7151 COMPUTING MULTIMETER MAINTENANCE MANUAL

7151 COMPUTING MULTIMETER

MAINTENANCE MANUAL

CONTENTS

Chapter 1 General
Chapter 2 Calibration Procedures
Chapter 3 Dismantling \& Reassembly
Chapter 4 Circuit Descriptions \& Diagrams
Chapter 5 Fault Diagnosis Guide
Chapter 6 Parts Lists \& Component Layout

\mathbf{I}
 I
 I

CHAPTER 1

1. GENERAL

The Solartron 7151 Computing Multimeter performs all comon measurement functions, and offers: a library of programs; clock controlled measurements; and a programable power-on status.

The instrument is suitable for general purpose bench work, or for use within a system where 7151 would be operated via one of its remote control interfaces. The interfaces provided are the IEEE 488 (1978) STD system and the RS232C V24 serial system.

2. SAFETY

The 7151 multimeter has been designed in accordance with the recommendations of IEC 348 . To ensure the user's safety, and the continued safe operation of the instrument, it is advisable to fully observe the procedures and specifications given in the Operating Manual (Part No. 71510010).

An Earth wire is provided to ensure the user's safety. Therefore, if an extension mains cable is used, check that the Earth connection is maintained throughout the length of the extension.

When using 7151 on equipment which is capable of delivering high voltages (e.g. inductive circuitry giving high back emf's such as the secondary of a large mains transformer), it is most important that 7151's test leads are disconnected from the equipment before switched it off. This ensures that harmful back-emf's do not reach 7151. Care should always be exercised when handling the input leads, especially where high voltages are known to be present, or where high transients could occur.

Whenever it is likely that the safety of the instrument has been impaired - e.g. if it shows visible signs of damage, if it fails to perform correctly, or if the specifications have been exceeded in any way - it should be made inoperative and referred to a suitable repair depot. Any maintenance, adjustment or repair of the multimeter must be carried out by skilled personnel only, in accordance with the procedures and precautions detailed in this Maintenance Manual (part no. 71510011).

A Wherever this symbol appears on the front or rear panel it is advisable to consult the appropriate section of the Operating Manual for further information.

3. SUMMARY OF OPERATION

A schematic block diagram of the 7151 is shown in Fig. l.l. 7151 is essentially a voltage measuring instrument which uses the pulse width technique of analog to digital conversion.

All inputs to the instrument are first converted to dc voltages before being passed to the input amplifier. This is simple enough for current (dc) and resistance, but ac inputs also undergo rms conversion to dc. All inputs are suitably scaled by the input amplifier and passed to the
analog to digital converter (ADC). With no input, the ADC produces two balanced pulse trains of mark space ratio $1: 1$. When an input is received, the mark-space ratios of the trains respond in an equal and opposite manner, proportional to the size of the input. These trains are then converted to a single end and gated into a reversible counter. The nett result is a pulse count proportional to the measure of the input.

The measuring circuits are controlled by what is termed the 'floating' logic and consists essentially of a 8-bit microprocessor with 'piggy-back' ROM. The other circuits of 7151 are organised in a bus arrangement which is controlled by the 'earthy' logic and consists essentially of another 8 -bit microprocessor. Isolated communication between the floating and earthy logic is acheived by opto coupled serial links. It is the earthy logic which is responsible for effective control of measurements, processing, remote control, the real time clock, the displays, and so on.

Chapter 2 Calibration Procedures

- - - - - - - - - - - - - - - - - - - - - - -

CHAPTER 2

Setting-Up And Calibration Procedures

General

These procedures enable the instrument to be set-up and calibrated to the factory despatch standards.

The procedures are categorised into the following sections:

1. Setting-up procedures
2. Initial calibration procedures
3. Final calibration procedures

Safety

The instrument must be disconnected from the mains supply when dismantling it to gain access to the preset controls and also when it is being reassembled (see Chapter 4 for dissembly instructions).

When adjusting preset controls beware of high test voltages, the guard potential on the guard plate and also the mains input supply.

Calibration Method

Owing to the automatic calibration circuits incorporated in 7151 , it can only be calibrated by connecting it to a remote controller and then using the appropriate calibration commands. Alternatively, a calibration program can be used which is a much faster method of calibrating 7151. Solartron can supply, on tape cassettes, a calibration program for the more common types of controllers.

The user is advised to re-calibrate 7151 annually.
If the instrument's existing state of calibration is judged to be satisfactory, the user can simply re-write the existing calibration constants by sending the REFRESH command to 7151 once it is in the calibration mode.

Calibration Source
It is recomended that the calibration source has an accuracy of at least two times better than the accuracy specified for the various 7151 functions. The 7151 specification is given in the Operating Manual and the important percentage accuracies are as follows:-

DC Volts	0.002%
DC Current	0.02%
AC Volts	0.05%
AC Current	0.05%
Resistance	0.002%

ENTERING CALIBRATION MODE

Insert a shorted 2.5 mm jack plug into the rear panel CAL socket, causing the front panel CAL indicator to repeatedly flash. The short may be within the plug itself, or externally via a switch. The plug must remain fitted throughout the calibration, and can be removed after calibration is complete.

Note: Do not switch mains power on or off when the shorting plug is fitted, otherwise the internal calibration constants may be altered.

Using the controller, send the command CALIBRATE ON to 7151, putting it into the calibration mode. The CAL indicator should then be steady. Also displayed is the word, 'CAL'. Once the calibration mode has been selected, the following conditions apply:
(a) Three commands cannot be used: TRIG

TRACK 'OFF' status is adopted. NULL 'OFF' status is adopted, all nulls being deleted.
(b) Four commands become available: HI LO WRITE
REFRESH for refreshing existing cal. constants.

Using the controller, select the function and range to be calibrated by sending the appropriate MODE and RANGE commands.

7151 must then be supplied with two precisely known reference inputs (non-negative) one at approximately nominal full scale (referred to as the Hi point), and one at approximately zero (referred to as the Lo point). in the case of ac ranges the lo point should not be less than approximately 5% of nominal full scale rather than zero. This ensures that all inputs are within the optimum part of 7151's linear range.

After a reference input is applied. 7151 must be informed of the precise value of the input. This is achieved by using the HI command for a Hi point, and the LO command for a lo point. These commands must be accompanied by an integer argument number, of up to six digits in length, which expresses the applied input in terms of 5×9 's count.

An integer value of 200000 corresponds to nominal full scale for any range.

For example, applying 2 V on the 2 V range, enter 200000
applying 20 V on the 20 V range, enter 200000
applying 5 V on the 200 V range, enter 005000
Apply the H 1 point input to 7151 for the requisite function/range.
For example, 2.00843 V on V dc range.
Using the controller, send the HI command to 7151.
For example, HI200843.
7151 responds by displaying 'Hi Pt' for about 1.5 seconds, during which time it measures the applied reference input. When finished, the instrument displays (and outputs) its measured count, e.g. 214576. It is of no consequence if the displayed count differs from the applied input.

Repeat the above procedure for the Lo point. For example, reference $=0 \mathrm{~V}$ (short circuit), and send the LO command. For example LOO (leading zeroes need not be specified).

Having specified the Hi point and Lo point (in any order), send the command WRITE to 7151 (no argument required). This causes the calibration constants for the selected range/function to be calculated and stored in memory. If successful, the message 'Good' is displayed. If unsuccessful, an error message will be displayed and output to the controller.

Repeat the above instructions for each function/range to be calibrated.

RESTORING THE MEASUREMENT FUNCTIONS

Using the controller, send 7151 the comand CALIBRATE OFF. The CAL indicator will then flash indicating that the CAL shorting plug is still fitted.

