KEITHLEY

M odel 224 ProgrammableCurrent Source Instruction M anual

WARRANTY

Keithley Instruments, Inc. warrants this product to be free from defects in material and workmanship for a period of 1 year from date of shipment.

Keithley Instruments, Inc. warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

During the warranty period, we will, at our option, either repair or replace any product that proves to be defective.

To exercise this warranty, write or call your local Keithley representative, or contact Keithley headquarters in Cleveland, Ohio. You will be given prompt assistance and return instructions. Send the product, transportation prepaid, to the indicated service facility. Repairs will be made and the product returned, transportation prepaid. Repaired or replaced products are warranted for the balance of the original warranty period, or at least 90 days.

LIMITATION OF WARRANTY

This warranty does not apply to defects resulting from product modification without Keithley's express written consent, or misuse of any product or part. This warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow instructions.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES.

NEITHER KEITHLEY INSTRUMENTS, INC. NOR ANY OF ITS EMPLOYEES SHALL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF ITS INSTRUMENTS AND SOFTWARE EVEN IF KEITHLEY INSTRUMENTS, INC., HAS BEEN ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES. SUCH EXCLUDED DAMAGES SHALL INCLUDE, BUT ARE NOT LIMITED TO: COSTS OF REMOVAL AND INSTALLATION, LOSSES SUSTAINED AS THE RESULT OF INJURY TO ANY PERSON, OR DAMAGE TO PROPERTY.

KEITHLEY

Keithley Instruments, Inc.		28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 1-888-KEITHLEY (534-8453) • www.keithley.com
Sales Offices:	BELGIUM:	Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw • 02-363 $0040 \cdot$ Fax: 02/363 0064
	CHINA:	Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
	FINLAND:	Tietäjäntie 2 • 02130 Espoo • Phone: 09-54 $750810 \cdot$ Fax: 09-25 105100
	FRANCE:	3, allée des Garays • 91127 Palaiseau Cédex •01-64 $532020 \cdot$ Fax: 01-60 117726
	GERMANY:	Landsberger Strasse 65 • 82110 Germering • 089/84 93 07-40 - Fax: 089/84 93 07-34
	GREAT BRITAIN:	Unit 2 Commerce Park, Brunel Road •Theale • Berkshire RG7 4AB •0118929 7500 • Fax: 01189297519
	INDIA:	Flat 2B, Willocrissa • 14, Rest House Crescent • Bangalore 560 001 • 91-80-509-1320/21 Fax: 91-80-509-1322
	ITALY:	Viale San Gimignano, 38 • 20146 Milano •02-48 $391601 \cdot$ Fax: 02-48 302274
	KOREA:	FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-130 • 82-2-574-7778 • Fax: 82-2-574-7838
	NETHERLANDS:	Postbus 559 • 4200 AN Gorinchem • 0183-635333 - Fax: 0183-630821
	SWEDEN:	c/o Regus Business Centre - Frosundaviks Allé 15, 4tr •16970 Solna •08-509 04679 • Fax: 08-655 2610
	SWITZERLAND:	Kriesbachstrasse 4•8600 Dübendorf • 01-821 $9444 \cdot$ Fax: 01-820 3081
	TAIWAN:	1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077 • Fax: 886-3-572-9031

Model 224 Programmable Current Source Instruction Manual

KEITHLEY Safety Precautions

The following safety precautions should be observed before using this product and any associated instrumentation. Although some instruments and accessories would normally be used with non-hazardous voltages, there are situations where hazardous conditions may be present.
This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to the manual for complete product specifications.
If the product is used in a manner not specified, the protection provided by the product may be impaired.
The types of product users are:
Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.
Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.
Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line voltage or replacing consumable materials. Maintenance procedures are described in the manual. The procedures explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.
Service personnel are trained to work on live circuits, and perform safe installations and repairs of products. Only properly trained service personnel may perform installation and service procedures.
Keithley products are designed for use with electrical signals that are rated Installation Category I and Installation Category II, as described in the International Electrotechnical Commission (IEC) Standard IEC 60664. Most measurement, control, and data I/O signals are Installation Category I and must not be directly connected to mains voltage or to voltage sources with high transient over-voltages. Installation Category II connections require protection for high transient over-voltages often associated with local AC mains connections. Assume all measurement, control, and data I/O connections are for connection to Category I sources unless otherwise marked or described in the Manual.
Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than 30V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.
Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance limited sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective devices to limit fault current and voltage to the card.
Before operating an instrument, make sure the line cord is connected to a properly grounded power receptacle. Inspect the connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.
When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input power disconnect device must be provided, in close proximity to the equipment and within easy reach of the operator.
For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth) ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the voltage being measured.
The instrument and accessories must be used in accordance with its specifications and operating instructions or the safety of the equipment may be impaired.
Do not exceed the maximum signal levels of the instruments and accessories, as defined in the specifications and operating information, and as shown on the instrument or test fixture panels, or switching card.
When fuses are used in a product, replace with same type and rating for continued protection against fire hazard.
Chassis connections must only be used as shield connections for measuring circuits, NOT as safety earth ground connections.
If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use of a lid interlock.

If a $\stackrel{1}{\leftrightarrows}$ screw is present, connect it to safety earth ground using the wire recommended in the user documentation.

The \angle symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

The symbol on an instrument shows that it can source or measure 1000 volts or more, including the combined effect of normal and common mode voltages. Use standard safety precautions to avoid personal contact with these voltages.
The WARNING heading in a manual explains dangers that might result in personal injury or death. Always read the associated information very carefully before performing the indicated procedure.
The CAUTION heading in a manual explains hazards that could damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.
Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits, including the power transformer, test leads, and input jacks, must be purchased from Keithley Instruments. Standard fuses, with applicable national safety approvals, may be used if the rating and type are the same. Other components that are not safety related may be purchased from other suppliers as long as they are equivalent to the original component. (Note that selected parts should be purchased only through Keithley Instruments to maintain accuracy and functionality of the product.) If you are unsure about the applicability of a replacement component, call a Keithley Instruments office for information.
To clean an instrument, use a damp cloth or mild, water based cleaner. Clean the exterior of the instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that consist of a circuit board with no case or chassis (e.g., data acquisition board for installation into a computer) should never require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board should be returned to the factory for proper cleaning/servicing.

SPECIFICATIONS

RANGE	MAXIMUM OUTPUT	ACCURACY (1 YEAR) \pm (\%rdg + offset) $18^{\circ}-28^{\circ} \mathrm{C}$		$\begin{aligned} & \text { STEP } \\ & \text { SIZE } \end{aligned}$	TEMPERATURE COEFFICIENT $\begin{aligned} & \pm(\% \text { rdg }+ \text { offset }) /{ }^{\circ} \mathrm{C} \\ & 0^{\circ}-18^{\circ} \mathrm{C} \text { \& } 28^{\circ}-50^{\circ} \mathrm{C} \end{aligned}$
100 mA	$\pm 101.00 \mathrm{~mA}$	0.1 \%	$+50 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$0.01 \%+2 \mu \mathrm{~A}$
10 mA	$\pm 19.995 \mathrm{~mA}$	0.05\%	+ $10 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	0.005\% + 200nA
1 mA	$\pm 1.9995 \mathrm{~mA}$	0.05\%	$+\quad 1 \mu \mathrm{~A}$	500nA	0.005\% + 20nA
$100 \mu \mathrm{~A}$	$\pm 199.95 \mu \mathrm{~A}$	0.05\%	$+100 \mathrm{nA}$	50 nA	0.005\% + 2nA
$10 \mu \mathrm{~A}$	$\pm 19.995 \mu \mathrm{~A}$	0.05\%	$+10 n A$	5 nA	0.005\% + 200pA

OUTPUT RESISTANCE: Greater than $10^{12} \Omega$.
OUTPUT CAPACITANCE: Less than 20pF.
LINE REGULATION: Less than 0.01% for AC power line changes within specified limits.
VOLTAGE LIMIT: Bipolar, 1 to 105 V in 1 V programmable steps.
RESPONSE TIME: Less than 3 ms to within 0.1% of programmed change. TRANSIENT RECOVERY TIME: Less than 3 ms to rated accuracy following any change in compliance voltage.

NOISE

RANGE	NOISE (p-p of range)	BANDWIDTH
100 mA	100 ppm	0.1 Hz to 30 kHz
$10 \mu \mathrm{~A}$ to 10 mA	100 ppm	0.1 Hz to 100 Hz

GUARD OUTPUT: Maximum Load Capacitance: 10nF.
Maximum Load Current: Absolute total (Output + Guard) not to exceed 105 mA .
Accuracy: $\pm 1 \mathrm{mV}$ (excluding output lead voitage drop).
INCREMENT/DECREMENT: Automatic, manual or trigger modes.
Range of Dwell Times: 50ms to 999.9s.
Accuracy of Dwell Times: $\pm(0.05 \%+20 \mu \mathrm{~s})$.
Step Size: Selected digit on a fixed range. Minimum step size 0.1% of range.
Current Limit: Maximum is \pm (Full Scale) on range selected.
OUTPUT LOAD: Output load must be non-inductive
EXTERNAL TRIGGER: TTL-compatible EXTERNAL TRIGGER INPUT and OUTPUT.
OUTPUT CONNECTIONS: Teflon insulated triax connector (Specialty Connector \#30JR121-1) for output; five way binding posts for GUARD OUTPUT COMMON and CHASSIS; BNC (chassis isolated) connectors for EXTERNAL TRIGGER INPUT and OUTPUT. All connections on rear panel.

IEEE-488 BUS INTERFACE (option 2243)
Multiline Commands: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.
Uniline Commands: IFC, REN, EOI, SRQ, ATN.
Interface Functions: SH1, AH1; T6, TE0, L4, LEO, SR1, RL1, PPO, DC1, DT1, C0, E1.
Output Connections: Amphenol or Cinch Series 87 IEEE and printed circuit digital $1 / O$ port. All connections on rear panel.
Internal Programmable Parameters: Display Mode, Output, (Prefix Data Format), EOI, SRQ (including mask for over V-limit), Range, Terminator Character, Inputs (SOURCE, V-LIMIT, DWELL TIME), Output Status.
Digital I/O Port: A separate I/O port consisting of four input and four output lines as well as common (IEEE-488) and +5 VDC . Outputs will drive one TTL load. Inputs represent one TTL load. The 224 can be programmed to generate a "SRQ' upon any change in the four bit input data. Mating connector supplied.

GENERAL

DISPLAY: 0.5" LED digits, $41 / 2$-digit signed mantissa, 1-digit signed exponent.
OVER VOLTAGE LIMIT INDICATION: "V-LIMIT" LED will blink.
SELF TEST: Digital RAM, ROM, and front panel LEDs upon power up.
WARMUP: 1 hour to rated accuracy.
POWER: 105-125 or 210-250VAC (internal switch selected), 50 or 60 Hz , 60 watts maximum (80VA maximum). 90-105 or 180-210VAC operation available.
COOLING: Internal fan for forced air cooling.
ENVIRONMENTAL LIMITS: Operating: $0^{\circ}-50^{\circ} \mathrm{C}$; up to $35^{\circ} \mathrm{C}$ at 70% non-condensing relative humidity. Storage: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
DIMENSIONS, WEIGHT: 127 mm high $\times 216 \mathrm{~mm}$ wide $\times 359 \mathrm{~mm}$ deep $\left(5-1 / 2^{\prime \prime} \times 8-1 / 2^{\prime \prime} \times 14-1 / 8^{\prime \prime}\right)$. Net weight 9 lbs. 15 oz . (4.52kg).
MAXIMUM ALLOWABLE COMMON MODE VOLTAGE (OUTPUT or OUTPUT COMMON to CHASSIS): 250 V rms, DC to 60 Hz . ACCESSORIES SUPPLIED: Model 6011: Triaxial Test Lead (3 ft.)

TABLE OF CONTENTS

Para.	Title	Page
	SECTION 1 - GENERAL INFORMATION	
1.1	Introduction	1-1
1.2	Features	1-1
1.3	Warranty Information	1-1
1.4	Manual Addenda . .	1-1
1.5	Safety Symbols and Terms	1-1
1.6	Unpacking and Inspection	1-1
1.7	Repacking for Shipment	1-2
1.8	Specifications	1-2
1.9	Accessories	1-2
	SECTION 2 - OPERATION	
2.1	Introduction	2-1
2.2	Preparation for Use	2-1
2.2.1	Correct Line Voltage	2-1
2.2.2	Power Up	2-1
2.2.3	Warm Up	2-1
2.3	Operating Instructions	2-1
2.3.1	Environmental Conditions	2-1
2.3.2	Front Panel Controls	2-1
2.3.3	Rear Panel Description	2-1
2.3.4	Output Connector	2-6
2.3 .5	Inductive Loads	2-6
2.3 .6	Response Time	2-6
2.3.7	General Operating Procedure	2-6
2.3 .8	Front Panel Messages	2-7
2.3.9	Examples of Operation	2-7
2.4	Applications	2-12
2.4.1	Calibration	2-12
2.4.2	Resistivity Measurements	2-12
2.4 .3	Diode Characterization	2-13
2.4.4	Low Resistance "Lindeck" Measurements	2-14
2.5	Detailed Front Panel Controls Description	2-14
2.6	Detailed Rear Panel Description	2-15
	SECTION 3 - PERFORMANCE VERIFICAT	
3.1	Introduction	3-1
3.2	Environmental Conditions	3-1
3.3	Recommended Test Equipment	3-1
3.4	Initial Conditions	3-1
3.5	Performance Verification Procedure	3-1
3.5.1	100 mA to 1 mA Range Verification	3-1
3.5.2	$100 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ Range Verification	3-2
	SECTION 4 - THEORY OF OPERATION	
4.1	Introduction	4-1
4.2	Block Diagrams	4-1
4.3	Power Supply	4-1
4.4	Analog Board	4-1
4.5	Digital Board (Microcomputer).	4-2

TABLE OF CONTENTS CONT.

Para. Titie Page
SECTION 5-MAINTENANCE
5.1 Introduction 5-1
5.2 Fuse Replacement 5-1
5.3 Line Voltage Selection 5-1
5.4 Disassembly 5-2
5.5 Fan Filter Maintenance 5-2
5.6 Special Handling of Static Sensitive Devices 5-2
5.7 Calibration 5-4
5.7.1 Recommended Test Equipment 5-4
5.7.2 Environmental Conditions 5-4
5.7.3 Warm Up 5-4
5.7 .4 Calibration Adjustments 5-4
$5.8 \quad$ Troubleshooting 5-5
5.8 .1 Digital Self Test 5-5
SECTION 6-REPLACEABLE PARTS
6.1 Introduction 6-1
6.2 Parts List. 6-1
6.3 Ordering Information 6-1
6.4 Factory Service 6-1
6.5 Schematic Diagrams and Component Location Drawings 6-1

LIST OF ILLUSTRATIONS

Figure Title Page
2-1 Model 224 Front and Rear Panels 2-5
2-2 Output Connector 2-6
2-3 Limiting Inductive Reaction Voltage 2-6
2-4 Response Time 2-6
2-5 External Input and Output Trigger Pulse Specifications 2-10
2-6 External Trigger Connections 2-11
2-7 Unguarded Circuit 2-11
2-8 Guarded Circuit 2-11
2-9 Connections as a Current Sink with a Resistive Load 2-12
2-10 Model 224 Recommended Operating Limits 2-12
2-11 Resistivity Measurement Using the Model 224 2-13
2-12 Diode Characterization 2-13
2-13 Diode Curves 2-13
2-14 Low Resistance Measurement Connections 2-14
3-1 $\quad 100 \mathrm{~mA}$ to 1 mA Range Verification 3-2
4-1 Analog Circuitry Block Diagram 4-3
4-2 Digital Circuitry Block Diagram 4-4
4-3 Memory Map 4-5
5-1 Model 224 Exploded View 5-3
5-2 Calibration Configuration 5-5
5-3 Memory Chip Number Assignment 5-6
6-1 Fan Assembly 6-2
6-2 Display Board, Component Location Drawing, Dwg. No. 220-110 6-11
6-3 Mother Board, Component Location Drawing, Dwg. No. 220-100 6-13
6-4 Analog Board, Component Location Drawing, Dwg. No. 224-120 6-17
6-5 Display Board, Schematic Diagram, Dwg. No. 220-116 6-21
6-6 Mother Board, Schematic Diagram, Dwg. No. 220-106 6-23
6-7 Analog Board, Schematic Diagram, Dwg. No. 224-126 6-27

LIST OF TABLES

Table Title Page2-1 Line Voltage Setting2-1
2-2 Power Up Default Conditions 2-2
2-3 Front Panel Controls 2-3
2-4 Rear Panel Description 2-4
2-5 Front Panel Messages 2-8
3-1 Recommended Test Equipment 3-1
3-2 $\quad 100 \mathrm{~mA}$ to 1 mA Verification 3-1
5-1 Fuse Replacement, 3AG Size 5-1
5-2 Fuse Replacement, 5 mm Size 5-1
5-3 Line Voltage Selection 5-1
5-4 Model 224 Static Sensitive Devices 5-4
5-5 Recommended Test Equipment 5-4
5-6 Model 224 Calibration 5-5
5-7 Power Supply Checks 5-6
5-8 Analog Board Checks 5-7
5-9 Digital Circuitry Checks 5-8
5-10 Display Board Checks 5-8
6-1 Index of Model 224 Schematics and Component Layouts 6-1
6-2 Mother Board, Parts List 6-3
6-3 Display Board, Parts List 6-5
6-4 Analog Board, Parts List 6-7

SECTION 1 GENERAL INFORMATION

1.1 INTRODUCTION

The Model 224 is a programmable current source with full range current output of $20 \mu \mathrm{~A}$ to 101 mA . The smallest step of output current is 5 nA . The Model 224 has a selectable voltage compliance of up to 105 V in 1 V increments. The value of output current can be modified in two ways: manually or automatically. The automatically modified current value is incremented or decremented by the programmed rate. The time button allows the modification of the programmed auto increment/decrement rate. The control of the current value modification can be activated by an external trigger pulse applied to the EXTERNAL TRIGGER INPUT. At the completion of the current value modification (each digit) the Model 224 outputs a pulse that has the specifications shown in Figure 2-5. This pulse can be used to trigger another instrument (printer, DMM, controller, etc.) to start its programmed task.

