2531	5\%, 5 W	WW	91637	RS-5	R4A-25
R102] 56	0.1\%, 1/4 W	WW	01686	7009	R95-1
R103	103	0.1\%, 1/4 W	WW	01686	7009	R95-10
R104	10038	0.1\%, 1/4 W	WW	01686	7009	R95-100
R105	1 Kiz	0.1\%, 1/3 W	WW	15909	1250	R110-1K
R106	10 Ka	$1 \%, 1 / 2 \mathrm{~W}$	DCb	91637	DCF-1/2	R12-10K
R107	10 Ma	$1 \%, 1 / 2 \mathrm{~W}$	DCb	91637	DCF-1/2	R12-10M

MISCELLANEOUS

Circuit Desig.	Type	Mfr. Code	Mfr. Desig.	Keithley Part No.
Fl01	Fuse, Slo-Blo, 1/2A, 3AG	75915	312.500	FU-6
J101	Receptacle, BNC	95712	$6672 N T 34$	CS-15
J102	Receptacle			
.-	Locking Ring, used with $\mathrm{Jl02}$	02660	126-1428	CS-164
--	Nut, used with Jl02	02660	41-153	CS-160
J103	Receptacle			
--	Locking Ring, used with Jl03	02660	41-153	CS - 160
--	Nut, used with Jl03	02660	41-153	CS -160
J104	Receptacle, Power	02660	1604	CS-248
J105	Receptacle, Power	02660	1604	CS-248
3106	Binding Post, Red	58474	DF 21 RC	BP11-RED
3107	Binding Post, Black	58474	DF 21 BC	BP11-BLK
P101	Line Cord	93656	4638-13	CO-5
S101	Suitch, Toggle	80164	---	SW-236
S102	Switch, Slide (117-234V)	80164	---	SK'151
5103	Switch, Rotary	80164	---	SW-359
5104	Switch, Rotary	80164	---	SW-358
S 105	Switch, Toggle	80164	---	SW-357
T101	Transformer	80164	---	TR-146
--	Knob, (For Sl03, S104)	80164	---	21660 A
--	Front Panel	80164	---	24168B
--	Chassis Assembly	80164	---	24941B
--	Rear Panel	80164	---	24169B
-	Connector, Mate of Jl03	02660	126-1427	CS-162
--	Connector Body, used with CS-162	02660	126-1425	CS-161
--	Locking Ring, used with CS-162	02660	126-1430	CS-165
--	Connector, Mate of Jl02	02660	126-1427	CS-162
--	Connector Body, used with CS-162	02660	126-1425	CS-161
--	Locking Ring, used with CS-162	02660	126-1430	CS-165
--	Cover Assembly (225)	80164	---	25510 B
--	Cover Assembly (163)	80164	---	24177 B
--	Cable Assembly	80164	--*	Model 8201

MODIFICATIONS:

The Model 160 or 163 as supplied with the Model 530 has been modified as follows:

Resistors R112 and R115 have been removed to increase the input resistance of the voltmeter on the 100 mV range.