Withdraw the CAL shorting plug. The CAL indicator should then be invisible, the instrument being ready for normal use.

SURMARY

(a) Insert CAL shorting plug (2.5mm) in rear panel socket.
(b) Select the calibration mode by sending the CALIBRATE ON command.
(c) Select the requisite function and range to be calibrated and perform the calibration sequence. Repeat for each range/function to be calibrated.
(d) De-select the calibration mode by sending the CALIBRATE OFF command.
(e) Remove CAL plug.

Setting-Up Procedures

DC Power Supply Checks

Measure the dc supplies on PCBl and PCB2 at the output pins of the appropriate regulator IC's. Tolerances of the most important supplies. mains voltage 240 V , follow:
floating 15 V unregulated floating 15 V regulated floating 5 V unregulated
floating 5 V regulated earthy 5 V unregulated earthy $5 v$ regulated
between 20.7 V and 21.6 V
$15 \pm 0.75 \mathrm{~V}$
between 8.8 V and 9.1 V
$5 \pm 0.25 \mathrm{~V}$
between 9.5 V and 9.8 V
$5 \pm 0.25 \mathrm{~V}$

Display Checks

The contrast of the display can be adjusted by means of RV301. Make the digits appear as black as possible but without introducing slurring when a reading changes.

Keyboard Checks

The following sequence exercises all 16 keys.

Key Press	Display Response
FILT 2 press minimum	"FILT" on/off
	Finish with "FILT" off
I~	ma-
$\mathrm{I}===$	mA= $=$
K Ω	K Ω
V	V~
$\mathrm{V}==$	$V==$
AUTO 2 ptesses minimum	"AUTO" on/off
∇	Check for downranging
\triangle	Check for upranging
LOCAL	"GPIB nm" where nm is address value.
NULL 2 presses minimuim	"NULL" on/off
6×92 presses minimum	"6 x 9" on/off
TRACK 2 presses minimum	"HOLD" on/off
SAMPLE with "HOLD" asserted	"HOLD" goes out briefly and returns.
COMPUTE	"NO PROG"
MENU	"PROBES?"

Initial Calibration Procedures
Test Equipment

1. General purpose DMA.
2. General purpose oscilloscope
3. Controller, e.g. Commodore PET fitted with BASIC III or BASIC IV ficmware.
4. Calibrator, e.g. Fluke 5101 fitted with GPIB interface.
5. ACV Calibrator, e.g. Hewlett-Packard 745.
6. ACV High Voltage Amplifier e.g. Hewlett-Packard 746.
7. Capacitor 0.1 1 F polypropylene attached to a twin 4 ma banana plugs (3/4" centres).

Switch on 7151 and allow to warm up for at least one hour before calibration.

The initial calibration procedures are detailed in the following tables:

Table No.	Procedure
2.1	Initial calibration, DC Volts
2.2	Initial calibration, Resistance
2.3	Initial calibration, Current
2.4	Initial calibration, AC Volts

Please Note: The limits of error expressed in the following tables are those adhered to by the factory for a new instrument. As an instrument 'ages', "components become "more noisy or their tolerances increase. Therefore, when calibrating a used instrument, it may be necessary to accept limits of error that are marginally higher than those listed in these pages. However, the instrument should always conform to the comercial specification (see Operating Manual) after calibration.

Table 2.1 Initial Calibration, DC Volts

TEST	RANGE \& MODE	\& INPUT	ACTION	LIMITS	COMMENTS
1	Configure the rear panel interface switches and connect the controller to 7151. Do not insert the calibration Key Jack yet. FRONT/REAR switch to 'FRONT'.				
2					
3	Power on				
4	Insert Calibration Key Jack				
5	2VDC	s/c link VHI-VLO front	Adjust RV3. DVM between link \& ROME	$\pm 100 \mu \mathrm{~V}$	I/P amp gross offset null.
6	2VDC	s/c VHI-VLO Front	Check display for scatter	3 adjacent values	2 V range noise test. The reading may jump every 10 secs at drift-correct.
7	$0.2 V D C$		Check reading	$0 \pm 100 \mu \mathrm{~V}$	Input current measurement. Value may be exceeded at drift-correct.
8	2VDC	4V< plus overload <-100V	Measure C4 with DMM referred to ROME	$\begin{aligned} & +3.90 \\ & +3.05 \end{aligned}$	Positive input-clamp test (D6)
9	2VDC	-4 V < minus overload <-100V	As above	$\begin{aligned} & -3.05 \\ & -3.90 \end{aligned}$	Negative input-clamp test (D26)
10	2VDC	$\begin{aligned} & \pm 1.99999 \mathrm{~V} \\ & \text { alternatively } \end{aligned}$	Adjust RV1 CAL BAL	$\begin{aligned} & + \text { and - } \\ & \text { equal within } \\ & 1 \text { bit } \end{aligned}$	Cal. Bal Adjustment Use continuous drift-correct (Yl).
11	2VDC	$\begin{gathered} +1.99999 \mathrm{~V} \& \\ 0.00000 \mathrm{~V} \end{gathered}$	Do callbration routine over the interface		+2V set-up
12	0.2VDC	$\begin{aligned} & 0.199999 \mathrm{~V} \\ & 0.00000 \mathrm{~V} \end{aligned}$	Do calibration routine over the interface		+2 V set-up. Use the calibrator to deliver 0 volt.
13	20VDC	$\begin{aligned} & +19.9999 \mathrm{~V} \& \\ & 0.00000 \mathrm{~V} \end{aligned}$	Do calibration routine over the interface		+20V set-up.

Table 2.1 Cont.

TEST	RANGE MODE	\& INPUT	ACTION	LIMITS	COMMENTS
14	200VDC	$\begin{gathered} +199.999 \mathrm{~V} \& \\ 0.00000 \mathrm{~V} \end{gathered}$	Do calibration routine over the interface		+200V set-up.
15	1kVDC	$\begin{gathered} +10000.00 \mathrm{~V} \& \\ 0.00 \mathrm{~V} \end{gathered}$	Do calibration routine over the interface		+lkV Set-up. The Calibrator LO and the 7151 LO input should be mains grounded. Check that the spark-gap does not operate. Apply for 1 minute and check that the reading does not drift more than 2 bits.
16			Exit Cal Mode		
17	2VDC	$\begin{aligned} & +1.00000 \mathrm{~V} \\ & -1.00000 \mathrm{~V} \end{aligned}$	Measure	. ± 2 bits pos-neg error	Linearity. Change polarity changing over inputs.

