INSTRUCTION MANUAL
 MODEL 157
 programmable
 WAVEFORM SYNTHESIZER

9045 BALBOA AVENUE, SAN DIEGO, CALIFORNIA

WARRANTY

All Wavetek instruments are warranteed against defects in material and workmanship for a period of one year after date of manufacture. Wavetek agrees to repair or replace any assembly or component (except batteries) found to be defective, under normal use, during this period Wavetek's obligation under this warranty is limited solely to repairing any such instrument which in Wavetek's sole opinion proves to be defective within the scope of the warranty when returned to the factory or to an authorized service center. Transportation to the factory or service center is to be prepaid by purchaser. Shipment should not be made without prior authorization by Wavetek.

This warranty does not apply to any products repaired or altered by persons not authorized by Wavetek, or not in accordance with instructions furnished by Wavetek. If the instrument is defective as a result of misuse, improper repair, or abnormal conditions or operations, repairs will be billed at cost

Wavetek assumes no responsibility for its product being used in a hazardous or dangerous manner either alone or in conjunction with other equipment. High voltage used in some instruments may be dangerous if misused. Special disclaimers apply to these instruments. Wavetek assumes no liability for secondary charges or consequential damages and, in any event, Wavetek's liability for breach of warranty under any contract or otherwise, shall not exceed the purchase price of the specific instrument shipped and against which a claim is made.

Any recommendations made by Wavetek for use of its products are based upon tests believed to be reliable, but Wavetek makes no warranty of the results to be obtained. This warranty is in lieu of all other warranties, expressed or implied, and no representative or person is authorized to represent or assume for Wavetek any liability in connection with the sale of our products other than set forth herein.

Product Improvement Notice

Wavetek maintains a continuing program to make improvements to their instruments that will take advantage of the latest electronic developments in circuitry and components.

Due to the time required to document and print instruction manuals, it is not always possible to incorporate these changes in the manual.

Wavetek has manufactured your instrument, using metal film 1\% tolerance resistors in place of 5% carbon resistors, wherever practical. This results in a substantial improvement in the overall performance of your instrument. Therefore, there may exist a discrepancy between the resistor used to manufacture your instrument and the resistor called out in the Parts List and Schematic Diagrams in this manual.

If field replacement of an affected resistor does become necessary, replacement may be made in accordance with the manual call outs. Wavetek, however, recommends replacement with the same type of resistor used in the manufacture of your instrument, whenever possible.

CONTENTS

Section 1 GENERAL DESCRIPTION

Scope of Manual 1-1
Scope of Equipment 1-1
Modes of Operation $1-1$
Remote Control Operation $1-2$
Functional Descriptions $1-2$
Specifications $1-3$
Section 2 OPERATING INSTRUCTIONS
Installation 2-1
Inspection 2-1
Manual Operation 2-4
Programming 2-5
Section 3 CIRCUIT DESCRIPTION
Introduction 3-1
Program Selection 3-1
Basic Generator 3-3
Low-Frequency Generator 3-6
Sine Conversion 3.7
Tone Burst Generation 3-7
Power Supply 3-9
Section 4 MAINTENANCE
Introduction 4-1
Recommended Test Equipment 4-1
Checkout and Calibration 4.1
Troubleshooting 4-4
Replacement of Circuit Boards 4.5
Replacernent of Rotary Switches, Dials, or Decimal Lamps 4-6
Section 5 DATA PACKAGE
Introduction 5-1
Arrangement 5-1
List of Manufacturers 5-1

gENERAL DESCRIPTION

SCOPE OF MANUAL

This manual provides instructions for operating, testing, and maintaining the Wavetek Programmable Waveform Synthesizer. Sections 1 through 5 include the necessary information for the basic Model 157. Section 6 consists of Difference Data that describe specific differences, if any, from the basic model.

SCOPE OF EQUIPMENT

The Model 157 is a precision source of selectable sine, square, or triangle waveforms that are generated from 100 $\mu \mathrm{Hz}$ ($23 / 4$ hours per cycle) to 1 MHz in 10 ranges. Output amplitudes are selectable from 1 millivolt to 10 volts, peak-to-peak, into a 50 -ohm load. This instrument incorporates a voltage-controlled generator that may be swept over a 1000:1 frequency ratio with a 0 -volt to 5 -volt analog input for frequency modulation of the selected output frequency.

Four modes of operation can be programmed with the front-panel controls. Three modes of operation are programmable from a remote source by static logic levels or contact closures. Frequency, amplitude, and function also are programmable from either the front-panel controls or a remote source.

The instrument is packaged for mounting in a standard 19 -inch rack or for operating on a test bench.

MODES OF OPERATION

Front-panel pushbutton operation provides the following operational modes:

1. VCG with manual calibration.
2. Automatic calibration.
3. Trigger.
4. Search.

Remote logic-level or contact-closure programming provides the following operational modes:

1. Automatic calibration.
2. Trigger.
3. VCG without manual calibration.

VCG With Manual Calibration Mode

This mode is selected at the front panel for accurately calibrating the output frequency. After calibration, the Model 157 may be swept about the calibrated center frequency with a VCG input.

Automatic Calibration Mode

This mode is selected at the front panel or programmed from the remote source to provide an accurate fixedfrequency output by closed-loop operation.

Trigger Mode

This mode is selected at the front panel or programmed from the remote source to place the Model 157 in a standby state until a positive pulse is applied through a connector on the rear panel. The standby state for the sine and triangle waveforms is 0 -volts dc . For the square wave, the standby state is the positive peak value of the programmed amplitude. A tone-burst output starts at the positive-going edge of the input pulse and continues, at the programmed frequency, for the duration of the pulse plus the time required for the generator to complete the last cycle. Another front-panel pushbuttom permits a single cycle of the programmed frequency to be generated without an external pulse input. The same function can be accomplished remotely by injecting an input pulse having less duration than a single cycle of the programmed frequency.

Search Mode

This mode is selected at the front panel for sweeping the entire selected frequency range to find a specific frequency. In this mode, digital programming of frequency is disabled and the generator functions in open-loop operation.

VCG Without Manual Calibration Mode

This mode is obtained in remote-control operation when none of the preceding functions are programmed. In this
mode, the generator is in the open-loop operation and the output frequency is determined by the digitallyprogrammed frequency and a VCG input signal. If the input signal is dc, the generator output frequency will be the digitally-programmed frequency proportionally modified by the level of the input signal. A positive input level increases the generator output frequency, and a negative level decreases the output frequency. If the input signal is ac, the output frequency will be frequency modulated over a band that is proportional to the signal amplitude at a rate that is equal to the signal frequency.

REMOTE CONTROL OPERATIONS

Transfer of control to a remote source is accomplished by depressing the REMOTE pushbuttons and turning the rotary switches to their R positions. Control of generator mode, function, and each rotary switch may be transferred to the REMOTE connector collectively or independently. (Refer to Operations section.) Any or all of these controls may then be programmed in BCD/binary format at the 50 -pin REMOTE connector on the rear panel. Synchronizing, trigger, and VCG input signals are connected to the Model 157 through separate BNC connectors on the rear panel for either local or remote-program applications. Programming an automatic calibration command simultaneously with a synchronizing, trigger, or VCG input signal is a not-allowed operation.

FUNCTIONAL DESCRIPTIONS

Programming

Operation by contact closure (local/remote) or by automatic data processing (ADP) is controlled by binary states. The coding format is modified BCD, BCD, or binary. The coded program controls numerical frequency, frequency range, numerical amplitude, amplitude range, function selection, and generator mode selection. Circuit functions are implemented by reed-relay contact closures and digital-to-analog converters (DAC).

In the simplified block diagram of Figure 1-1, all switch symbols represent a switching function that can be commanded either remotely or locally. The binary code is converted by the frequency DAC into an analog voltage which is applied to an inverter and error-sensing circuit. The outputs of these circuits establish the operating state for the voltage-controlled generator (VCG).

Error Loop Operation

The inverter input to the VCG is disconnected in the search
mode (represented by S_{1} in Figure 1-1) so that the frequency range may be manually swept with a front-panel control. The frequency error-sensing circuit is disconnected in search, trigger, and VCG modes. In automatic calibration, this circuit operates in closed loop and corrects for frequency drift.

The error-sensing circuit operates between 100 Hz to 1 kHz . Therefore, when the programmed frequency is greater than 1 kHz , the divider circuit is automatically switched between the output of the hysteresis switch and the error-circuit input (represented by S_{3}).

The divider circuit consists of three cascaded divide-by-ten counters that are progressively engaged as the frequency is increased. With all three circuits engaged, the divider output is 0.001 of the input frequency which reduces the top frequency range of the generator to within the error-circuit band.

High-Frequency Range

Frequences from 100 Hz to 1 MHz are produced by conventional function-generator techniques. The integrator output is a triangle wave and the hysteresis switch output is a square wave, each being interdependent with the other. The frequency program establishes the charging slope for the integrator and selects the proper integrating capacitance for the specific frequency range. In the trigger mode, a square-wave output from the hysteresis switch is coupled through S_{2} to enable the trigger circuit.

The triangle wave is coupled through S_{6} to the sine converter which transforms the input waveform into a sinusoidal wave at its output. The programmed function at S_{7} (triangle, square, or sine) is then given the necessary gain by the output amplifier before being applied to the attenuation network.

The output level program then selects the required attenuation network to provide the desired output amplitude for the selected waveform over the 100 Hz to 1 MHz range.

Low-Frequency Range

Waveforms with frequencies from 100 Hz down to $100 \mu \mathrm{~Hz}$ are synthesized from the basic generator square-wave output by the counter and waveform DAC. The counter circuit counts the input pulses to produce square waves at 0.001 of the input frequency. One output is applied through S_{2} to enable the trigger circuit in the lowfrequency range when this mode is selected. Another counter output pulse is applied through S_{5} to the functionselection circuit S_{7}. All pulses from the counter are coupled to the waveform DAC that transforms the binary bits into a

Figure 1-1. Simplified Block Diagram
triangle waveform at 0.001 of the generator frequency over the range of $100 \mu \mathrm{~Hz}$ to 100 Hz .

For frequencies from 100 Hz down to $100 \mu \mathrm{~Hz}$, the divider is progressively switched into the counter input through S_{4} as described previously for the error-sensing circuit.

