Solartron

 INSTRUMENTATION GROUPDigital Multimeters 7050, 7140 and 7144

Technical Manual

CDNTENTS

PART 17050 Digital Multimeter
PART 27140 Digital Multimeter
PART 3 BCD Output Module
(for 7054/7144 Digital Multimeters)

CORRIGENDUM

Discontinuation of model 7054

Since the 7054 has been discontinued the reader should ignore all references to this variant.

7050
 DIGITAL MULTIMETER

CONTENTS

SECTION GENERAL INTRODUCTIONPageOPERATIONPreliminary Adjustments2.1
Operation 2.1
SECTION 3 SERVICING
Introduction 3.1
Presentation of Information 3.1
Functional Description 3.2
Circuit Description
Analogue 3a. 1
Digital 3b. 1
Power Supplies 3c. 1
SECTION 4 SETTING UP AND CALIBRATION
Introduction 4.1
Test Equipment 4.1
Part 1 - Setting Up Procedures 4.2
Part 2 - Calibration Procedures 4.9
SECTION 5 PARTS LISTS
PCB No. 1 5.2
PCB No. 2 5.4
PCB No. 3 5.5
Main Assembly 5.5
Accessories 5.5
SECTION 6 SPECIFICATION 6.1
APPENDIX
FET Selection Procedure A. 2
Setting Up Case 70502 A. 3

SECTIDN 1 General

INTRODUCTION

The 7050 Digital Multimeter (DMM) combines the advantages of a compact and versatile multimeter with the precision and convenience of a digital instrument. Automatic range selection and palarity decision give rapid readings. The complete absence of range switching enables the user to concentrate on the task in hand and apart from selecting the actual measurement mode required all other measurement decisions are undertaken automatically, so reducing the risk of damage to the user's equipment, as well as to the DMM.

The DMM covers the following measurement modes, all auto-ranging.

DC VOLTAGE

$10 \mu \mathrm{~V}-1000 \mathrm{~V}$

aC VOLTAGE

$10 \mu \mathrm{~V}-750 \mathrm{~V}$

RESISTANCE

$100 \mathrm{~m} \Omega-11 \mathrm{M} \Omega$

DC CURRENT

1 nA-1A

With a scale length of 109.999 .
Model 7050 also incorporates an automatic over-range indication, automatic overload protection and automatic blanking of unused digits.

Model 7054 incorporates a digital output in parallel BCD form for use with printers and other output devices.

SECTION 2 Operation

This section provides all the necessary instructions concerning preliminary adjustments and operating procedures required to put the instrument into everyday use.

PRELIMINARY ADJUSTMENTS

Before using the instrument for the first time the following preliminary adjustments should be carried out:
(a) Check that the voltage selection switch on the rear panel is in the correct position.
(b) Check that the correct fuse is fitted as follows:-

230 V	150 mA	Slo-Blo	$11 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$
115 V	300 mA	Slo-Blo	$1 \frac{1}{4 \prime} \times 1 / 4^{\prime \prime}$

(c) Connect a suitable connector to the input mains lead as follows:-

Brown	-	Line (Live)
Blue	-	Neutral
Yellow/Green	-	Earth

This earth connection is essential for stability of readings and user safety
(d) Plug into the mains supply and switch the instrument ON

OPERATION

The operation of this instrument under most conditions will be found to be self-evident. The only operator decision required is the selection of the measurement mode required.

During operation, the following factors should be borne in mind:-

1. Since the instrument will automatically change ranges to suit the applied input potential, care should be taken to note the decimal point position in combination with the unit indicators.
2. In the event of an unintentional voltage or current overload, the offending potential should be removed as soon as possible since continuous overload may eventually cause damage to the instrument.
3. Due to the high input impedance of the input amplifier, the display readings will be random when the instrument is left with its input terminals as follows:-
(a) Open circuited on 'V.DC' and 'V.AC' modes.
(b) Short circuited on ' $\mu \mathrm{A}$ ' and ' mA ' modes.

Random readings can cause the range relay to switch on and off which can be prevented by short circuiting the input terminals in the case of (a) and open circuiting them in the case of (b).
4. In the ' Ω ' mode, open circuited input terminals produce an overload condition i.e. a steady ' 1 ' being displayed. Short circuited input terminals produce a nominal zero condition.
5. When measuring voltages on the lowest range and resistance on the highest range of the DMM, pick-up on the input leads may become a problem. If this occurs it is recommended that the leads be kept as short as possible and/or screened.

This section provides detailed servicing information for the instrument. Setting-up procedures and calibration are covered in Section 4.

INTRODUCTION

This Servicing Section is based on the functional block system of circuit diagrams, whereby components are grouped together to form a functional entity. A large scale block diagram is used to describe the overall operation of the Digital Multimeter (DMM). This diagram is then sub-divided to produce blocked circuit diagrams.

Information regarding circuit descriptions, component locations, printed circuit board layouts and any specific cautionary notes concerning components or testing procedures are arranged to be fully visible with the appropriate circuit diagram. Full calibration and setting up procedures are located in Section 4.

PRESENTATION OF INFORMATION

A brief glance through this section will reveal that the section is sub-divided into three major sub-sections, each of which deals with a major function in the DMM. Located within each section are block type circuit diagrams, always folding out clear to the right, with a functional description of each on the left hand text page. The pcb layout diagrams are arranged to fold out clear to the left, allowing cross reference between diagram and component location.

Referring to any of these alagrams, it can be seen that the major functional signal pathways are shown as bold lines, whilst those of a minor or control function are shown with thinner lines. The arrows indicate the direction of functional flow, which in the majority of cases will be from left to right of the diagram. Most feedback paths however, will flow from right to left.

These rules, although generally followed, are not rigidly adhered to where observance may cause ambiguity or is extravagant of space.

COMPONENT LOCATION

Diagrams of the printed circuit boards associated with each circuit diagram and photographs illustrating the method of access are reproduced in a manner enabling them to be examined in conjunction with the diagrams. By this method the physical position of any component can be quickly established:

COMPONENT NUMBERING

Each printed circuit has its own component numbering. This means that on a circuit diagram more than one component may be shown with the same component number. When this occurs care must be taken to ensure that the correct part is identified if it is required to replace the component. For instance, in the 7050 there are several pcb's, all of which include a component numbered R1.

The correct item must be identified from the parts list by reference to the pcb or assembly on which it is mounted.

POWER RAIL NOTATION

The power rails are shown as short detached bars with the nominal voltage annotated. On any one pcb, all bars annotated with the same voltage are electrically connected together and correspond to the appropriate rail notation shown on the power supplies circuit diagram, referenced 10 .

The 0 V rail in some cases is associated with the signal paths, annotated SIGNAL OV and followed by a reference number 1 to 4 inclusive, thereby identifying the decoupling components used for that particular group of components. All identically referenced zero volt lines are electrically connected together at the 0V STAR POINT on pcb 1 (C18-ve).

It must be remembered that the voltages shown are approximate, being proportional to the load taken through the appropriate decoupling resistors. A voltage reading which is inconsistant with the value given on the diagram should not, therefore, be taken as a symptom of unserviceability without reference to other indications.