With the Model 2243 IEEE-488 interface option installed, the Model 224 can be used with any measurement system that uses the !EEE-488 bus. For detailed operating instructions of the Model 2243 IEEE-488 interface option, refer to the Model 2243 Instruction Manual

1.2 FEATURES

The Model 224 has several convenient and easy to use features some of which are listed below.

- Selectable voltage compliance allows the user to select the required voltage compliance.
$-41 / 2$ digit display with appropriate exponent and decimal point.
-The output current value can be modified either manually or automatically.
-OPERATE button that places the display value of current at the output connector on the rear panel. When not in operate the Model 224's output is set at 0.000-6A while the display remains the same.
-Data keys that allow the entry of numerical data onto the display.
- External trigger input that when activated by the appropriate signal instructs the Model 224 to increment or decrement the displayed value of output current.
- External trigger output places an output pulse at the external trigger output connector upon completion of the increment or decrement of the displayed current value.
- Guard terminal that allows guarded applications to be completed.
- Selectable auto rate (TIME) of 50 msec to 999.9 sec .
- CANCEL button that momentarily blanks the display and terminates the data modifying operation.
- I-LIMIT function that limits the output current between the user programmed HI and LO current limits.
-IEEE-488 interface option allows the Model 224 to be incorporated into any system that uses programmed control through the IEEE-488 bus.

1.3 WARRANTY INFORMATION

Warranty information is provided on the inside front cover of this manual. If there is a need to exercise the warranty, contact the Keithley representative in your area to determine the proper action to be taken. Keithley Instruments maintains complete repair and calibration facilities in the United States, United Kingdom and Europe. Information concerning the application, operation or service of your instrument should be directed to the applications engineer in your area. Refer to the inside front cover for address locations.

1.4 MANUAL ADDENDA

Improvements or changes to this manual will be explained on an addendum sheet included with this manual.

1.5 SAFETY SYMBOLS AND TERMS

Safety symbols used throughout this manual are as follows:
The symbol $\$$ on the instrument denotes that the user should refer to the operating instructions.
The symbol on the instrument denotes that high voltage may be present on the output terminals.
The WARNING used in this manual explains dangers that could result in personal injury or death.
The CAUTION used in this manual explains hazards that could damage the instrument.

1.6 UNPACKING AND INSPECTION

The Model 224 is inspected both mechanically and electrically before shipment. Upon receiving the Model 224 unpack all items from the shipping container and check for any obvious signs of damage that may have occurred during transit. Report any damage to the shipping agent. Retain and use the original packaging materials if reshipment is necessary. The following items are shipped with all Model 224 orders:

Model 224 Programmable Current Source
Model 224 Instruction Manual
Model 6011 Triaxial Test Lead Set Optional accessories as ordered.
If an additional instruction manual is required, order the manual package (Keithley Part Number 224-901-00). The manual package includes an instruction manual and all pertinent addenda.

1.7 REPACKING FOR SHIPMENT

The Model 224 should be packed in its original carton. Before packing, wrap the instrument in plastic. After it is placed in the box, surround the instrument with styrofoam packaging material.

If the Model 224 is to be returned to Keithley Instruments for calibration or repair include the following:

ATTENTION REPAIR DEPARTMENT on the address label. Warranty status of the instrument.
Completed service form.

1.8 SPECIFICATIONS

For Model 224 specifications, refer to the specifications that precede this section.

1.9 ACCESSORIES

The following accessories are available from Keithley Instruments to enhance the capabilities of the Model 224 Programmable Current Source.

Model 1019A Universal Rack Mounting Kit-The Model 1019A Universal Rack Mounting Kit can accomodate one or two Model 224's. The dimensions are $133 \mathrm{~mm} \times 483 \mathrm{~mm}$ ($51 / 4 \mathrm{in} . \times 19 \mathrm{in}$.).

Model 1019S is a slide type universal rack mounting kit. The kit will accomodate up to two half rack size instruments le.g. Model 224) in a standard $514^{\prime \prime} \times 19^{\prime \prime}$ rack.

Model 2243 IEEE-488 Interface-The Model 2243 is an optional IEEE-488 interface for the Model 224 Programmable Current Source. This interface adds extra versatility to the Model 224 by allowing the transmission of data and commands over IEEE-488 bus. The interface provides all the logic necessary to interface the Model 224 to the bus using stan-
dard IEEE-488-1978 protocol. Additionally, the Model 2243 incorporates a separate digital I/O port that may be used to interface the Model 224 to other digital instrumentation.

Model 6011 Triax Input Cable-The Model 6011 is a three foot (1 meter) low noise triax cable terminated with alligator clips at one end and a Teflon ${ }^{\circledR}$ insulated triax connector at the other end.

Model 6147 Triax to BÑ Adapter - The Model 6147 Triax to BNC Adapter allows the Model 224 to be used with all Keithley accessories and cables that require BNC connections.

Model 6167 Guarded Adapter-The Model 6167 Guarded Adapter reduces effective cable capacity by driving the inner shield of a triaxial cable at guard potential.

Model 7008-3 IEEE-488 Cable-The Model 7008-3 is a three foot (1 meter) IEEE-488 cable. The cable has 24 stranded wire conductors and is terminated with IEEE-488 standard connectors.

Model 7008-6 IEEE-488 Cable-The Model 7008-6 is a six foot (2 meter) IEEE-488 cable. The cable has 24 stranded wire conductors and is terminated with IEEE-488 standard connectors.

Model 7010 Cable Adapter - The Model 7010 is an IEEE-488 cable adapter. The adapter extends the IEEE-488 connector by one connector width for easy access connections.

Model 7051-2-The Model 7051-2 is a BNC to BNC shielded cable that is 2 feet long. This cable is especially useful when utilizing the external input and output trigger connectors.

Model 7051-5 - The Model 7051-5 is a BNC to BNC shielded cable that is 5 feet long. This cable is especially useful when utilizing the external input and output connectors.

SECTION 2 OPERATION

2．1 INTRODUCTION

This section contains operating instructions for the Model 224 Programmable Current Source．The operating instruc－ tions are divided into several categories including：prepara－ tion for use，operation，applications and detailed front and rear panel descriptions．

For simple＂getting started＂information refer to paragraph 2．3．7 General Operating Procedure．

For front and rear panel illustrations of the Model 224 refer to Figure 2－1．

2．2 PREPARATION FOR USE

2．2．1 Correct Line Voltage

Connect the Model 224 to a properly grounded power recep－ tacle．Refer to Table 2－1 for the range of line voltage that the Model 224 can operate on．For fuse replacement or line voltage selection refer to Section 5 Maintenance．

WARNING

Ground the instrument through a properly earth grounded receptacle before operation．Failure to ground the instrument can result in severe per－ sonal injury or death in the event of a short cir－ cuit or malfunction．

Table 2－1．Line Voltage Setting

Input Voltage	Switch Setting	Fuse
$105 \mathrm{~V}-125 \mathrm{~V}$	115 VAC	$1 / 2 \mathrm{AMP}, 250 \mathrm{~V}, 3 \mathrm{AG}$
$210 \mathrm{~V}-250 \mathrm{~V}$	230 VAC	$1 / 4 \mathrm{AMP}, 250 \mathrm{~V}, 3 \mathrm{AG}$
$90 \mathrm{~V}-110 \mathrm{~V}^{*}$	115 VAC	$1 / 2 \mathrm{AMP}, 250 \mathrm{~V}, 3 \mathrm{AG}$
$180 \mathrm{~V}-220 \mathrm{~V} *$	230 VAC	$1 / 4 \mathrm{AMP}, 250 \mathrm{~V}, 3 \mathrm{AG}$

For instruments equipped with low voltage transformer TR－187．

2．2．2 Power Up

After the Model 224 is connected to a properly grounded power source it can be powered up．When the instrument is turned on it goes through a power up sequence that is out－ lined as follows：
1．Immediately after turning on the Model 224 via the power switch，the display will indicate the following for several seconds．

$$
\pm 1 \text { 日. 日. 日. } \pm \text { 日 }
$$

A．This is a display test．The operator can note inoperative display segments by comparing the Model 224＇s display with the above figure．
B．In addition，the pushbutton and the TALK，LISTEN and REMOTE indicators will light．All indicators will light simultaneously if operating correctly．
2．After the display test is complete the Model 224 displays the software revision level for approximately one second． The following is an example of software revision level B 2．2．

Example：

3．If the Model 2243 IEEE interface is installed，the Model 224 displays the primary address for approximately one sec－ cond．The primary address of the Model 2243 is factory set at 19．If the Model 2243 is not installed in the Model 224，the power up sequence skips this step and goes on to step 4.
4．At this point the Model 224 reverts to the default condi－ tions listed in Table 2－2．

2．2．3 Warm Up

To achieve rated accuracy the Model 224 requires one hour for warm up．

2．3 OPERATING INSTRUCTIONS

2．3．1 Environmental Conditions

Operation of the Model 224 should be at an ambient temperature within the range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ，up to $35^{\circ} \mathrm{C}$ at 70% noncondensing relative humidity．Environmental condi－ tions for storage are from $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ ．

2．3．2 Front Panel Controls

Model 224 front panel controls are listed in Table 2－3．Their operation and function are briefly described in the table．For detailed information concerning the Model 224 front panel refer to paragraph 2.5 and Figure 2－1．

2．3．3 Rear Panel Description

The rear panel of the Model 224 has several terminals and connectors．These are listed and described in Table 2－4．For detailed information concerning the rear panel refer to paragraph 2.6 and Figure 2－1．

Table 2-2. Power Up Default Conditions

Function	Default Condition
Power	On
Output	Standby (OPERATE LED off). Programmed to $0.000-6 \mathrm{~A}$.
Auto	Set to inactive (AUTO LED is off).
Trig	Set to inactive (TRIG LED is off).
Source	Active (SOURCE LED is on).
V-limit	Set to 3V.
I-limit	HI Limit set to 0.000 . LO Limit set to 0.000 .
Time	Set to $50 \mathrm{msec}(50.00-3)$.
Digit	Set to inactive.
INCR	Set to inactive (INCR LED is off).
DECR	Set to inactive (DECR LED is off).
Cancel	Set to inactive.
Enter	Not affected by power up.
Exponent	Not affected by power up.
Talk	Talk function is disabled (TALK LED is off).
Listen	Listen function is disabled (LISTEN LED is off).
Remote	Remote function is disabled (REMOTE LED is off).
Display	The $41 / 2$ digit display is set to
	+ प प D - b

Table 2-3. Front Panel Controls

Control	Description
POWER ON/OFF	Turns the ins
OPERATE	When activated (LED on), the Model 224 outputs the displayed value of current. When deactivated (LED off), the Model 224 is set to standby ($0.000-6 \mathrm{~A}$ is present
	at the output).
SOURCE	When activated (LED on), the source data function is selected and displa
V-LIMIT	When deactivated (LED off), the source data is not displayed. When activated (LED on), the voltage compliance is displayed. When deactivat
I-LIMIT	l-LIMIT button selects the window of output current limit. Default value is $+.0000-0 \mathrm{~A}$. When activated (LED on), the current (I) limit is displayed. The HI limit is displayed first. When the I-limit button is pressed a second time the LO limit is displayed. When deactivated (LED off), the l-limit is not displayed. This function is used only in the auto mode.
TIME	When activated (LED on), the time function for the auto INCR/DECR is displayed for inspection or modification.
DIGIT	Pressing the DIGIT button selects a display digit (c segment is flashing) for alteration. Pressing the button while in the digit function selects the next digit on the right for alteration. The DIGIT button wraps the modify digit around to the most significant digit on the display if the DIGIT button is pressed when the cursor is on the next to least significant digit.
INCR	In the manual mode, each time the button is pressed the selected digit is incremented by one count. In the auto mode, the selected digit is incremented and therefore, the source value, automatically at the programmed time rate. When the programmed HI limit is reached the error message is displayed and the display remains at the HI limit. This function has the mathematical capability of carry. The least significant digit does not increment.
DECR	In the manual mode, each time the button is pressed the selected digit is decremented by one count. In the auto mode, the selected digit is decremented and therefore the source value, automatically at the programmed time rate. When the programmed LO limit is reached the error message is displayed and the display remains at the LO limit. This function has the mathematical capability. of borrow. The least significant digit does not decrement.
CANCEL	When activated, the CANCEL button momentarily blanks the display and terminates the data modifying operation.
ENTER	The ENTER button loads the displayed data into the Model 224.
EXPONENT	The EXPONENT allows entry of exponent data onto the display.
DATA	The data group of buttons allows the entry of numerical data onto the display.
AUTO	When activated (LED on), the AUTO button selects the auto function for INCR/DECR of the source data.
TRIG	When activated (LED on), an external trigger pulse via the rear panel triggers the instrument to increment or decrement the display digit. When deactivated (LED off), the trigger function is disabled.

Table 2-4. Rear Panel Description

Connections	Description
OUTPUT GUARD	The output connector is a Teflon ${ }^{*}$ insulated female triax connector. The GUARD terminal provides a low impedance voltage source that is equal to the output compliance voltage. The GUARD terminal is useful in reducing leakage currents.
OUTPUT COMMON	The OUTPUT COMMON connector provides easy access to the inner shield of the OUTPUT connector.
CHASSIS GROUND	The chassis ground terminal provides easy access to chassis ground (earth ground).
EXTERNAL TRIGGER INPUT	This input initiates the selected display digit to increment or decrement (depending on which is enabled) upon receiving a TTL level negative transition with a minimum pulse width of $10 \mu \mathrm{sec}$. Refer to Figure 2-5 for pulse specifications
EXTERNAL TRIGGER OUTPUT	This output provides a negative going TTL level pulse of greater than $10 \mu \mathrm{sec}$ when the selected digit has been incremented or decremented. Refer to Figure 2-5 for pulse specifications.
FUSE LINE RECEPTACLE	This is the line power fuse and it is rated as listed in Table 5-1. This is the line power receptacle that mates with a three wire line cord. Refer to Table 2-1 for line power requirements.
*IEEE-488 INTERFACE	This connector provides IEEE-488 bus connection to the Model 224. The connector mates with the Model 7008-3 and 7008-6 IEEE cables.
*ADDRESS	The address switches are used to set the primary address of the Model 2243 IEEE-488 interface. Factory set value is 19(10011).
*DIGITAL I/O	The digital $1 / 0$ port consists of four input and four output lines as well as IEEE-488 common and +5VDC. The outputs will drive one TTL load. The instrument can be programmed to generate an SRO upon any change in the four bit input data.

[^0]

Figure 2-1. Model 224 Front and Rear Panels

Figure 2-2. Output Connector

2.3.4 Output Connector

The output connector is a Teflon ${ }^{\text {® }}$ insulated triax connector that is located on the rear panel. The maximum allowable voltage potential between the Hl and LO terminals is $\pm 100 \mathrm{~V}$. The maximum allowable common mode voltage between the HI input terminal and the chassis common is 250 Vrms DC to 60 Hz . Refer to Figure 2-2.

2.3.5 Inductive Loads

In general, the output load connected to the Model 224 should be resistive. However, a small amount of inductance can be tolerated if the inductive reaction voltage is limited to less than 105V. Refer to Figure 2-3 for a suggested method for limiting the inductive reaction voltage.

CAUTION

If the output load connected to the Model 224 is inductive, the inductive reaction voltage MUST BE LIMITED to less than 105V. Otherwise instrument damage may occur.

TWO BACK TO BACK

Figure 2-3. Limiting Inductive Reaction Voltage

2.3.6 Response Time

The response time is defined as the finite time difference between the actuation of the OUTPUT function and the output reaching to within 0.1% of the programmed value. The actuation of the OUTPUT function could be from an external trigger pulse or by pressing the OPERATE button on the front panel. The actual time difference is small, but in some applications it may be helpful to know the response time. The response time is depicted in Figure 2-4.

Figure 2-4. Response Time

2.3.7 General Operating Procedure

The Model 224 has several different operating parameters. These parameters (V-LIMIT, I-LIMIT, source value, time, etc) are to be programmed into the Model 224 before actual operation. The general procedure is designed to get the unfamiliar user familiar with the basic operation of the Model 224. Several programming examples follow the general procedure. These programming examples show several various ways to operate the Model 224.