Table 2.2 Initial Calibration, Resistance

TEST	RANGE \& MODE	INPUT	ACTION	LIMITS	COMMENTS
1	$20 \mathrm{k} \Omega$	DMM between I- and LO	Measure current from -I. DMM set to current.	$100 \pm 5 \mu \mathrm{~A}$	
2	200k Ω	As above	As above	$10.0 \pm 0.5 \mu \mathrm{~A}$	
3	$2 \mathrm{M} \Omega$	As above	As above	$1.0 \pm 0.5 \mu \mathrm{~A}$	
4	$2 \mathrm{k} \Omega$	$\begin{aligned} & 1.00000 \mathrm{k} \Omega \\ & \text { and } 1 \Omega \end{aligned}$	Do calibration using the interface		$2 \mathrm{~K} \Omega$ range set up
5	20k	$\begin{aligned} & 10.0000 \mathrm{k} \Omega \\ & \text { and } 1 \Omega \end{aligned}$	Do calibration using the interface		$20 \mathrm{~K} \Omega$ range set up.
6	200ks	$\begin{aligned} & 100.000 \mathrm{k} \Omega \\ & \text { and } 1 \Omega \end{aligned}$	Do calibration using the interface		$200 \mathrm{~K} \Omega$ range set up.
7	2M,	$\begin{aligned} & 1.00000 \mathrm{M} \Omega \\ & \text { and } 1 \Omega \end{aligned}$	Do calibration using the interface		$2 M \Omega$ range set up $0.1 \mu \mathrm{~F}$ in parallel will reduce scatter caused by series mode interference.
8	20MS	$\begin{aligned} & 10.0000 \mathrm{M} \Omega \\ & \text { and } 1 \Omega \end{aligned}$	Do calibration using the interface		20M Ω range set up. 0.1uF in parallel will reduce scatter.
9	2M 2	DMM across 7150 HI \& LO	Measure the o/c volts from Ω source.	$+5.2 \mathrm{~V} \pm 1 \mathrm{~V}$	Ω source positive clamp.
10	$2 M \Omega$	$\begin{aligned} & 240 \mathrm{VAC} \\ & / 50 \mathrm{~Hz} \end{aligned}$	Apply VHI-VLO 10 seconds.		Ohms overload test
11	$2 \mathrm{M} \Omega$	$1.00000 \mathrm{M} \Omega$	Check after test 9	$\begin{aligned} & 1.00000 \mathrm{M} \Omega \\ & \pm 100 \text { bits } \end{aligned}$	Survival check for damage after test 10.
12	DV Auto	$\begin{aligned} & +1 \mathrm{kV} \\ & \text { applied } 5 \\ & \text { times } \end{aligned}$	Check display	± 10 bits	1 kV step input test. LO and GUARD must connect to LO of Cal. and also to mains ground. 7151 must uprange withou power restarts. It is permissible that the spark-gap operates.

Table 2.3 Initial Calibration, Current

TEST	RANGE \& MODE	INPUT	ACTION	LIMITS	COMMENTS
1	VAC various ranges	s/c	Adjust RV2 for minimum @ TP3	± 150 bits referred to OV	ICl5 offset null adjust. Use DMM to monitor TP3 Transformer lamination to be mains-grounded. The lowest figure possible is required; if necessary by error-sharing among the ranges.
2	20VAC	$\begin{aligned} & 19.9999 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Note reading		
3	20VAC	$\begin{aligned} & 19.9999 \mathrm{~V} \\ & 50 \mathrm{kHz} \end{aligned}$	Adjust CVl \& R10 for flat response	Value at test ${ }^{\prime} 2 \text { ' } \pm 0.010 \mathrm{~V}$	Attenuator HF trim. 100 bit limit applies when a dummy lid is fitted.
4	0.2VAC	$\begin{aligned} & 0.199999 \mathrm{~V} \& \\ & 0.019999 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Calibrate over the bus.		0.2 V LF Set-up Fluke 5101.
5	2VAC	$\begin{aligned} & 1.99999 \mathrm{~V} \& \\ & 0.19999 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Calibrate over the bus.		2V LF Set-up
6	20VAC	$\begin{aligned} & 19.9999 \mathrm{~V} \& \\ & 1.99999 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Calibrate over the bus.		20 V Set-up
7	200VAC	$\begin{aligned} & 199.999 \mathrm{~V} \& \\ & 19.999 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Calibrate over the bus.		200V Set-up
8	1kVAC	$\begin{aligned} & 750.00 \mathrm{~V} \& \\ & 199.99 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Calibrate over the bus.		1 kV Set-up
9			Exit Cal Mode		
10	0.2VAC	$\begin{aligned} & 30 \mathrm{KHz} \\ & 0.199999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 0.199999 \mathrm{~V} \pm \\ & .000120 \mathrm{~V} \end{aligned}$	
11	0.2 VAC	$\begin{aligned} & 10 \mathrm{KHz} \\ & 0.199999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 0.199999 \mathrm{~V} \pm \\ & .000096 \mathrm{~V} \end{aligned}$	

Table 2.4 Cont.

TEST	RANGE \%	INPUT	ACTION	LIMITS
	MODE			
12	2VAC	$\begin{aligned} & 10 \mathrm{kHz} \\ & 1.99999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 1.99999 \mathrm{~V} \\ & .00096 \mathrm{~V} \end{aligned}$
13	2VAC	$\begin{aligned} & 30 \mathrm{kHz} \\ & 1.99999 \mathrm{~V} \end{aligned}$	Check	$\begin{array}{r} 1.99999 \mathrm{~V} \\ .00120 \mathrm{~V} \end{array}$
14	20VAC	$\begin{aligned} & 30 \mathrm{kHz} \\ & 19.9999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 19.9999 \mathrm{~V}= \\ & 0.0120 \mathrm{~V} \end{aligned}$
15	20VAC	$\begin{aligned} & 10 \mathrm{kHz} \\ & 19.9999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 19.9999 \mathrm{~V} \pm \\ & .0096 \mathrm{~V} \end{aligned}$
16	200vac	$\begin{aligned} & 10 \mathrm{kHz} \\ & 199.999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 199.999 \mathrm{~V} \pm \\ & .096 \mathrm{~V} \end{aligned}$
17	200VAC	$\begin{aligned} & 30 \mathrm{kHz} \\ & 199.999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 199.999 \mathrm{~V} \pm \\ & 0.120 \mathrm{~V} \end{aligned}$
18	1 kVAC	$\begin{aligned} & 10 \mathrm{kHz} \\ & 750.00 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 750.00 \mathrm{~V} \pm \\ & 0.46 \mathrm{~V} \end{aligned}$
19	1kVAC	$\begin{aligned} & 30 \mathrm{kHz} \\ & 750.00 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 750.00 \mathrm{~V} \pm \\ & 0.70 \mathrm{~V} \end{aligned}$
20	0.2VAC	s/c	Check	150 ${ }^{\text {V }}$

s/c zero.
Trasnsformer laminations to be mains-grounded.

21	2VAC	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 2.00000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 2.00000 \mathrm{~V} \pm \\ & 0.01456 \mathrm{~V} \end{aligned}$
22	2VAC	$\begin{aligned} & 20 \mathrm{~Hz} \\ & 2.00000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 2.00000 \mathrm{~V} \pm \\ & 0.00416 \mathrm{~V} \end{aligned}$
23	2VAC	$\begin{aligned} & 40 \mathrm{~Hz} \\ & 2.00000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 2.00000 \mathrm{~V} \pm \\ & 0.00096 \mathrm{~V} \end{aligned}$
24	2VAC	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 2.00000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 2.00000 \mathrm{~V} \pm \\ & 0.00880 \mathrm{~V} \end{aligned}$
25	2VAC	$\begin{aligned} & 100 \mathrm{kHz} \\ & 0.19999 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 0.199999 \mathrm{~V} \pm \\ & 0.000880 \mathrm{~V} \end{aligned}$
26	20VAC	$\begin{aligned} & 100 \mathrm{kHz} \\ & 20.0000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 20.0000 \mathrm{~V} \pm \\ & 0.0880 \mathrm{~V} \end{aligned}$
27	200VAC	$\begin{aligned} & 100 \mathrm{kHz} \\ & 200.000 \mathrm{~V} \end{aligned}$	Check	$\begin{aligned} & 200.000 \mathrm{~V} \pm \\ & 0.880 \mathrm{~V} \end{aligned}$

Table 2.4 Cont.

TEST	RANGE \&	INPUT	ACTION	LIMITS	COMMENTS
	MODE				
24	2 VAC	$750 \mathrm{~V} / 400 \mathrm{~Hz}$	Check	$750.00 \pm$	750VAC Autorange
	Auto	applied 5		0.46 V	test. Lo and
		times			GUARD must
					connect to LO of
					Calibrator and
					also mains
					ground. 7151
					must uprange with
					no signs of
					distress.