Sine conversion, function selection, amplification, and output attenuation are executed in the same manner as described for the high-frequency range.

SPECIFICATIONS

VERSATILITY

Waveforms

Sine \downarrow, square \sqcap, and triangle \vee.

Dynamic Frequency
$100 \mu \mathrm{~Hz}(2.77 \mathrm{hr})$ to $1 \mathrm{MHz}(1 \mu \mathrm{sec})$ in 10 ranges.

Outputs

$\downarrow, ~ Z, ~ \vee$ selectable and digitally variable from 0.001 to 10 V p-p into a 50 -ohm load in 4 ranges with 3-digit resolution (0.002 to 20 V p-p open circuit).

NOTE

Output may be shorted without damage to instrument.

VCG Voltage-Controlled Generator

Over 1000:1 frequency ratio with 0 -volt to 5 -volt input signal. Input impedance is $10 \mathrm{k} \Omega$.

OPERATIONAL MODES

Trigger Mode

Generator may be triggered to produce single cycles on command or gated to produce any discrete number of cycles by applying a + gate signal to trigger input for the length of the desired burst.
Input impedance is 10 k .
Plus gate required is +5 volts to +50 volts.

Auto Cal Mode

Generator has an automatic control loop to maintain the ouput frequency for high accuracy and stability.

Manual Cal Mode

Generator is manually calibrated using the control loop but is then returned to the open-loop condition when momentary switch is released so that it may be swept or triggered.

Search Mode

Generator frequency control within the selected range is transferred from the digital controls to a single turn analog control for convenient manual sweeping of the entire range.

Sync In

Within the upper 4 ranges, the instrument may be frequency synchronized to an external signai of approximately $1 \vee \mathrm{p}-\mathrm{p}$ that is within 1% of the free-rurining frequency. The induced sine distortion will be less than 1%.

Sync Out

A fixed amplitude square wave is brought out at 1 k impedance for syncing scopes or other equipment.

HORIZONTAL PRECISION

Auto Cal Mode

Frequency accuracy from programmed input or front-panel selector switches is $\pm 0.01 \%$ of programmed frequency, plus

1 digit). Closed-loop stability is within $\pm 0.005 \%$ of programmed frequency at constant temperature for a 24 -hour period.
Loop will settle to within the accuracy specified within 1 msec minimum and 3 sec maximum, depending on frequency and range.

Manual Cal Mode

Instrument can be calibrated to an accuracy of $\pm 0.02 \%$ of programmed frequency and triggered or frequency modulated about this accurate center frequency.
Open-loop stability is within 0.05% of setting for 8 -hour period at constant temperature.

VCG Bandwidth

1 MHz .
Slew rate 100% of range per μ sec.

VCG Linearity

Frequency vs input voltage-best straight-line method.
$\pm 0.1 \% 100 \mu \mathrm{~Hz}-10 \mathrm{kHz}$.
$\pm 1 \% 10 \mathrm{kHz}-100 \mathrm{kHz}$.
$\pm 3 \% 100 \mathrm{kHz}-1 \mathrm{MHz}$

VERTICAL PRECISION

Amplitude change with frequency is less than 0.1 db to 100 kHz and 0.5 db to 1 MHz .

Peak-to-Peak Voltage Accuracy \% of Program

1 V to 10 V range $\pm(0.1 \%+5 \mathrm{mV})$.
0.1 V to 1 V range $\pm(1 \%+1 \mathrm{mV})$.

10 mV to 100 mV range $\pm(1 \%+0.1 \mathrm{mV})$.
1 mV to 10 mV range $\pm(1 \%+0.1 \mathrm{mV})$.

Amplitude Symmetry

All waveforms are symmetrical about ground $\pm 1 \%$ of full range.
Trigger start-stop point will be $0 \vee \pm 0.5 \%$ of output amplitude program.

PURITY

Sine Wave Distortion

Less than:
$0.5 \% 100 \mu \mathrm{~Hz}$ to 10 kHz
$1 \% 10 \mathrm{kHz}$ to 100 kHz
$3 \% 100 \mathrm{kHz}$ to 1 MHz

Triangle Linearity

Greater than:
$99 \% 1 \mathrm{~Hz}$ to 100 kHz
$95 \% 100 \mathrm{kHz}$ to 1 MHz

Square Wave Rise and Fall Time
Less than 100 nsec.

ISOLATION

Output signal can be raised above ground up to 250 V . Caution must be taken as all exposed BNC connectors are at raised potential.

ENVIRONMENTAL

Temperature

Specifications apply at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
Operating temperature range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

REMOTE CONTROL SPECIFICATIONS

Configuration A (Standard)

True or Logic " 1 " $=0$ volt ± 1 volt.
Note: 0 volt sinks approximately 1.5 mA .
False or Logic " 0 " = +2 volts to +10 volts.
Note: Open circuit voltage is approximately +2 volts.

Configuration B

True or Logic " 1 " $=0$ volt ± 1 volt.
Note: 0 volt sinks approximately 1.5 mA .
False or Logic " 0 " = -2 volts to -10 volts.
Note: Open circuit voltage is approximately -2 volts.

Configuration C

True or Logic " 1 " $=-2$ volts to -10 volts.
Note: -2 volts sinks approximately 1.5 mA .
False or Logic " 0 " $=0$ volt to -1 volt.
Note: Open circuit voltage approximately +0.7 volts.

Configuration D

True or Logic " 1 " = +2 volts to +10 volts.
Note: +2 volts sinks approximately 1.5 mA .
False or Logic ' 0 ' $=0$ volt to +1 volt.
Note: Open circuit voltage approximately -0.7 volts.

Program Transition Time

1 msec.

MECHANICAL

Weight

$24 \mathrm{lb}, 34 \mathrm{lb}$ shipping.

Power

105 Vac to 125 Vac or 210 Vac to $250 \mathrm{Vac}, 50 \mathrm{~Hz}$ to 400
Hz.
50 watts of power required.

NOTE
Precision specifications apply over 10% to 100% of selected range.

OPERATING INSTRUCTIONS

INSTALLATION

Conversion for 230-Volt Line Power

The Model 157 is shipped from the factory with the power transformer connected for 115 -volt line power, unless otherwise specified. To convert the transformer primary for 230 -volt operation, remove the bottom cover and place the conversion switch (located on the underside of the Mother Board) in the 230 position. The 1 -ampere fuse (rear panel) should be replaced with a $1 / 2$-ampere fuse after conversion. (Refer to Replacement of Circuit Boards in Section 4 for information on removing the bottom cover.)

Rack Mounting

The Model 157 is equipped with four rubber feet when ordered for bench use and with rail-attaching hardware when ordered for use in a standard 19 -inch rack. If rack mounting of a bench model is desired, two rack mount adapters, Wavetek part No. 210-367, can be used as follows:

1. Remove the six flathead machine screws that retain the left and right side rails to the left and right handles, respectively.
2. Install one rack mount adapter on each side of the Chassis Assembly with the six roundhead screws supplied with the adapters, using the tapped holes previously occupied by the flathead screws.
3. Secure the Model 157 in the desired rack position with standard rack mounting hardware.

INSPECTION

The following procedures should be performed to assure the user that the instrument has arrived at its destination in proper operating condition. Complete calibration and checkout instructions are provided in Section 4 for determining if the instrument is within electrical specifications.

Visual Inspection

After carefully unpacking the instrument, visually inspect the external parts for damage to knobs, dials, indicators,
surface areas, etc. If damage is discovered, file a claim with the carrier who transported the instrument.

Operating Inspection

NOTE

Refer to Installation paragraph for 115 -volt or 230 -volt line power instructions.

The procedural steps in this paragraph provide a quick checkout of instrument operation. If electrical deficiencies exist, refer to the Warranty in the front of the manual. The following test equipment, or equivalent, is recommended for performing the electrical inspection. (Refer to Table 2-1 and Figure 2-1 for operating control descriptions.)

Name	Manufacturer	Model
Oscilloscope	Tektronix	454

1. Depress POWER pushbutton.
2. Connect oscilloscope through 50 -ohm terminator to 50Ω OUTPUT connector.
3. Depress AUTO CAL pushbutton.
4. Depress $\$ pushbution.
5. Set FREQUENCY dials for 1000.00 Hz .
6. Set TERMINATED P-P AMPLITUDE dials for 10.00 V.
7. Observe oscilloscope display to determine the general correctness of the signal output for Steps 8 through 16.
8. Depress the TRIG pushbutton and observe that the output is +5 Vdc .
9. Press SINGLE CYCLE pushbutton several times. Output should go to -5 Vdc for 0.5 milliseconds and back to +5 Vdc each time the pushbutton is pressed.
10. Depress the SEARCH pushbutton and rotate the MAN CAL/SEARCH control from maximum counterclockwise to maximum clockwise positions. Output should respond to frequency control from less than 100 Hz to more than 1 kHz over the control range.
11. Depress the AUTO CAL pushbutton. Depress the $凡$, ν, and ν, in turn. Output should respond with indicated waveform.
12. Step the most-significant-decade FREQUENCY dial from 10 through 1 . Output should change frequency in 100 Hz increments from 1 kHz to 100 Hz .

Table 2-1. CONDENSED OPERATING DATA
Name Description

CONTROLS

POWER pushbutton	Applies power to unit when depressed.		
MAN CAL pushbutton*			Closes frequency-error loop so
:---			
that MAN CAL/SEARCH con-			
trol and nullmeter can be used			
to calibrate frequency output			
for VCG operation (momentary			
engage, opens loop when re-			
leased).			

AUTO CAL pushbutton* | Closes frequency-error loop for |
| :--- |
| fixed-frequency operation. |

TRIG pushbutton* Opens frequency-error loop and enables trigger circuit for pulsed operation.

SEARCH pushbutton*	Opens frequency-error loop so that MAN CAL/SEARCH con- trol can be used to sweep selected frequency range. Dis- connects digital frequency con-
REMOTE pushbutton*	Tral. transfers automatic calibration and trigger control to remote connector.