1. Turn on the Model 224. Allow one hour warm up to achieve rated accuracy.
2. Select the desired I-limits. HI and LO 1 -limits must be set on the same range. (HI and LO are $.0000-0$ at power up.)
A. Press I-LIMIT.
B. Press the numbers that correspond to the desired HI limit. Maximum is $101.00-3 \mathrm{~A}$.
C. Press ENTER.
D. Press I-LIMIT.
E. Press the numbers that correspond to the desired LO limit. Minimum is $-101.00-3 \mathrm{~A}$.
F. Press ENTER.
3. Select the desired V-limit.
A. Press V-LIMIT.
B. Press the numbers that correspond to the desired V-limit (Default is 3V.)
C. Press ENTER.
4. Select the desired source value. (Default is $0.000-6 \mathrm{~A}$.) There are two ways to select the source value: auto and manual.
Manual Selection:
A. Press SOURCE.
B. Press the numbers (DATA keys) that correspond to the desired source value. The source value ranges are from $-101.00-3 \mathrm{~A}$ to $0.000-6 \mathrm{~A}$ to $+101.00-3 \mathrm{~A}$.
C. Press ENTER.

Auto Selection:
A. Press TIME. (Selects the output range mode. Default is 50msec.)
B. Press the numbers that correspond to the desired increment/decrement rate. The rate ranges from $50.00-3 \mathrm{sec}$ to 999.9 sec .
C. Press ENTER.
D. Press SOURCE.
E. Press DIGIT the desired amount of times to select the digit that is to be modified. The DIGIT button reverts the modify digit to the most significant digit if the DIGIT button is pressed when the cursor is presently on the digit just before the least significant digit. The least significant digit does not increment or decrement.
F. Press AUTO.
G. Press the INCR button to increment the displayed value. Press DECR button to decrement the displayed value.

NOTE

The INCR function has the mathematical carry capability. The DECR function has the mathematical borrow capability. The least significant digit and the exponent digit do not increment or decrement. Use manual selection to modify these digits.
H. Press AUTO to stop the display at the desired value.
5. Connect the appropriate load.
6. Press OPERATE to output the displayed value. The output is programmed to $0.000-6 \mathrm{~A}$ when not in the operate mode and the display remains the same.

NOTE

The output load must be noninductive. A small amount of inductance in the load can be tolerated if the inductive reaction voltage ($\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$) is limited to less than 105V. Refer to paragraph 2.3.5.

2.3.8 Front Panel Messages

The Model 224 has several front panel messages. These messages appear throughout the operation of the Model 224 and are listed in Table 2-5.

2.3.9 Examples of Operation

The following examples present several operating methods and variations.

Example 1 Output 10mA: In this example the Model 224 will be programmed to output a source value of 10 mA with a compliance voltage of 10 V .

Required Output: 10 mA with 10 V compliance.
Use the following procedure to program the Model 224 to output the preceding parameters.

1. Turn on the Model 224. Allow one hour for warm up.
2. Press SOURCE, 1,0,EXPONENT,3,ENTER. (Programs a source value of 10 mA .)
3. Press V-LIMIT, 1,0,ENTER. (Programs V-LIMIT of 10V).
4. Connect load.
5. Press OPERATE.

If the ENTER button is not pressed in the sequence indicated the operation will not take place as intended. Upon the actuation of step 5 the Model 224 outputs 10 mA with a 10 V compliance limit. Press the SOURCE button to verify that the 10 mA was actually programmed into the Model 224. Press the V-LIMIT button to verify that the 10 V limit was actually programmed into the Model 224.

Example 2 Output 20nA: In this example the Model 224 will be programmed to output a source value of 20 nA with a compliance of 26 V .

Required Output: 20nA with a 26 V compliance limit.
Use the following procedure to program the Model 224 to output the preceding parameters.

1. Turn on the Model 224 and allow one hour for warm up.
2. Press SOURCE,2,0,EXPONENT,9,ENTER. (Programs a source value of 20nA.)
3. Press V-LIMIT,2,6,ENTER. (Programs a 26V compliance limit.)
4. Connect load.

5. Press OPERATE.

Example 3 Output 20nA: In this example the Model 224 will be programmed to output a source value of 20 nA with a compliance voltage of 26 V . This example is the same as Example 2 except for the method used to program the source value.

Required Output: 20nA with a 26 V compliance limit.
Use the following procedure to program the Model 224 to output the preceding parameters.

1. Turn on the Model 224 and allow one hour for warm up.
2. Press SOURCE, $0, ., 0,2$, EXPONENT,6,ENTER. (Programs a source value of $20 n A$.)

3．Press V－LIMIT，2，6，ENTER．（Programs a compliance voltage of 26 V.$)$
4．Connect load．
5．Press OPERATE．
Upon actuation of step 5 the Model 224 outputs 20 nA with a 26 V compliance limit．The end result of this example is the same as the end result of Example 2．The only difference is
the method used to program the source value．Press the SOURCE button to verify that 20 nA was actually pro－ grammed into the Model 224．Once the SOURCE button has been activated the source value is displayed on the front panel．Press the V－LIMIT button to verify that a 26 V com－ pliance limit was actually programmed into the Model 224. Once the V－LIMIT button has been activated the V－limit is displayed on the front panel．

Table 2－5．Front Panel Messages

Message	Description
土1日日田 \pm 日	Power up display segment test．
$H L E$	HI limit of the 1 －limit．
$L L t$	LO limit of the I－limit．
615	Example of the software revision level．
$1 E \quad 19$	Factory set value of the IEEE－488 interface．
Err	Error，one of the following conditions exists．
	Selecting source value that is out of the range of the Model 224. （Greater than 101．00－3A or less than－101．00－3A）．
	Selecting auto time of less than $50.00-3 \mathrm{sec}$ or greater than 999.9 sec ．
	Selecting I－limit that is less than－101．00－3A or greater than 101．00－3A． Selecting V－limit that is less than 1 V or greater than 105 V
	Selecting source value that is less than or greater than the programmed limits．（Auto mode only）
	Selected LO limit is higher than selected HI limit after auto is pressed． When I－limit or full scale is reached in auto mode．

Example 4 Manual INCR／DECR Operation：The value of current can be modified either manually or automatically． This example shows how to modify the current value manual－ ly．
Manual INCR／DECR Notes：
1．The DIGIT button must be pressed the desired number of times to select the digit that is to be modified．
2．The term increment means that the increasing direction is toward the positive current limit．The term decrement means that the decreasing direction is toward the negative current limit．

3．The displayed value is also the output value．
4．In this mode，the AUTO，INCR and DECR LED＇s are turned off．
5．The INCR function has the mathematical carry capability．
6．The DECR function has the mathematical borrow capabil－ ity．
7．The least significant digit does not increment or decre－ ment．
8．The exponent digit does not increment or decrement．
9．Only the source can be modified by INCR or DECR．

In this example we will choose the following parameters:

1. Output is $5 \mu \mathrm{~A}$.
2. Voltage compliance is 50 V .

Use the following procedure to program the Model 224 to output $5 \mu \mathrm{~A}$ with a voltage compliance of 50 V .

1. Turn on the Model 224 and allow one hour for warm up.
2. Press V-LIMIT,5,0,ENTER. (Programs a compliance limit of 50 V .1
3. Press SOURCE. (Activates the source function.)
4. Press DIGIT,DIGIT. (Selects the digit that is to be modified. Notice the C segment cursor is flashing.)
5. Press INCR,INCR,INCR,INCR,INCR,ENTER. (Modifies the selected digit to numeral 5.)
6. Connect the load.
7. Press OUTPUT. (Outputs the displayed value of current to the rear panel output connector.)

In this procedure it is easy to see how simple it is to program the Model 224 to the exact value of current desired. The example could also be used to decrement the value of current. To do this change step 5 of the procedure to:

5. Press DECR,DECR,DECR,DECR,DECR,ENTER.

This causes the display to decrement the display to 0.000-6 if it is done after the procedure was completed with the $5 \mu \mathrm{~A}$ output. If this change is done before increment then the display would go in the negative direction to $-5.000-6 \mathrm{~A}$.

Example 5 Using the Auto Mode: In this example the Model 224 will be programmed to output 33mA with a compliance limit of 100 V using the auto mode. The auto mode allows adjustment of the source value to be automatically incremented or decremented at a predetermined rate.

Auto Mode Notes:

1. The time (auto increment/decrement rate) must be programmed to the desired value before using the auto mode. Power up value of time is $50.00-3 \mathrm{sec}$.
2. The SOURCE button must be activated before using the auto mode.
3. The digit button cursor must be placed at the appropriate digit on the display before the auto mode is activated.
4. The furthest digit on the left of the display is either a blank or a " 1 ".
5. Incrementing a value higher than the HI limit causes the Model 224 to display ERR, deactivate the auto mode and remain at the HI -limit.
6. Decrementing a value lower than the LO limit causes the Model 224 to display ERR, deactivate the auto mode and remain at the LO I-limit.
7. Pressing the AUTO button while the Model 224 is auto incrementing/decrementing stops the auto increment/ decrement action. Pressing AUTO again resumes the operation.
8. Decrementing a value lower or higher than the present current range causes the ERR (error) message to be displayed. The Model 224 will remain at the highest or lowest value for that range.
9. Pressing the CANCEL button while in the auto mode will abort the operation.
10. The least significant digit, or the exponent digit, does not increment or decrement.
11. To auto step the source value from the HI I-limit to LO l-limit without causing the error message to be displayed and the auto step action to be stopped the I -limits (HI and LO) must be set on the same range.
For example:
HI I-limit $=+100 \mathrm{E}-3 \mathrm{~A}$ on the $100 \mathrm{E}-3 \mathrm{~A}$ range LO I-limit $=-100 \mathrm{E}-3 \mathrm{~A}$ on the $100 \mathrm{E}-3 \mathrm{~A}$ range
These values are valid and allow the scan from HI to LO or LO to HI to be completed.
Example of inappropriate values for the auto scan:
HI -limit $=+100 \mathrm{E}-3 \mathrm{~A}$ on the $100 \mathrm{E}-3 \mathrm{~A}$ range
LO I-limit $=+10 E-6 A$ on the $10 E-6 A$ range
With these limits set, attempting to auto scan from the HI to the LO limit causes the error message to be displayed, scan operation to stop and the source value remains at $00.00 \mathrm{E}-3 \mathrm{~A}$. The same is true for scanning from the LO limit to the HI limit. When the source value reaches $+19.00 \mathrm{E}-6 \mathrm{~A}$ the error message is displayed, the scan operation is stopped and the source value remains at $+19.00 \mathrm{E}-6 \mathrm{~A}$.

Required Output: 33 mA with a 100 V compliance limit.
The auto rate will be programmed to one second. Use the following procedure to program the Model 224 for the preceding parameters.

1. Turn on the Model 224 and allow one hour for warm up.
2. Press I-LIMIT, 1,0,0,EXPONENT,3,ENTER. (Programs HI I-limit to 100 mA .)
3. Press I-LIMIT, $+/-, 1,0,0$, EXPONENT, 3,ENTER. (Programs the LO I-limit to -100 mA .)
4. Press V-LIMIT, $1,0,0$, ENTER. (Programs a voltage compliance of 100 V .)
5. Press TIME, 1, EXPONENT,0,ENTER. (Programs the auto rate to one second.)
6. Press SOURCE. (Selects the source function.)
7. Press DIGIT,DIGIT,DIGIT,AUTO,INCR. (Selects the third digit on the left of the display, the auto function and starts the automatic increment. When the display reaches 3.3, press AUTO to stop the auto increment function.)
8. Press CANCEL. (Deactivates the auto mode.)
9. Press EXPONENT,2,ENTER. (Programs the Model 224 for the 33 mA value.)
10. Connect the Load.
11. Press OPERATE. (Outputs 33 mA at the rear panel output connector.)

The auto rate may be varied from 50 msec to 999.9 sec . The power up default value of the auto rate is 50 msec . The one second rate used in this example is used just for learning purposes. In another situation, the rate could be programmed much faster or slower. Once the desired value is reached, deactivating the AUTO button stops the auto increment/ decrement action.

The auto mode is a convenient function that allows for precise currents to be stepped. This could be used to test semiconductors at several different current values, The only difference between this example and the example of stepping the current is the actual value of current; and the OUTPUT button is activated.

The auto mode could also be used to decrement the current value. After step 11, press DIGIT,DIGIT,DIGIT,AUTO,DECR. Then observe the display decrease the value of current by 1 mA every second. Stop the decrement at the 1 mA level, otherwise the Model 224 will display the ERR (error) message and remain at the value of $00.00-3 \mathrm{~A}$. The error message is displayed because the instrument was on the 100 mA range and then it was instructed to auto increment outside of that range. Refer to the Auto Mode Notes in this example.

Example 6 Triggering: The Model 224 may be triggered to increment or decrement the selected digit in two ways:

1. With the front panel TRIG button activated, apply a trigger pulse (TTL level-negative going) to the rear panel EXTERNAL TRIGGER INPUT. Refer to Figure 2-5 for pulse specifications.
2. With commands given over the IEEE bus. This action requires that the Model 2243 IEEE-488 interface option be installed.

External Trigger Notes:

1. The front panel TRIG button is used to control the rear panel EXTERNAL TRIGGER INPUT connector. Pressing this button once enables the external trigger and turns on the TRIG LED. Pressing the button again disables the external trigger operation and turns off the TRIG LED.
2. The TRIG and the AUTO functions are mutually exclusive.
3. The DIGIT button must be activated before the TRIG button is activated.
4. INCR or DECR must be selected after TRIG is activated.
5. While in the TRIG mode, pressing the TRIG button stops the operation. Pressing TRIG once more resumes the operation from where it was stopped.
6. The external trigger output is controlled by the TRIG button. When the selected digit is incremented or decremented a pulse (TTL level-negative going) appears at the EXTERNAL TRIGGER OUTPUT connector. The specifications of the pulse are shown in Figure 2-5.
7. While the auto or trig modes are activated, the four buttons in the DISPLAY group (SOURCE, V-LIMIT, I-LIMIT and TIME) are locked out.

This example covers the front panel TRIG button, the external trigger input and output connectors. The external trigger operates in conjunction with the front panel TRIG button. That is, the front panel TRIG button must be activated before the Model 224 will accept an external trigger stimulus.

To illustrate the front panel TRIG button and the external trigger input use the following procedure:

1. Connect the external trigger source to the rear panel BNC EXTERNAL TRIGGER INPUT connector.
2. Press the SOURCE button to activate the source function.
3. Press the DIGIT button to select the desired digit that is to be modified.
4. Press the front panel TRIG button to activate the trigger mode.
5. Press INCREMENT or DECREMENT.
6. To trigger the instrument, apply a pulse to the EXTERNAL TRIGGER INPUT. The pulse must conform to the specifications shown in Figure 2-5.
7. With just one pulse applied the Model 224 modifies the selected digit by one count.
8. Press OPERATE to output the current.

CAUTION: DO NOT EXCEED NORMAL TTL LEVELS

Figure 2-5. External Input and Output Trigger Pulse Specifications

For an example using external input and output triggering, assume the Model 224 is to be used with the Keithley Model 195A System DMM. Like the Model 224, the Model 195A has external input and output triggering. The triggering sequence would occur as follows:

The Model 195A outputs a pulse to the Model 224. This pulse triggers the Model 224 to increment or decrement the selected digit by one count. After the selected digit is modified, the Model 224 outputs a pulse to the Model 195A. With this pulse the Model 195A takes a reading. When the reading is complete the Model 195A outputs a pulse to the Model 224. Then the cycle repeats itself until it is programmed to stop or it is interrupted.

To use the Model 224 with the Model 195A perform the following steps:

1. Connect the Model 224's EXTERNAL TRIGGER INPUT connector to the Model 195A's VOLTMETER COMPLETE (trigger out) connector. Connect the Model 224's EXTERNAL TRIGGER OUTPUT to the Model 195A's EXTERNAL TRIGGER INPUT. Refer to Figure 2-6 for a block diagram.
2. Place the Model 195A in the external trigger mode.
3. Set the Model 224 I-limits.
4. Press the SOURCE button on the Model 224 to activate the source function and press OPERATE.
5. Press the DIGIT button on the Model 224 to select the appropriate digit to be modified.
6. Press the front panel TRIG button to activate the trigger mode and INCR or DECR.
7. Press RESOLN. To start the trigger action press the PRGM and TRIG button on the Model 195A in sequence to activate the one shot trigger mode of the Model 195A.
8. Observe the Model 224's display and notice that the selected digit is being modified by the Model 195A.

NOTE

The initial condition of the Model 195A may prove that it is in the one shot mode. If this is the case then pressing the PRGM and TRIG in sequence would toggle the Model 195A into an alternate trigger mode. Consult the Model 195A Instruction Manual for complete details concerning the trigger mode.