Final Calibration Procedures

7151 should be fully cased and placed in a $20^{\circ} \mathrm{C}$ enviconment for at least four hours and switched on for at least two hours prior to final calibration. GUARD and LO should be mains-grounded to minimise series-mode interference. For this reason, use of the screened leads is essential for HI Ω measurement.

Note that the four screws which retain the top section of the case must be fully tightened to make the case screening effective.

The final calibration procedures are detailed in the following tables:

Table No.
2.5
2.6
2.7
2.8
2.9
2.10

Procedure

Final calibration, DC Volts Final calibration, Resistance Final calibration, AC Volts Final calibration, Current Final calibration, Recheck Other Checks

Table 2.5 Final Calibration, $D C$ Volts

| TEST |
 MODE | INPUT | ACTION | LIMITS |
| :---: | :--- | :--- | :--- | :--- | COMMENTS

TEST	$\begin{aligned} & \text { RANGE \& } \\ & \text { MODE } \end{aligned}$	INPUT	ACTION	LIMITS	COMMENTS
1	2Kת	$1 \mathrm{~K} \Omega \& 18$	Do calibration over the bus		4 terminal connection
2	20k Ω	$10 \mathrm{k} \Omega \& 1 \Omega$	Do calibration over the bus		4 terminal connection to be used.
3	200kS	$100 \mathrm{k} \Omega \&$ 18	Do calibration over the bus		
4	2M,	$\begin{aligned} & 1 M \Omega \& \\ & 1 \Omega \end{aligned}$	Do calibration over the bus		Use screened lead
5	20M3	$\begin{aligned} & 10 M \Omega \& \\ & 1 \Omega \end{aligned}$	Do calibration over the bus		Use screened lead

Table 2.7 Final Calibration, AC Volts

TEST	RANGE \& MODE	INPUT	ACTION	LIMITS	COMMENTS
1	0.2 VAC	0.199999 V \& 0.0199999 V 400 Hz	Do calibration over the bus		
2	2VAC	$\begin{aligned} & 1.99999 \mathrm{~V} \\ & \& .19999 \mathrm{~V} @ \\ & 400 \mathrm{~Hz} \end{aligned}$	Do calibration over the bus		
3	20VAC	19.9999 V \& 1.9999V a 400 Hz	Do calibration over the bus		
4	200VAC	$\begin{aligned} & 199.999 \mathrm{~V} \\ & \& 19.999 \mathrm{~V} @ \\ & 400 \mathrm{~Hz} \end{aligned}$	Do calibration over the bus		
5	1kVAC	$\begin{aligned} & 750.00 \mathrm{~V} \\ & \& 199.99 \mathrm{~V} \\ & 400 \mathrm{~Hz} \end{aligned}$	Do calibration over the bus		

Table 2.8 Final Calibration, Current

TEST	RANGE \& MODE	INPUT	ACTION	LIMITS	COMMENTS
1	2ADC	$\begin{aligned} & 1.00000 \mathrm{~A} \\ & \text { and } 0 / \mathrm{c} \end{aligned}$	Do calibration over the bus		
2	2A AC	$\begin{aligned} & 1.99999 \mathrm{~A} \\ & \& 0.1999 \mathrm{~A} \\ & 400 \mathrm{~Hz} \end{aligned}$	Do calibration over the bus		

Table 2.9 Final Calibration Recheck (Filter In)

TEST	RANGE \& MODE	INPUT	LIMITS
1	2ADC	1.00000A	20 bits
2	2AAC	1.9999A/400Hz	100 bits
3	$2 \mathrm{k} \Omega$	$1.00000 \mathrm{~K} \Omega$	4 bits
4	$20 \mathrm{k} \Omega$	$10.0000 \mathrm{k} \Omega$	4 bits
5	$200 \mathrm{k} \Omega$	$100.000 \mathrm{k} \Omega$	5 bits
6	2M,	$1.00000 \mathrm{M} \Omega$	5 bits
7	20MR	10.0000M	40 bits
8	0.2 VAC	0.199999 V 400 Hz	100 bits
9	2VAC	1.99999 V 400 Hz	100 bits
10	20VAC	19.9999 V 400 Hz	100 bits
11	200VAC	199.999 V 400 Hz	100 bits
12	1 k VAC	750.00 V 400 Hz	46 bits
13	0.2 VAC	1Ω (short circuit)	250 bits
14	20VAC	19.9999 V 50 kHz	300 bits
15	0.2 VDC	+0.199999V	6 bits
16	2 VDC	+1.99999V	6 bits
17	20VDC	+19.9999V	6 bits
18	200VDC	+199.999V	6 bits
19	1 kVDC	+1000.00V	4 bits
20	1 kVDC	-10000.00V	4 bits
21	200VDC	-199.999V	6 bits
22	20 VDC	-19.9999V	6 bits
23	2VDC	-1.99999V	6 bits
24	0.2 VDC	-0.199999V	6 bits

TEST	RANGE \& MODE	INPUT	ACTION	LIMITS	COMMENTS
1		1.5 kV max.	Do flash test		Safety test to IEC 348. Refer to Solartron Specification 09/00/105.02. Power switch ON.
2	DC Auto	See Fig. 2.1	Check Display	$0+500 \mu V$	DC Common Mode Rejection 120 dB .
3	AC Auto	See Fig. 2.2	Check Display	$0 \pm 340 \mu \mathrm{~V}$	AC Common Mode Rejection 120dB.
4		25 Ampere 5 seconds	Perform earth continuity test	0.5Ω	
5			Fit mains fuses appropriate to supply voltage.	250mA SLO BLO or 100 mA SLO-BLO	
6		1.5 kV cms	Flash Test LO to Earth.		As Test 1.

Figure 2.1 DC Common Mode Rejection

Figure 2.2 AC Common Mode Rejection

I
 1 \mathbf{I} \mathbf{I}
 I

I

3.1 GENERAL

The 7151 must be disconnected from the mains supply before proceeding with these instructions.

3.2 DISMANTLING

1. Pivot the carrying handle to the rear of the case. Pull out the handle lugs from the pivot points on each side of the case and remove the handle.
2. Remove the four screws from the bottom of the case and then withdraw the top section of the case to expose the copper track side of PCB 1.
3. Compress the two plastic snap fasteners, located on the right hand side of PCB 1 (as viewed from the unit front) to release the pcb. Pivot the pcb outwards to gain access to the board components and to expose the screening pcb and the mains transformer.
4. Remove the two screws from the holes located in the mains transformer laminations and withdraw the complete instrument assembly from the bottom section of the case. PCB 2 can now be accessed by unclipping the plastic stand-off fasteners which retain the screening board to PCB 2.
5. At the left of the front panel assembly, remove the self-tapping screw which secures the front panel assembly to a clip on PCB 2. Unplug the front panel assembly from PCB 2.
6. To gain access to PCB 3, remove the six screws which secure the pcb to the front panel. Note that PCB 3 remains attached to the front panel by the keyboard ribbon cable.

3.3 REASSEMBLING

1. Fit PCB 3 to the front assembly using the six screws.
2. Carefully plug the front panel assembly into PCB 2. Check that all of the connecting pins on the front panel assembly are correctly inserted into the socket pins on PCB 2.
3. Fit the self-tapping screw which secures the front panel assembly to PCB 2.
4. Attach the screening pcb to $P C B 2$ by use of the plastic stand-off fasteners.
5. Insert the complete instrument assembly into the bottom section of the case. Insert the two screws into the holes on the mains transformer laminations and tighten to secure the bottom section of the case.
6. Secure PCB 1 by use of the two plastic snap fasteners located on the right hand side of the pcb.
7. Dress the cables on the top of the screening board clear of the holes in the board which locate the extended lugs in the top section of the case.
8. Insert the top section of the case onto the instrument assembly and secure the top section to the bottom section by the four screws inserted into the bottom section of the case.