\vee pushbutton** Selects triangle-wave output.
乙pushbutton ${ }^{* *} \quad$ Selects sine-wave output.
REMOTE pushbution** Transfers function control to remote connector.
SINGLE CYCLE pushbuiton

FREQUENCY dials | Programs decimal frequency |
| :--- |
| selection. |

Most-Significant Decade Numbered decimally from 1 through 10 with R being the remote-control transfer, or a logical " 0 " if not remotely programmed.
Next Four Decades Numbered decimally from 0 through 9 with R being the remote-control transfer, or a logical " 0 " if not remotely programmed.
Range Dial Lettered from $\mu \mathrm{Hz}$ (one position), mHz (three positions), Hz (three positions), through kHz (three positions, and R for remote.

Table 2-1 CONT.

Name	Description
TERMINATED P-P	Programs decimal amplitude selection.
Most-Significant Decade	Numbered decimally 1 through 10 with R being the remote-
Next Two Decades	-control transfer, or a logical " 0 " if not remotely programmed.
Numbered decimally from 0	
through 9 with R being the	
remote-control transfer, or a	
logical ' 0 " if not remotely pro-	
grammed.	
Lettered from mV (three posi-	

INDICATORS

Nullmeter

FREQUENCY decimal- Illuminate to indicate position point lamps

TERMINATED P-P AMPLITUDE

CONNECTORS
50Ω OUTPUT IMPED-
ANCE AMPLITUDE
CALIBRATED INTO 50Ω LOAD
VCG IN Analog input for frequency modulation of programmed frequency.
TRIG IN
Input for pulse to produce tone bursts of desired duration.
SYNC IN Input for synchronizing output frequency with external signal.
Output for sychronizing external device with synthesizer.
REMOTE
Input for contact-closure or logic level programming from remote source.

[^0]

Front View

Figure 2-1. Operating controls, indicators, and connectors.

CIRCUIT DESCRIPTION

INTRODUCTION

This section presents theory of operation as an aid to the user in understanding and maintaining the Model 157 Programmable Waveform Synthesizer. The block diagram in Section 5 graphically illustrates the functional features of the Model 157 and should be referenced when reading the theoretical discussion. In addition to the block diagram, references are made throughout the text to specific board schematic diagrams in Section 5 and simplified diagrams are used in this section to supplement the text for more complicated circuits. The theory in Section 3 is divided into six discussional parts:

1. Programming the various generator characteristics.
2. The 100 Hz to 1 MHz generation.
3. The $100 \mu \mathrm{~Hz}$ to 100 Hz generation.
4. Sine conversion.
5. Tone-burst generation.
6. Power-supply characteristics.

PROGRAM SELECTION

Generator Mode Selection

The generator-mode selection circuit is graphically shown in the block diagram and detailed on sheet 1 of the Chassis Assembly schematic diagram and also the VCG/Integrator Board schematic diagram. When one of the pushbuttons in the generator mode row is depressed, the following circuit functions occur.

REMOTE switching disables the MAN CAL/SEARCH voltage input to the first VCG amplifier and transfers control of error amplifier output relay K5 to a remote connector pin so that either closed-loop or open-loop mode can be programmed.

AUTO CAL switching disconnects the MAN CAL/SEARCH voltage input to the first VCG amplifier and connects the error amplifier output to this amplifier so that the basic generator operates in closed-loop.

MAN CAL switching (momentary) connects the nullmeter across the error amplifier output and the output into the first VCG ampifier input so that the generator frequency may be accurately set with the MAN CAL/SEARCH contrel prior to analon control operation.

SEARCH switching connects the nullmeter between the inverter output and the manual calibration/search input to the first VCG amplifier. Also, the error amplifier output is disconnected from the first VCG amplifier input, which enables the VCG to sweep the basic generator over any singie frequency range with one turn of the MAN CAL/ SEARCH control.

TRIG switching turns on driver $\mathbf{Q 8}$ on the VCG/Integrator Board which energizes relay K6. The normally-open contact of K6 closes, causing emitter follower Q9 to turn off, and the generator subsequently enters the standby condition. (Refer to the description of tone-burst generation for additional details.)

Function Selection

The function-mode selection circuit is graphically shown in the block diagram and detailed on sheet 1 of the Chassis Assembly schematic diagram and the Function Board schematic diagram. When a specific pushbutton in this row is depressed, the following circuit functions occur:

REMOTE switching disconnects the front-panel function pushbuttons and connects the pins on the remote connector to the sine, square, and triangle relay drivers on the Function Board.

「 switching energizes relay K3 on the Function Board to provide the square waveform to the Output Amplifier Board.

ح switching energizes relay K2 on the Function Board to provide the triangle waveform to the Output Amplifier Board.
$ح$ switching energizes relay K1 on the Function Board to provide the sine waveform to the Output Amplifier Board.

Frequency Selection

The frequency-selection circuit is shown in the block diagram as the first-decade driver/ladder through the fifth-decade driver/ladder, the range capacitors, the range switch, and the range matrix. The digital switch details are shown on sheet 1 of the Chassis Assembly Board schematic diagram; the first and second decade of the frequency digital-to-analog converter (DAC) in the Error Amplifier Board schematic diagram; the third through fifth decade of the frequency DAC in the Crystal One-Shot Board schematic diagram; the range capacitor/relay switching circuit in the VCG/Integrator Board schematic diagram; and the frequency-range diode matrix on the Range Matrix Board schematic diagram.

Frequency number selection of the first decade switch is converted from binary logic to an analog voltage that is proportional to the BCD coding by the first decade DAC shown on the Error Amplifier Board schematic diagram. The BCD code, in this case, is modified by a " 1 "' that has a binary weight of 2^{0}. All of the other frequency decade DACs have an unmodified BCD input. Figure 3-1 is a simplified diagram of a single binary input for one of the decades-all others function similarly.

Driver Q_{1} is biased off by the +6 -volt dc connection and
relay K_{1} is in its normally-open state, resulting in zero volts across R_{1} and R_{2} and zero contribution to the current in the summing nodes of the inverter and error amplifiers. When a logical " 1 " appears at the binary input to Q_{1}, the driver is turned on and the relay is energized. This connects 12 volts across R_{1} and R_{3} and the correct contribution to the summing nodes. Resistances R_{1} and R_{3} represent the network associated with the Q_{1} driver, but R_{2}, R_{4}, R_{5}, and R_{6} represent all of the other resistance in the frequency DAC. Similarly, relays K_{2} and K_{3} represent their associated circuits with driver/relay stages. Thus any parallel combination of resistance can be achieved by programming to provide an analog current input to the VCG that is proportional to the selected frequency.

The frequency range selector output is converted from binary logic to relay-closure functions by the diode matrix shown in the Range Matrix schematic diagram. The 8421 $B C D$ coding from the FREQUENCY range selector switch, or remote programming, is decoded into decimal format shown at the right of the schematic diagram. Table 3-1 shows the correlation between these decimal numbers and the resulting relay closures.

Relays K4 through K6 on the Function Board perform the fast-slow switching function. Relays K5, K6, K7, and K8 on the Range Matrix Board are paralled by relays $\mathrm{K} 4, \mathrm{~K} 3, \mathrm{~K} 2$,

Figure 3-1. Frequency Selection, Simplified Diagram

Table 3-1. FREQUENCY RANGE CODING

Board Desig	Relay Desig	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
A11	K1	1	0	0	0	0	0	0	0	0	0
A11	K2	0	1	0	0	0	0	0	0	0	0
A11	K3	0	0	1	0	0	0	0	0	0	0
A11	K4	0	0	0	1	1	1	0	0	0	0
A11	K5	1	1	1	1	0	0	1	0	0	0
A11	K6	0	0	0	0	1	0	0	1	0	0
A11	K7	0	0	0	0	0	1	0	0	1	0
A11	K8	0	0	0	0	0	0	0	0	0	1
A10	K4	1	1	1	1	0	0	1	0	0	0
A10	K3	0	0	0	0	1	0	0	1	0	0
A10	K2	0	0	0	0	0	1	0	0	1	0
A10	K1	0	0	0	0	0	0	0	0	0	1
A9	K4-6	0	0	0	0	0	0	1	1	1	1

and K1 on the VCG/Integrator Board, respectively, which switch in the correct capacitance for the programmed range. (Refer to description of basic generator for additional details.) The relays on the Range Matrix Board also provide circuit switching for the divider flip-flops that connect to the crystal one-shot circuit and to the lowfrequency generator. (Refer to the descriptions of the closed-loop basic generator and the low-frequency generator for additional details.)

The frequency range selector (SW6) also applies power to the proper decimal-place indication lamp (L1, L2, or L3) as shown on sheet 1 of the Chassis Assembly schematic diagram.

Amplitude Selection

The amplitude-selection circuit is shown in the block diagram as the signal attenuator and the range attenuator. The digital switch details are shown on sheet 1 of the Chassis Assembly schematic diagram; the three decades of the amplitude attenuation on the Output Amplifier Board schematic diagram; and the range/attenuation circuit (A5) on sheet 2 of the Chassis Assembly schematic diagram.

The amplitude-number selection circuitry is similar to the frequency-number DAC circuit previously described.

The amplitude-range selection circuit, contained on the Output Attenuator Board, consists of a $20-\mathrm{db}$ attenuator and a $40-\mathrm{db}$ attenuator, either or both of which are switched into the path of the output waveform by the binary program. Table 3-2 is a truth table of the binary code expanded to list associated circuit functions.

Table 3-2. ATTENUATOR RANGE CODING

A5-6	A5-7	Range (max)	20-db	40-db
0	0	10 mV	X	X
1	0	100 mV		X
0	1	1000 mV	X	
1	1	10 V		

NOTE: X denotes attenuator in circuit.

BASIC GENERATOR

The basic generator is shown in block diagram as the first and second voltage-controlled generator amplifiers, the integrator, and the hysteresis switch. This generator produces both triangle and square waveforms over a 100 Hz to 1 MHz range in open-loop operation. For closed-loop operation, the divide-by-ten stages, the one-shot stage, the frequency-converter circuit, and the error amplifier are connected between the output of the hysteresis switch and the input of the first VCG.

Open-Loop Operation

When power is applied, the high-gain characteristic of the integrator causes this device to produce an output voltage that is equal to one of the threshold levels of the hysteresis switch. The switch assumes one of its binary states and regeneration proceeds in the following manner.