Figure 2-6. External Trigger Connections

Example 7 Using Guard: Leakage resistance between low current conductors and nearby voltage sources can cause significant error currents. For example, if a printed circuit element has a leakage path with a resistance of $10^{9} \Omega$ to a nearby 15 V supply terminal, a current of 15 nA will be generated. This is illustrated in Figure 2-7. In order to keep this current low (less than 1 pA) the leakage resistance would have to be above $1.5 \times 10^{12} \Omega$. The high resistance is difficult to maintain in many situations. In order to eliminate such stringent insulation resistance requirements, guarding techniques may beused as shown in Figure 2-8.

Figure 2-7. Unguarded Circuit
Guarding is defined as surrounding the sensitive input witn a conductor (the guard) connected to a low impedance point which is at (virtually) the same potential. The GUARD terminal located on the rear panel provides an easy connection to a low impedance voltage source which is equivalent to the output compliance voltage.

The maximum load capacitance for the guard output is $0.01 \mu \mathrm{~F}$. The maximum load current which includes guard and output is not to exceed 105mA. The accuracy of the guard $\pm 1 \mathrm{mV}$. That is excluding the $1 \cdot R$ drop of the output lead.

Figure 2-8. Guarded Circuit
Example 8 Operation as an ACTIVE LOAD (Current
Sink): The Model 224 can be used as an active current sink.
Refer to Figure 2-9 for an illustration of this concept. The out-
put voltage V_{O} is a function of E, I and R_{L} where:
$V_{0}=E+I R_{L}$
$E=$ Extended Voltage Source
I = Programmed Current on the Model 224
$R_{L}=$ Load Resistance

CAUTION

When the Model 224 is connected so as to sink current (that is, power is delivered to the Model 224 by an external supply), care should be taken to limit the power delivered to the Model 224. Figure 2-10 shows the specifications of the power limits to the Model 224.

For resistive loads the Model 224 will deliver the programmed current up to the compliance voltage ($V_{O}=V_{C}$). The power limits must be observed, otherwise damage to the instrument may occur.

Figure 2-9. Connections as a Current Sink with a Resistive Load

2.4 APPLICATIONS

The Model 224's wide range of current values allows it to be used in a variety of applications. Some of these applications include: calibration, resistivity measurement, diode characterization and low resistance measurements, etc. The following discussions explain the preceding applications.

2.4.1 Calibration

The Model 224's high accuracy and programmability allows it to be used as an automatic calibration source for current. In many calibration situations a source of accurate and stable current is required at a controller's (computer) programmed request. With the IEEE-488 bus option the Model 224 is ideal for this type of application.

The controller may be programmed to instruct the Model 224 to output a certain value of current at a predetermined time in the calibration program. With the Model 2243 IEEE option installed and a controller connected to the interface via the IEEE bus the Model 224 can easily be programmed for this application.

If desired, the Model 224 can be manually set to output a value of current that is required for a particular application (calibration). Automatic calibration can be used when there are many instruments that require calibration. Manual output can be used where just a few instruments require calibration.
probes of a hard metal such as tungsten are used. Because contact resistance is so high, a four point probe is used. The outer contacts supply a constant current, the inner two contacts measure the voltage drop across a portion of the sample. With the geometry of the probe and wafer known, resistivity can then be calculated.

The current source must be stable and accurate. The Model 224 is suitable for this application. The accurate and stable current output required can be programmed before making the measurement.

Figure 2-10. Model 224 Recommended Operating Limits
Refer to Figure 2-11 for an illustration of resistivity measurement. The two voltmeters in the circuit require a high input impedance to overcome lead resistance problems. The Keithley Model 614 has the high input impedance (greater than $5 \times 10^{13} \Omega$ in parallel with 20 pF) required to make the measurement accurately. For most wafers the resistivity is calculated from
$P=\frac{V}{k t l}$ where:
k is a constant based on the geometry of the wafer and probe.
t is the sample thickness.
V is the measured voltage.
I is the current in the sample.

2.4.2 Resistivity Measurements

Certain semiconductor materials such as silicon have high resistivities. The measurement of their resistivity can be a difficult measurement. To aid in their measurement, special

Figure 2-11. Resistivity Measurement Using the Model 224

2.4.3 Diode Characterization

With the Model 224 it is possible to obtain the necessary data to plot I-V current-voltage characteristics of a diode over several decades. Figure 2-12 shows the configuration to be used. The Model 614, with its high input resistance in the
volts function, allows the measurement to be made accurately. Figure 2-13 shows several examples of diodes whose curves have been plotted using the configuration of Figure 2-12.

Figure 2-12. Diode Characterization

Figure 2-13. Diode Curves

2.4.4 Low Resistance "Lindeck" Measurements

The Model 224 current can be used in conjunction with the Model 181 Digital Nanovoltmeter to measure low resistance. The Model 224 is placed in parallel with the low unknown resistance. In a circuit with a 0.01Ω resistance, a current source delivering 10 mA (Model 224) will provide a resolution of 0.01% with the Model 181 on the 2 mV range. With this method, the resistance may be found by dividing the voltage on the Model 181 by the current source value of the Model 224. With a 10 mA current source and 0.01Ω resistance, a voltage of $100 \mu \mathrm{~V}$ will result across the measured resistance.

Figure 2-14. Low Resistance Measurement Connections

2.5 DETAILED FRONT PANEL CONTROLS DESCRIPTION

POWER ON OFF-The On/Off switch operates on the push-push principle. Depressing this button turns the instrument on. Once the instrument is on, pressing (releasing) this button turns the instrument off. When the Model 224 is turned on it goes through a power up sequence that is described in paragraph 2.2.2

OUTPUT-The OUTPUT button is an alternative action control which places the instrument in the displayed output mode. In the operate mode, the OPERATE LED is turned on and programmed source current is present on the rear panel output connector. When the instrument is not in the operate mode, the display value remains the same and the output is programmed to $0.000-6 A$, and the OPERATE LED is turned off.
V-LIMIT-The V-LIMIT button selects the voltage compliance limit for display. The compliance voltage ranges from 1 V to 105 V in 1 V increments. The power up default value is 3 V . The voltage compliance is displayed as a three digit number. The three digit number is right justified when a one or two digit number is entered and the ENTER button is pressed. Voltage compliance limiting is bipolar. The V-Limit polarity follows the SOURCE polarity. If the SOURCE current is positive, so is the V-Limit. The voltage limit accuracy for output current ($\|_{\mathrm{OUT}}$) on all ranges is $\pm 3 \%+(1 \mathrm{~V})$.

I-LIMIT - The I-LIMIT button selects the window (HI-LO) of output current limit. The default value of the HI and LO current limits is $.0000-0 \mathrm{~A}$. When the I-LIMIT button is pressed the first time the HI LIMIT message is displayed, the HI limit of the current limit is displayed and the I-LIMIT LED is turned
on. At this time the HI limit may be modified by the procedure given in Example 5.

When the I-LIMIT button is pressed the second time, the LO limit message is displayed, the LO limit of the current limit is displayed and the I-LIMIT LED is turned on. At this time the LO I-limit may be modified by the procedure given in Example 5. The range of I-limit is $+101.00 \mathrm{E}-3 \mathrm{~A}$ to $-101.00 \mathrm{E}-3 \mathrm{~A}$. Both limits must be set on the same range.
TIME-The TIME button, when activated, selects the time function of the auto mode. The time is the rate that the auto mode can increment/decrement the selected digit or current value. The default value of the time function is 50 msec $(50.000-3 \mathrm{sec})$. The range of auto time is 50.00 msec to 999.9 sec .

DIGIT-The DIGIT button, when activated, selects a display digit (c segment cursor is flashing) for modification. Pressing the DIGIT button while in the DIGIT function moves the cursor to the right by one digit. If the DIGIT button is not pressed to select the digit for auto/manual incr/decr, the TRIG,AUTO,INCR,DECR will not function. The DIGIT button wraps the modify digit around to the most significant digit on the display if the DIGIT button is pressed when the cursor is on the next to the least significant digit.

INCR - In the manual mode, each time the INCR button is pressed the selected digit is incremented by one unit. In the auto mode, pressing the INCR button increments the selected digit at the programmed rate of the TIME butto:. This continues, unless the process is interrupted, until the HI limit is reached or overrange is reached, which ever cor ies first. The INCR function is operational only in the source and I-limit modes. The DIGIT button must be activated before INCR is used. The INCR function has the mathematical carry capability.

DECR - In the manual mode, each time the DECR button is pressed, the selected digit is decremented by one unit. Pressing the DECR button in the auto mode decrements the selected digit at the rate of the TIME function. This decrementing continues until the LO limit is reached, overrange is reached or the process is interrupted. The DECR function is operational only in the source and 1 -limit modes. The DIGIT button must be activated before DECR is used. The DECR function has the mathematical borrow capability.

CANCEL-When activated, the CANCEL button momentarily blanks the display and terminates the data modifying operation. The current display value remains as is and the output function is set to the previous value, the TRIG,AUTO, INCR and DECR functions are turned off. Pressing CANCEL when in I-limit mode switches display mode to source. Pressing CANCEL when in V-limit or time does not switch to source display mode.

ENTER - The ENTER button loads the displayed data into the Model 224.

EXPONENT-The EXPONENT button allows entry of exponent data onto the display.

DATA-The DATA group of buttons allow the entry of numerical data on the display.

AUTO-When activated (LED on), the auto button selects the auto function for incr/decr of the source data. Refer to Example 5 for auto mode notes.

TRIG-The TRIG button selects the trigger function for external trigger input via the rear panel connector. When activated (LED on), an external trigger input pulse of the specifications shown in Figure 2-5, triggers the Model 224 to increment or decrement the displayed source value. When deactivated, (LED off), the trigger function is disabled.

2.6 DETAILED REAR PANEL DESCRIPTION

OUTPUT-The OUTPUT connector is a Teflon ${ }^{(1)}$ insulated female triax connector.

GUARD - The GUARD terminal provides a low impedance voltage source that is equal to the output compliance voltage. The GUARD terminal is useful in reducing leakage currents for critical applications. Refer to Example 7.

OUTPUT COMMON-The OUTPUT COMMON terminal provides easy access to the inner shield of the output connector. The inner shield of the output connector is output LO.

CHASSIS GROUND - The CHASSIS GROUND terminal provides easy access to chassis ground (earth ground).

CAUTION

Do not float the instrument above 250 Vrms . Instrument damage may occur. Refer to the specifications preceding Section 1.

EXTERNAL TRIGGER INPUT-The EXTERNAL TRIGGER INPUT connector accepts an input trigger pulse that has the specifications shown in Figure 2-5. Depending on the mode (auto/manual) the pulse triggers the instrument to increment/decrement the selected digit (source value) upon receiving the pulse. This is a female BNC connector. This connector is active only when the front panel TRIG button is activated (LED on).

EXTERNAL TRIGGER OUTPUT-The EXTERNAL TRIGGER OUTPUT connector provides an output pulse with the specifications shown in Figure 2-5. This pulse is present only when the selected digit (source value) has completed the increment or decrement action. Trigger output is independent of front panel trigger mode.
FUSE - This is the line power fuse and it is rated as listed in Table 5-1.

CAUTION

Do not install a fuse with a higher rating than specified in Table 5-1. Instrument damage may result.

LINE RECEPTACLE - The line power receptacle mates with a three wire line cord. Refer to Table 2-1 for line power requirements.
*IEEE-488 INTERFACE-This connector provides IEEE-488 bus connection to the Model 2243. The connector mates with the Model 7008-3 and 7008-6 IEEE cables.
*ADDRESS - The address switches are used to set the primary address of the Model 2243 IEEE-488 interface. The factory set value is 19(10011). The primary address is undated only upon power up.
*DIGITAL I/O-The digital I/O port consists of four input and four output lines as well as IEEE common and +5 VDC . The output will drive one TTL load. The instrument can be programmed to generate an SRO upon any change in the four bit input data.
*These connectors are present only when the Model 2243 IEEE-488 option is installed in the Model 224. For more information concerning these connectors refer to the Model 2243 Instruction Manual.

SECTION 3 PERFORMANCE VERIFICATION

3.1 INTRODUCTION

Performance verification may be performed upon receipt of the instrument to ensure that no damage or misadjustment has occurred during transit. Verification may also be performed whenever there is question of the instrument's accuracy.

NOTE
For instruments that are still under warranty (less than 12 months since date of shipment), whose performance falls outside of the specifications at any point, contact your Keithley representative or the factory immediately.

3.2 ENVIRONMENTAL CONDITIONS

The performance verification procedure should take place at $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ and at less than 70% relative humidity, unless otherwise indicated.

3.3 RECOMMENDED TEST EQUIPMENT

Table 3-1 lists all the test equipment required for verification. If alternate equipment is used, the alternate equipment's specifications must be at least as good as the specifications listed in Table 3-1.

3.4 INITIAL CONDITIONS

The Model 224 must be turned on and allowed one hour for warm up. If the instrument has been subject to extremes of temperature, allow sufficient time for the internal temperature to reach normal operating conditions as specified in paragraph 3.2. Typically, it takes one hour to stabilize a unit that is $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ out of the specified temperature range.

3.5 PERFORMANCE VERIFICATION PROCEDURE

Use the following procedure to verify the accuracy of the Model 224. If the Model 224 is out of specification, proceed to Section 5 Maintenance unless the Model 224 is under warranty. In that case contact your Keithley representative or the factory.

NOTE

Verification should be performed by qualified personnel using accurate and reliable test equipment.

3.5.1 100 mA to 1 mA Range Verification

1. Connect the Model 224, Model 192 and the 100Ω resistor as shown in Figure 3-1.
2. Select the 20VDC range on the Model 192.
A. Program the Model 224 to output $+00.00-3 A$. Verify that the reading on the Model 192 does not exceed 5 mV .
B. Program the Model 224 to output $+0.000-3 A$. Verify that the reading on the Model 192 does not exceed 1 mV .
C. Select the 2 V range on the Model 192. Program the Model 224 to output .0000-3A. Verify that the reading on the Model 192 does not exceed $+100 \mu \mathrm{~V}$. Select the 20V range on the Model 192.
3. Program the Model 224 for +100 mA with a 20 V compliance limit.
4. Press the OPERATE button on the Model 224.
5. Verify that the reading on the Model 192 is within the limits specified in Table 3-2.
6. Repeat steps 2 through 5 for the 10 mA and 1 mA ranges.
7. Repeat steps 2 through 6 with negative output current.

Table 3-2. 100 mA to 1 mA Verification

Range	Model 224 Output	Model 192 Allowable Reading at $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$
100 mA	100.00 mA	10.0160 to 9.9840^{*}
10 mA	10.000 mA	1 to .9
1 mA	1.0000 mA	.10160 to $.09840^{* *}$

*Model 192 20VDC Range
** Model 192 2VDC Range

Table 3-1. Recommended Test Equipment

Description	Specification	Mfr.	Model
DMM	0.005% (2V range)	Keithley	192
Precision Resistor	$10 \Omega \pm 0.01 \% 1 \mathrm{~W}$	Keithley	R-196-10 Ω
Precision Resistor	$100 \mathrm{k} \Omega \pm 0.01 \%$	Caddock	TF020N

3.5.2 $100 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ Range Verification

1. Replace the 100Ω resistor in Figure $3-1$ with the $100 \mathrm{k} \Omega$ resistor specified in Table 3-1.
2. Select the 20VDC range on the Model 192.
A. Program the Model 224 to output $+00.00-6 \mathrm{~A}$. Verify that the reading on the Model 192 does not exceed +10 mV .
B. Program the Model 224 to output $+0.000-6 \mathrm{~A}$. Verify that the reading on the Model 192 does not exceed +1 mV .
3. Program the Model 224 to output $+100.00-6 \mathrm{~A}$ with a 20 V compliance limit.
4. Verify the reading on the Model 192 to be between 10.016 and 9.984 V .
5. Program the Model 224 to standby (press OPERATE).
6. Select the 2VDC range on the Model 192.
7. Program the Model 224 to output $+10.00-6 \mathrm{~A}$ with a 20 V compliance limit.
8. Verify the reading on the Model 192 to be between +1.0016 to 0.9984 V .
9. Repeat steps 2 through 8 with negative output current.

The verification of the Model 224's accuracy is now complete.

Figure 3-1. 100mA to 1mA Range Verification

SECTION 4 THEORY OF OPERATION

4.1 INTRODUCTION

This section contains circuit descriptions of the Model 224. The information is arranged to provide a circuit description of individual functional circuit blocks. To facilitate understanding the descriptions are keyed to accompany simplified block diagrams and schematics. Detailed schematics of the Model 224 are located in Section 6.

4.2 BLOCK DIAGRAMS

The circuitry of the Model 224 is represented by the two simplified block diagrams in Figures 4-1 and 4-2. Figure 4-1 shows a simplified block diagram of the Model 224's analog circuitry (power supply, range circuitry, amplifiers etc.). Figure 4-2 shows a simplified block diagram of the Model 224's digital circuitry (microprocessor, RAM, ROM, VIA etc.).

4.3 POWER SUPPLY

To facilitate understanding of the following discussion refer to schematic diagram 220-106 (sheet 2 of 2). The power supply is a conventional AC to DC power converter. Transformer T101, has three separate secondaries that are fed into three separate bridge rectifiers CR101, CR108 and the bridge configuration of CR102 through CR105. The output of CR101 is fed into the regulator VR101 and is filtered by C107 and C103 producing the +5 V digital supply. The output of CR108 is fed into VR102 and VR103 and is filtered by C119 through C122 to produce the positive and negative 15 V supplies. The output of CR102 through CR105 is filtered by C117 and C118 to produce the positive and negative 125 V supplies. R118 and R119 are bleeder resistors to prevent charge retention after the AC power is removed.