NOTE: It is important that these four screws are fully tightened otherwise the case screening is made ineffective and consequently the ac calibration could be impaired.
9. Fit the handle by lining up the locating lugs on the handle with the pivot points on each side of the case and then press the handle lugs into the pivoting points on the case.

Chapter 4 Circuit Descriptions \& Diagrams

Page No.	Contents
4.1	General Measurement of voltage, dc Measurement of voltage, ac
4.2	Measurement of resistance Measurement of current
4.3	Input amplifier Drift correction Input protection
4.4	Analogue to digital converter Reference supply
4.5	Floating Logic
4.6	Earthy Logic

I
 I
 I

1. GENERAL

All multimeter inputs are at some stage processed by the Analog to Digital Converter (ADC) whose operating range is limited to $\pm 2.6 \mathrm{~V}$. The range of measurement is extended beyond this figure by scaling all inputs to the 2 V range. For example, a 200 V input scaled by a factor of 0.01 would be seen by the ADC as only 2 V . Non-dc inputs must of course undergo conversion to dc as well as attenuation and scaling.
2. MEASUREMENT OF VOLTAGE, DC

The dc voltage input attenuator consists of the resistors Rla to RlD. The attenuator is switched by FETS TR7, TR8, and relay RLK in response to range control inputs from the floating logic. The attenuator setting, $\mathrm{xl}, \mathrm{x} 0.01, \mathrm{x} 0.001$ depends upon the selected voltage range, i.e.

Range (V)	Attenuation	Circuit Path
$0.2,2$	$x 1$	Direct to input amp, via RLB
20,200	$x 0.01$	RLK, TR7, with RLB open
1000	$x 01001$	RLK, TR8, with RLB open

The attenuated outputs are then amplified by the input amplifier, whose gain is arranged to be xl or xlo to ensure satisfactory scaling at the ADC.

Input switching - The de voltage inputs to the input amplifier are selected via the series FET TR7 and the shunt FET TR6. With TR5 on, TR6 is off, and vice versa.

TR6 is switched on during ac (voltage or current) measurement, during dc current measurement, and during 'drift correct'.

3. measurement of ac voltage

For Vac operations, inputs are first scaled to the $2 V$ range by the ac signal conditioning circuits and then converted into a dc voltage.

AC inputs are subject to the ac input attenuator which is switched by IC18, TR1, TR2, and by the op. amp. IC15. It's gain is set, via ICl8 to be either xl or xlo. For inputs on the 2 V range, no conditioning is required; quad analog switch IC18 selects the gain of ICl5 (via the matched resistors R21A and R21B) to be set at unity, with inputs to the amplifier passed through RLA, RLE and RLF contacts. The overall circuit gain for other input ranges is selected by TRI and ICl8 in response to range and control inputs from the floating logic.

Range (V)	Attenuation	Amp. I/P(V)	Gain	Amp 0/P(V)
0.2	xl	0.2	$\times 10$	2
2	$x 1$	2	xl	2
20	$\times 0.01$	0.2	$\times 10$	2
200	$x 0.01$	2	$x 1$	2
1000	x0,001	1	x1	1

The $A C$ to $D C$ conversion is performed by the true rms to dc converter IC21. The maximum $2 V$ output from this IC is switched to the dc input amplifier ICl via the shunt input FET TR6 and via quad analog switch IC5. 1639g/0072g
4.1

4. MEASUREMENT OF RESISTANCE

This is achieved by measuring the voltage developed across the unknown resistance when a known current is passed through it. The resultant voltage is then measured by the dc voltage measurement circuit.

Current Generator Circuit

IC3 is a precision operational amplifier to which is connected the +10 V supply from the reference circuit. The other amplifier input is the +llV reference. Thus IC3 drives TR3, maintaining a lV differential across the resistors R73, R74, R75 and R15. Control inputs from the logic circuitry switch this resistor chain (via TR4, TR9, and RLD) to define four test currents. The test currents for the various ranges are:
Nominal Range
20 MR
$2 \mathrm{M} \Omega$
$200 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$
$2 \mathrm{k} \Omega$

Test Current
100 nA
$1 \mu A$
$10 \mu \mathrm{~A}$
$100 \mu \mathrm{~A}$
$2 \mathrm{k} \Omega$
$100 \mu \AA$
When checking 4-wire measurement circuits ensure that all current available at the Hi ohms source terminal is returned via the Lo ohms source terminal.

For the ranges other than 20MS, the logic control, via IC2, also switches in the resistor chain R7, R27 and R56 which is connected between the Lo ohms source terminal and the $-3.1 V$ reference. This part of the circuit acts as a calibrated current sink for the test current generator.

Protection of the resistance measurement circuit is provided by resistor R4 (22k) which is in series with both the $\mathrm{I}+$ and $\mathrm{V}+$ input terminals. Diodes D2 and D25 limit the voltage of TR3 and R4 to between +5.3 V and -2.6 V .

5. MEASUREMENT OF CURRENT

This is achieved by measuring the potential produced across a known resistance when the unknown current passes through it. The voltage obtained can be measured by the dc input amplifier directly or for ac inputs, via the $A C-D C$ converter.

DC Current Input

Resistor R3 is a 0.1Ω shunt through which the current to be measured flows. The potential across R3 is switched to the dc input amplifier ICl via the quad switch IC5 and shunt FET TR6. The gain of ICl is set to xl0 for dc current; the amplifier output is thus correctly scaled on the 2 V range for A to D conversion.

AC Current Input

For ac inputs, the potential across resistor R3 is switched, via the quad switch IC18 and FET TR2, to the ac operational amplifier IC15. The gain of ICl5 is set to $\times 10$ for ac current inputs; thus the inputs to the AC to $D C$ converter are scaled to the $2 V$ range. After $A C$ to $D C$ conversion, the output voltage is switched to the dc input amplifier via the quad switch IC5 and shunt FET TR6.

Protection agains excessive current is by the 2 A fuse, Fl .
6. INPUT AMPLIFIER

Input amplifier ICl is a precision FET input operational amplifier. Signals for ICl are firstly amplified by the dual FET pre-amplifier, TR13, whose bias is provided by transistor TR14 and diode D7.

Inputs to the pre-amplifier are selected either by switching on TR5 (series FET) or TR6 (shunt FET) depending on the selected multimeter function. For dc measurement functions (including resistance) TR5 conducts: for ac functions, or during drift corrections, TR6 conducts.

The gain of the pre-amplifier is controlled by IC2 in response to range control signals from the floating logic. IC2 is a quad analog switch connected across ICl feedback resistors R18 and R19. The switching of IC2 sets the overall gain of the pre-amplifier and ICl to be xl or xl0 depending on the selected input range or measurement function. The gain settings can be sumarised as follows:

for $D C$ voltage ranges	Range (V)	Gain
	0.2	$\times 10$
	2	$x 1$
	20	$\times 10$
	200	xl
	1000	x 1
for $D C$	Range ($m A$)	Gain
current range	2000	$\times 10$
for AC	Range (mA)	Gain
current range	2000	xl

7. DRIFT CORRECTION

A 'drift correct' is necessary in order to compensate for any drift originating in the input amplifier or from the ADC. Typically, drift results from component aging or temperature fluctuations.