If the bistable output of the hysteresis switch is negative, the diode connecting the second VCG amplifier to the integrator (D_{2} in Figure 3-2) is zero biased by the diode connecting the second VCG amplifier to the hysteresis switch $\left(\mathrm{D}_{3}\right)$. With this condition, current proportional to the frequency program flows from the integrator summing node to the first VCG amplifier and the positive slope of the triangle is formed at the integrator output. When the output level reaches +2.5 volts, the hysteresis switch reverses state to provide a positive output. This zero biases diode D_{3} to permit current to flow from the second VCG amplifier into the integrator summing node. This current is precisely twice the value of the current flowing into the first VCG amplifier; therefore, a net current flows that is equal in value, but in the opposite direction, to the current produced by the negative output of the hysteresis switch. The net current causes the integrator to produce the negative slope of the triangle at its output. When the integrator output reaches -2.5 volts, the hysteresis switch again reverses states and the cycle is repeated.

The output voltages of the two VCG amplifiers are always equal in value, but opposite in polarity, and directly

Figure 3-2. Open-Loop Operation, Simplified Diagram
proportional to the frequency program.
If an external voltage is applied to the VCG IN connector. the voltage levels at the outputs of the VCG amplifiers will change proportionally, thereby providing frequency modification or modulation.

On the VCG/Integrator schematic diagram, the first VCG amplifier is the Q1/IC1 stage; the second VCG amplifier, the Q3/IC3 stage; the diode switch, the IC2 stage; and the integrator, the Q14/IC4 stage. The hysteresis switch, on the Function Board schematic diagram, consists of a complementary Schmitt trigger coupled to a bistable switch. Stage O22/O23/Q24 form one half of the Schmitt trigger, and stage $025 / \mathrm{Q} 26 / \mathrm{Q} 27$ form the other half. Similarly, 028/029 are one half of the bistable switch and Q30/Q31 the other half. The single-ended 1 volt peak-to-peak square-wave output of the bistable switch is the VCG diode switching voltage.

Closed-Loop Operation

Frequency accuracy of 0.01 percent is obtained by connecting an error-sensing circuit into a feedback loop around the basic generator. With either the AUTO CAL or MAN CAL pushbutton depressed, the output of the error amplifier is connected to the input of the first VCG amplifier through the relay closure shown in the block diagram.

The error-sensing circuit consists of the three cascaded divide-by-ten stages; the one-shot stage; the pulse-repetition
frequency (PRF) switching circuit (consisting of the common-collector/common-base stage and the dioderesistor switching matrix); the +6 -volt offset source; and the error amplifier.

The crystal one-shot circuit operates over a 10:1 frequency range from 1 kHz to 100 Hz . The frequency dividing stages are switched between the hysteresis switch output and the one-shot input for the range from 1 kHz to 1 MHz by the range matrix (previously discussed). Since the three divide-by-ten stages are cascaded, a total of 0.001 F is available which, of course, is sufficient to reduce the basic generator top range of 1 MHz to the one-shot top range of 1 kHz .

The output of each divide-by-ten stage, shown in the Range Matrix Board schematic diagram, is coupled to the errorsensing circuit and to the low-frequency generator. This discussion will be limited to the error-sensing circuit; the low-frequency generator will be discussed later.

Dual flip-flop stages IC1/IC2, IC3/IC4, or IC5/IC6 are logically connected so that each paired dual flip-flop provides a divide-by-ten output. When relay K 5 is digitally programmed, the output to the one-shot circuit is the frequency of the basic generator; closure of K6 contacts, 0.1 F ; closure of K 7 contacts, 0.01 F ; and closure of K8 contacts, 0.001 F.

The crystal one-shot circuitry is shown in the upper half of that schematic diagram in Section 5. A free-running crystal-controlled oscillator (Y1/Q1) produces an accurate 4 MHz sinusoidal output. Potentiometric amplifier Q2-Q4
provides buffering for the oscillator. The buffered output is applied to the trigger input of a JKT flip-flop which is configured logically with thirteen other flip-flops to produce an accurate 400-microsecond rectangular output 400 microseconds after a square-wave input is received from the divide-by-ten circuits.

The Q5/Q6 input stage couples the incoming signal into a differentiator (C8/R12). The differentiated pulse presets the upper flip-flop (IC7A) in the IC7 stage. The set output of this flip-flop enables the IC1A flip-flop. The count begins with the first oscillator cycle and, after 400 microseconds. IC7B is set, producing a high state at pin 9 (see Figure 3-3 for PRF timing). After 400 microseconds IC7B is reset, which sets IC7A to disable the trigger input to IC1A.

This cycling is repeated for each square-wave input. Thus, the output of the one-shot circuit is a rectangular waveform, having a duty cycle proportional to the pulse reoccurrence time and, hence, the frequency of the basic generator.

The offset +6 -volt regulator (IC2), the PRF switching
circuit (O1/O2/IC3), and the error amplifier subassembly are shown in the upper half of the Error Amplifier Board schematic diagram. Figure 3-4 is a simplified diagram of this same circuit.

The one-shot output appears at the base of Q1. During the pulse period that the base is low, Q1 is turned on and Q2 is turned off. This causes the collector of Q 2 to be approximately -1.4 volts dc due to the D_{1} / D_{2} connection of ground. Thus, the D_{2} cathode is approximately -0.7 volts dc that forward biases D_{3} and zero biases D_{4}. Current ($I_{\text {off }}$) then flows from the +6 -volt offset source to the -12 V source through R18 and none to the summing node.

Conversely, the high state turns Q1 off and Q 2 on so that the collector of Q 2 is approximately zero volts, resulting in the D_{2} cathode being approximately +0.7 -volts dc. This positive potential zero biases D_{3} and forward biases D_{4}, which causes the +6 -volt offiset current ($I_{o n}$) to flow into the error amplifier summing node.

Comparison of the average current from the PRF switching circuit and the current from the programmed frequency DAC is made at the summing node of the error amplifier. If

100 Hz

INPUT

1 kHz
INPUT

ONE SHOT
OUTPUT
$(\approx 2 / 5)$

Figure 3-3. One-Shot Pulse Period Ratios for Minimum and Maximum Frequencies

Figure 3-4. PRF Switching Circuit, Simplified Diagram
the magnitudes and polarities of these currents are not equal and opposite, an error current will result at the node to cause an error-voltage output from the error amplifier.

The error amplifier has considerable forward gain for both ac and dc. Since the PRF current has a large ac component, capacitor C8 provides negative feedback to prevent amplifier saturation. The output of the error amplifier is applied to the MAN CAL switch (sheet 1 of Chassis Assembly schematic diagram) and to the VCG/Integrator Board. As shown on the latter schematic diagram, an additional two-pole filter (R5, R6, R7, C28, C25) is inserted in the error signal path to further reduce the ripple voltage and to provide proper loop damping.

The error signal that is applied to the VCG summing node causes a change in the VCG output voltage that, in turn, modifies the output frequency of the basic generator in the direction (either frequency increase or decrease) to cause the error current at the error amplifier summing node to be equal in amplitude and opposite in polarity to the analog current from the digitally-programmed frequency DAC. In this manner, the error-sensing circuit holds the output frequency of the basic generator to the value that is programmed ir spite of component value drifts.

LOW-FREQUENCY GENERATOR

Triangle and square waveforms are digitally generated in the frequency ranges covering the band from $100 \mu \mathrm{~Hz}$ to 100 Hz . This circuitry consists of the divide-by-ten stages, cyclic counter, and triangle DAC shown in the block diagram.

Slow Square-Wave Generation

The cyclic counter is logically configured to count from 6 to 506 and then back down to 6 again to produce square-wave outputs that are 0.001 F of the input frequency from the basic generator. The divide-by-ten states are progressively switched between the output of the basic generator and the input to the cyclic counter so that the low-frequency range (100 Hz) of the basic generator may be extended down to the $100 \mu \mathrm{~Hz}$ low-frequency range of the instrument. This operation is essentially the same as previously described for providing the correct frequency input to the error-sensing circuit.

The simplified logic diagram for the counter appears in Section 5. The parallel trigger inputs to each flip-flop are not shown, but enter directly without being gated. All other inputs to the flip-flops are controlled by NOR gates which require all inputs to be false to produce a true output. When a true output from a NOR gate occurs, both
the set and reset inputs are enabled and the flip-flop will change state with the next clock pulse into its trigger input terminal

When the last flip-flop in the counter is set at the No. 506 clock-pulse input, the logic gating causes the next clockpulse input to begin sequentially resetting the flip-flops, starting with the highest order flip-flop. Thus after No. 506, the counter output steps down until No. 6 is reached and the cycle is repeated.

Two binary (square-wave) outputs are taken from the cyclic counter as square waveforms and connected to other boards. The No. 256 count is coupled to the trigger circuit on the VCG/Integrator Board (described later in the tone-burst generator theory), and the No. 506 count is sent to the square-wave amplifier/clamp on the Function Board.

As shown in the Function Board schematic diagram, the slow Z is applied to the amplifier/clamp circuit that provides the 5 -volt peak-to-peak square-wave output. Stages Q5/Q6 and Q9/Q10 consist of a differential amplifier driving a compound configuration to provide the collector supply for the positive excursion of the square-wave output. Stages Q7/Q8 and Q11/Q12 are the complementary equivalent of the circuitry just described and provide the negative-excursion of the square-wave output.

Slow Triangle Wave Generation

The triangle DAC, shown in the block diagram as the 9-bit digital-to-analog converter, produces the digitally-generated slow triangle waveform over the $100 \mu \mathrm{~Hz}$ to 100 Hz frequency ranges of the instrument.

The triangle DAC consists of the nine diode-bridge switching circuits (IC25 through IC33), the +6 -volt regulator (IC22), the -6 -volt regulator (IC23), and the summing amplifier (IC24/Q3/Q4) shown on the Counter Board schematic diagram. The counter and DAC are capable of binary outputs up to $2^{9}\left(512_{10}\right)$, but are logically configurated to provide a count of 500 .

Figure $3-5$ is a simplified diagram of the triangle DAC. The binary inputs from the counter cause the nine diode-bridges to switch on in their logical binary sequence. Since all of these bridges are connected in parallel, the resulting output from the summing amplifier is a triangle waveform at 0.001 F of the basic generator frequency.