A tap off of the primary of the transformer T101, supplies the nominal 115VAC to the ventilation fan.

4.4 ANALOG BOARD

To faciliate understanding of the following discussion refer to schematic diagram number 224-126.

The heart of the analog board is the high voltage op amp which is centered around U319. The performance of U319 is bootstrapped up to the voltage levels supplying Q318 and Q319 by 0315-0319, 0313-0318 and their associated circuitry. Q310, Q302, R344, R348, R349, C313 and C320 establish frequency stability for U319. R343 is an input voltage offset adjustment for U319.

A constant current source can be derived by a series voltage
source and resistance from the output (analog/common/ guard) to the amplifier input. The amplifier input to the common of the high voltage supplies of $\mathrm{Q} 318 / \mathrm{Q} 319$ (output common) comprised a current source. Range resistors (R375, R376, R377, R379, R380, R381 and R383) along with their associated calibration potentiometers make up the series resistance section of the current source. When more than one resistance is connected through one relay, JFETswitches are used to distinguish which resistor is being used. Several JFETs are organized in pairs for voltage sensing at the resistor to compensate for the voltage drop in the current carrying JFET.

U315 serves as sense amplifier with Q311, Q312, R344 and R345 as a high current buffer for the higher current ranges. U314, U318A and U320B, C,D,E and F drive the range relays. U313 and U317 are voltage comparators with open collector outputs. Combined with R350, this circuitry provides the voltage drive for the switching FETs.

The voltage source section centers around U311, the 12 bit digital-to-analog converter (DAC). Associated circuitry R301 through R307 and R316, are used to adjust offset and positive gain. Gain is set on the 1 mA range and therefore does not require an adjustment. Following this circuitry is a network providing a \pm operator to the output of U311. U312 provides the active portion, while switches on U306 align with resistors R317, R318, R320 and R323 to provide a selectable gain of +1 or -1 .

R318 provides a gain adjust (-1 mA) for this operator. The output is fed to the sense amplifier U315. R392 is an offset voltage adjustment potentiometer for U312 and U315.

Serial to parallel shift/store registers U301, U302 and U303 provide digital control from the serial data link. Data is transmitted via the clock and latch lines. Latch selects the data in mode as either recirculated data out (latch $=\operatorname{logic} 0$) or the over compliance V-limit information (latch $=$ logic 1). This selection is performed by U304A and B, U316B and C, and U305A.

Gates U305B, C and D form a flip-flop for controlling the tristate mode of the outputs of U301, U302 and U303. This circuitry, along with R351, R352, CR307, C305, etc., prevents erroneous current source outputs both on acquisition and loss of AC line power.

The remaining portion of the analog circuitry produces the selectable compliance voltage limit. An 8 bit digital-to-analog converter (DAC) U308 starts this process. With 128 combinations, each step is scaled to represent 1 V of compliance. Since U308 is a current output DAC, U309 is required to
revert back to voltage level. The output of U309 then represents the selected compliance voltage scaled down by a factor of 20.

This signal and its inverse (U309A, R324 and R327) are applied to divider network R331 and R336 which are referenced to output common. At the junction of each divider network is an amplifier which reverts the previous scaling factor. Resulting from this is an error voltage approximately equal to the difference between the actual compliance voltage level and the programmed level. Each amplifier U307A and B and the associated circuitry, is coupled through diodes CR303 and CR302 on R333. The polarity of the diodes is arranged such that a voltage is impressed on R333 only when the actual voltage compliance exceeds \pm the programmed value. This result is applied to the output mode via low leakage diode CR304 preventing any further voltage excursion. Current from the range resistors is shunted through diodes CR305 and CR306 when this operation occurs. Resistors R330 and R332 add an offset to compensate for diode drops in CR302 through CR304.

The circuit configuration of U313A and B comprise a window comparator to detect a V-limit condition across R333. The comparator limits are set by resistor divider network R338 through R341. U313A and B open collector outputs are configured in a "wire ORed" fashion through pull up resistor R346. When ever the voltage across R333 exceeds the comparator limits, a logical 1 is developed through current limiting resistor R347 to the output of inverter U316E. C311 is used for stabilization.

VR301 supplies the digital circuitry with the required +5 V . This voltage is also supplied to the digital board for use by the optically isolated portion of the circuitry.

4.5 DIGITAL BOARD (Microcomputer)

To facilitate understanding of the following discussion refer to schematic diagram 220-106 (sheet 1 of 2). For an overall block diagram of the digital circuitry refer to Figure 4-2.

The microcomputer and its associated logic circuitry, controls front panel functions (source, time, auto, etc.), operation of the front panel display and data through the IEEE-488 interface circuitry when it is installed.

The microcomputer includes a 6808 microprocessing unit U115; a 6522 versatile interface adapter U114; two 2732 ROMs U109 and U111; four 2114 RAMs U101, U103, U105 and U107; an address decoder U110; a data bus driver U116 and the necessary reset logic. The memory utilized in this system is shown in the memory map (Figure 4-3). Using address lines A13, A14 and A15; U110 sections the $64 k$ of memory space into 8 k and 4 k segments. The total memory used is a small portion of the entire addressing capabilities of the 6808 microprocessor U115. Memory location for the 64k addresses are assigned the values 0000_{16} through FFFF_{16}.

Interfacing of the microprocessor with the RAMs, ROMs, Front Panel, VIA or the IEEE-488 interface ciruitry is controlled by the address decoder, U110.

Partial address decoding is used in this system. The function selected is determined by the state of the address lines A13, A14 and A15. These address lines determine which output is selected at the decoder U110 in accordance with the memory map. Only one of the devices (RAM, ROM VIA etc.) will have access to the data bus at any time. The address decoder selects one of the devices only after a Valid Memory Address (VMA) has been asserted at the decoders input EN (pin 6). The VMA signal is generated by the 6808 microprocessor.

Timing for the computing sequence is provided by the 4 MHz crystal Y101. The 6808 microprocessor divides this signal by four to obtain 1 MHz signal at the 2 output (pin 37).

U102, U104, U106C, U108C and their associated circuitry form a reset network (watch dog) which resets the microprocessor, VIA and the IEEE-488 interface (when installed). The circuit actuates in the event the front panel display is not updated after a specific period of time has elapsed due to a lost program or power line transient.
Figure 4-1. Analog Circuitry Block Diagram

FOR DETAILED INFORMATION ON THE IEEE-488 INTERFACE REFER
Figure 4-2. Digital Circuitry Block Diagram

Figure 4.3. Memory Map

SECTION 5 MAINTENANCE

5.1 INTRODUCTION

This section contains information necessary to maintain the Model 224 Programmable Current Source. Calibration adjustment, troubleshooting, fuse replacement, line voltage selection, fan filter cleaning and all information pertinent to maintenance is provided.

5.2 FUSE REPLACEMENT

The Model 224 Programmable Current Source's line fuse (F101) is located on the rear panel. F101 protects the line and the instrument in case of overload. If the line setting is changed (refer to paragraph 5.3) the fuse must be replaced according to Tables 5-1 and 5-2. Use the following procedure to replace the line fuse.

WARNING

Disconnect the Model 224 from the power line and other equipment before replacing the fuse.

1. Turn the power off, remove the Model 224 from all other equipment and disconnect line cord.
2. The fuse carrier is spring loaded. Using a flat blade screwdriver, push the fuse carrier in and rotate $1 / 4$ turn counterclockwise. The carrier and fuse will eject from the instrument.
3. Remove the fuse from the carrier and replace per Table 5-1 or 5-2.

CAUTION

Do not install a fuse with a higher rating than specified in Table 5-1 or 5-2. Instrument damage may result.
4. To install the fuse and carrier into the holder, reverse the procedure in step 2.

Table 5-1. Fuse Replacement, 3AG Size

Line Voltage	Fuse F101	Keithley Part No.
$90 \mathrm{~V}-110 \mathrm{~V}^{*}$	3/4A, 250V, 3AG, SLO BLO	FU-19
$105 \mathrm{~V}-125 \mathrm{~V}$	$3 / 4 \mathrm{~A}, 250 \mathrm{~V}, 3 \mathrm{AG}$, SLO BLO	FU-19
$180 \mathrm{~V}-220 \mathrm{~V}^{*}$	$3 / 8 \mathrm{~A}, 250 \mathrm{~V}, 3 \mathrm{AG}$, SLO BLO	FU-18
$210 \mathrm{~V}-250 \mathrm{~V}$	3/8A, 250V, 3AG, SLO BLO	FU-18

*Requires special factory installed transformer TR-187.

Table 5-2. Fuse Replacement, 5mm Size

Line Voltage	Fuse F101.	Keithley Part No.
$90 \mathrm{~V}-110 \mathrm{~V}^{*}$	$0.8 \mathrm{~A}, 250 \mathrm{~V}$, SLO BLO	FU-52
$105 \mathrm{~V}-125 \mathrm{~V}$	$0.8 \mathrm{~A}, 250 \mathrm{~V}$, SLO BLO	FU-52
$180 \mathrm{~V}-220 \mathrm{~V}^{*}$	$0.4 \mathrm{~A}, 250 \mathrm{~V}$, SLO BLO	FU-53
$210 \mathrm{~V}-250 \mathrm{~V}$	$0.4 \mathrm{~A}, 250 \mathrm{~V}$, SLO BLO	FU-53

*Requires special factory installed transformer TR-187.

5.3 LINE VOLTAGE SELECTION

Set up the Model 224 to operate on the available AC line voltage as follows:

WARNING
To prevent a shock hazard, always turn the instrument off, remove all other equipment from the Model 224 and disconnect the line cord before removing the top or bottom cover.

1. Remove the top cover. Refer to the disassembly instructions in paragraph 5.4. Refer to Figure 5-1.
2. Refer to Table 5-3 and set the switch (S102) accordingly. The switch is located near the transformer, underneath IEEE-488 option (if installed).
3. Install the proper fuse per paragraph 5.2

NOTE

The line voltage setting of the instrument is marked on the rear panel. The preceding procedure can be used to either confirm the factory setting or to set the instrument for operating on another voltage range. If the voltage range is changed, the box next to the selected line voltage should be appropriately marked as an external reminder of the setting, Use a water and petroleum resistant marking pen as described in IEC-348.

Table 5-3. Line Voltage Selection

Line Voltage	Line Frequency	Switch S 102
$90 \mathrm{~V}-110 \mathrm{~V}^{*}$	$50 \mathrm{~Hz}-60 \mathrm{~Hz}$	115 V
$105 \mathrm{~V}-125 \mathrm{~V}$	$50 \mathrm{~Hz}-60 \mathrm{~Hz}$	115 V
$195 \mathrm{~V}-235 \mathrm{~V}^{*}$	$50 \mathrm{~Hz}-60 \mathrm{~Hz}$	230 V
$210 \mathrm{~V}-250 \mathrm{~V}$	$50 \mathrm{~Hz}-60 \mathrm{~Hz}$	230 V

[^1]
5.4 DISASSEMBLY

If it should become necessary to disassemble the Model 224 use the following procedure. Also, refer to Figure 5-1.

1. Remove the top cover as follows:

WARNING

Turn the instrument off, disconnect all other equipment from the Model 224 and disconnect the line cord before removing the top cover.
A. Remove the two retaining screws located at the rear of the instrument.
B. Grasping the top cover at the rear, carefully lift it off of the instrument.
C. When installing the top cover, make sure that the three tabs that are located at the front of the cover engage in the front panel assembly.
2. Remove the IEEE-488 interface board (Model 2243).
A. Unplug the ribbon cable (J/P1004) at the mother board.
B. Remove the phillips head retaining screw located near J1004 on the interface board.
C. Remove the two retaining bolts that secure the interface board and IEEE-488 standard connector to the rear panel.
D. Lift the interface out of the mainframe.
E. To install the Model 2243 reverse the above procedure.
3. Remove the analog board shield.
A. Remove the four slot head screws that secure the shield to the analog board.
B. Lift the shield and the four slot head screws away from the analog board.
C. Remove the two screws that secure the analog board bottom shield to the analog board.
D. Remove the analog board bottom shield.

NOTE
The circuitry located beneath the analog board shields is extremely sensitive. Do not touch any of the range resistors or input cable.
4. Remove the analog board.
A. Remove the phillips head screw located directly behind the two power transistors.
B. Unplug the ribbon cable (J/P1003) from the analog board.
C. Remove the bottom shield of the analog board by removing the two phillips head screws that secure the shield to the board.

NOTE
Do not remove the output cable.
5. Place the analog board along side of the Model 224.
6. Remove the mother board from the case.
A. Remove the four plastic standoffs.
B. Remove the two phillips screws that secure the mother board to the case. They are located at the rear of the mother board, one by the fan and the other is by the line voltage selector switch S102.
C. Remove the two phillips head screws that secure the case to the rear panel.
D. Unplug the display ribbon cable ($\mathrm{J} / \mathrm{P} 1002$) from the mother board.
E. Grasp the mother board and the rear panel simultaneously. Lift the mother board and the rear panel up and toward the rear of the instrument. Then lift the mother board and rear panel out of the case.
8. Remove the display board.
A. Remove the two phillips head screws that secure the display board to the front panel.
B. Remove the front panel buttons.
C. Lift the display board out of the case.
9. For reassembly, perform steps 1-8 in reverse order.

NOTE

When installing connectors J/P1004, J/P1003 and J/P1002 be sure to align pin one of the connector to pin one of the cable.

5.5 FAN FILTER MAINTENANCE

The internal temperature generated by the Model ?24 necessitates the forced air cooling provided by the fan. The fan has an air filter which keeps the instrument relatively free of dust and dirt. Dust and dirt collect on the filter and impede the air flow through the instrument. Lack of air flow will cause overheating. Therefore, the filter must be kept clean in order for the Model 224 to maintain optimum performance. To clean the filter:

1. Remove the filter from the fan.
2. Use compressed air to remove the dust and dirt from the filter. If the filter is excessively dirty wash it in mild soap and water and dry it with compressed air.
3. Reinstall the filter.

5.6 SPECIAL HANDLING OF STATIC SENSITIVE DEVICES

MOS devices are designed to function at high impedance levels. Normal static charge can destroy these devices. Table 5-4 lists all the static sensitive devices of the Model 224. Steps $1-7$ provide instruction on how to avoid damaging these devices.

1. Devices should be handled and transported in protective containers, antistatic tubes or conductive foam.
2. Use a properly grounded workbench and grounding wriststrap.

Figure 5-1. Model 224 Exploded View

Table 5-4. Model 224 Static Sensitive Devices

Reference Designation	Keithley Part No.
U101, U103, U105, U107	LSI-15
U102	IC-197
U109	24-800-**
U111	224-801-**
U112, U301, U302, U303	IC-251
U114	LSI-28
U15	LSI-27
U116	IC-250
U304, U314	IC-138
U306	IC-102
U308	IC-320
U311	IC-321
U316	IC-323
Q302	IC-106

3. Handle the devices by the body only.
4. PC boards must be grounded to the bench while inserting the devices.
5. Use antistatic solder removers.
6. Use grounded tip soldering irons.
7. After devices are soldered or inserted into sockets they are protected and normal handling can resume.

5.7 CALIBRATION

Calibration of the Model 224 should be performed yearly (every 12 months) or whenever performance verification (Section 3) indicates that the Model 224 is out of specification. If any step in the calibration procedure cannot be performed refer to paragraph 5.8 Troubleshooting or contact your Keithley representative or the factory.

WARNING
All service information is intended for qualified electronic maintenance personnel only.

5.7.1 Recommended Test Equipment

Recommended test equipment is listed in Table 5-5. Alternate test equipment may be used. However, the accuracy of the alternate test equipment must at least be equal to the specifications listed in Table 5-5.

5.7.2 Environmental Conditions

Calibration should be performed under laboratory conditions having an ambient temperature of $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and a relative humidity of less than 50%.

5.7.3 Warm Up

The Model 224 must be turned on and aliowed one hour for warm up. If the instrument has been subjected to extremes of temperature, allow sufficient time for internal temperatures to reach normal operating conditions. Typically, it takes one hour to stabilize a unit that is within $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right)$ of the specified temperature range.

5.7.4 Calibration Adjustments

Use the following procedure and make the adjustments indicated to calibrate the Model 224. To locate adjustment points, remove the top cover and refer to the analog board shield.

WARNING

To prevent a shock hazard, turn the instrument off, remove the line cord and all test leads from the instruments before removing the top cover.

1. Remove the top cover (refer to paragraph 5.4). Warm up the instrument with the top cover in place. Minimize the time the top cover is removed.
2. Short the output of the Model 224 (H to LO). Monitor the GUARD output with the Model 192 (Item A, Table 5-5) on the .2 VDC range.