ELECTRICAL CONNECTIONS

Electrical connections used are mainly of the Berg pin and socket type. Two plugs and sockets are employed using Berg pin/socket combinations. These are clearly identified, with all the remaining Berg pin/socket connections bearing only a number.

Transformer connections used are of the disconnect pin type.

SPLIT PADS

The split pads provide a means of adjusting circuit resistance and also for isolating various parts of the circuit during fault diagnosis.

They are short circuited by running solder across the gap and open circuited by removing the solder track. Care should be taken not to apply excessive heat during these operations.

FUNCTIONAL DESCRIPTION

The Model 7050 Digital Multimeter (DMM) may be looked upon as an instrument which divides down into three major functional areas. These are shown as coloured areas in the adjacent KEY DIAGRAM.

This diagram should be looked upon as a pictorial index as within each of these coloured areas are further blocks, each referenced with a number which refers to a specific block/circuit diagram within each section of this manual.

It is important when using these diagrams that the information should be looked at from a functional view-point before dealing with any actual detailed servicing. That is to say, deduce what could be the problem before actually looking at specific circuit details.

With reference to the KEY DIAGRAM, the input signal is applied to an ANALOGUE signal processing section. The primary function of this block is to scale the input signal into a form suitable for use by the DIGITAL (A/D Converter) section.

The input signal in all cases is converted into a dc signal. Since the A/D Converter can only handle signals within the range 0-11V directly, the analogue section provides a $100 / 1$ attenuation on the higher ranges, also $10 / 1$ on the acV mode.

The scaled analogue input is then converted into a digital form by means of the triple ramp technique of integration (for a detailed explanation, refer to Section 3B), the result of which is displayed on a light emitting diode (LED) display.

The third major functional block provides the power supplies to operate the whole instrument. This block also provides timing pulses to relate the measurement to the incoming mains supply frequency in order to overcome ac interference.

GENERAL NOTE:-

The numbers in each of the blocks shown below refer to the appropriate block and circuit diagrams contained in this section

Fig. 3.1. Key Diagram (Pictorial Index).

This sub-section deals with the ANALOGUE section of the instrument whose primary function is to convert the input signal into an acceptable form suitable for digital conversion by the DIGITAL section (SUB-SECTION 3B - DIGITAL).

SIGNAL CONVERSION

INTRODUCTION

The purpose of these sections of circuitry is to convert the incoming signal into dc suitable for conversion by the A/D Converter in the DIGITAL section of the instrument.

DC MEASUREMENT

In this mode of operation, since the applied signal is already dc, the circuitry serves to scale the input to within the upper 11 V limit acceptable to the A/D Converter input.

The INPUT AMPLIFIER is arranged in a series feedback configuration to provide a very high input impedance to the applied signal on the unattenuated ranges ($0-11 \mathrm{~V}$).

The Analogue Input circuit in the 'V.DC' mode is shown on DIAGRAM 1.

RESISTANCE MEASUREMENT

The resistance measuring mode, ' Ω ', is shown on DIAGRAM 2. Consider the following simplified diagram.

Point A is a 'virtual earth' input to a very high gain amplifier (INPUT AMPLIFIER). In order that the current flowing into and out of point A is balanced, the output of the amplifier Vo must rise to develope a potential drop across the applied unknown resistance Rx such that the constant current Ic derived from the reference voltage all flows through Rx. The final value of Vo when the circuit balances will be proportional to Rx and it is this output which is used by the A/D Converter for conversion to units of resistance.

CURRENT MEASUREMENT

Following from the above description of resistance measurement, it can be seen that if we make Rx a known value (RV6/R6 on DIAGRAM 3), the output of the amplifier Vo will be proportional to the unknown applied current.

AC MEASUREMENT

The section of circuitry used for converting the applied input to dc is shown separately on DIAGRAM 5.

The applied signal passes through a separate INPUT ATTENUATOR network and, via the AC AMPLIFIER buffer stage and SCALING RESISTORS, to the SUMMING JUNCTION. This point acts as a 'virtual earth' to the INPUT AMPLIFIER which follows. The output of this amplifier passes through the RECTIFIER SYSTEM which then divides the amplifier output into positive and negative half cycles by rectifier action. The positive half cycle output is filtered by the LOW PASS FILTER to form the equivalent dc input to the A/D Converter.

Since the rectified output would produce the mean value of the applied input, provision is made (RV3) to scale the signal input such that the final displayed reading is the rms (root mean square) as opposed to mean value of the applied signal. It should be remembered that this scaling action will only be valid when the input wave form is sinusoidal.

TEST WAVEFORMS

FRAME 3A-1

UPPER TRACE

A typical output waveform produced by the CHOPPER DRIVE (DIAGRAM 4) at TR4 collector. The output at TR3 collector is an inverted form of this trace.

LOWER TRACE

A typical output waveform produced by the DEMODULATOR (DIAGRAM 4) at the junction of C5 and R11.

Time/cm:- 2 ms .
Volts/cm:- 500 mV .

Frame 3A-1 Chopper/Demodulator waveforms.

FRAME 3A-2

UPPER TRACE

A typical output waveform produced at diode D3 cathode, the output from block RECTIFIER SYSTEM (DIAGRAM 5) used to provide de to the A/D Converter for operation on ac V mode.

LOWER TRACE

A typical output waveform provided by the complementary common base stage formed by TR1/2 in block RECTIFIER SYSTEM (DIAGRAM 5) and used to drive both halves of the diode feedback loop. The sharp transitions about the zero of the output waveform overcome possible non-linear rectification, due to diode characteristics up to about 0.7 V .

Time/cm:- 1 ms .
Volts/cm:- 1V.

Frame 3A-2 Rectifier System waveforms.

GMT/7050/2

INPUT AMPLIFIER

PROTECTION NETWORK

D1 and D2 protect the CHOPPER AMPLIFIER during overload conditions. D3/D4 in conjunction with D5/D6 limits the OUTPUT AMPLIFIER output to within $\pm 12 \mathrm{~V}$.

LOW-PASS FILTER

R3, R4 and C1 form a low-pass filter which removes the high frequency components ($>100 \mathrm{~Hz}$) from the dc channel and prevents spikes from the CHOPPER (Modulator) circuitry reaching the input terminals.

CHOPPER DRIVE

A 275 Hz emitter-coupled Multivibrator TR3/4 for driving the CHOPPER and DEMODULATOR.
A small proportion of the anti-phase output is applied via RV2 to minimise chopper-spikes produced by TR1 in the CHOPPER (Modulator) circuitry.
(Refer to Section 4 - Setting Up Procedure for details on the adjustment of RV2).

CHOPPER (MODULATOR)

The filtered output from the LOW PASS FILTER is 'chopped up' by alternately shorting the signal to earth via TR1 to form an ac type signal. The chopping frequency is determined by the in-phase output of the CHOPPER DRIVE multivibrator.

Anti-phase chopper drive is applied to G2 of TR1 to minimise chopper spikes.

RV1 (Vo) provides a small dc voltage to the Chopper output, compensating for small offsets.