The slow triangle output is connected to the slow/fast relay switching circuit for application to the sine converter (discussed later) and the function-selection relay-switching circuits (discussed previously).

SINE CONVERSION

The selected, slow or fast, triangle waveform is transformed into a sine waveform by the sine convertor shown in the block diagram. In the Function Board schematic diagram, this circuitry is shown as a clipper (IC1), the diode-shaping network (IC3 through IC6), and a potentiometric amplifier (IC2/O1-O4). Figure 3-6 simplifies this circuitry for clarity.

The triangle input is applied to clipper IC1 which transforms the triangle into a trapezoidal waveform by clipping the top and bottom peaks. Potentiometers R6 and R15 adjust the positive and negative amplitudes.

Conversion of the trapezoidal wave into the sine wave is accomplished by four temperature-compensated, dioderesistor networks which are biased to operate at the knee of the diode curve. Only one such network is shown in the simplified diagram of Figure $3-6$; the other three are parallel-connected and biased to operate at different levels of both positive and negative excursions of the trapezoidal wave so that shape and amplitude symmetry of the sine wave is obtained.

Due to the losses inherent in the sine-shaping process, the amplitude of the shaped sine wave requires amplification before application to the Output Amplifier Board. Stages IC2/Q1-Q4 form a potentiometric amplifier that provides the required gain.

TONE BURST GENERATION

When the TRIG pushbutton is depressed, or a logical " 1 " is programmed during remote operation, driver $\mathrm{Q8}$ on the VCG/Integrator Board draws current through the coil of relay K 6 , causing the normally-open contact of this relay to close (Figure 3-7).

Prior to the closing of the K6 contact, emitter follower Q9 is turned on by the +12 -volt path through CR5 and associated resistors, and flip-flop IC6 is clamped in the set state by approximately +3 volts at the preset input. The set state of IC6 disables the standby circuit and the integrator provides its programmed output.

Turn off of Q9, however, removes the set state clamp from the flip-flop, and the next square-wave clock input causes the flip-flop to assume the reset state. The set output, " Q ", is now a positive voltage sufficient to turn on groundedbase amplifier Q12 which, in turn, enables emitter follower Q11. The feedback path around the integrator is now a short circuit around the programmed range capacitance through the Q13/Q11 path and the integrator is in the "standby state" no output.

Figure 3-5. Slow-Triangle Digital-to-Analog Converter, Simplified Diagram

INTRODUCTION

This section provides instructions for testing, adjusting, calibrating, and troubleshooting the Model 157. The instructions are concise and directed to the experienced electronics technician or field engineer. Wavetek maintains a factory-repair department for those customers not possessing the necessary personnel or test equipment to maintain the instrument. If the instrument is returned to the factory for repair, a detailed description of the specific problem should be attached to facilitate the turnaround time.

NOTE

The Model 157 requires one-hour warmup for stabilization before output parameters are within specified tolerances. Prepare for this in advance of any planned checkout, calibration, or troubleshooting programs. For amplitude checks, use a precise 50 -ohm load. A 0.1 -percent error in load resistance will cause a 0.05 -percent error in the output voltage level.

RECOMMENDED TEST EQUIPMENT

The following table contains a list of recommended test equipment. Any test equipment having equal accuracies may be substituted for those listed.

Name	Manufacturer	Model
Oscilloscope	Tektronix	543 B
Plug-In Unit	Tektronix	W or 1A7
Electronic Counter	Computer Measurements	727D
Dialamatic Voltmeter	Wavetek	201
Extender Board*	Wavetek	157-111
Distortion Analyzer	Hewlett-Packard	332A

CHECKOUT AND CALIBRATION

The following subparagraphs provide complete sequential
calibration procedures for the Model 157. Instrument checkout procedures are indicated by a checkmark $\sqrt{ }$. following the procedure title. A quick checkout of the instrument can be performed by observing these indicated parameters and applying the tolerance factors given in the Electrical Specifications of Section 1. Circuit board testpoint and adjustment locations are shown on the boardlayout diagrams in Section 5.

NOTE

The entire calibration procedure must be read first to determine initial control settings and test equipment connections before attempting checkout.

Preliminary Procedure $\sqrt{ }$

1. Set generator mode for REMOTE.
2. Press the POWER pushbutton.
3. Wait 1 hour for warmup.

NOTE

Setting any rotary digital switch to R is the same as setting it to 0 .

Power Supply Regulation

1. Connect the voltmeter high input to TP2 and the low input to TP1 on the power supply board. Adjust R7 for +12 volts $\mathrm{dc} \pm 10 \mathrm{mV}$.
2. Move voltmeter high input to TP3 and check for -12 volts dc $\pm 10 \mathrm{mV}$.
3. Move voltmeter high input to TP4 and check logic V_{cc} for +2.8 volts $\mathrm{dc} \pm 200 \mathrm{mV}$.
4. Move voltmeter high input to TP5 and check logic common for -0.7 volts dc $\pm 100 \mathrm{mV}$.
5. Connect the voltmeter high input to TP7 and the low input to TP6. Adjust R50 for -24 volts dc $\pm 50 \mathrm{mV}$.
6. Move voltmeter connection to TP8 and check for +6 volts dc $\pm 200 \mathrm{mV}$.

Square Wave Offset and Amplitude

1. Connect the voltmeter with precise 50 -ohm terminator to the 50 2 OUTPUT connector on rear panel.

NOTE
Terminator resistance must be ± 0.1 percent of 50 ohms.
2. Set TERMINATED P-P AMPLITUDE dials for 10.0 V , generator mode for AUTO CAL, FREQUENCY dials for 10.000 mHz , and output function for REMOTE. Adjust $R 5$ on the Output Amplifier Board for 0 volts $\pm 2 \mathrm{mV}$.
3. Set output function to 乙.
4. With voltmeter set to measure negative half-cycle of square wave, adjust R34 on the Function Board for --5 volts $\pm 10 \mathrm{mV}$.
5. With voltmeter set to measure positive half-cycle of square wave, adjust R51 for +5 volts $\pm 10 \mathrm{mV}$.

Fast Triangle Amplitude $\sqrt{ }$

1. Connect the oscilloscope with precise 50 -ohm terminator to the 50Ω OUTPUT connector with controls set for voltage-comparison measurement of 10 -volt peak-to-peak range and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity.
2. Set the FREQUENCY dials for 100.00 Hz and output function for 7 .
3. Display the negative half-cycle of the square wave with the peak at a convenient reference line on the graticule.
4. Set the output function to \sim, and adjust R111 on the Function Board until the triangle peak is within 5 mV of the square wave peak.
5. Set the output function at 7 and display the positive half-cycle of the square wave peak at the reference line.
6. Set the output function to \vee and adjust R104 so that the triangle peak is within 5 mV of the square wave peak.

NEGATIVEPEAK

POSITIVE PEAK

Time Symmetry and VCG Null

1. Set output function for η_{1}.
2. Set FREQUENCY dials for R 1.000 kHz and generator mode for REMOTE.
3. Connect 50Ω OUTPUT connector through precise 50 -ohm terminator and T-connector to both channels of oscilloscope (internal trigger).
4. Set oscilloscope for $100 \mu \mathrm{sec} / \mathrm{cm}$ and invert one channel. Position the two bipolar displayed square waves with the axis crossings about midpoint on the graticule. Use the horizontal expansion, up to X 100 , for more accurate observation.
5. Momentarily short test point TP9 (ground) on the VCG/Integrator Board to TP10 (first VCG summing node) and observe the display. Adjust R16 until connecting and disconnecting the short results in minimum change in display.
6. Set FREQUENCY dials for R 01.00 kHz and output function for \vee. Adjust R46 for straight slopes on the triangle waveform.

NOTE

Adjust low-frequency potentiometer R1, as required, to observe time symmetry when performing Steps 7 through 10.
7. Set the FREQUENCY dials for 1000.00 Hz and output function for Z. Adjust R19 for time symmetry of the square wave at 100 percent of frequency range.
8. Set the FREQUENCY dials for 1.000 kHz and observe the time symmetry of the square wave at 10 percent of frequency range.
9. Set the FREQUENCY dials for $R 1.000 \mathrm{kHz}$ and adjust R79 for time symmetry of the square wave at 1 percent of frequency range.
10. Set the FREOUENCY dials for $R 01.00 \mathrm{kHz}$ and adjust R80 for time symmetry of the square wave at 0.1 percent of frequency range.
11. Repeat Steps 7 through 10 until optimum adjustment is obtained.

Closed-Loop Frequency (Nullmeter) Adjustment $\sqrt{ }$

1. Connect the electronic counter to the 50Ω OUTPUT connector with a 50 -ohm terminator connector. Set the counter to read period.
2. Set the generator mode for AUTO CAL.
3. Set the FREQUENCY dials for 1000.00 Hz and adjust R43 on the Error Amplifier/First and Second Decade Board for $1000.0 \mu \mathrm{sec}$ on the counter.
4. Set the FREQUENCY dials for 100.00 Hz and adjust R20 for $10000 \mu \mathrm{sec}$ on the counter.
5. Repeat Steps 3 and 4 until optimum adjustment is obtained.

NOTE:
If frequencies cannot be adjusted within specification, perform the following Frequency Alignment and then repeat both the ClosedL.oop Frequency Adjustment and the Frequency Alignment again.

Frequency Alignment

NOTE
Do not refer to the electronic counter display during the following procedures.

1. Perform Steps 2 through 8 below by making the specified frequency selection, simultaneously holding the MAN CAL and AUTO CAL pushbuttons depressed, and adjusting the indicated potentiometer.
2. Set the FREOUENCY dials for 1000.00 Hz and adjust R21 on the VCG/Integrator Board for a null indication on the front-panel meter.
3. Set the FREQUENCY dials for 100.00 Hz and adjust R1 for a null indication.
4. Repeat Steps 2 and 3 until optimum adjustment is obtained.
5. Set the FREQUENCY dials to 10.0000 kHz and check for a close-to-null indication on the front-panel meter.

NOTE
Trim capacitors across C31 are a factory adjustment.
6. Set the FREQUENCY dials to 100.000 kHz and adjust C3 for a null indication.

NOTE

Trim capacitors across C3 are a factory adjustment.
7. Set the FREQUENCY dials for 1000.00 kHz and adjust C 4 for smallest deviation from null as frequency is stepped through its range.