Table 5-5. Recommended Test Equipment

Item	Description	Specification	Mfr.	Model
A	DMM	$\pm 0.005 \%$ to $10 \mu \mathrm{~V}$	Keithley	192
B	Resistor*	$10 \Omega \pm 0.1 \%$	Keithley	R-185-10
C	Resistor*	$100 \Omega \pm 0.1 \%$	Keithley	R-308-10M
D	Resistor*	$1 \mathrm{k} \Omega \pm 0.1 \%$	Keithley	R-287-1k
E	Resistor	$100 \mathrm{k} \Omega \pm .02 \%$	Keithley	R-182-100k
F	Oscilloscope	1 MHz Bandwidth	Tektronix	465

NOTE*

Before placing the resistors in the test configuration, measure them with the Model 192 and note their value. Zero the Model 192 before measuring the resistors. These values will be used later in the calibration procedure.
3. Program the Model 224 for an output of $+.0000-3 A$ with a 10 V compliance limit. Locate and adjust R343 for a reading on the Model 192 of $.000000 \pm 2 \mu \mathrm{~V}$.
4. Remove the short from the output of the Model 224. Connect the Model 224 and the Model 192 as shown in Figure 5-2.
5. Program the Model 224 to output $+.0000-3 A$. Monitor the Model 224 output on the Model 192.
6. Invert the Model 224 output (press \pm and ENTER on the Model 224) and note the change in current.
7. Calculate the average reading when the output is changed from positive to negative and adjust R304 for the calculated value. Then adjust R392 for a reading of less than $\pm 100 \mathrm{nA}$.
8. Follow Table 5-6 to calibrate the ranges of the Model 224.

NOTE

The allowable reading on the Model 192 is the product of the measured shunt resistance times the Model 224 output. For example, in Table 5-6 step A: Measured Shunt Resistance $=1 \mathrm{k} \Omega$ Model 224 Output $=1.9 \mathrm{~mA}$ Calculated Output $=1.9 \mathrm{~V} \pm 300 \mathrm{ppm}$ or 570 V
9. When step 8 is completed the Model 224 is calibrated.

5.8 TROUBLESHOOTING

The troubleshooting information in this section is intended for use by qualified personnel who have basic understanding of the analog and digital circuitry used in a precision test instrument.

Instructions have been written to assist in isolating the defective circuit. Isolating the defective component(s) has been left up to the technician or troubleshooter. Refer to Table 5-7 for power supply checks. The power supply should always be the first item on the list of any troubleshooting. Refer to Table 5-8 for analog board checks. Refer to Table 5-9 for digital circuitry checks. Refer to Table 5-10 for display board checks.

NOTE

For instruments that are still under warranty (less than 12 months since date of shipment), whose performance falls outside of specification at any point, contact your Keithley representative or the factory before attempting troubleshooting or repair.

5.8.1 Digital Self Test

Upon power up the Model 224 performs a digital self test of the RAM (2114's) chips and cyclic redundancy check (CRC) of the ROM (2732's) chips. If the self test or the CRC reveals a problem with any of the memory chips, the Model 224 will display an error message corresponding to the defective chip. For example; if the digital self test reveals that RAM chip number four is defective the Model 224 displays the following:

This informs the user that RAM chip number four is defective. Refer to Figure 5-3 for chip number assignment.

Table 5-6. Model 224 Calibration

Step	Setting (Range)	Com- pliance	Adjust- ment Point	Shunt R	Model 192 Range	Allowable Reading on the Model 192 at 5 1/2-Digit Resolution
A	$1.9 \mathrm{E}-3$	30 V	R 303	$1 \mathrm{k} \Omega$	2 VDC	$(1 \mathrm{k} \Omega)(1.9 \mathrm{E}-3)=$ Calculated Output $\pm 300 \mathrm{ppm}$ or $570 \mu \mathrm{~V}$
B	$-1.9 \mathrm{E}-3$	30 V	R 318	$1 \mathrm{k} \Omega$	2 VDC	$(1 \mathrm{k} \Omega)(-1.9-3)=$ Calculated Output $\pm 300 \mathrm{ppm}$ or $570 \mu \mathrm{~V}$
C	$100 \mathrm{E}-3$	30 V	$R 387$	10Ω	2 VDC	$(10 \Omega)(100 \mathrm{E}-3)=$ Calculated Output $\pm 750 \mathrm{ppm}$ or $750 \mu \mathrm{~V}$
D	$19 \mathrm{E}-3$	30 V	R 386	100Ω	2 VDC	$(100 \Omega)(19 \mathrm{E}-3)=$ Calculated Output $\pm 300 \mathrm{ppm}$ or $570 \mu \mathrm{~V}$
E	$190 \mathrm{E}-6$	30 V	$R 385$	$100 \mathrm{k} \Omega$	20 VDC	$(100 \mathrm{k} \Omega)(190 \mathrm{E}-6)=$ Calculated Output $\pm 250 \mathrm{ppm}$ or 4.8 mV
F	$19 \mathrm{E}-6$	30 V	R 384	$100 \mathrm{k} \Omega$	2 VDC	$(100 \mathrm{k} \Omega)(19 \mathrm{E}-6)=$ Calculated Output $\pm 300 \mathrm{ppm}$ or $570 \mu \mathrm{~V}$

Figure 5-2. Calibration Configuration

Figure 5-3. Memory Chip Number Assignment

Table 5-7. Power Supply Checks

Step	Item/ Component	Required Condition	Remarks
	O319 Collector	Unit turned on, properly rated F101 has continuity. Line selected switch S102 verified in correct position. $+130 \mathrm{VDC} \pm 15 \%$	- 125V Supply*
2	0318 Collector	$-130 \mathrm{VDC} \pm \pm 15 \%$	-125V Supply*
3	VR301 Input	+ 15VDC $\pm 15 \%$	+15V Supply**
4	VR311 pin 14	$-15 \mathrm{VDC} \pm 15 \%$	-15V Supply**
5	TP2	+ 5 VDC $\pm 5 \%$	+5V Digital Supply***

*Referenced to output common.
**Referenced to analog common.
***Reference to digital common.

Table 5-8. Analog Board Checks

NOTE
All measurements in Table 5-8 are referenced to analog common (guard).

Table 5-9. Digital Circuitry Checks

Step	Item/Component	Required Condition	Remarks
1	J1004 pins 1, 2 and 4 (referenced to pins 24, 25 and 26)	$+5 \mathrm{~V} \pm 5 \%$	+5 V Digital Supply 1 MHz Clock
2	U315 pin 37 ($\mathbf{\Phi} 2$) U115 Pin 40 (reset)	0 V to 4 V squarewave at 1 MHz $+5 \mathrm{~V} \pm 5 \%$	1MHz Clock Reset Line
4	U114 pin 15	Negative going pulse (+5 V to OV) occuring every 8 msec .	Strobe for display board.
5	U114 pin 39	Negative going pulse (+5 V to 0 V) occuring every 1msec	Clock input for Display Board
6	U115 pin 4, U114 pin 21	1 kHz clock	IRQ Line
7	U111, U110, U103, U105 U101 and U107	RAM and ROM (see paragraph 5.8.1 Digital Self Test)	Digital Self Test
8	U117 pin 6 (Referenced to Analog Common)		Data Out Line (Analog Side)
9	U117 pin 4 (Referenced to Analog Common)		Data in Line (Analog Side)
10	U113 pin 3 (Referenced to Digital Common)		Clock to Analog Side
11	U113 pin 6 (Referenced to Digital Common)		Latch Enable

Table 5-10. Display Board Checks

Step	Item/Component	Required Condition	Remarks
1	Display	Turn on Power $+1.8 .8 .8 .8+1.8$	All display segments and LEDs will light for several seconds.
2	P1002 pins 9 and 14	$+5 \mathrm{~V} \pm 5 \%$	If low, check per Table 5-7.
3	U203 pin 1		Update Data
4	U203 pin 8		Clock.

SECTION 6 REPLACEABLE PARTS

6.1 INTRODUCTION

This section contains replacement parts information, schematic diagrams and component location drawings for the Model 224. An illustration of the fan assembly is shown in Figure 6-1.

6.2 PARTS LIST

Parts are listed alphabetically in order of their circuit designations. Table 6-1 contains an index of the schematic diagrams and component location drawings. Table 6-2 contains a parts list for the Model 224 mother board. Table 6-3 contains a parts list for the display board. Table 6-4 contains a parts list for the analog board.

Table 6-1. Index of Model 224 Schematics and Component Layouts

Title	Figure
Display Board Component Layout	$6-2$
Mother Board Component Layout	$6-3$
Analog Board Component Layout	$6-4$
Display Board Schematic	$6-5$
Mother Board Schematic	$6-6$
Analog Board Schematic	$6-7$

6.3 ORDERING INFORMATION

To place an order, or to obtain information concerning replacement parts, contact your Keithley representative or the factory. See the inside front cover for addresses. When ordering include the following information:

1. Instrument Model Number
2. Instrument Serial Number
3. Part Description
4. Circuit Description (If applicable)
5. Keithley Part Number

If an additional instruction manual is required, order the manual package (Keithley Part Number 224-901-00). The manual package includes an instruction manual and all pertinent addenda.

6.4 FACTORY SERVICE

If the instrument is to be returned to the factory for service, complete the service form which follows this section and return it with the instrument.

6.5 SCHEMATIC DIAGRAMS AND COMPONENT LOCATION DRAWINGS

Schematic diagrams and component location drawings follow the replaceable parts list in the order listed in Table 6-1.

NOTE: Mechanical parts that are replaceable show the appropriate part number. The parts that are labeled but do not have a part number are shown for reference purposes only.

Figure 6-1. Fan Assembly

Table 6-2. Mother Board, Parts List

Circuit Desig.	Description	Location Sch Pcb		Keithley Part No.
AT101	Optical Isolator, 6N137	G1	D4	IC-292
AT102	Optical Isolator, 6N137	G3	D4	IC-292
AT103	Optical Isolator, 6N137	G2	D5	IC-292
AT104	Optical Isolator, 6N137	G3	D5	IC-292
C101	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	E4	D2	C-238-. 1
C102	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	G4	D2	C-238-1
C103	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	D4	D2	C-314-10
C104	6800pF, 500V, Ceramic Disc	F5	D2	C-22-.0068
C105	${ }^{1} 1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	E5	D2	C-238-. 1
C106	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	B4	G3	C-22-. 01
C107	10,000 $\mathrm{F}, 25 \mathrm{~V}$, Aluminum Electrolytic	C4	G3	C-342-10000
C108	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	F2	D3	C-238-. 1
C109	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	F1	D4	C-238-1
C110	.1 1 F , 16V, Ceramic Disc	C1	C4	C-238-1
C111	.1 $\mu \mathrm{F}, 16 \mathrm{~V}$, Ceramic Disc	G3	E4	C-238-. 1
C112	.1 $\mu \mathrm{F}, 16 \mathrm{~V}$, Ceramic Disc	G2	E5	C-238-. 1
C113	. $1 \mu \mathrm{~F}$, 16V, Ceramic Disc	B1	C5	C-238-. 1
C114	22pF, 1000V, Ceramic Disc	B3	C5	C-64-22p
C115	22pF, 1000V, Ceramic Disc	B3	C5	C-64-22p
C116	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	G3	E5	C-238-1
C117	$330 \mu \mathrm{~F}, 160 \mathrm{~V}$, Aluminum Electrolytic	D2	E5	C-337-330
C118	$330 \mu \mathrm{~F}, 160 \mathrm{~V}$, Aluminum Electrolytic	C2	E5	C-337-330
C119	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	D3	F5	C-314-10
C120	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	D3	F6	C-314-10
C121	$1000 \mu \mathrm{~F}, 35 \mathrm{~V}$, Aluminum Electrolytic	C3	F6	C-309-1000
C122	$1000 \mu \mathrm{~F}, 35 \mathrm{~V}$, Aluminum Electrolytic	D3	F6	C-309-1000
C123	$330 \mathrm{pF}, 500 \mathrm{~V}$, Ceramic Disc	F5	E3	C-22-330p
CR101	Rectifier Bridge (5A), PEO5	C4	G3	RF-48
CR102	Rectifier, 1N4006	C2	F4	RF-38
CR103	Rectifier, 1N4006	C2	E4	RF-38
CR104	Rectifier, 1N4006	C2	E4	RF-38
CR105	Rectifier, 1N4006	C2	E4	RF-38
CR106	Rectifier, 1N4006	C3	F5	RF-38
CR107	Rectifier, 1N4006	C3	F5	RF-38
CR108	Rectifier Bridge (1.5A), PF-40	C3	F5	RF-46
CR109	Rectifier, 1 14006	G5	E3	RF-38
CR110	Rectifier, 1N4006	G5	E3	RF-38
CR111	Rectifier, 1N4006 Rectifier, 1 l 4006	G5	E3	RF-38
F101	Fuse, 3/8 Amp, 250V, Slo-Blo	A4	H3	FU-18
F101	Fuse, 3/4 Amp, 250V, Slo-Blo	A4	H3	FU-19
F101	Fuse, $8 / 10 \mathrm{Amp}, 250 \mathrm{~V}$, Slo-Blo	A4	H3	FU-52*
F101	Fuse, $4 / 10 \mathrm{Amp}$, 250V, Slo-Blo Fuse Holder, Line Power Fuse	A4	H3	$\begin{aligned} & \text { FU-53* } \\ & \text { FH-21 } \end{aligned}$
J1001	Power Connector	A4	G2	CS-338
J1003	Cable Assembly (26 -pin)		E5	CA-10-3
J1008	Socket 16-pin	H5	-	SO-65
P1004	500 V , Connector Male (for IEEE Board)	-	B3	CS-389-3
P1005	2 pin , Connector	A/B1	G2	CS-288-2
P1006	3 pin, Molex Connector (for External Trigger)	H5	D2	CS-288-3

Table 6-2. Mother Board, Parts List (Cont.)

Circult Desig.	Description	Location Sch Pcb		Keithley Part No.
R101	18k, 5\%, 1/4W, Composition	F4	D2	R-76-18k
R102	4.7k, 5\%, 1/4W, Composition	F1	D3	R-76-4.7k
R103	220k, $5 \%, 1 / 4 \mathrm{~W}$, Composition	C4	F3	R-76-220k
R104	4.7k, 5\%, 1/4W, Composition	F2	E4	R-76-4.7k
R105	390, $, 5 \%, 1 / 4 W$, Composition	F1	E4	R-76-390
R106	220, $, 5 \%, 1 / 4 \mathrm{~W}$, Composition	G3	D4	R-76-220
R107	2.4k, 5\%, 1/4W, Composition	G3	E4	R-76-2.4k
R108	220, , 5\%, 1/4W, Composition	G2	D5	R-76-220
R109	2.4k, 5\%, 1/4W, Composition	G2	E5	R-76-2.4k
R110	220R, $5 \%, 1 / 4 \mathrm{~W}$, Composition	G2	D5	R-76-220
R111	2.4k, 5\%, 1/4W, Composition	G2	E5	R-76-2.4k
R112	4.7k, 5\%, $1 / 4 \mathrm{~W}$, Composition	H1	E5	R-76-4.7k
R113	220, , 5\%, 1/4W, Composition	G1	E5	R-76-220
R114	Thick Film Resistor Network	E5	B5	TF-140
R115	4.7k, 5\%, 1/4W, Composition	F3	C5	R-76-4.7k
R118	100k, $\pm 10 \%$, 1/2W, Composition	D2	E5	R-1-100k
R119	100k, $\pm 10 \%, 1 / 2 \mathrm{~W}$, Composition	D2	E5	R-1-100k
R121	100 $, ~ \pm 10 \%, 1 / 2 \mathrm{~W}$, Composition	G5	E3	R-1-100
R122	100及, $\pm 10 \%, 1 / 2 \mathrm{~W}$, Composition	G4	E3	R-1-100
R125	4.7k, 5\%, 1/4W, Composition	E2	D4	R-76-4.7k
R126	10k, 5\%, 1/4W, Composition	F1	D5	R-76-10k
R127	$4.7 \mathrm{k}, 5 \%, 1 / 4 \mathrm{~W}$, Composition	G4	E3	R-76-4.7k
R128	$47 \mathrm{k} \Omega, 10 \%, 0.25 \mathrm{~W}$, Composition	G5	E3	R-76-47k
S101	Switch, Power	A3	B2	SW-426
S102	Switch, Line Voltage Selection	A3	G2	SW-397
T101	Transformer	B2	F2	TR-186
T101	Transformer (special for 90V-110V 180V-220V operation)	B2	F2	TR-187
U101	$1024 \times$ 4-bit Static RAM, 2114	D5	C2	LSI-15
U102	Oscillator/Clock, 4060	E4	D2	IC-197
U103	$1024 \times$ 4-bit Static RAM, 2114	C5	C2	LSI-15
U104	Up/Down Counter, 74LS 193	F4	D2	IC-214
U105	1024×4-bit Static RAM, 2114	D6	C2	LSI-15
U106	Quad 2-In. Nand Gate, 74LS00	SEV	D2	IC-163
U107	$1024 \times$ 4-bit Static RAM, 2114	SEV	C3	LSI-15
U108	Quad 2-In. NOR Gate, 74LS02	SEV	D3	IC-179
U109	Erasable Prom, 2732	B5	C3	224-800-**
U110	Decoder/Demultiplexer, 74LS138	F3	D3	IC-182
U111	Erasable Prom, 2732	A5	C4	224-801-**
U112	8-bit Shift Register, 14094	E1	D4	IC-251
U113	Quad Exclusive OR Gate, 7486	SEV	D4	IC-116
U114	Interface Adapter, SY6522	C2	C4	LSI-28
$\cup 115$	Microprocessor, MC6808	B2	C5	LSI-27
U116	Bus Driver, 14503	E6	C5	IC-250
U117	Hex Inverter, 16-pin DIP, 4049	SEV	E5	IC-106
VR101	5V Regulator, LM309K	D4	F4	IC-98 \dagger
VR102	$\pm 15 \mathrm{~V}, 3$-term, 7915	D3	F5	IC-174***
VR103	3-term Positive Voltage Regulator, 7815	D3	F5	IC-96***
W101	Jumper	B6	D2	J-3
W102	Jumper	B6	D2	J-3
Y101	4.0 MHZ Crystal	-	C5	CR-10

*For use with special factory installed transformer TR-187.
**Order same software as presently installed. For example if B5 is displayed on power-up, order 224-800-B5 for U109.
***Order heat sink mounting kit (MK-18) and heat sink (HS-15) with these parts.
tOrder heat sink mounting kits (MK-16 and MK-20) and heat sink (HS-22) with this part.