CHOPPER AMPLIFIER

IC1, whose gain and frequency response are defined by $\mathrm{C} 3, \mathrm{C} 4, \mathrm{R} 8$ and R 9 , amplifies the input (chopped) waveform produced by the CHOPPER (Modulator). The ac gain is 10,000 and the dc gain is unity.

DEMODULATOR

The output from the CHOPPER AMPLIFIER is fed via C5 to TR2 where it is dc restored. The ac component is removed by filter R11 and C6, leaving the de component only.

OUTPUT AMPLIFIER

The ac component ($>2 \mathrm{~Hz}$) of the input voltage is coupled directly via $\mathrm{R} 12 / \mathrm{C} 9$ to the inverting input of the amplifier while the dc component on C6 (DEMODULATOR) is added into the noninverting input.

The output is applied to the PROTECTION NETWORK which limits the over-all amplifier output to within $\pm 12 \mathrm{~V}$.

4a PCB 2 COMPONENT AND COPPER TRACK LAYOUT

4b PCB 3 COMPONENT AND COPPER TRACK LAYOUT

AC MODE

INPUT ATTENUATOR

On the 100 V and 750 V ranges, relay RLB is energised to attenuate the input signal by a factor of 100. On the 10 V range RLB and RLC are energised to attenuate the input signal by a factor of 10 . The input impedance is $1 \mathrm{M} \Omega$ whether the attenuator is energised or not.

AC AMPLIFIER

This is a voltage follower stage, isolating the input from the SCALING RESISTORS. R14 in conjunction with IC1 provides overload protection.

SCALING RESISTORS

The applied input plus the feedback signals via R16/R18 in the RECTIFIER SYSTEM are summed at the 'virtual earth' of the INPUT AMPLIFIER. RV3 scales the input signal so that the final displayed value on the LED module represents the rms (root-mean-square) value of the applied input assuming a pure sine-wave shape.

RECTIFIER SYSTEM

The output of the INPUT AMPLIFIER (DIAGRAM 4) drives the complementary common base stage formed by TR1/2. Positive half-cycles are fed back to the 'virtual earth' via D4/D3 and precision resistor R16. Negative half-cycles are fed back via D6/D5 and R18. Only the positive half-cycles are taken for digital conversion.

R25/R26/C7 and R23/R24/C8 are shaping networks which improve frequency response at low signal levels.

LOW PASS FILTER

IC2 is connected as a low-pass active filter to remove high frequency components from the rectified ac signal. The filter has a nominal cut-off frequency of 3 Hz and provides at least 60 dB per decade attenuation.

This sub-section deals with the DIGITAL section of the instrument whose primary function is to convert the dc analogue input into digital form.

TRIPLE RAMP DIGITAL CONVERSION

INTRODUCTION

The triple ramp technique of analogue to digital conversion may be considered as a refined version of the well known dual ramp technique with the addition of a third ramp. This third ramp (known as fine ramp-down) acts like a 'vernier' upon the usual ramp-down period.

BASIC PRINCIPLES OF OPERATION

Examination of the following simplified cirucit diagram serves to illustrate the principles used to perform analogue to digital conversion in this instrument.

BASIC DUAL-RAMP SYSTEM

When the integrator is connected to the input its output 'ramps-up' at a rate which is proportional to the value of the input. After a fixed time the switch changes over and connects the reference in place of the input. It is so arranged that the reference voltage is of opposite polarity to that of the input, so that the integrator output now 'ramps-down' at a defined rate which is determined by the value of the reference.

If the ramp-up period is made constant by using a clock pulse generator to gate the input switch, the number of pulses produced during the 'ramp-down' period, the length of which is controlled by the slope of the reference voltage, will be directly proportional to the applied input.

Since both ramp-up and ramp-down periods are related to a common timebase, any variations of clock frequency do not affect the reading.

In the DMM, the reference voltage used during this 'ramp-down' period (known as 'coarse rampdown') is actually 10 V , so each ramp-down pulse with a 'full-house' counter length of 10,000 will represent 1 mV . The total number of pulses collected between the end of ramp-up and the point where the integrator output was driven to zero is a direct measure of the applied input voltage to within 1 mV .

Looking at a greatly magnified view of the integrator output waveform at the point where the integrator output passed through zero, it can be seen that there is an inherent digitising error within the system, the magnitude of which can be 1 mV .

If we allow the integrator output to continue beyond zero until the next clock pulse, the integrator capacitor will be charged to a level representing the difference between 1 mV and the true measured input.

By adding two extra less significant decades to the counter, the minimum decade would represent $10 \mu \mathrm{~V}$. If we complement* the counter and then re-organise it such that it counts down to zero when driven by further clock pulses, by changing the ramp-down rate, the final count overall could represent the applied input when the integrator output again passes through zero.

In the DMM, this second ramp-down reference voltage is 100 mV so that each new clock pulse will represent $10 \mu \mathrm{~V}$. In order to drive the integrator output to zero, the new ramp-down reference polarity is made opposite to the coarse ramp-down polarity. This third ramp is known as 'fine rampdown'.

It can be seen that the final measurement could, in theory, be within $10 \mu \mathrm{~V}$ of the applied input.

* COMPLEMENTING

The action of complementing a number within a counter can be followed by referring to the following example.

We have a hypothetical counter capable of holding a total count of 100 pulses. If we count say 60 input pulses, still required to 'fill-up' the counter will be 100-60 i.e. 40 . It is this number which is defined as the complement of the number 60 in this example.

MEASUREMENT CYCLE DRIVES

INTRODUCTION

All stages of analogue to digital conversion are controlled by IC7-board 1, whose outputs turn on or off appropriate FET switches to select the appropriate sections of circuitry required at each stage of a measurement cycle.

ELECTRICAL ARRANGEMENT

There are eight cycle control drive outputs as follows:-

IC7-pin 11	Drift Correct
pin 12	Earth Clamp
pin 13	Spoiler
pin 14	Neg. Fine Reference
pin 15	Pos. Fine Reference
pin 16	Pos. Coarse Reference
pin 17	Neg. Coarse Reference
$\operatorname{pin} 18$	Input Switch

During a typical measurement cycle, each of these pins will assume the states shown in Table 3B-1. The Pause periods 1-4 are for internal use within the integrated circuit to allow time for internal reorganisation of the counter, range selection and other tidying up operations required. The duration of these periods will change depending upon the range, length of ramp-down, spoiler time etc. so differing pause periods should not be interpreted as indications of faulty operation.

TABLE 3B-1 CONTROL CYCLE SEQUENCE
$\mathrm{L}=$ low $\leqslant-16 \mathrm{~V} \quad \mathrm{H}=$ high $\geqslant+8 \mathrm{~V}$
IC7 - Board 1

Period	11	12	13	14	15	16	17	18
Drift Correct	L	L	H	H	H	H	H	L
Pause 1	H	L	H	H	H	H	H	L
Ramp-Up	H	H	H	H	H	H	H	L
Spoiler Period	H	H	L	H	H	H	H	L
Pause 2	H	L	H	H	H	H	H	L
Coarse Ramp	H	L	H	H	H	H*	L*	H
Pause 3	H	L	H	H	H	H	H	L
Fine Ramp	H	L	H	L*	H*	H	H	H
Pause 4	H	L	H	H	H	H	H	L

Levels marked* will be inverted when the applied signal input is negative (with respect to the terminal on the front panel).