NOTE

Meter indication normally will vary widely over this range, but should not peg.
8. Set FREQUENCY dials to 1000.00 Hz and adjust R99
on the Error Amplifier Board for minimum meter deviation as dials are changed to 990.00 Hz and back to 1000.00 Hz .

Sine Conversion and Slow Triangle

1. With the generator mode in AUTO CAL and the output function in \downarrow, connect the distortion analyzer and oscilloscope to the synthesizer as shown in Figure 4-1.
2. Set the FREQUENCY dials for 100.00 Hz and adjust R68, R93, R15, and R6 on the Function Board for minimum distortion of the sine wave.
3. Set the FREQUENCY dials for 100.000 Hz and adjust R65 and R70 on the Counter Board for minimum distortion (approximately 0.1 percent).

NOTE

If readjustment of distortion analyzer frequency or balance controls are required for this step, perform the Closed-Loop Frequency Adjustment.
4. Set the oscilloscope controls for voltage-comparison measurement of 10 -volts peak-to-peak range and 10 $\mathrm{mV} / \mathrm{cm}$ sensitivity.
5. Set the FREQUENCY dials for 100.00 Hz with output function at ζ.
6. Display the negative half-cycle of the square wave with the peak at a convenient reference line on the graticule.
7. Set output function at ν, and adjust R20 on the Function Board until sine peak is at reference line.
8. Set the output function at Z , and display the positive half-cycle of the square wave peak at the reference line.

Figure 4-1. Distortion Analyzer Test Setup
9. Set the output function at \vee and adjust R17 until the sine peak is halfway between its original position and the reference.
10. Repeat Steps 5 through 8 until the peak values of the sine half-cycles are within 0.1 percent ($\pm 5 \mathrm{mV}$) of the square half-cycle peaks.
11. Repeat Steps 2 through 9 until the optimum adjustment is obtained.

Trigger

1. Connect the voltmeter to the 50Ω OUTPUT with the 50 -ohm termination connector.
2. Set the Model 157 controls as follows:
a. Generator mode in TRIG.
b. Output function in \vee
c. FREQUENCY dials to 1000.00 Hz .
d. TERMINATED P-P AMPLITUDE dials at 10.0 V .
3. Adjust R74 on the VCG/Integrator Board for minimum peak dc voltage change as the FREOUENCY dials are stepped down through the range to 100.00 Hz .

NOTE
Approximately 5 mV change is normal.

Frequency Loop Final Calibration $\sqrt{ }$

1. Connect the electronic counter to the 50Ω OUTPUT with the 50 -ohm termination connector. Set the counter to measure period.
2. With generator mode in AUTO CAL and output function in Z , set the FREOUENCY dials to 1000.00 Hz . Carefully adjust R43 on the Error Amplifier/First and Second Decade Board for $1000.0 \mu \mathrm{sec}$ on the counter.
3. Set FREQUENCY dials to $R 90.00 \mathrm{~Hz}$ and carefully adjust R119 for $11111.1 \mu \mathrm{sec}$.
4. Set FREQUENCY dials to R 99.00 Hz and carefully adjust R20 for $10101.0 \mu \mathrm{sec}$.
5. Repeat Steps 3 and 4 until optimum setting is obtained.
6. Repeat Steps 2 and 4 until optimum setting is obtained.
7. Now repeat the Closed-Loop Frequency Adjustment.

VCG Input Sensitivity

1. Set generator mode in REMOTE and FREQUENCY dials to R 00.00 Hz .
2. Connect the precision de voltage source to the VCG IN connector on the rear panel with +5.000 -volts dc applied.
3. Adjust R69 on the VCG/Integrator Board for 1000.0 $\mu \sec (1 \mathrm{kHz}$) on the time interval counter.
4. Reduce the applied dc voltage in 0.5 -volt decrements, and check the frequency-vs-voltage linearity, using the best-straight-line method.

| Volts, Time Interval, Frequency,
 dc $\mu \mathrm{sec}$ Hz |
| :--- | :--- | :--- |

+5.000	1000.0	1000
+4.500	1111.1	900
+4.000	1250.0	800
+3.500	1428.6	700
+3.000	1006.7	600
+2.500	2000.0	500
+2.000	2500.0	400
+1.500	3333.3	300
+1.000	5000.0	200
+0.500	10000.0	100
+0.050	100.00 msec	10
+0.005	1000.0 msec	1
0	∞	0

TROUBLESHOOTING

Basic Techniques

Troubleshooting the Model 157 requires no special techniques. The following are a few reminders of basic electronics fault isolation.

1. Check control settings carefully: many times an incorrect control setting, or a knob that has loosened on its shaft, will cause a false indication of a malfunction.
2. Check associated equipment connections: make sure that all connections are properly connected to the correct connector.
3. Perform the checkout procedures: many out-ofspecification indications can be corrected by recalibrating the instrument.
4. Visually check the interior of the instrument. Look for such indications as broken wires, charred components, loose leads, etc.

Troubleshooting Chart

Table 4-2 provides a list of some of the more probable symptoms of malfunctions and their remedies. Locate the indicated symptom listed in Column 1 of the chart and follow the corresponding procedures. When a fault has been localized to a specific stage by checking the parameters given for the major test points, check the dc operating voltages at solid-state device junction/pins. Check associated passive elements with an ohmmeter (power off) before replacing a suspected semiconductor element.

Table 4-2. TROUBLESHOOTING CHART

Symptom	Probable Cause	Board
Automatic calibration is less accurate than open loop.	Damaged crystal or logic failure in crystal one shot.	Crystal One Shot
	Damaged error amplifier	Error Amplifier
Automatic calibration less accurate than open loop on some ranges only.	Logic failure in range-divider stages.	Range Matrix
Generator operates on some ranges only.	Damaged range matrix or relay.	Range Matrix
No or output on upper four ranges.	Failure in triangle-wave buffer stage.	VCG/Integrator
Poor time symmetry or open-loop accuracy.	Miscalibration or failure in VCG circuitry.	VCG/Integrator
Problems on lower six or upper four ranges only.	Failure in slow-fast relay stages.	VCG/Integrator
No output on lower six ranges only.	Failure in counter logic or clock buffer.	Counter
H output on lower six ranges only or distorted \vee and \downarrow on lower six ranges only.	Failure in waveform DAC.	Counter
No output.	Failure in power supply .	Power Supply
No \geqslant output.	Defective function relay stage.	Function
No \sim output.	Defective function relay stage.	Function
No 7 output.	Defective function relay stage.	Function
Asymmetrical ζ amplitude.	Square-wave clamp faulty.	Function
Distorted or no \downarrow signal to sine function relay.	Failure in sine converter.	Function
\vee and \downarrow produce 0 Vdc output.	Trigger circuit failure.	VCG/Integrator
Positive or negative half cycles of output waveform only.	Output amplifier at fault.	Output Amplifier
Incorrect output waveform amplitude.	Failure in output attenuator.	Output amplifier
Output amplitude incorrect by one or more decades.	Failure in final attenuator.	Attenuator

REPLACEMENT OF CIRCUIT BOARDS

Refer to the Chassis Assembly illustration in Section 5 as a visual aid to the following procedural instructions.

Replacing Plug-In Boards

Plug-in boards in the Model 157 are color-coded from front to rear relative to the last digit of the part number:

PN Digit	Color	Board
1	Brown	Extender
2	Red	Output Amplifier
3	Orange	Function
4	Yellow	VCG/Integrator
5	Green	Range Matrix
6	Blue	Error Amplifier
7	Violet	One-shot
8	Gray	Power Supply
9	White	

To remove any of these boards, proceed as follows:

1. Remove the three machine screws holding the top cover at the rear of the unit and slide the top cover out of the front retaining lip.
2. Remove the four machine screws holding the calibration shield over the plug-in boards and remove the shield.
3. Pull straight up on the plug-in board that you wish to remove.
4. If the board is to be checked operationally with the unit, remove the extender board and put it in the position of the board to be checked. Then plug this board into the top connectors of the extender board.

Replacing Left Switch Board

To replace the Left Switch Board, proceed as follows:

1. Remove top cover.
2. Remove the two machine screws retaining the POWER pushbuitton switch to the subpanel.
3. Remove the one machine screw holding this switch to the Left Switch Board.
4. Disconnect the 18 Amphenol pin connections.
5. Remove the four machine screws that secure the Left Switch Board to the subpanel and lift out the Left Switch Board.
6. Replacement is essentially the reverse of removal.

Replacing Right Switch Board

To replace the Right Switch Board, proceed as follows:

1. Remove top cover.
2. Disconnect the 11 Amphenol pin connections.
3. Remove the four machine screws that secure the Right Switch Board to the subpanel and lift out the Right

Switch Board.
4. Replacement is essentially the reverse of removal.

Replacing Attenuator Board

To replace the Attenuator Board, proceed as follows:

1. Remove top cover.
2. Remove all plug-in boards.
3. Unsolder the BNC connections (three leads), the two coaxial connections (four leads), and the five singleconductor leads at the bottom of the board.
4. Remove the four machine screws retaining the Attenuator Board to the rear panel and remove the board.
5. Replacement is essentially the reverse of removal.

REPLACEMENT OF ROTARY SWITCHES, DIALS, OR DECIMAL LAMPS

The decimal lamps in the Model 157 are operated at one-half of the manufacturer's voltage rating. The rated MTBF for this lamp, continuously operated in this mode, is 20 million hours which precludes normal lamp failure during the life of the instrument. However, if a lamp or rotary switch item is inadvertently damaged, proceed as follows to replace the defective item:

1. Remove top and bottom covers.
2. Spring out bail from bottom of chassis.
3. Remove all front-panel knobs by loosening their set screws.
4. Remove the three hex nuts, lockwashers, and flat washers that hold the Mother Board to each side rail.
5. Remove the six machine screws from each side rail.
6. Disconnect the eight Amphenol pin connectors at the front edges of the Mother Board.
7. Pull off the side rails, starting at the top edge.
8. Remove the two No. 6 machine screws on each handle.
9. Loosen all machine screws on the top and botiom of the handles.
10. Pull the extrusion off, being careful to guide the Amphenol pin leads through their slots at the bottom left and right ends of the subpanel.
11. Lamps can now be removed by unsoldering two leads and pulling the lamp out from the rear.
12. Rotary switches can now be removed since access for unsoldering leads from top (Left or Right Switch Board removed, as required) and bottom of switch wafers is now available. Access to the switch-shaft locking nut is obtained by pulling off the switch dial.
13. Replacement is essentially the reverse of removal.