During a drift correct cycle, the input amplifier is isolated from any measured input (series FET TR5 off) and connected to signal OV (shunt FET TR6 on). With zero input to the amplifier, any resultant count is then due to drift. This is subsequently subtracted from a measurement count to provide a final count (i.e. result) free from error.

8. INPUT PROTECTION

Protection against voltage overload of the input amplifer is by spark-gap SG2 (1400V nominal) which is connected across the VHI and VLO terminals. Resistors R9 and R25 form a current limiter, and diodes D6 and D26 limit series inputs to the amplifier to $\pm 2.6 \mathrm{~V}$.
9. ANALOGUE TO DIGITAL CONVERTER (ADC)

This circuit converts the analogue output from the input amplifier into digital pulses. These are used to gate clock into a reversible counter in the MPU, ICl03, to produce a count proportional to the measured input.

The Integrator
The integrator, IC8 has the following inputs connected to its summing point :

1. The input to be measured
2. The forcing waveform
3. + reference or - reference

With zero input applied to the multimeter and a 300 Hz forcing square waveform applied continuously to the integrator, the output is driven alternately positive and negative through the thresholds of the comparators IC9 and IClO.

The states of the two comparators are followed by the bistable, ICll which synchronises the transistors to a clock. The outputs from ICIl control the analogue switch ICl6 which switch the + and - reference supplies (through $0 V$) to the integrator input. This closed loop feedback arrangement ensures that the output is always dynamically balanced about zero.

The synchronised output of the bistable, ICll, is also NANDed by ICl7 and passed to ICl03 where the pulses are counted.

10. REFERENCE SUPPLY

This circuit generates the +10 V and +11 V supplies for the ohms curcent generator and the + and -3.1V supplies for the ADC. The reference diode, D20, together with the resistor network R38, R42, R17 and RV1, ensures the input to IC4 is held at 3.1V. D20 also forms the + reference supply, via IC6a and ICl6, for the ADC. The output of IC4 forms the -3.1V reference supply.

All references are with respect to the OV ROME.
The + reference voltage is also used as the input to IC6b. This is an amplifier which drives a current through R14, R57 and Rl6 in order to maintain the reference at balance. The resistor chain is tapped to provide the +10 V and +11 V reference voltages for the ohms current generator.

11. FLOATING LOGIC

This circuit includes the floating logic microprocessor (MPU), ICl03. This IC commicates with the earthy logic MPU via a 2 -wire optically coupled serial link. The circuit can be considered to have four separate functions:

1. Controls range and mode switching on the analogue pcb.
2. Generates the forcing waveform for the ADC.
3. Counts the pulsed output from the ADC.
4. Stores calibration constants and checksum for use during auto-cal procedures.

Note: The circuit automatically resets to a known state in the event of a system lockout.

11.1 Analogue Control Lines

These MPU outputs are connected to drivers, comparators and bi-lateral switches on the analogue pcb. The outputs, via their respective switching devices, correctly configure the circuits for the selected multimeter range and function.

11.2 Forcing Waveform

The "timer-out" signal from the MPU is a 300 Hz waveform which is used to generate the forcing waveform for the A to D converter. The TTL level signal is converted into a 0 to $8 V$ square wave by the bi-lateral switch IC5 in the analog circuit.

11.3 Counting Circuit

Timer-in is an input to the MPU which is derived from the ADC. The input is a single, clock synchronised pulse-train; the pulse widths indicating alternatively, the length of time the + and - reference voltages were applied in order to balance the integrator. Within the MPU, these pulses are used to gate clock into a reversible counter to produce a nett count proportional to the measured input.

11.4 Non-Volatile Memories

IC's 105 and 106 are EAROMs which hold the automatic calibration program for the multimeter and the calibration constants for each mode/range selected.

11.5 Reset Watchdog

This circuit causes the floating MPU to be reset in the event of system lockout. The circuit operation is similar to that described for the earthy logic reset circuit (page 2.11).

A 1.2288 MHz clock derived output from the MPU is divided by a l2-bit binary counter IC 107. The 300 Hz (3.33 ms period) output from this IC is counted by the 4-bit counter. ICl08.

The serial link TX DATA line from the earthy MPU, is also connected to ICIO8. This input holds off the RESET output unless the RX DATA line is Inactive for more than 26.664 ms (8 x period).

[^0]
12. EARTHY LOGIC

This includes the microprocessor set, the remote control interfaces, the watch-dog reset circuitry, the analog to digital converter (analog output), clock and the interface switch decoders.

MPU set
This consists of IC 212 : 8 bit MPU
IC 207 : $16 \mathrm{~K} \times 8$ bit ROM
IC 208 : $8 \mathrm{~K} \times 8$ bit RAM

12.1 GPIB Interface
 This consists of

IC 203 : general purpose interface adaptor
IC 202 : octal transceiver
IC 201 : octal transceiver
IC 203 consists essentially of 15 registers, 7 of which can be written into by the MPU and, depending on the state of control lines R/W and RSO to RS2, 8 can be read by the MPU.

The transceivers IC201 and 202 are bidirectional and consist of eight driver/receiver pairs each. Each driver/receiver is enabled by a send/receive input (T/R1 and T/R2) with the disabled output forced to a high impedance state. All GPIB signals are TTL level.

12.2 RS232 Interface

This consists of IC 204 : RS232 interface adaptor
IC 218 : RS232 line driver
IC 219 : RS232 line recelver
IC204 is essentially a reversible 8 to 1 line decoder for the transmission and reception of data via the TxD and RxD lines. IC218 and 219 serve to buffer and level-shift the various signals to/from RS232 levels ($\pm 12 \mathrm{~V}$).

12.3 Analog Output

This is generated by the 8-bit digital to analog converter, IC205. The voltage between the Hi and Lo lines should bot exceed +10 V , or be less than $0 V$.

12.4 Address Decoders

The MPU addresses the various bus connected devices and the watch-dog reset circuitry via the decoder, IC209. The ROM, IC207, is addressed separately by the Al5 (inverted) address line.

```
12.5 Clock
IC206 is a real time clock which is responsible for generating accurate time signals for the MPU and provides control signals for other circuits. The clock frequency is factory adjusted to exactly 32.768 kHz . If the frequency is to be checked, test probes must not be placed directly across the crystal as this will produce a false reading. Instead, the frequency should be measured at IC206/pin 21 where it is suitably buffered and divided by four. i.e. \(8.1920 \mathrm{kHz} \pm 0.1 \mathrm{~Hz}\). The frequency can be adjusted with C217.
```

Whilst the instrument is switched-off, standby power is supplied to IC206 (pin 22) by the back-up battery, BAT 201 (approx. 4.5V).
12.6 Reset Watchdog

This resets the MPU and the display in the event of a system lockout. A 0.6144 MHz clock derived output from the MPU is further divided by the l2-bit binary counter IC2l6. The 150 Hz (6.6 ms period) resultant output is checked by the counter, IC217.
12.7 Display and Keyboard

This circuit has two main functions:

1. to decode display and command data
2. to transfer keyboard selections to the MPU
12.8 Display

The display circuit includes custom LCD X301. At switch-on, the display undergoes selt-test for approx. 2 secs. The display is of the matrix type where it takes both column and row signals to activate particular segments (see diagram of display layout). The display is driven by pulses that alternate about OV ; this ensures that the crystals do not become permanently polarised.

The driver for the display is IC301 and is serially interfaced with the 'earthy' logic via pins $8 \rightarrow 13$. With CS (chip select), data can be sent on the serial input (SI) line. A data bit is sent for every +ve going transition of SCK; on the eight on, the BUSY line is made low until the IC is ready to accept more data.