AUTO-RANGING

INTRODUCTION

The DMM is fully auto-ranging for all modes of operation. Range switching is divided into two parts, basic range selection and/or attenuator switching.

RANGE SELECTION

Each of the ranges is coded with a letter, the actual range depicted by each being dependent upon the measurement mode selected (refer Tables 3B-2 to 4).

The basic ranges are coded A, B and C and progress in decade steps with A the highest. A, B or C followed by the letter R indicates the basic range together with the $100 / 1$ or $10 / 1$ attenuator stage, making a range selection with a full scale reading 100 or 10 times greater than that for the basic range alone.

TABLE 3B-2 VOLTAGE MEASUREMENT CODING

Nominal Range	Range of Voltages Displayed	Range Coding DC	
1000 V	1099.00 to 100.00 V	ARAR 100 V	
109.999 to 10.000 V	BR	BR	
1 V	10.9999 to 1.0000 V	A	
1.09999 to 1.00000 V			
999.99 to 0.00 mV	B	B	

TABLE 3B-3 RESISTANCE MEASUREMENT CODING

Nominal Range Ω	Range of Resistance Displayed	Range Coding
10 M	10999.9 to 1000.0 k	
1 M	1099.99 to 100.00 k	
109 k	10.999 to 10.000 k 999.9 to 0.0Ω	AR
10 k	AR	

TABLE 3B - 4 CURRENT MEASUREMENT CODING

Nominal Range	Range of Current Displayed	Range Coding
$100 \mu \mathrm{~A}$		
$\mu \mathrm{~A}$ mode	1099.99 to $100.00 \mu \mathrm{~A}$	A
$100 \mu \mathrm{~A}$		
1000 mA	109.999 to $0.000 \mu \mathrm{~A}$	
mA mode	1099.99 to 100.00 mA	B
100 mA	109.999 to 0.000 mA	A

Ranging up or ranging down occurs just after the fine ramp-down period in the measurement cycle, and unless a range change decision occurs, the range in use will remain constant for the remainder of the cycle,

RANGE-UP SEQUENCE

A range-up decision will occur if the total count at the end of fine ramp-down in the counter equals or exceeds 1.1 times that count which corresponds to the nominal full-scale count for the particular range in use. Take for example the 1 V range, a range-up decision occurs if the measured voltage is 1.1 volts or higher, making 1.09999 V the highest voltage which will not cause a range-up decision.

RANGE-DOWN SEQUENCE

A range-down decision will occur if the total count in the counter after a measurement falls below 0.1 times that which corresponds to nominal full-scale count except when the particular range in use is the lowest for the mode of operation. In this instance, operation will be maintained on that range for all readings down to zero. Therefore for all but the lowest of a group of ranges 0.10000 times the nominal full-scale value is the lowest reading which will not cause a range-down decision.

RANGE SWITCHING (DIAGRAM 7)

The input signal to the INTEGRATOR may or may not be rescaled by means of changing the effective input resistance. When Range A is selected (i.e. Ranges B / C not turned on) the signal is applied through R41 (1M). When Range B or C is selected, the effective input resistance will be $100 \mathrm{k}(1 \mathrm{M} / / 110 \mathrm{k} \simeq 100 \mathrm{k})$ thus the integrator input signal will be rescaled by a factor of 10 . By this method, the input dynamic range of the INTEGRATOR may be $0-11 \mathrm{~V}$, or $0-1.1 \mathrm{~V}$ respectively. For inputs above 11 V , the attenuator relays RLB and RLC provide the following functions:-

RLB/1:- Provides 100/1 attenuation on dc ranging
RLB/2:- Provides 100/1 attenuation on ac ranging
RLC/1:- Provides 10/1 attenuation on ac ranging (in conjunction with RLB/2)
RLC/2:- In conjunction with C49 and a 100k ohm to Vss (internal resistance in IC7) provides a delay of range change (approximately 2 readings) whilst in AC mode.

SELECTED FET'S TR17-20 (PCB No. 1)

Whenever any one of these components is replaced, it is essential that a component with the same colour coding is used or alternatively, replace the whole set.

NOTE. Reference should be made to the selection procedure detailed in the APPENDIX section of this manual.

IC7 - PCB No. 1 (MOS - LS1) INTEGRATED CIRCUIT

This 40-lead dual-in-line ceramic package contains the digital circuitry used to control the measurement cycle, count and gate clock pulses, provide signals to drive the LED display and to rescale the Integrator during auto-ranging.

Details of all pin connections and functions are on the Clock and Mode Selection diagram, referenced 9. Where inputs from, and outputs to IC7 occur on other circuits, these are identified by the effected IC7 terminal number shown enclosed in a square.

WARNING

Before attempting to remove this integrated circuit, ensure that all power supplies are switched off.
MOS Integrated Circuits are prone to damage by static charges. It is therefore advisable to ensure that all items likely to come into contact with MOS ICs and/or the circuits in which they are employed are bonded together and are earthed. Affected ICs are notified on their pcbs.

DISPLAY

INTRODUCTION

The type of display used in this instrument is a light emitting diode (LED) 7-bar segment, timeshared type arranged to display 6 digits and a polarity sign.

7-bar SEGMENT FORMAT

Each of the possible digits, 0 to 9 , is displayed using the universally accepted 7 -bar segment format. In order to display a digit, a specific group of bars, each comprising a light emitting diode, is energised.

Each bar has been referenced with a letter a-g, and are arranged in the form of a figure 8 as shown below.

For example, suppose we wish to display the digit 2. In this case, bars $\mathrm{a}, \mathrm{b}, \mathrm{d}$, e and g would be energised, all other bars being left de-energised.

The actual bars used to represent each digit are shown on DIAGRAM 8 .

GENERAL ORGANISATION OF DISPLAY

The display used can display up to 6 characters, each of which comprises a 'diode tree' as shown below. The most significant digit can only display a one or a minus.

Each diode of a 'tree' corresponds to a specific bar as detailed above.

NOTE: The decimal point for each character is positioned to the left and will be energised whenever the ' p ' bar is called for at the same time as the appropriate character.

In the DMM, each of the 6 possible characters is energised via the appropriate CHARACTER DRIVER (DIAGR AM 8) in sequence. In order that a particular digit may be displayed, the appropriate 7-BAR SEGMENT DRIVERS (DIAGRAM 8) are energised. For a group of diodes to light, both the segment and character drives must be present at the same time but since only one character drive will be present at any one time only one character will ever be on. It should be noted that the 1st character is incomplete, the surplus segments of which are arranged as the UNITS ANNUNCIATOR DISPLAY (DIAGRAM 8).

The polarity window will only display a negative sign, absence of display signifying a positive potential applied to the instrument. When 'V.AC' or ' Ω ' is selected, no sign is displayed.