Table 6-3. Display Board, Parts List

Circult Desig.	Description	LocationSch Pcb		Keithley Part No.
C201	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	D5	C3	C-314-10
DS201	± 1, Digital Display	B1	B2	DD-31
DS202	"8" Digital Display	C1	B2	DD-20
DS203	"8" Digital Display	C. 1	C2	DD-20
DS204	"8" Digital Display	D1	C2	DD-20
DS205	"8" Digital Display	D1	D2	DD-20
DS206	± 1, Digital Display	E1	D2	DD-31
DS207	"8" Digital Display	E1	E2	DD-20
DS208	Pilot Light	G3	E1	PL-67
DS209	Pilot Light	G2	E2	PL-67
DS210	Pilot Light	E2	E2	PL-67
DS211	Pilot Light	G3	B2	PL-67
DS212	Pilot Light	H3	B2	PL-67
DS213	Pilot Light	H3	C2	PL-67
DS214	Pilot Light	F3	D2	PL-67
DS215	Pilot Light	F3	D2	PL-67
DS216	Pilot Light	G3	E2	PL-67
DS217	Pilot Light	G3	E2	PL-67
DS218	Pilot Light	H3	C3	PL-67
DS219	Pilot Light	F3	D3	PL-67
P1002	Cable Assembly	A6	E4	CA-15-1
0201	PNP Silicon Transistor, 2N4355	F5	E1	TG-90
0202	PNP Silicon Transistor, 2N4355	H5	E1	TG-90
0203	PNP Silicon Transistor, 2N4355	H5	E1	TG-90
0204	PNP Silicon Transistor, 2N4355	H5	E1	TG-90
Q205	PNP Silicon Transistor, 2N4355	F5	E2	TG-90
0206	PNP Silicon Transistor, 2 N4355	G5	E2	TG-90
0207	PNP Silicon Transistor, 2N4355	G5	E2	TG-90
0208	PNP Silicon Transistor, 2N4355	G5	E2	TG-90
R201	Thick Film Resistor Network	SEV	D2	TF-165-1
R202	Thick Film Resistor Network	SEV	F1	TF-77
S201	Pushbutton Switch	A3	B2	SW-435
S202	Pushbutton Switch	B3	B2	SW-435
S203	Pushbutton Switch	B3	C2	SW-435
S204	Pushbutton Switch	A3	D2	SW-435
S205	Pushbutton Switch	A3	D2	SW-435
S206	Pushbutton Switch	B4	E2	SW-435
S207	Pushbutton Switch	B4	E2	SW-435
S208	Pushbutton Switch	A4	B3	SW-435
S209	Pushbutton Switch	A4	C3	SW-435
S210	Pushbutton Switch	B4	D3	SW-435
S211	Pushbuton Switch	B4	D3	SW-435
S212	Pushbutton Switch	A4	E3	SW-435
S213	Pushbutton Switch	A4	E3	SW-435
S214	Pushbutton Switch	B5	F2	SW-435
S215	Pushbutton Switch	B5	F2	SW-435
S216	Pushbutton Switch	A5	G2	SW-435
S217	Pushbutton Switch	A5	F2	SW-435
S218	Pushbutton Switch	A3	F2	SW-435
S219	Pushbutton Switch	B3	G2	SW-435
S220	Pushbutton Switch	B3	F3	SW-435

Table 6-3. Display Board, Parts List (Cont.)

Circuit Desig.	Description	$\begin{aligned} & \text { Location } \\ & \text { Sch } \mathrm{Pcb} \end{aligned}$		Keithley Part No.
S221	Pushbutton Switch	A2	F3	SW-435
S222	Pushbutton Switch	A2	G3	SW-435
S223	Pushbutton Switch	B2	F3	SW-435
S224	Pushbutton Switch	B2	F3	SW-435
S225	Pushbutton Switch	A2	G3	SW-435
U201	MOS to LED Segment Driver, 75492	SEV	B3	IC-169
U202	MOS to LED Segment Driver, 75492	SEV	C3	IC-169
U203	8-bit Shift Register, 74LS164	C5	D3	IC-127
U204	MOS to LED Segment Driver, 75492	SEV	E3	IC-169

Table 6-4. Analog Board, Parts List

Circuit Desig.	Description	Location Sch Pcb		Keithley Part No.
C301	.1洮, 16V, Ceramic Disc	F3	B2	C-238-1
C302	. $1 \mu \mathrm{~F}, 16 \mathrm{~V}$, Ceramic Disc	E3	B2	C-238-1
C303	.1 1 F, 16V, Ceramic Disc	C2	D1	C-238-1
C304	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	B4	D1	C-22-. 01
C305	. $47 \mu \mathrm{~F}, 50 \mathrm{~V}$, Ceramic Film	A4	D2	C-237-.47
C306	$470 \mathrm{pF}, 1000 \mathrm{~V}$, Ceramic Disc	C3	D2	C-64-470p
C307	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	F5	B2	C-22-.01
C308	. $02 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	F4	B2	C-22-. 02
C309	. $02 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	E2	C2	C-22-. 02
C310	470pF, 1000V, Ceramic Disc	C2	C3	C-64-470p
C311	. $001 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	B1	B3	C-22-. 001
C312	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	D1	B3	C-314-10
C313	. $001 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	D2	B3	C-22-. 001
C314	10pF, 500V, Polystyrene	D3	B3	C-138-10p
C315	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	C5	D4	C-314-10
C316	10 F , 25V, Aluminum Electrolytic	C4	D4	C-314-10
C317	$4.7 \mu \mathrm{~F}, 350 \mathrm{~V}$, Aluminum Electrolytic	F3	F3	C-240-4.7
C318	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	F2	E4	C-22-. 01
C319	. $1 \mu \mathrm{~F}, 16 \mathrm{VDC}$, Ceramic Disc	E2	E4	C-238-. 1
C320	. $001 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	E2	E4	C-22-. 001
C321	. $1 \mu \mathrm{~F}, 16 \mathrm{VDC}$, Ceramic Disc	E2	E5	C-238-1
C322	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	F1	F5	C-22-. 01
C323	$4.7 \mu \mathrm{~F}, 350 \mathrm{~V}$, Aluminum Electrolytic	F1	F5	C-240-4.7
C324	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	B6	D5	C-314-10
C325	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	B6	D5	C-314-10
C326	$0.1 \mu \mathrm{~F}, 250 \mathrm{~V}$, Metalized Polyester	B4	D4	C-178-0.1
C327	$10 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	B6	D4	C-314-10
C328	.01 FF, 500V, Ceramic Disc	C5	D4	C-22-. 01
C329	. $01 \mu \mathrm{~F}, 500 \mathrm{~V}$, Ceramic Disc	C5	D5	C-22-. 01
C330	$1.5 \mu \mathrm{~F}, 25 \mathrm{~V}$, Aluminum Electrolytic	G4	D5	C-314-1.5
CR301	Diode, Germanium, 1N3592	E2	C2	RF-39
CR302	Silicon Diode, 1N914	C3	D3	RF-28
CR303	Silicon Diode, 1 N914	C3	D3	RF-28
CR304	Diode Dual, Low Leakage, 1D101	D2	B3	DN-3
CR305	Rectifier, 1N3595	D3	B4	RF-43
CR306	Rectifier, 1N3595	E3	B5	RF-43
CR307	Silicon Diode, 1N914	A4	D3	RF-28
CR308	Silicon Diode, 1N914	B4	D4	RF-28
CR316	Silicon Diode, 1 N914	F2	F4	RF-28
CR317	Silicon Diode, 1N914	F1	F5	RF-28
J1003	Connector, Male	B2	D5	CS-389-3
K305	Relay	SEV	B5	RL-70
K306	Relay	SEV	B5	RL-70
K307	Relay	SEV	B5	RL-50
Q301	N-Channel FET, 2N4393	E1	B3	TG-130
Q302	N-Channel FET, PF5301	D1	B3	TG-139
Q303	N-Channel FET, 2N4392	E4	C3	TG-128
Q304	N-Channel FET, 2N4392	F4	C3	TG-128
Q305	N-Channel FET, 2N4392	F4	C3	TG-128
Q306	N-Channel FET, 2N4392	G4	D3	TG-128
0307	N-Channel FET, 2N4392	F4	C3	TG-128

Table 6-4. Analog Board, Parts List (Cont.)

Circuit Desig.	Description	Location Sch Pcb		Keithiey Part No.
Q308	N-Channel FET, 2N4392	F4	C3	TG-128
Q309	N-Channel FET, 2N4392	F4	C3	TG-128
Q310	N-Channel FET, 2N4392	G4	D3	TG-174
Q311	NPN-Power Transistor, 2N5190	D5	D3	TG-108
0312	PNP-Power Transistor, 2N5193	D5	D4	TG-107
0313	PNP, Transistor, Silicon, 2N3906	E3	E4	TG-84
0314	PNP, Transistor, Silicon, 2N3906	F2	F4	TG-84
Q315	NPN, Silicon, 2N3904	E2	E5	TG-47
Q316	Diode Current Unit, J505	E1	F5	TG-140
Q317	NPN, Silicon, 2N3904	F2	E5	TG-47
Q318	PNP, Transistor, MJ5012	F1	E5	TG-155*
0319	NPN, Transistor, MJ5011	F3	E4	TG-154*
R301	301k, 1\%, 1/8W, Metal Film	F5	B2	R-88-301k
R302	1M, 1\%, 0.12W, Metal Film	G5	B2	R-88-1M
R303	100k Pot	G5	B1	RP-97-100k
R304	100k Pot	G5	B2	RP-97-100k
R305	49.9k, 1\%, 1/8W, Metal Film	G5	B2	R-88-49.9k
R306	10k, 1\%, 1/8W, Metal Film	G5	B2	R-88-10k
R307	6.04k, 1%, 1/8W, Metal Film	F5	B2	R-88-6.04k
R308	47k, 5\%, .11W, Thick Film Resistor	E5	B2	TF-103-4
R309	47k, 5\%, .11W, Thick Film Resistor	D5	C2	TF-103-3
R310	47k, 5\%, .11W, Thick Film Resistor	D4	C2	TF-103-3
R311	47k, 5\%, .11W, Thick Film Resistor	D1	C2	TF-103-4
R312	10k, 5\%, 1/4W, Composition	B3	D1	R-76-10k
R313	1k, 5\%, 1/4W, Composition	C4	D2	R-76-1k
R314	20k, 5\%, 1/4W, Composition	C4	D2	R-76-20k
R315	2.2k, $5 \%, 1 / 4 \mathrm{~W}$, Composition	G3	D2	R-76-2.2k
R316	301k, 1\%, 1/8W, Metal Film	F5	B2	R-88-301k
R317	22.2k, .1\%, 1/10W, Metal Film	F4	B2	R-263-22.2k
R318	200及 Pot	F4	B3	RP-97-200
R319	2k Pot	E2	B3	RP-97-2k
R320	22.2k, 1\%, 1/10W, Metal Film	F4	C2	R-263-22.2k
R321	20k, 1\%, 1/8W, Metal Film	F2	C2	R-88-20k
R322	20k, 1\%, 1/8W, Metal Film	E1	C3	R-88-20k
R323	11k, 1\%, 1/8W, Metal Film	G4	C2	R-88-11k
R324	10k, 5\%, 1/4W, Composition	B2	C3	R-76-10k
R325	20k, 5\%, 1/4W, Composition	C3	C3	R-76-20k
R326	1k, 5\%, 1/4W, Composition	C3	C3	R-76-1k
R327	10k, 5\%, 1/4W, Composition	B2	C3	R-76-10k
R328	1k, 1\%, 1/8W, Metal Film	E2	C2	R-88-1k
R329	4.99k, $1 \%, 1 / 8 \mathrm{~W}$, Metal Film	B2	D2	R-88-4.99k
R330	1M, 5\%, 1/4W, Composition	C2	D2	R-76-1M
R331	4.99k, 1\%, 0.12W, Metal Film	B3	D2	R-88-4.99k
R332	1M, 5\%, 1/4W, Composition	B3	D2	R-76-1M
R333	1k, 5\%, 1/4W, Composition	C3	D3	R-76-1k
R334	1002, 5\%, 1/4W, Composition	C5	D3	R-76-100
R335	470及, 5\%, 1/4W, Composition	D5	D3	R-76-470
R336	4.7k, 5\%, 1/4W, Composition	F5	C3	R-76-4.7k
R337	4.7k, 5\%, 1/4W, Composition	E5	C3	R-76-4.7k
R338	24k, 5\%, 1/4W, Composition	C1	B3	R-76-24k
R339	39R, 5\%, 1/4W, Composition	C1	B3	R-76-39
R340	39R, 5\%, 1/4W, Composition	C2	B3	R-76-39

Table 6-4. Analog Board, Parts List (Cont.)

Circuit Desig.	Description	Location Sch Pcb		Keithley Part No.
R341	24k, 5\%, 1/4W, Composition	C2	B3	R-76-24k
R342	1k, $5 \%, 1 / 4 \mathrm{~W}$, Composition	E2	83	R-76-1k
R343	10k Pot	D2	B3	RP-97-10k
R344	10k, 5\%, 1/4W, Composition	D2	B3	R-76-10k
R345	470k, 5\%, 1/4W, Composition	E2	B3	R-76-470k
R346	47k, 5\%, 1/4W, Composition	B1	B3	R-76-47k
R347	15k, 5\%, 1/4W, Composition	B1	B3	R-76-15k
R348	2.4k, 5\%, 1/4W, Composition	D1	B3	R-76-2.4k
R349	10k, 1\%, 0.12W, Metal Film	D2	B3	R-88-10k
R350	100k, .11W, Thick Film Resistor	SEV	C3	TF-103-2
R351	10k, $5 \%, 1 / 4 \mathrm{~W}$, Composition	A4	D3	R-76-10k
R352	10k, 5\%, 1/4W, Composition	A4	D3	R-76-10k
R353	2.2M, 10\%, 0.25W, Composition	B4	D4	R-76-2.2M
R359	100k, 1\%, 1/4W, Composition	D3	C4	R-88-100k
R360	1k, 1\%, 1/4W, Composition	D3	C4	R-76-1k
R363	2.2k, 5\%, 1/4W, Composition	E3	E4	R-76-2.2k
R364	24k, 5\%, 1/4W, Composition	E3	E4	R-76-24k
R365	100k, 1\%, 1/2W, Metal Film	C3	F4	R-94-100k
R366	100k, 1\%, 1/2W, Metal Fiim	B3	F4	R-94-100k
R367	108, $1 \%, 0.12 \mathrm{~W}$, Metal Film	G2	F4	R-88-10
R368	13@, $1 \%, 0.12 \mathrm{~W}$, Metal Film	G2	F4	R-88-13
R369	22, , 10\%, 1/2W, Composition	F1	F4	R-1-22
R370	22, $10 \%, 1 / 2 \mathrm{~W}$, Composition	F2	F5	R-1-22
R371	2.2k, 5\%, 1/4W, Composition	E1	E5	R-76-2.2k
R372	13R, 1\%, 1/8W, Metal Film	G1	F5	R-88-13
R373	108, 1\%, 0.12W, Metal Film	G1	F5	R-88-10
R374	$4.7 \mathrm{k}, 5 \%, 1 / 4 \mathrm{~W}$, Composition	E2	E5	R-76-4.7k
R375	54.1k, $1 \%, 1 / 10 \mathrm{~W}$, Metal Film	F3	D5	R-263-54.1k
R376	4.93k, .1\%, 1/10W, Metal Film	F4	D5	R-263-4.93k
R377	20k, 1\%, 0.12W, Metal Film	G3	C5	R-88-20k
R379	485k, $1 \%, 1 / 4 \mathrm{~W}$, Metal Film	F3	C4	R-264-485k
R380	4998, . 1%, 1/25W, Metal Film	G4	C5	R-286-499
R381	1008, 0.1%, 3W, Fixed	G4	C5	R-308-100
R382	49.9k, 1\%, 0.12W, Metal Film	G5	C5	R-88-49.9k
R383	$3.57 \mathrm{k}, 1 \%, 0.12 \mathrm{~W}$, Metal Film	G3	D5	R-88-3.57k
R384	5k, Pot	F4	C5	RP-95-5k
R385	500 Pot	F4	C5	RP-97-500
R386	10k Pot	G4	C5	RP-97-10k
R387	1k Pot	G4	C5	RP-97-1k
R388	100k, 5\%, 1/4W, Composition	D4	D5	R-76-100k
R389	10k, 5\%, 1/4W, Composition	B3	D5	R-76-10k
R390	10k, $5 \%, 1 / 4 \mathrm{~W}$, Composition	B4	D5	R-76-10k
R391	10k, 5\%, 1/4W, Composition	B3	D5	R-76-10k
R392	10k Pot	F4	B3	RP-97-10k
R393	$3.9 \mathrm{k}, 5 \%, 1 / 4 \mathrm{~W}$, Film or Composition	E2	D4	R-76-3.9k
U301	8-bit Shift Register, 14094	C4	B1	IC-251
U302	8-bit Shift Register, 14094	C3	C1	IC-251
U303	8-bit Shift Register, 14094	C2	C1	IC-251
U304	Quad 2-input AND, 4081	SEV	D2	IC-138
U305	Quad 2-Input NAND, 4011	SEV	D2	IC-102
U306	Quad Monolithic SPST CMOS Analog Switch, LM317T	SEV	C2	IC-320
U307	Wide Bandwidth Dual JFET, LF353N	E5	C2	IC-246
U308	CMOS 8-bit Multiplying D/A Converter, AD7523	E2	C2	IC-321
U309	Wide Bandwidth Dual JFET, LF353N	E2	C 2	IC-246