The serial input may just be data for display, in which case the control data (C/D) line remains in its active low state. However, for driver commands, such as blanking or flashing the display, C/D is set to active high.

12.9 Keyboard

The (vertical) column outputs from the keyboard are connected directly to the MPU and, with no selections made, held in the logic l state via pull-up resistors on the earthy logic pcb. Keyboard (horizontal) rows are scanned via output latch IC210 and BCD-to-decimal decoder, IC302.

12.10 Power Supplies

Both PCB1 and PCB2 have on-board power-supply regulation, supplied by a common mains transformer. The display board logic derives its power from the regulated 5 V supply of PCB2 whilst the display backlighting power is derived from PCB2's unregulated 5 V supply. The -25 V supply of PCBL can only be enabled by insertion or a shorted CAL plug, and is required to re-program the calibration constants held in the EAROMs (ICs $105 \& 106$).

i

Chapter 5 Fault Diagnosis Guide

A good check is to look for the display backlights. If no lights check fuses and supply voltages.

Fuses keep blowing Rectifier, regulator Correct current drawn from the mains or smoothing for 240 V on 240 V setting: approx 60 mA , capacitor faulty. for 120 V on 120 V setting: approx 120 mA . Under fault conditions (regulator blown) current may typically be in order of 500mA. Look for correct output from each regulator IC.
'Fail l' displayed at power-up
'Fail 2' displayed at power-up

Amps range
'does not work'
Display inoperative Poor connections

Display 'sluggish' or too faint

7151 doesn't Poor contacts in perform 'correctly' switch S201, or via remote control, fault in interface 1.e. perhaps occasional errors occur. chips. IC201, 202. 203 (for GPIB) or IC218, 219, 204

2A fuse on rear
panel blown.
Poor connections
between display and
IC301, or of the
2A fuse on rear
panel blown.
Poor connections
between display and
IC301, or of the header PL301 in socket SK204.
Communication breakdown between floating and earthy logic

Problem with Realtime clock IC206. possibly caused by battery Bat201 being discharged. (for RS232).

Check opto-couplers IC214 \& IC215. ICl02, and the connecting wires and plugs (to PCB 1). Look for activity on the TX and RX lines.

Leave 7151 switched on for 24 Hrs. displaying 'Fail 2', to recharge battery (or fit a good replacement). Switch off and on again. If 'Fail 2' still displayed, switch off, remove turret lug link (if no link, remove battery) and momentarily short IC206 pin 22 to OV to reset the chip. Also check that pin 21 is exactly 8.192 kHz (derived from X203).

Check fuse.

Remake all connections and verify 100\% contact. Look for the following shaped waveform on the IC301 outputs $50 \rightarrow 531$:

Also check the control Ines of IC301 (e.g. ensure that RESET is not 'stuck').

Check setting of RV301 (see P2.5).

Toggle switches 5201 to clear theic contacts and set as required. If no improvement check chips by substitution. In the case of the GPIB, ensure that the correct cables are being used, and disconnect all instruments other than the controller to verify if 7151 is faulty.

After calibrating New cal. constants Check that -25 V is produced by ICl57 out of calibration. in ICl05 \& 106.
pin 5 when the CAL plug is fitted, and that it reaches ICl05 \& 106 pin 1.

Very often a fault will not fall into one of the above categories and it can be very difficult to decide where to start looking. However, for PCBl and pCB2 there are some basic checks that can be carried out to help narrow the search.

Board Check

PCB 1
All power supplies are within tolerance (see Chapter 2).
Waveform E at ICl03 pin 40 is 1.2288 MHz .
TX and RX of data from RCB 2 (via opto couplers) on IC103 pins ll \& 12. It is sufficient just to look for activity on the signal lines.

Forcing waveform of 300 Hz is generated by ICl03 pin 9. Reference voltages at ICl6 pins $9 \& 6$ should be 3.1 V and -3.1V respectively.

Waveform at TP4 (IC 16 pin 10) should look like:

RESET from IC 103 pin 6 for activity.

PCB 2
All power supplies.
Waveform E at IC212 pin 40 is 1.2288 MHz ,
TX and RX of data from PCB 1 (via opto couplers) on IC212 pins 11 \& 12 . It is sufficient just to look for activity on the signal lines.

RESET from IC2l2 pin 6 for activity.
Pin 21 of IC206 (Real time clock) should be exactly 8.192 kHz .

Chapter 6 Parts Lists \& Component Layout

Page No. Contents
6.1 Parts List abbreviations
6.2 PCB 1
6.9 PCB 2
6.12 PCB 3
6.12 Miscellaneous

$\because:$
\%日:

30
abin ses fot
z

CHAPTER 6

PARTS LISTS AND LAYOUT DIAGRAMS

INIRODUCTION
This section contains component layout diagrams and detailed parts lists for each of the three printed circuit boards and the front and rear panels. When ordering spare parts, it is essential to quote the instrument serial number located on the rear panel as well as the full description of the item given in the appropriate parts list.

A description of the abbreviations used in the parts list is given as follows:

COMPONENT PARTS LIST ABBREVIATIONS
CIRCUIT REFERENCES

B	Battery
C	Capacitor
D	Diode
FS	Fuse
IC	Integrated Circuit
L	Inductor
LK	Link
PL	Plug
R	Resistor
RL	Relay
S	Switch
SK	Socket
T	Transformer
TP	Terminal Post (or Test Point)
TR	Transistor
X	Other Components

Also Used:
RV Variable Resistor
COMPONENT TYPES

Fixed Resistors
CACP Carbon Composition
MEFM Metal Film
MEGL Metal Glaze
MEOX Metal Oxide
poww power Wirewound
PRWW Precision Wirewound
TKFM Thick Film

Capacitors
ALME Aluminimum Electrolytic
CARB Polycarbonate
CERM Ceramic
ESTE Polyester Foil
ESTM Polyester Metallised
PTEE PTFE
TAND Tantalum Dry

Variable Resistors
CMPM Cermet Preset Multiturn

PCB 1 (71510501) Floating Logic and Analogue

Cct.		General Description				Solartron
R1	CADI776			TKFM		
R2	1 k	0.25W	5\%	MEOX		195631000
R3	0.1		0.5\%	PRWW		160300506
R4	22k	3W	5\%	MEGL		176442200
R5	10k	0.5W	10\%	CACP		172341000
R6	1.2k	0.125W	0.5\%	MEFM		192731202
R7	30.9k	0.125W	0.25\%	MEFM		192843094
R8	100k	0.25W	5\%	MEOX		198651000
R9	47k	3W	2\%	MEGL		175244700
R10	990k	2W	0.5\%	MEFM		160400487
RII	9k+1k	0.2W	0.1\%	TKFM		160400582
R12	3.3k	0.25W	5\%	MEOX		195633300
R13	1 k	0.25w	5\%	MEOX		195631000
R14	1452 \}	matched	0.25\%			169617201
R15	9k $\}$	pair				
R16	CADI776			TKFM		160400583
R17	10k	0.125W	0.5\%	MEFM		192741002
R18	9k	mat ched				
R19	1 k	pair	0.25\%			169617001
R21	9k+1k	0.2W	0.1\%	TKFM		160400582
R20	100k 3	matched				
R24	67k $\}$	pair	0.25\%			169617101
R22	33k	0.25W	5\%	MEOX		195643300
R23	30k	0.125W	0.5\%	MEFM		192743002
R25	47k	3W	2\%	MEGL		175244700
R26	33k	0.25w	5\%	MEOX		195643300
R27	280k	0.125W	0.258	MEFM ${ }^{\text {a }}$	ves.u	192852804
R28	lk	0.25W	5\%	MEOX	Nose	195631000
R29	100	0.25w	5\%	MEOX		195621000
R30	100k	0.25W	5\%	MEOX ${ }^{\text {a }}$	\%	195651000
R31	100k	0.25W	5\%	MEOX	\%	195651000
R32	22k	0.25W	5\%	MEOX ${ }^{\text {a }}$		195642200
				$\cdots \mathrm{n}$	We.0	
R33	1 k	0.25 W	5\%	MEOX 1	wes.	195631000
R34	100	0.25 W	5\%	MEOX Sc:	WE.:	195621000
R35	4.7k	0.25W	5\%	MEOX m_{4}	w-6	195634700
R36	4.7k	0.25W	5\%	MEOX		195634700
R37	470k	0.5 W	10\%	CACP ${ }^{\text {? }}$	ator	172354700
R38	10 k	0.125W	0.5\%	MEFM =	bris:	192741002
R39	33k	0.25W	5\%	MEOX 6	1\%	195643300
R40	33k	0.25W	5\%	MEOX		195643300

PCB 1 (cont.)