LOGIC ELEMENTS

NAND GATES (DIAGRAM 9)

Elements IC10a and b are logic elements performing a NAND function (positive logic) for which the following truth tables apply:

IC10a	Pin No.	1	2	3
		H	H	L
		L	H	H
	H	L	H	
	L	L	H	
IC10b	Pin No.	4	5	6
		H	H	L
		L	H	H
	H	L	H	
		L	L	H

Logic Levels

$\mathrm{H}=-11 \mathrm{~V}$ to -14.5 V
$\mathrm{L}=-16.5 \mathrm{~V}$ to -17.5 V

D - TYPE BISTABLE (DIAGRAM 9)

Elements IC11 a and b are logic bistables (Flip-flops) performing a D-type function (positive logic) for which the following rules apply:

1. Whenever the CK (Clock) input goes high (positive logic), the Q output assumes the same state as that present on the D input.
2. Whenever the CK input is low, the D input level has no effect.
3. The $\overline{\mathrm{Q}}$ output is always the complement of the Q output.

VOLTAGE LEVELS

Care should be taken when investigating this section of circuitry not to short any of the logic element connections to the 0 V rails, since this action could apply a minimum level of -12 V to the element and almost certainly damage it. It is recommended that the -17 V rail should be used as a return path for test equipment and make appropriate adjustments to indicated readings.

TEST WAVEFORMS

FRAMES 3B-1/2

UPPER TRACE

This shows a typical input waveform at the INTEGRATOR (DIAGRAM 7) 'virtual earth' input.

LOWER TRACE

A typical ramp-up waveform produced at the input of the X1000 AMPLIFIER (DIAGRAM 7) at $\mathrm{C} 21 / \mathrm{R} 46$. The small insert shows a typical fine ramp-down. Note that the coarse ramp-down cycle is shorter than that shown in the main trace for illustration purposes only.

FRAMES 3B-3/4

UPPER TRACES

These traces illustrate typical CHARACTER DRIVER (DIAGRAM 8) outputs. The outputs are taken from the collector of TR9 instead of the 'floating' collector of TR3, providing a well defined pulse.

LOWER TRACES

These traces illustrate typical 7-BAR SEGMENT DRIVER (DIAGRAM 8) outputs. The outputs are taken from the ' a ' bar output, the collector of TR13, and are as follows.

Trace 3B-3 shows the ' a ' bar segment, aligned underneath the 3rd character driver output, in a de-energised state. This depicts the missing ' a ' bar of the figure 4 in this example.

Trace 3B-4 shows the 'a' bar segment in the energised state, in this example the top of the figure 3.

NOTE:- The traces 3B-3/4 were taken with the BCD Output Module, and its inherent pull-up effect on the SEGMENT DRIVERS, fitted. Under this condition the trace of any bar not selected is pulled up. If tested without this pull-up effect, the position of the non-selected bar trace is indeterminate.

FRAME 3B-5

UPPER TRACE

Typical output waveform at IC7-pin 19 of clock input phase $\phi 1$ - refer CLOCK DRIVERS (DIAGRAM 9).

LOWER TRACE

This is the clock input at IC7-pin 20 in phase $\phi 2$.

Frame 3B-1 Typical Integrator waveforms.

Frame 3B-2 Typical Integrator waveforms with ac interference.

Time $/ \mathrm{cm}:-50 \mathrm{~ms}$.
Volts/cm:- 5 V .

Time/cm:- $200 \mu \mathrm{~s}$.
Volts/cm:- 5 V .

Frame 3B-5. Typical Clock waveforms.

Frame 3B-3 3rd Character with 'a'Segment de-energised (e.g. numeral 4).

Frame 3B-4 3rd Character with ' a 'Segment energised (e.g. numeral 3).

REFERENCE SWITCHING

REFERENCE VOLTAGE SOURCE

IC8 is connected as a non-inverting amplifier amplifying the voltage of reference zener D38 to give +10 V adjusted by means of R97 to 101 and RV7 to give correct calibration. The output is +10.000 V for use as a positive coarse reference. R93/R94 form a potential divider to provide +100 mV for use as positive fine reference.

INVERTER

IC9 is connected as an inverter to produce -10.000 V from the REFERENCE VOLTAGE SOURCE. RV8 is adjusted to compensate for resistor tolerance and any dc offset. R104/R105 form a potential divider to provide -100 mV for use as negative fine reference.

EARTH CLAMP

During ramp-up, IC7-pin 12 goes high, thus via TR26 allowing TR15 to conduct to apply the unknown input signal to the A/D Converter. Similarly, TR16 is turned off thus unclamping the INPUT BUFFER AMPLIFIER from signal earth. At the end of ramp-up, IC7-pin 12 goes low, thus turning off TR15 and reclamping the INPUT BUFFER AMPLIFIER to earth via TR16.

INPUT BUFFER AMPLIFIER

A buffer stage providing input isolation to the INTEGRATOR (DIAGRAM 7). RV3 is provided for trimming out any internal voltage offset of IC3 while RV4 adjusts the input current compensation.

INPUT SWITCH DRIVER and INPUT SWITCH

During ramp-up, IC7-pin 18 goes low, applying the unknown input signal to the INTEGRATOR (DIAGRAM 7). TR17 is chosen such that the FET switches TR18 or TR19 in the COARSE REFERENCE SWITCHES and TR17 are of equal impedance to the INTEGRATOR (DIAGRAM 7) during both ramp-up and the appropriate coarse ramp-down period.
(Refer to the FET Selection Procedure in the APPENDIX of this manual for details of selection).

NEG. COARSE REFERENCE SWITCH

If the COMPARATOR (DIAGRAM 7) detects a positive input signal during ramp-up, IC7-pin 17 goes low during the coarse ramp-down period. This turns on TR19 applying -10.000 V as a negative reference input to discharge the level (proportional to the applied input signal) stored on the integrating capacitor C21 in the INTEGRATOR (DIAGRAM 7) during ramp-up.

NEG. FINE REFERENCE SWITCH

If the input signal was negative during ramp-up, IC7-pin 14 goes low, turning on TR21 during the fine ramp-down period to apply -100 mV as a fine reference signal to the INTEGRATOR (DIAGRAM 7).

POS. COARSE REFERENCE SWITCH

If the COMPARATOR (DIAGRAM 7) detects a negative input signal during ramp-up, IC7-pin 16 goes low during the coarse ramp-down period. This turns on TR18 applying +10.000 V as a positive reference input to discharge the level (proportional to the applied input signal) stored in the integrating capacitor C21 in the INTEGRATOR (DIAGRAM 7) during ramp-up.

POS. FINE REFERENCE SWITCH

If the input signal was positive during ramp-up, IC7-pin 15 goes low, turning on TR22 during the fine ramp-down period to apply +100 mV as a fine reference signal to the INTEGRATOR (DIAGRAM 7).

INTEGRATOR

INTEGRATOR

IC4 is connected as an operational integrator. The signal input is applied to one side of a differential stage formed by TR23. The other input is a dc level stored in the DRIFT CORRECT circuitry by C23. This maintains the 'virtual earth' of the integrator at 0 V with respect to the output of the INPUT BUFFER AMPLIFIER (DIAGRAM 6) and therefore eliminates drift.