Table 6-4. Analog Board, Parts List

Circuit Desig.	Description	Location Sch Pcb		Keithley Part No.
U301	Operational Amplifier, AD3247	E1	C2	IC-77
U311	Integrated Circult D/A Converter, DAC80-CBI-V	E4	B2	IC-323
U312	Operational Amplifier, AD3247	F4	B3	IC-248
U313	Quad Comparator, LM339	SEV	B3	IC-219
U314	Quad 2 Input NAND, 4011	SEV	C3	IC-102
U315	Operational Amplifier, AD3247	B4	C3	IC-77
U316	Hex Inverter, 16-Pin, 4049	SEV	D3	IC-106
U317	Quad Comparator, LM339	SEV	C3	IC-219
U318	Decoder/Demultiplexer, 14555	SEV	C3	IC-312
U319	Op Amp, AD515K	D2	B3	IC-241
U320	High/Voltage, High/Current Transistor Array, VLN2003A	C5	C3	IC-206
VR301	+5V Regulator, 7805	B6	D5	IC-93

*Order heat sink (HS-22) and heat sink mounting kits (MK-16) and (MK-20) with these parts.

Figure 6-2. Display Board, Component Location Drawing,

Figure 6-4. Analog Board, Component Location Drawing
Dwg. No. 224-120 (sheet 1 of 2)

Figure 6-4. Analog Board, Componet Location Drawing Dwg. No. 224-120 (sheet 2 of 2)

Figure 6-6. Mother Board, Schematic Diagram,

Service Form

Abstract

Model No. Serial No. Date \qquad Name and Telephone No.

\section*{Company}

List all control settings, describe problem and check boxes that apply to problem. \qquad
\qquad

Intermittent	\square Analog output follows display	\square Particular range or function bad; specify
\square IEEE failure	\square	Obvious problem on power-up
Front panel operational	\square All ranges or functions are bad	\square Checked all cables
Display or output (check one)		
\square Drifts		
\square Unstable	\square Unable to zero	
\square Overload		
\square Calibration only not read applied input		
\square Data required		
(attach any additional sheets as necessary)		
Show a block diagram of your measurement system including all instruments connected (whether power is turned on or not).		
Also, describe signal source.		

Where is the measurement being performed? (factory, controlled laboratory, out-of-doors, etc.)
\qquad

What power line voltage is used? \qquad Ambient temperature? \qquad ${ }^{\circ} \mathrm{F}$

Relative humidity? \qquad Other? \qquad
Any additional information. (If special modifications have been made by the user, please describe.)

To receive future information on product upgrades and enhancements, complete this card and mail, or FAX to 440/248-6168.

E-MAIL
For FREE additional information, check below:

Application Notes

General Purpose MeasurementsComponent Test Applications
Reference Publications

Low Level HandbookSwitching Handbook
Catalogs

\square Full Line Product Catalog

Facility (Check One)

K Aerospace/DefenseS Automotive/Parts Mfg.
Q Chemical/Petroleum Processing
H Components Mfg. (Non-Semi)
N Computer/Peripherals
T Consumer Electronics
L. Digital ICs

U Discrete Components
D Displays
V Distributors/Resellers/Rental
F Education/University
B Industrial Controls Mfg.
R Medical Equip. and Services
Y Mixed-Signal Components
Z Other Discrete Manufacturing
O Optoelectronic Components
I Process Control Industries
C Regulatory
E Research Laboratories
J Semi. Components - Other1 Smi. Pk Pan Tetin4 VAR/System Integrator/Consultant
X Other

Job Function (Check One)

$\square 4$	Calibration/Metrology
\square	Component Test
$\square \mathrm{C}$	Consulting
$\square \mathrm{G}$	Corp./General Mgmt.
\square	Education
\square	Enginccring Design
\square	Engineering Management
\square	Mfg. Production Test
\square	Purchasing
\square	Quality Assurance/Control
$\square 2$	Research \& Development
\square	Safety Manager
\square	Service/Repair
$\square \mathrm{E}$	System Engineering/ntegration
\square T	Test Technician
$\square \mathrm{X}$	Other

Product Interest(s)

M Acculex Digital DisplaysG Communications Test7 Current/Voltage SourceV C-V Measurements
\square D Data Aquisition Boards
\square R Data Acq. Test \& Analysis Software
$\square 2$ Digital MultimetersL Distributed I/O4 Electrometers/Picoammeters
\square A Flat Panel Display Test
\square F Function Generators
$\square 3$ High Resistance Meters
\square E IEEE InterfacesI I-V Characterization
N LCZ Meters
5' Nanovoltmeters
B Network Measurement Modules
6 Ohmmeters
\square P PC Instruments
\square K Portable Products8 Precision Power Supplies
\square T Semiconductor Parametric TestH Serial Communication Interfaces
J Signal Conditioning Products
U Source/Measure Instruments
\square S Switching Systems/Scanners0 Temperature Measurements
W Wafer Level Reliability
X Other

092L6E XOG Od ONI SINヨWกУLSNI КヨาHLIヨタ

HO GN甘7ヨAヨ1ว 6SLII＇ON IIWXId 7IVW SSVTD－ISyIt

 IIVW RId
SJIVIS GJIINก ヨHINI dalive 11 ㅅVSSヨコJN JDVISOd ON

1．What other Keithley products do you currently use？

2．What effects，devices or phenomena do you measure with this instrument？

3．What was the main reason a Keithley unit was purchased？

4．Do you have any design suggestions concerning this unit？

KEITHLEY 224 PROGRAMMABLE CURRENT SOURCE

FRONT PANEL OPERATION

DISPLAY MODIFY

DIGIT

Selects a display digit for modification in the source mode. Pressing the DIGIT button after it is enabled moves the digit to be modified to the right by one digit. DIGIT must be enabled in order for AUTO TRIG,INCR and DECR to operate
INCR
Increments the displayed value, starting at the selected digit, by one count. In the manual mode, the display digit is incremented by one count each time the INCR button is pressed. In the auto mode, the displayed value, starting at the selected digit, is in cremented at the programmed time rate. Auto increment continues until AUTO or CANCEL button is pressed, the programmed HI I-limit or positive overrange is reached.

DECR

Decrements the displayed value, starting at the selected digit, by one count. In the manual mode, the display digit is decremented by one count each time the DECR button is pressed. In the auto mode, the displayed value, starting at the selected digit, is decremented at the programmed time rate. Auto decrement continues until the AUTO or CANCEL button is pressed, the programmed LO I-limit or negative overrange is reached

DISPLAY

SOURCE

Displays programmed current source value and allows source to be programmed with DATA and DATA ENTRY buttons. (Limits: 0 to $\pm 101.00 \mathrm{~mA}$).

V-LIMIT

Displays programmed voltage compliance and allows limit to be programmed with DATA and DATA ENTRY buttons (Limits: 1 to 105V). V-LIMIT LED flashes when over compliance.
I-LIMIT
Displays programmed HI and LO current source limits and allows them to be programmed with DATA and DATA ENTRY buttons (Limits: $\mathrm{LO}=-101.00 \mathrm{E}-3 \mathrm{~A}$ HI $=101 \mathrm{E}-3 \mathrm{~A})$

TIME
Displays programmed time and allows time to be programmed with DATA and DATA ENTRY buttons (Limits: 50.00 msec to 999.9 sec .)

OUTPUT

OPERATE
Turns on source output loutput at terminals is programmed to $0.000 \mathrm{E}-6 \mathrm{~A}$ unless OPERATE LED is on).

DATA ENTRY

CANCEL

Momentarily blanks display and terminates the data modifying operation. The current display value remains as is. The TRIG,AUTO, INCR and DECR functions are turned off.

ENTER
Enters displayed source, V-limit, time, 1 -limit values into unit memory

EXPONENT

Allows entry of exponent information with DATA buttons. Not operational with display in V-limit mode.
DATA
Allows entry of numeric data for source, V-limit, time, and I-limit. Only present display mode is affected by data input. The $+i-$ button affects sign of mantissa only in source, l-limit and sign of exponent in time mode. ENTER button must be pressed after desired value is displayed.

CONTROL

Auto
Selects the auto function for INCR/DECR of the source data. Digit must be selected before auto is enabled. Time is the rate of $\operatorname{INCR} / D E C R$. TRIG
Selects trigger function for rear panel external trigger input. Upon receiving proper external trigger pulse the Model 224 INCR/DECR the displayed source value.

Range	Maximum Output	Accuracy (1 Year) $\pm(\% \mathrm{rdg}+$ offset $)$ $18^{\circ}-28^{\circ} \mathrm{C}$	Step Size
100 mA	$\pm 101.00 \mathrm{~mA}$	$0.1+50 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$
10 mA	$\pm 19.995 \mathrm{~mA}$	$0.05+10 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$
1 mA	$\pm 1.9995 \mathrm{~mA}$	$0.05+1 \mu \mathrm{~A}$	500 nA
$100 \mu \mathrm{~A}$	$\pm 199.95 \mu \mathrm{~A}$	$0.05+100 \mathrm{nA}$	50 mA
$10 \mu \mathrm{~A}$	$\pm 19.995 \mu \mathrm{~A}$	$0.05+10 \mathrm{nA}$	$5 n \mathrm{~A}$

OUTPUT RESISTANCE: Greater than $10^{12} \Omega$.
OUTPUT CAPACITANCE: Less than 20pF.
VOLTAGE LIMIT: Bipolar, 1 to 105 V in 1 V program mable steps.
RESPONSE TIME: Less than 3 msec to within 0.1% of programmed change.
TRANSIENT RECOVERY TIME: Less than 3 msec to rated accuracy following any change in compliance voltage.
GUARD OUTPUT:
Maximum Load Capacitance: 10nF
Maximum Load Current: Absolute total (Output +
Guard) not to exceed 105 mA .
Accuracy: $\pm 1 \mathrm{mV}$ lexcluding output lead voltage dropl.
NCREMENT/DECREMENT: Automatic, manual or trigger modes.
Range of Dwell Times: 50 msec to 999.9 sec .
Accuracy of Dwell Time: $+(0.05+20 \mu \mathrm{sec})$.
Step Size: Selected digit on a fixed range Minimum step size 0.1% of range
Current Limit: Maximum is \pm (Full Scale) on range selected.
OUTPUT LOAD: Output load must be non-inductive

WARNING

1. Before operation, ground the instrument through a properly earth grounded power receptacte
2. Before servicing, disconnect the instrument from the power line and all other equipment Consult the Model 224 Instruction Manual
3. Do not touch the rear panel terminals while the instrument is turned on or connected to any other test equipment. Common mode voltage and programmed output current may be present.

IEEE-488 PROGRAMMING (with 2243 option)

SRQ

Mnn: $\mathrm{nn}=0$ to 31 base 10 , or 00000 to
11111 base 2.
$0=$ bit disabled
1 = bit enabled
Bits: SRO mask
MSB7: N/A
6: N / A
5: N/A
4: Input Port Change
3: End of Time
2: I-Limit Reached
1: Over Voltage Limit
0 : IDDC, IDDCO, or -REN (No Remote)
SRQ BYTE
BIT DATA
MSB7 N/A
6 SRQ
5 Data $=0$
N/A
Input Port Change
End of Time
1 I-Limit Reached
0 Over Voltage Lirnit

RANGES

RO $=$ Auto Range (Force Most Significant Number)
R5 $=$ Full scale: $20 \mu \mathrm{~A} 2.0 \mathrm{E}-5$
R6 $=$ Full scale: $200 \mu \mathrm{~A} 2.0 \mathrm{E}-4$
R7 = Full scale: $\quad 2 \mathrm{~mA} 2.0 \mathrm{E}-3$
R8 - Full scale: $20 \mathrm{~mA} 2.0 \mathrm{E}-2$
R9 = Full scale: $1.01 \mathrm{~mA} 1.01 \mathrm{E}-1$
IEEE TERMINATOR CHARACTER
$\mathrm{Y}_{\mathrm{C}}=$ The (ASCII) byte contains an ASCII characte which will be used as the terminator for all data until changed. The power up default is (CR) (LF). INOTE: ASClI (DEL) indicates no terminator. ASCII (LF) indicates (CR) (LFF). and ASCI (CR) indicates (LF) (CR). Terminators not allowed: All capital letters: all numbers; (blank); $+\ldots$, e

INPUTS

IIsignin.nnnnE(sign)nn
Current Source Output Value
Limits: 0 to $\pm 101.00 \mathrm{~mA}$
V(sign)n.nnnnE(sign)nn
Voltage Limit
Limits: 1 to 105 V
W/sign)n.nnnnE(sign)nn
Tirne
Limits: 50.00 msec to 999.9 sec (1 msec steps)
I/O PORT
On.mnnnEnn
Set control bits on " X "
$\mathrm{n}=0$ to 16 base 10 or
0000 to 1111 base 2
if 0 then bit low
if 1 then bit high
OUTPUT STATUS STRING ON TALK
U $=$ Output status word on next read.
Format: $224 \mathrm{DFGJKRM} Y$
Default: 224000000000
U1 $=$ Output $1 / O$ status on next read.
Read input on X only
$1 / \mathrm{Oii}, 00=1 / 0$ status.
where i is the input from 0 to 15 where o is the output from 0 to 15
PRIMARY ADDRESS DIP SWITCH CONFIGURATION

NOTE: DIP Switch read only upon power up

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies.

KEITHLEY

K eithley Instruments, Inc.

BELGIUM:	Keithley Instruments B.V.	Bergensesteenweg 709 • B-1600 Sint-Pieters-Leeuw •02/363 $0040 \cdot$ Fax: 02/363 0064
CHINA:	K eithley Instruments C hina	Yuan Chen Xin Building, Room 705 • 12 Yumin Road, Dewai, Madian • Beijing 100029 • 8610-6202-2886 • Fax: 8610-6202-2892
FRANCE:	Keithley Instruments Sarl	3, allée des Garays • 91127 Palaiseau Cédex •01 645320 20 Fax: 0160117726
GERMANY:	K eithley Instruments G mbH	Landsberger Strasse 65 • D-82110 Germering • 089/84 93 07-40 • Fax: 089/84 93 07-34
GREAT BRITAIN:	K eithley Instruments Ltd.	The Minster • 58 Portman Road • Reading, Berkshire RG30 1EA • 0118-9 575666 Fax: 0118-9 596469
INDIA:	K eithley Instruments G mbH	Flat 2B, WILLOCRISSA • 14, Rest House Crescent • Bangalore 560001 •91-80-509-1320/21 • Fax: 91-80-509-1322
ITALY:	K eithley Instruments s.r.l.	Viale San Gimignano, 38 • 20146 Milano •02-48 391601 • Fax: 02-48 302274
KOREA:	K eithley Instruments K orea	2FL., URI Building • 2-14 Yangjae-Dong • Seocho-Gu, Seoul 137-130 • 82-2-574-7778 • Fax: 82-2-574-7838
NETHERLANDS:	K eithley Instruments B.V.	Postbus 559 • NL-4200 AN Gorinchem • 0183-635333 • Fax: 0183-630821
SWITZERLAND:	K eithley Instruments SA	Kriesbachstrasse $4 \cdot 8600$ Dübendorf • 01-821 $9444 \cdot$ Fax: 01-820 3081
TAIWAN:	K eithley Instruments Taiwan	1FL., 85 Po Ai Street • Hsinchu, Taiwan, R.O.C. • 886-3-572-9077• Fax: 886-3-572-9031

[^0]: *These connectors are present only when the Model 2243 is installed in the Model 224.
 For more information concerning these connectors refer to the Model 2243 Instruction Manual.

[^1]: *Requires special factory installed transformer TR-187.