Note: If the Model 160 is supplied the ohms function will not be useable on the 1 megohm and 10 megohm ranges unless the resistors (R112 and R115) are replaced.


```
3: DIAM SLICE THICKNESS IN MILS
4: TABLE OF CURRENT SETTINGS IN MICROAMPERES
5: TQ GIVE DIRECT READING OF RESISTIVITY IN
6: OHM=CM CN THE 100 MV SCALE (1 MV = 1 OHM-CM)
7% PROBE TIF SPACING = *.# NILS (=###.## MM)
8:ENTER PROEE TIP SPACING IN MILS
9:SLICE THICKNESS IN MILS. START, FINISH, STEP (9 UALUES MAXIMUM)
10:SLICE DIAMETER IN INCHES. START, FINISH, STEP (.OI MINIMUM STEP)
11 DIM P(25)
20 DATA 0.997,0.992,0.982,0.966,0.944,0.921
21 FOR K= O TO 5
22 READ Q(K)
23 NEXT K
30 DATA 4.532,4.531,4.528,4.524,4.517,4.508,4.497,4.485,4.470
31 DATA 4.454,4.436,4.417,4.395,4.372,4.348,4.322,4.294,4.265,4.235
32 DATA 4.204.4.171
33 FQR K=0 TO 20
34 READ P(K)
35 NEXT K
100 PRINT USING }
110 INPUT S
120 PRINT USING }
130 INPUT T1.T2,T3
140 PRINT USING 10
150 INPUT D1,D2,D3
160 LET SIz S*25.4/1000
170 PRINT
180 PRINT USING 4
190 PRINT USING }
200 PRINT USING 6
2.10 PRINT USING 7,S,SI
220 PRINT
230 PRINT
239 FRINT USING 3
240 -ET T2=T2+0.000001
241 FOR T= T1 T0 T2 STEP T3
242 LET I= I + I
243 LET T(I)= T
244 NEXT T
250 PRINT USING 2,T(1),T(2),T(3),T(4),T(5),T(6),T(7),T(8),T(9)
251 PRINT
260 FOR D= D1 TO D2 STEP D3
261 LET X=S/(D*1000)
262 LET Y= INT (X*200)
263 LET X1= X*200 -Y
264 LET F2= P(Y) + X1*(P(Y+1)-P(Y))
300 FOR J= I T0 I
310 LET X=T(J)/S
311 IF X < = 1.0 THEN 320
312 PRINT "SLICE THICKNESS/PRRBE SPACING IS LARGER THAN ONE"
320 IF X > = 0.5 THEN 400
330 LET F(J)=1-(X*0.006)
340 GOTQ 450
400 LET Y= INT (X*10) - 5
410 LET X1= X*10-b - Y
420 LET F(J)=Q(Y) + XI*(Q(Y+1)-0(Y))
450 LET A(J)=F2*T (J)*F(J)*2.54
460 NEXT J
470 PRINT USING 1,D,A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(B),A(9)
480 NEXT D
```


APPENDIX B

Table of Calculated Current Settings

TARLE OF CURRENJ SETIINGS JN NICKZ-AMFERES TO GIVE DIFECT GEADING OF RESISTIVIJY IN OHM-CM UN IHE $100 \mathrm{NV} S C A L E$ ($1 \mathrm{MV}=1$ CHV-CM) PYOBE TIF SHACING $=1.60$ MN $(=0.063 \cap$ INCH)

INSTRUCTION MANUAL
CHANGE NOTICE
MODEL 530 TYPE-ALL SYSTEM

Abstract

INTRODUCTION: Since Keithley Instruments is continually improving product performance and reliability, it is of ten necessary to make changes to Instruction manuals to reflect these improvements. Also, errors in Instruction Manuals occasionally occur that require changes. Sometimes, due to printing lead time and shipping requirements, we can't get these changes immediately into printed Manuals. The following new change information is supplied as a supplement to this Manual in order to provide the user with the latest improvements and corrections in the shortest possible time. Many users will transfer this change information directly to a Manual to minimize user error. All changes or additions are indicated in itafice.

CHANGES
PAGE 5-Paragraph 2-2
b. Thermoelectric Mode. Set the Model 530 to TYPE (THERM) (Position 6). The Model 163 should indicate less than 0.5 mV .

PAGE 7

PAGE 7 -

R104	100%	0.1%,	1 W	WW	02985	$T S-1$	$R-249-100$
R105	1 KO	$.25 \%$,	10 W	WW	9432	EL10A	$R-231-1 \mathrm{~K}$

KEITHMLEY INSTRUMENTS. INC. 28775 AURORAFOAD. CLEVELAND.OHIO44139. 12161248.0400 TELEX 98.5469 • CABLE KEITHLEY