X1000 AMPLIFIER

The X1000 amplifier stage is to enable the COMPARATOR to detect very low integrator outputs, thus accurately defining the end of each ramp-down period.

COMPARATOR

The output of the X1000 AMPLIFIER is compared with earth; for a positive input, the output of IC6 will be negative; similarly for a negative input, the output will be positive. The purpose of the comparator is to detect when the input changes from one polarity to the other i.e. when the INTEGRATOR output passes through zero signifying the end of coarse or fine ramp-down as appropriate. The state of this output after completion of ramp-up determines the polarity of the applied coarse and fine reference drives used during the remainder of the measurement cycle. An output of $<+0.5 \mathrm{~V}$ corresponds to positive polarity. A level $>+10 \mathrm{~V}$ corresponds to negative polarity.

DRIFT CORRECT

Between the end of fine ramp-down and the start of the next ramp-up, IC7-pin 11 goes low, turns on TR25 and charges up C23 to the level of the combined offset errors of the INTEGRATOR and INPUT BUFFER AMPLIFIER (DIAGRAM 6) so that during the ramp-up and ramp-down periods, these offsets are compensated for.

SPOILER

At the end of ramp-up, IC7-pin 13 goes low, TR24 conducts to allow a small proportion of the INTEGRATOR output to be applied to TR23 to hold the charge on C21 until a "mains zero crossing" occurs, thus enhancing series mode rejection.

RANGE SWITCH DRIVE

When IC7 pin 2 goes low, TR43 is turned off. TR30 is turned off and TR20 turned on. Also if IC7 pin 3 is low TR30 is turned off and TR20 turned on. Thus if either IC7 pin 2 or 3 is low the Integrator input resistance of $100 \mathrm{k} \Omega(\mathrm{R} 40 / / \mathrm{R} 41)$ is selected.

DISPLAY

7-BAR SEGMENT DRIVERS

When the relevant output of IC7 goes Hi, the appropriate segment in the display will be lit up, provided that particular character has been selected. For example if IC7 pin 30 goes Hi all the ' g ' bars will be selected instantaneously. Since only one CHARACTER DRIVER can be selected at any one time, only the ' g ' bar on the selected character will be lit up.

CHARACTER DRIVERS

The characters are displayed serially commencing with the most significant. Whenever the appropriate character input goes Hi all the selected segments within that character will be energised and will light up.

UNITS ANNUNCIATOR DISPLAY

Whenever IC7 pin 28 goes Hi together with any bar segment driver representing a Unit Annunciator ($\mathrm{d}, \mathrm{a}, \mathrm{e}, \mathrm{f}$ and p), the affected indicator will light $u p(\mathrm{mV}, \mathrm{V}, \Omega, \mathrm{k} \Omega$ and $\mu \mathrm{A}$ respectively).

CLOCK AND MODE SELECTION

CLOCK OSCILLATOR

A stable crystal controlled oscillator producing a source of timing pulses at 404 kHz .

DIVIDE BY 4

A binary divider stage dividing the input signal by a factor of 4 . The resultant output frequency of each output is 101 kHz . Reference should be made to the text for details of the phase relationship between each output.

CLOCK DRIVERS

The input clock pulse train (101 kHz) drives TR41 and TR42 on and off, forming output pulses between +11 V and -17 V (maximum amplitude $=28.5 \mathrm{~V}$) which are of sufficient amplitude to drive the clock inputs of IC7 (MOS - LSI circuit).

MODE SELECTION SWITCH

At each switch position, the appropriate input of IC7 will be held low thus selecting the appropriate mode. When VDC is selected, all the mode inputs go high and the DC mode is assumed.

RELAY DRIVE

Whenever IC7-pin 38 goes high, relay RLB is energised. Diode D10 (Bd. 2) provides a discharge path for the relay coil back emf when the relay is turned off. Whenever IC7 pin 2 is low TR13 is off and TR14 is on. Thus RLC is energised. Diode D11 (Bd. 2) provides a discharge path for the relay coil back emf when the relay is turned off.

AC Ranging Delay

When RLC is energised IC7 pin 6 drops to -17.5 V on a time constant of C49, and 100 k ohm (internal resistance in IC7), giving a delay of approximately two readings. D41 clamps C49 (+Ve) to Vss when RLC is de-energised.

IC7 (MOS - LSI) INTEGRATED CIRCUIT

IC7 is illustrated with its function identities and the diagram numbers on which these functicns are effected.

The logic used by IC7 is as follows.

Positive Logic:- Bar Drivers
IC Drivers (Characters)
Top Range

Negative Logic:- The remaining functions except the following:Detector

Line Frequency
Clock (ϕ_{1} and ϕ_{2})
Supply Rails

Supply Rail voltages are:-

$$
\begin{aligned}
\mathrm{Vss} & =11 \mathrm{~V} \text { Nominal } \\
\mathrm{Vdd} & =-18 \mathrm{~V} \text { Nominal } \\
\mathrm{Vee} & =0 \mathrm{~V}
\end{aligned}
$$

NOTES:- 1. Terminals marked N/A are not used and must not be connected to any other part of the circuitry.
2. Before attempting to remove this MOS Integrated Circuit ensure that all power supplies are switched off and that the necessary anti-static charge measures are taken. See warning on page $3 \mathrm{~b}-5$.

SUB SECTIDN Зс

This sub-section deals with the POWER SUPPLIES section of the instrument whose primary function is to provide all the internal dc levels required to operate the instrument.

POWER SUPPLIES

GENERAL ARRANGEMENT

This section of circuitry provides all the dc voltage levels required to operate the instrument.

OV Rails.

Within the instrument, the common return paths (0 V rails) are carefully separated to reduce interference. Care should be taken not to short these rails together other than where shown.

Split Pads LKL and LKM (pcb No. 1)

These pads enable the user to isolate the stabilised supplies from the associated section of circuitry. Since these pads are continuations of the printed circuit copper work, care should be taken not to overheat these connections causing the track to lift away from the board.

$50 / 60 \mathrm{~Hz}$ SHAPER

A small proportion of the incoming mains frequency is sampled; the signal is clipped and is used by IC7 (MOS-LS1 circuit) to provide mains zero timing reference points.

VOLTAGE RAIL USAGE

The following table gives the nominal rail voltages provided and the circuit diagrams on which they appear.

+18 V	$4,6,7,9$
-18 V	$4,6,7,9,10$
+17.5 V	4,5
-17.5 V	$4,5,9$
+17 V	7,
-17 V	6,7
+6 V	8,9

A nominal 10 V rms output is available from transformer T1, terminals 5 and 6 for use on the BCD Output Module.

SECTIDN 4 Setting பp \& Calibration

INTRODUCTION

This section provides a comprehensive setting-up and calibration procedure which may be necessary after a rectification and/or component replacement on the Digital Multimeter.

It is divided into two parts as follows.

1. Setting-Up Procedures

These involve partial strip down of the instrument in order to effect initial adjustments of the circuit parameters.

2. Calibration Procedures

The final adjustments to provide an instrument performance which is compatible with the specification published in Section 6 of this manual.