INTRODUCTION

This section contains data packages for the Model 157 Programmable Waveform Synthesizer. Each data package is a quick-access document that contains maintenance data arranged for the user's convenience in simultaneously viewing the schematic diagram and supporting data. Each data package includes a part-location illustration; replaceable parts list; voltage, waveform, and logic data; and a schematic diagram. The voltage, waveform, and logic data are numerically coded to correspond with numbers on the schematic diagram and part-location illustration. Also included in this section are block diagrams, logic diagrams, and mechanical drawings that are helpful in understanding and maintaining the equipment.

ARRANGEMENT

Figures 5-1 through $5-8$ of this section locate test points and internal adjustments used during calibration and test procedures.

Drawings and data packages are arranged in this section in the following order:

Title	Drawing No.
Model 157 Outline Drawing	$157-603$
Model 157 Block Diagram	$157-600$
Counter Logic Diagram	$157-602$
Chassis Assembly (A1-A7) Data Package	$157-000 / 200$
Mother Board	$157-010$
Extender Board	$157-011$
Output Amplifier A8 Data Package	$157-012 / 212$
Function Board A9 Data Package	$157-013 / 213$
VCG/Integrator A10 Data Package	$157-014 / 214$
Range Matrix A11 Data Package	$157-015 / 215$
Error Amplifier A12 Data Package	$157-016 / 216$
Crystal One Shot A13 Data Package	$157-017 / 217$
Power Supply A14 Data Package	$157-018 / 218$
Counter Board A15 Data Pacakge	$157-019 / 219$
Left Switch Board	$157-020$
Right Switch Board	$157-021$
Attenuator Board	$157-024$

LIST OF MANUFACTURERS

The manufacturers listed below make the replaceable electrical parts listed in the following data packages. (Bulk items, such as wire, insulation, etc. are not listed.) All electrical parts can be obtained from the listed manufacturer or from Wavetek. However, many of the standard electronic component parts can be purchased locally in less time than is required to order from the manufacturer. When ordering parts locally, make sure that the replacement part ratings agree with the values, tolerances, and descriptions in the parts lists. The size of the replacement part is not only critical as an installation requirement, but may effect circuit performance at higher frequencies.

A/B
Allen Bradley Milwaukee, Wisconsin
Amelco Teledyne Amelco Semiconductor Co. Mountain View, California Amp Amphenol Corp. Broadview, Illinois
ARCO Arco Electronics Great Neck, L. I., New York
CDE Cornel Dublier Electronics Division
Federal Pacific Electronic Co. Newark, New Jersey
C/JCinch Mfg. Company Elk Grove Village, Illinois
Corning . Corning Glass Works Bradford, Pennsylvania
CRL .Centralab Division of Globe-Union Milwaukee, Wisconsin
CTSCTS Electronics, Inc. South Pasadena, California
Elec/C Electro Cube Inc. San Gabriel, California
Erie Erie Technological Products, Inc. Erie, Pennsylvania
Fair Fairchild Semiconductor Corp. Palo Alto, California
IRC IRC, Division of TRW Inc. Philadelphia, Pennsylvania
KingKing Electronics Inc.
Pasadena, California
$\left.\begin{array}{c}\text { Littelfuse }\end{array} \begin{array}{r}\text { Littelfuse Incorporated } \\ \text { Des Plaines, Illinois }\end{array}\right)$

Semtech	. . Semtech Corporation Newbury Park, California
Sprague	Sprague Electronic Company
	North Adams, Massachusetts
Stack	Stackpole Carbon Company
	St. Marys, Pennsylvania
TRW	TRW Electronic Components Division
	Camden, New Jersey
USECO	USECO Inc.
	Mt. Vernon, New York
Wakefield	Wakefield Engineering, Inc.
	Wakefield, Massachusetts
Wavetek	. Wavetek
	San Diego, California
Winchester	. Litton Industries
	Winchester Electronic Division

Figure 5-1. Output Amplifier

Figure 5-2. Function Board

Figure 5-3. VCG/Integrator

Figure 5-4. Range Matrix

Figure 5-5. Error Amplifier

Figure 5-6. Crystal One Shot

Figure 5-7. Power Supply

Figure 5.8. Counter Board

\square

	A	Re-draw Rea Rasil	FGS	12-13	
toterance unless	rev	ecn	by	date	app
$\begin{aligned} & x x x \pm .010 \\ & x \times \pm \pm .030 \\ & \hline \end{aligned}$, AV,				
scale 3/4	by $^{\text {Bochichio }}$ [date $1: / 8 / 68$			$\square \mathrm{apm} / 7<2$	
material N / A	OUTLINE DRAWING				
finish	$157 \quad \|$model no 157 dwe no. rev				
N/A	this document contains proprietary information and design rights belonging to WAVETEK and may not be used or rearoduced for any reason except calibration,operation and maintenance without written authorzation.				

1 - indicates signal common

1. -INDICATES PROGRAM COMMON

tolerance unless otherwise specified$\begin{aligned} & x x x \pm .010 \\ & x x \pm .030 \end{aligned}$	re	ecn	by	date	app.
	人, ${ }^{\text {a }}$,				
scale	$\text { By, ADAMSON [date } 9 / 12 / 68 \text { [ap } V / a / 6$				
materialN / A					
	model no. 157 $157-600$				rev
finish					
	this document contains proprietary information and design fights belonging to WAVETEK and may not be used or reporoduced for any reason exceptcalitration operation and maintenance without calitration,operationwritten athornzation.				

tolerance unless otherwise specified$\begin{aligned} & x x x \pm .010 \\ & x \times \pm .030 \end{aligned}$	rev	ecn	by	date	app.
	W/avmimen san diego, calif				
scale \sim / \sim					
material N / A	title				
	$\begin{gathered} \text { COUNTEP } \angle O G I C ~ \\ \text { DIAGRAM } \end{gathered}$				
	model	dwg no.			re
finish		$157-602$			
			$\begin{aligned} & \text { reta } \\ & \text { o WA } \\ & \text { an } \end{aligned}$	infor YEK an reason ce wi	

PARTS LIST

	G	ECN 680	18	[/2/3/3	
	F	ECN 562	F2el	1/3/3	
	E	ECN 440	St		
	D	ECN 4 ,2			
	\bigcirc	295	NG.		
	B	289	NG		
	A	285	∞		
5	rev	en	by	date	
	WAVETEK san diego, call				
sale N/A					
N/A	$\begin{aligned} & \text { CHASSIS ASSY } \\ & \text { (TOP) } \end{aligned}$				
$N / 4$					

BFTS 1/57				
$L / E / A / 1 /$	DESCAFTION	MFGF		$Q \pi$
1	CONNECTOP	GOCA	$25218=30160$	2
2				
3				
4	CONNESTCF ERACKE	WMIETER	$157-314$	4
5				
6				
7	EIPCUT BOARC	$W A V E L$	$157-1114$	1

	4
0	WAVETEK
	Heatal
N/A	EXTENDEP BOARD
	${ }_{5}$
N/A	
	-

REF DES	DESCA
	METAL FILM
R47.R52	MATCHED SE:
A53-P160	I
	POTENTIO,
A5	
	HEAT SINX
	BRACKET
(${ }^{\text {(}}$	TERMINA
	CIRCUIT E
FI, F2	$A \times 1 A C L E A$

PAPTS L/ST			
SCPIPTION	MFGF	MFGR NO.	QTY
TLMWW, 1\% 21,5xM	CORNING	PN6OD	13
DSET) $2 k(-20)$			6
$112002(-19)$	1	\|	8
TTOMETER			
100K	A / B	FRIO4M	1
SINK	WAKEFIELL	NF-20.7	2
$\overline{E T}$	WAVETEK	8157-315	2
NALS	USECO	20108-1	3
IT BOARD	WAVETER	157-1120	1
LEAD FUSE	-Itrlause	GFA 1/4A	2

(A)

NOTES UNLESS OTHERWISE SEECIFIED
1 RESISTORS ARE $1 / 2 \mathrm{~W}, 10 \%$ CGEBON
2 TRANSMTORS APE 2NJ!a38
3 *MATKHEO SET OF $6 \cdots$ 2K 1% TO 1%
MATCHED SET OF $8-2 O O \Omega, 1 \%$ TO $\% \%$

PARTS LIST				
REF DES	DESCRIPTION	MFGR	MFGA NO.	QTY
	CAPACITOAS			
C8	CERAMIC 1000 V 5pF	CPL	00050	1
C2, C3	15 PF		00150	2
C19.C22	4TPF	-	D0470	4
C15,C16	SILIER MICA 68PF	AACO	DM15-680J	2
C17,C18	CERAMK 1000 V G80PF	CRL	D0681	2
C11,CB	10 V . 1 llf		UK10-104	2
C6. 67	zov. .llf	-	UK20-104	2
C4, $55, \mathrm{C} 24$	TANTALUM 15V 22 lif	SPAAGUE	$1960226 \times 9005 \mathrm{kA}$	3
C12,C14	ELECTAOLYTIC 15 V V 100uf	RICHEY	$16.375 \cdot 100 \cdot 157$	2
	DIODES			
CR1-C812	FD6666	FAIRCMIL	F06666	12
CR/3,14	DIODE, ZENER	WVTK	A130.506	2
	NTEGAATED CIPCUITS			
ICI		PCA	CA3019	1
ICZ			CA30 30	1
TC3-IC6	(-18)		CA3039	4
	RELAY			
K1-K6		PHIPPS	ps-865	6
	TRANSISTOPS			
$\begin{aligned} & Q 7, Q 8 \\ & Q 10, Q 11 \\ & Q 13, Q / 4 \end{aligned}$	2N3563	[2ARCOMLD	2N3563	6
$\begin{array}{l\|} Q 5, Q 6 \\ Q 9, Q 12 \\ Q 15, Q 19 \\ Q 27, Q 26 \\ Q 27, Q 28 \\ Q 30 \end{array}$	2N3690		2N3640	//
Q32Q33, ${ }^{\text {a }}$	2N3638		2N3638	3