PCB 1 (cont.)

PCB 1 (cont.)

Cct. Ref.
$\begin{array}{ll}\text { TR9 } & \text { WN1001 } \\ \text { TR10 } & \text { Ul897 }\end{array}$
TRII BCY70
TR12 WN1001
$\begin{array}{ll}\text { TR13 } & \text { WD460 } \\ \text { TR14 } & \text { BC183 }\end{array}$
TR101 BC183
General Description

IC1	OP14
IC2	DG211
IC3	AD545K
IC4	OPO5
IC5	DG211
IC6	OP14
IC7	DG211
IC8	OP05
IC9	LM311
IC10	LM311
IC11	74LSI75
IC12	LM399

ICl3 ULN2003
IC14 LM339
ICl5 AD528J
ICl6 DG200
ICl7 74LS00
IC18 DG211
IC19 AD637K
IClO2 74LSO4

Precision FET Op. Amp Op Amp

Quad Analog SPST switch Op. Amp (matched with ICl) Quad Analog SPST switch Op Amp

Voltage Comparator Voltage Comparator Quad D-type Flip-Flop Quad o/Collector Comparator

7-Channel Buffer Quad o/Collector Comparator FET Op. Amp Dual Analog Switch

Quad Dual I/P Nand Gate Quad Analog SPST switch Rms to dc Converter Hex Inverters
!
Solartron Part No. 300555770 300553800 aj 300553590 300555770 ia 300555820 dd
300555590 b.í 300555590

Op. Amp (matched with IC6) $\because \therefore 510091360$
Quad analog SPST switch $\quad \therefore 510091180$ id

HD68P01V05 Microprocessor
$\begin{array}{lll}\text { ICl03 } & \text { HD68P01V05 Microptocess } \\ \text { ICl04 } & 6.8 \mathrm{kR} & \text { Resistor pack }\end{array}$
ICl05 NC7033
ICl06 NC7033
IC107 $4040 \mathrm{BE} \quad 12$ stage ripple counter ICl08 74LS197 4 bit binary counter
IC151 7815CKC
ICl52 LM340T5
15 V
5 V
ICl53 79L05ACZ 5V
ICl54 7915 15V
ICl55 79LO5ACZ 5V
ICl57 TILl17
Ceramic surge voltage protector, 1400 V

51009074180 510091130

510091180
510091360
510091180

510091130
510091280 F
510091280.:

510003170 in
510090490
510004980
510090490
510090380
510091170
510002000
510091460
510091460
510002690
510006250
160400569
510005150 : C
510005150
\%
510001820.6

510005750 :
510090320.0

510090500

等

; $510090950^{\text {gig }}$
510090330 .m
510090950,
300540240
$300011470^{2 \pi}$

PCB $\hat{1}$ (cont.)

Cct. Ref.
i: General Description
SK201 Auxiliary Socket (with ribbon)
SK202 GPIB Socket
SK203 CAL Socket Fuse, 2A Fast blow Fuse, 250 mA slow blow Fuse, 100 mA slow blow

9	\cdots	me	in!	106
4.	Sis	vin:		
		622e-	1.	1000
		$\cdots \operatorname{sic}^{2}+\cdots$		soce
		$\cdots{ }^{2} \cdot$		¢ 9 ca
		\cdots	\therefore	10 OL

105:

nor.

- - - - - - - - - - - - - - - - - - - - - - -

PCB 2 (71510502)
Cct. Ref.

PCB 2 (cont)
100
Cct. Ref.

C221	1 nF	500 V
C222	47nF	25 V
C223	47nF	25 V
C224	10nF	100 V
(\%).		
C225 \%	10 nF	100 V
C226 \%	100uF	10 V
C227.	47 nF	25 V
C228	100 nF	50 V
[98:		
C229\%.	47 nF	40 V
C230	47nF	40V
C232:	47nF	40 V
C235	47nF	40 V
C236	47nF	40 V
C237	lnF	500 V
C238	1 nF	500 V
C239	1 nF	500 V
04....:		
C240	100pF	500 V
C25i	2200uF	16 V
C252	2200~F	16 V
C253	4701F	40V
a:		
C254	470uF	40V

General Description

20% CERM (multilayer)
Solartion Part No. 241331000 241944700 241944700 227041000

227041000 265481000 241944700 208450140

241944700 241944700 241944700 241944700

241944700 241331000 241331000 241331000

241321000 273392200 273392200 273784700

273784700
300525650 300525650 300525650 300525650

300523050 300521470 300521470 300522160 300524700 300524700

375000600
800400210
300810590
300810460
300810640
352304080
352302080
355400760

いロ: \&

PCB 3 (71510503) Display Board

cet. ARef		:General Description					Solartron Part No.
R301 ${ }^{\circ}$	180k	0.25W	5\%	MEOX	T: $\%$	¢ ${ }^{2}$	195651800
R302::	1.8k	0.25W	5\%	MEOX		Sts.	195631800
R303	560	0.25W	5%	MEOX		$40:$	195625600
R304	270	0.25W	5\%	MEOX		$253 \mathrm{~L}$	195622700
R305	270	0.25W	5\%	MEOX	wid		195622700
R307	560	0.25W	5\%	MEOX			195625600
R308	47	0.25W	5\%	MEOX			195614700
RV301	2k	0.5W	10\%	titur	preset		130632000
C301	$0.1 \mu \mathrm{~F}$	50y	20\%	CERM			208450140
C302	0.14 F	50 V	20\%	CERM			208450140
D301	LED, H	-4558					300750270
D302	LED, H	-4558					300750270
D303	LED, H	2-4558					300750270
D304	LED,	-4558					300750270
	light	for D	304				71502035B
TR301	BCY70						300553590
IC301	NEC722						510005890
IC302	74LS14						510004990
IC303	316B 6	Resisto					192136800
kB301	Keyboa	trix (rib				
$\times 301$	Liquid	tal Dis					71512000
Front Pa							
	Red 4m	ket					352501470
	Black	socket					352501480
	Green	socket					352501490
	Brown	socket					352501750
	Front/	switch					71517001
Rear Pan	1 \& Mi	aneous					
	Red 4m	ket					352501470
	Black	socket					352501480
	Green	socket					352501490
	Yellow	socket					
N251	Mains	unit					550001480
S251	Mains						375500020
T251	Mains	former					309618901

[^0]: With the RESET line active, bistable ICl12 (see ADC) is also reset, thus MPU pin 8 (TIMER IN) is set to a logic l state. Pins 8, 9, and 10 are set to this state at initialisation.