For a normal calibration only Part 2 of this section needs to be carried out. Where an instrument fails a calibration, or has had a rectification and/or component replacement, it is advisable to carry out the full procedure detailed in this section.

NOTE:- It is essential when carrying out Part 1 or 2, that the procedure be completed, and carried out in the order given.

TEST EQUIPMENT

The test equipment used must have an accuracy uncertainty equal to or better than that shown in the calıbration test tables.

The following test equipment should be available to perform the following procedures correctly.
(a) Variac.
(b) Digital Voltmeter (e.g. Type 7040).
(c) Oscilloscope Type 1740 or A100.
(d) Decade Resistance Standard (e.g. ESI Model RS624).
(e) AC Voltage Standard (e.g. Hewlett Packard Models 745A and 746A).
(f) Decade Voltage Divider (e.g. ESI Model RV622A).
(g) AC Source (e.g. Bradley 232).
(h) DC Source (e.g. Time Model 2003, $\pm 0.02 \%$).
(j) DC Voltage Standard (e.g. Kintel 351).
(k) Thermal Probe (ambient $+20^{\circ} \mathrm{C}$).
(1) 1 A current Source (e.g. Fluke 382A)
(m) Resistance Standard $1 \Omega \pm 0.005 \% 4$ terminal (e.g. Cropico RS1)
(n) Additional items: Resistor, 1 k ohm $\pm 10 \%$ (0.125 W).

Resistor, 27 k ohm $\pm 10 \%$ (0.125 W$)$.

Resistor, 1 M ohm $\pm 10 \%(0.125 \mathrm{~W})$.
Capacitor $1 \mu \mathrm{~F}$ (non-polarised).

PART 1. SETTING UP PROCEDURES

PRELIMINARY

1. Prepare the instrument as follows:-

CAUTION:- IT IS ESSENTIAL THAT THE INSTRUMENT BE ISOLATED FROM THE MAINS SUPPLY BEFORE OUTER CASE REMOVAL, DUE TO THE UNCOVERED TERMINALS ON THE ON/OFF SWITCH.

CAUTION:- BEWARE OF GUARD POTENTIAL ON GUARD PLATE WITH INSTRUMENT CASE REMOVED.

a. Remove the $4,2.5 \mathrm{~mm}$ screws holding the outer case to the rear panel assembly, Fig. 4.1.

Fig. 4.1. View of Rear Panel, showing location of the 4 securing screws.
b. Select the 'V.DC' mode (This orientates the selector switch shaft with it's key flat facing upwards).
c. Remove the GUARD - Lo link (if fitted).
d. Gently ease out the pcb and rear panel assembly away from the front panel. Fig. 4.5, at rear of section, shows the location and function of each potentiometer.
e. Remove the 2 sets of Berg pins and the 4 screws attaching pcb 2 to pcb 1 . Remove pcb 2 .
2. Link Berg socket 2 to Berg socket 10 .
3. Check that the Mains Selector in the rear panel is set to the appropriate voltage, and that the correct rated fuse is fitted.

$$
\begin{array}{lll}
\text { For } & 230 \mathrm{~V}:- & 150 \mathrm{~mA} \\
& 115 \mathrm{~V}:- & 300 \mathrm{~mA}
\end{array} \quad \text { SLO BLO FUSE }
$$

4. Apply power to the instrument and allow a sufficient warm up period.
5. Check that the rail voltages are within the limits specified over the input voltage range as follows.

$$
\begin{array}{lll}
\text { For } & 230 \mathrm{~V}:- & 195.5 \text { to } 253 \text { Volts. } \\
& 115 \mathrm{~V}:- & 97.75 \text { to } 126.5 \text { Volts. }
\end{array}
$$

TEST BETWEEN	LIMITS OVER MAINS VARIATION	
	MINIMUM	MAXIMUM
C16 (+ve) to C18 (-ve)	+16.5 V	+18.5 V
C 16 (-ve) to C18 (-ve)	-16.5 V	-18.5 V
C 13 (+ve) to C18 (-ve)	+5.7 V	+7.0 V
C45 (+ve) to C45 (-ve)	+25 V	+30 V
C52 (+ve) to C52 (-ve)	+4.75 V	+5.35 V

REFERENCE TEMPERATURE COEFFICIENT

NOTE:- The potentiometer involved is RV6. Once set, great care must be exercised during the remainder of the procedure to prevent inadvertant adjustment of this potentiometer.

1. Select 'V.DC' mode. Remove link from Berg sockets 2 and 10 and apply $-10 \mathrm{~V} \pm 0.1 \%$ absolute between them (negative to 10), using a DC Standard having a $1 / 2$ hour stability of less than 5 ppm .
2. Attach a variable resistance box (100k ohms to 1 ohm) between R96/R97 and C22 (-ve) of pcb 1. Adjust resistance box for a reading of 100.000 ± 10 bits.
3. Increase ambient temperature at D38 by $20^{\circ} \mathrm{C}$ (application of a Thermal Probe to D38 or by other means). Adjust RV6 and/or link LKF for 100.000 reading.
4. Allow D38 temperature to return to ambient and re-adjust resistance box for a reading of $100,000 \pm 10$ bits.
5. Re-apply heat of ambient $+20^{\circ} \mathrm{C} \pm 4^{\circ} \mathrm{C}$. Reading should change by less than ± 5 bits. Repeat adjustments until change is less than ± 5 bits. Remove the -10 V supply and resistance box.

BUFFER Vos Ios

1. Select 'V.DC' mode. Short circuit Berg sockets 2 and 10 . Connect voltmeter between Berg socket 2 and D18 cathode, via a 1 k ohm resistor.
2. Adjust RV3 for $0 \pm 20 \mu \mathrm{~V}$ on voltmeter. Replace the link between Berg sockets 2 and 10 by a 27 k ohm resistor.
3. Adjust RV4 for $0 \pm 10 \mu \mathrm{~V}$ on the voltmeter. Remove voltmeter and two resistors (27 k ohm and 1 k ohm).

SPOILER

1. Select 'V.DC' mode. Link Berg sockets 4 and 10.
2. Connect TR 26 collector (case) via a 33 k ohm resistor to TR 10 collector (case) and note instrument reading.
3. Remove the resistor connection and adjust RV5 to obtain the reading noted in (2) above.
4. Remove the 33 k ohm resistor and the link between Berg sockets 4 and 10 .

POSITIVE REFERENCE

Select 'V.DC' mode. Apply -10 V and -1 V , using the DC Standard and the Decavider, to Berg sockets 2 and 10 (- ve to 10) and adjust RV7 to share the error between $-10,0000 \mathrm{~V}(\pm 2$ bits) and $-1.00000(\pm 2$ bits $)$ readings evenly.

NOTE:- If RV7 does not have enough adjustment the links will require re-adjustment as follows:-
a. Connect $-10 \mathrm{~V}(\pm 0.02 \%$ absolute) from DC Standard to Berg sockets 2 and 10 (Common to socket 2).
b. Ensure that links LKA to LKE inclusive are open circuit and that RV7 is at maximum resistance (fully clockwise).
c. Apply -10 V standard and note the reading. Look up the range which includes this reading in Table 4.1 and set links LKA to LKE accordingly.