PAPTS								
REF DES	DESCRIPTION				MFGP	MFGP Na		QTY
	TRANSISTORS							
$\begin{array}{\|l\|} \hline Q 17, Q 23 \\ Q 24,025 \\ Q 29,031 \end{array}$	2N3646				FAIPCHLD			6
Q1, Q2,Q16	2N3903				MOTORACA	2N3903		3
$\begin{array}{\|c\|} \hline \text { Q3. Q4 } \\ \hline \text { Q18 } \end{array}$	2N3905				1	an	905	3
	RESISTORS							
A58	CAREON 12W 5\%			1025	5Px+20xC	AC20GF100J		1.
R28 A29				15ת			1501	2
R117				39.1			3905	1
$\begin{aligned} & \text { Rat R48 } \\ & 249, \quad 450 \\ & \text { RIIt R119 } \end{aligned}$				47Ω			4707	6
DIIB				62Ω			6205	1
$\begin{aligned} & R 23, R 24 \\ & R 27, P 32 \\ & R 57 \end{aligned}$				100Ω			1017	5
A96RAC,			10\%	150Ω			151 K	2
ell6			5\%	160Ω			1615	1
R25, R30			10\%	2708			271k	2
R33, R460				3300			331k	2
$\begin{array}{\|l\|l\|} \hline 3 z_{2} R 10, \\ 2105 \\ \hline 105 \end{array}$				470Ω			$47 / \mathrm{K}$	4
R R , A, A 2 AT				56002			561k	3
R59			5\%	750Ω			7515	1
RATRET			10\%	$1 \times$			1024	2
R26, R31				1.8k			182 K	2
R43,R44			5\%	2K			2027	2
R107, R110			10\%	\% 2.2K			222k	2
$\begin{array}{\|l\|} R 53, P 61 \\ P 63, ~ P 126 \end{array}$				3.3nd			332 x	6
$\begin{aligned} & 24, .482 \\ & 9106,9109 \end{aligned}$				4.7k			472 k	4
R56			5\%	6.2 K			6227	1
R24			1	9.1K			9120	1

PARTS LIST				
REF DES	DESCRIPTION	MFGR	MFGP NO	QTV
R36,37	METAL FILM, 1/aW $/ \%$, 1.50 L	Caenng	RN6CO	2
	POTENTIOMETER			
Fhe, A15, R20	100Ω	A/B	FRIOIM	3
$\begin{aligned} & \text { R34, R51 } \\ & \text { R68, R93 } \\ & \text { Plod, RIII } \end{aligned}$	250Ω		FR251M	6
Al7	100K		FRIO4M	1
(0)	TERMINAL	USECO	20108-1	17
	CIACUIT BOARD	WAVETEK	157.113C	/

		ECN 440	गद्ध ${ }^{\text {a }}$	Wh/2
	${ }^{*}$	364		3s, ${ }^{2}$,
	H	ECN 355	NG ${ }^{\circ}$	0,23.4,4
	G	ECN 304	$\mathrm{N}_{6} \%$	\%/818.
	F	REDPAWN	EH	7zast
隹	rev	ecn	by	date ape
x.xx \times. 0.10	WAVETEK san diego. calit			
xeate 2/1				
	FUNCTION BOARD			
N / A				
	$-\begin{aligned} & \text { madal } 1 \times 0 \\ & 157 \end{aligned}$	$\begin{aligned} & \operatorname{tang} 80 \\ & 0157-013 \end{aligned}$,
N / A				

PARTS LIST				
REF DES	DESCRIDTION	MFGR	MFEP NQ	QTY
	CAPACITOAS			
C15,018	CEPAMIC IOOOV SPF	CRL	D0050	2
611.612 820.821	15P-7		D0150	4
c¢eaicich	Z2PAF		D0220	4
C24	SILUER MICA 5\% ERDF	ARCO	DM15-820J	1
Cz	910PF		DM15-911J	,
C31	1\% 9100p		DM20-912F	1
C68	CERAMIC IOOOV .OOZ2UH	CENTRAC	00222	,
C25	MKLAR 3 .33 k	TRAW	X663F	1
119C26, 32	CERAMIC IoV , Mef	CAL	UK10-104	3
$\begin{aligned} & c 23, c 36 \\ & c 37, c 38 \\ & c 39, c 40 \end{aligned}$	zor ..luf		UK20-104	6
Cl	Polystyace ioot .ulf	Afico	H-1281	1
C^{4}	VAPIABLE 2.8PF	ERIE	538.006-894	/
C3	5.5-18PF		538-006-92R	,
C27C29.c30	SELECTED VALUE			3
C22,C35	ELECTREXYTC $15 \mathrm{~V}, 100 \sim \mathrm{~F}$	RKムEV	16.375-100-157	2
CRI-CPO	DIODES	Fanactuld	F06666	9
IC5	IIITEGRATED CIACUT	PCA	CA3030	1
ICZ			CA3039	1
IC6		MOTRach	MC816P	1
EL1, 3 , ${ }^{\text {a }}$	-15	RCA	CA3030	3
K1-K6	RECAYS	PHIPPS	P5-864	6

REF DES	DESC
	PESIST
A71	CAREON IVW
P37	
275	
A6, A7	
R2	
AES	
P12	
RII	SELECTEO
R59, R62	METML ALM
R44	
$\begin{aligned} & \text { R24 R29 } \\ & R 3, ~ R 40 \\ & \text { R4inids } \end{aligned}$	
$R 4$	
Ps	
R58, P61	
RI7	
	POTENTIOA
P19	
P21	
R69	
$\begin{aligned} & \text { R1, R16 } \\ & 246, R 74 \\ & 279, R 80 \\ & \hline \end{aligned}$	

PAFTS L15T			
ESCPIPTION	MFGP	MFGR NO.	QTY
15TOPS			
W/VW, 10\% 12K	STACKPOLE	FC206F123M	1
2\%K		223K	1
33K		333k	1
110 K		1/AK	2
470a		A29k	1
IM		105 K	,
5\% 8.2M		825J	1
10\% 10\%		106k	4
CTED VALLEE		1	1
ALHWN, $2 \times$	CORNING	PNGOD	2
2.87 K			1
3.01 K			6
9.53 k			1
12.1 K			1
21.5x			2
15k			1
NTIOMETEPS			
100Ω	A / B	EP101M	1
$250 n$		FR251M	1
1 K		FRIORM	1
100K		FP104M	6

PARTS LIST				
REF DES	DESCRIPTION	MFGR	MFGR NO. QTH	
Θ	TERMINAL	USECO	$2010 B-1$	16
	CIRCUIT BOARD	WAVETEK	$157-1 / 4 F$	1

	H	ECN 676	8.		
	G	ECN 440	\%2		
	F	REDAAWN	EH		
Toleran	rev	ecn	by		
$\begin{aligned} & x \times x=010 \\ & x x \pm .030 \end{aligned}$	W/AVETEK san diego, calit				
scaie $2 / 1$					
m/A	ASGY				
finish	$\begin{array}{\|l\|} \hline \text { modei no. } \\ 157 \end{array}$	$0157-014$			rev
N / A					

	B	ECN 318	Res	1923	
	A	EEDFAWN	$E H$	$7 / 5 / 69$	
tolerance unless otherwise specified	rev	* ecn	by	date	app.
$\begin{aligned} & x x x \pm .010 \\ & x \times \pm .030 \end{aligned}$					
scale $2 / 1$					
material $N_{/ A}$	title$\begin{gathered} \text { ASS'Y } \\ \angle E F T \text { SWITCH BD } \end{gathered}$				
	$\left[\begin{array}{c}\text { model no. } \\ 157\end{array}\left[\begin{array}{l}\text { dwg no. } \\ 2757-0 \geq 0\end{array}\right.\right.$				v
finish					β
N / A	this document contains proprietary information and design rights belonging to WAVETEK and may not be used or reproduced for any reason except calibration,operation and mainteriance without written authorization.				

PARTS $\angle 157$				
REF DES	DESCPIPTION	MFGR	MFGR NO.	QTS
	CAPAITIOA			
C	CEAAMMIC 1000 V 1000 A	CAL	00101	1
	RESTSTO4			
Q1, Q2	CAFBON1EW, 5% 102	STACRPOC	PC20GF100)	2
0	AMP PINS	AMP	60599-1	17
	SWITCHES	WAVETEA	157-5w/3	1
	CIPCUIT BOAPD	1	157-12/C	1

tolerance unless otherwise specitied$\begin{aligned} & x x x \pm .010 \\ & \times x \pm .030 \end{aligned}$	rev	ecr		date	app.
scale $\mathrm{Z} / 1$					
material	$\begin{aligned} & \text { ASS'Y } \\ & \text { PIGHT SWITCH BD } \end{aligned}$				
N / A					
	$1 /\left.57\right\|^{\text {model no. }} 1 / 57-071$				rev
finishN / A					
	this document contans propretary information and design rights belonging to WAVETEK and may not be used or reproduced for any reason except calibration,operation and maintenance without written authorization.				

PARTS $\angle 15 T$				
REF DES	DESCAPTION	$M F G P$	MFGR NOL	674
	DIODES			
CR1-CR4		FAIRCMITD	$F 06666$	4
-11-515	BNC CONNECTOP	KING	0665710	5
$k 1-k 4$	AECAVS (FOPMC)	PHIPES	P5-865	4
Q1, Q2	TAANSISTOR	FAIRCHILD	2N3639	2
	SOLDER $\angle U G$	H SwmF	1497	4
	FES157005			
R6, P14	EAPBON12W, $10 \% 3.3 \mathrm{~K}$	STACAPXLE	ACEOGF3324	2
R3, A1PAII	METAL FILM $1 / 41 \% 102$	CORNING	PN600	3
$\left[\begin{array}{l} 2, v_{5} \\ v_{2} \end{array}\right.$	4023			4
28	80.65			1
$R 5,213$	2 K			2
P4, 212	215x	1		2
	STANDOFF	WAVETER	A110-311/4	5
	EIPCUIT BOAFD		$157-1248$	1

[^0]: NOTE: Pushbutton switches marked * or ** are mechanically linked. Depressing any one in a set releases any other previously depressed pushbutton in the same set.