READING RANGES		LINKS				
		A	B	C	D	E
100000	100199	1	1	1	1	1
100172	100373	1	1	1	1	0
100337	100540	1	1	1	0	1
100513	100718	1	1	1	0	0
100669	100876	1	1	0	1	1
100848	101056	1	1	0	1	0
101020	101230	1	1	0	0	1
101202	101414	1	1	0	0	0
101332	101546	1	0	1	1	1
101517	101734	1	0	1	1	0
101696	101914	1	0	1	0	1
101885	102105	1	0	1	0	0
102053	102276	1	0	0	1	1
102246	102471	1	0	0	1	0
102431	102658	1	0	0	0	1
102628	102858	1	0	0	0	0
102704	102935	0	1	1	1	1
102904	103137	0	1	1	1	0
103096	103331	0	1	1	0	1
103299	103537	0	1	1	0	0
103481	103721	0	1	0	1	1
103689	103931	0	1	0	1	0
103888	104134	0	1	0	0	1
104101	104349	0	1	0	0	0
104252	104502	0	0	1	1	1
104469	104721	0	0	1	1	0
104677	104932	0	0	1	0	1
104897	105156	0	0	1	0	0
105094	105355	0	0	0	1	1
105320	105583	0	0	0	1	0
105537	105803	0	0	0	0	1
105767	106037	0	0	0	0	0

Table 4.1.
d. Repeat the -10 V and -1 V test as detailed previously.

RE-ASSEMBLY

1. Fit pcb 2 to pcb 1 , securing it by the 4 screws.
2. Fit the link between GUARD and LO terminals and insert the 2 sets of Berg pins into their sockets, ensuring they are fully engaged.

INPUT AMPLIFIER

NOTE:- The waveform at TR3 collector, using a dc coupled oscilloscope set to $1 \mathrm{~V} / \mathrm{cm}$ and $1 \mathrm{~ms} / \mathrm{cm}$, should be a square wave; amplitude $4 \mathrm{~V} \pm 0.4 \mathrm{Vpp}$, period $4 \mathrm{~ms} \pm 1 \mathrm{~ms}$, mark/space ratio $1: 1 \pm 10 \%$.

1. Select 'V.DC' mode and short circuit the input terminals. Ensure that RV1 range of adjustment is greater than $\pm 80 \mu \mathrm{~V}$.
2. Remove the short circuit from the input terminals. Apply $+100 \mu \mathrm{~V}$ and $-100 \mu \mathrm{~V}$ alternately to the input terminals, using a dc source having an output resistance of 10 k ohms.
3. Adjust RV1 for equal positive and negative readings.
4. Remove dc source and connect a 1 M ohm resistor and $1 \mu \mathrm{~F}$ non-polarised capacitor in parallel between the Hi and Lo terminals.
5. Adjust RV2 for a zero reading, $\pm 10 \mu \mathrm{~V}$. Remove resistor and capacitor.
6. Recheck the Input Amplifier zero, (short circuiting the input terminals as in operation 1 above) and the $\pm 10 \mathrm{~V}$, (using the DC Standard across the input terminals) readings limits.

These are:- $\quad \pm 10 \mu \mathrm{~V} \pm 1$ bit for zero input.
$\pm 10 \mathrm{~V} \pm 2$ bits for the 10 V input.
NOTE:- If adjustment is necessary repeat operations 2 to 5 inclusive.
7. Remove the dc source.

NEGATIVE REFERENCE

1. Select 'V.DC' mode.
2. Connect $10 \mathrm{~V} \pm 0.02 \%$ absolute across the 6 decade Decavider, using the DC Standard.
3. Apply $+10 \mathrm{~V},-10 \mathrm{~V},+1 \mathrm{~V}$ and -1 V dc in turn to the input terminals.
4. Adjust on RV8 to make the negative reading equal to the positive reading at each voltage level.
5. Share errors between RV7 and RV8 such that the:-
$\pm 10 \mathrm{~V}$ readings are $\pm 10.0000 \mathrm{~V} \pm 2$ bits
$\pm 1 \mathrm{~V}$ readings are $\pm 1.00000 \mathrm{~V} \pm 2$ bits
NOTE:- Problems in meeting these limits will result if the 'ON' resistance of TR's $17,18,19$ and 20 are not matched. See Appendix.

LINEARITY

1. Select 'V.DC' mode. With the 10V DC Standard and Decavider connected to the input terminals as in previous test, check the linearity in accordance with Table 4.2.

INPUT	READING	TOLERANCE
10 V	10.0000 V	± 3 bits
5 V	5.0000 V	± 2 bits
1.05 V	1.0500 V	± 2 bits
0.95 V	* 950.00 mV	± 2 bits
1.05 V	1.05000 V	± 2 bits
1.15 V	*1.1500V	± 2 bits
0.5	* 500.00 mV	± 2 bits
0.1	100.00 mV	± 2 bits
0.01	10.00 mV	± 2 bits
0.001	1.00 mV	± 2 bits
0.0001	0.10 mV	± 2 bits
0.00005	0.05 mV	± 2 bits
0.00003	0.03	± 2 bits
0.00002	0.02 mV	± 2 bits
0.00001	0.01 mV	± 2 bits

Table 4.2
2. Repeat for negative values using the same voltage source.
3. If the DMM falls outside the linearity tolerances, it is recommended that the Setting Up Procedure should be repeated.

OHMS MODE

1. Set to ' Ω ' mode and short circuit the input terminals. The reading should be less than 3 bits.
2. Connect 100 k ohms $\pm 0.01 \%$ absolute across the input terminals. Adjust RV2 (pcb 2) and/or link LKY to obtain $100.000 \mathrm{k} \Omega$ reading.

DC ATTENUATOR

Select 'V.DC' mode and connect input terminals to $100 \mathrm{~V} \pm 0.01 \%$ absolute. Adjust RV1 (pcb 2) and/or link LKX to give 100.000 V reading.

DC $\mu \mathrm{A}$
Select ' $\mu \mathrm{A}$. DC' mode and connect input to $1000 \mu \mathrm{~A} \pm 0.01 \%$ absolute current source $(100 \mathrm{k}$ ohms from 100 V is convenient). Adjust RV6 (pcb 2) to give $1000.00 \mu \mathrm{~A} \pm 10$ bits reading.

DC mA

1. Select 'ma DC' mode, and open circuit terminals. Reading should be $0.00 \mathrm{~mA} \pm 10$ bits (excluding noise, which should not exceed 14 bits). Adjust RV1 as required.

Note: If adjustment of RV1 is necessary to achieve the specified reading, the INPUT AMPLIFIER checks and adjustment will have to be repeated.
2. Connect $95 / 950 \mathrm{~mA}$ Current Source in series with $1 \Omega \pm 0.01 \%$ Standard Resistor to the input terminals, monitoring the voltage across the Resistor with a voltmeter calibrated to $\pm 0.01 \%$. accuracy (e.g. 7050 dvm).
3. Adjust the current source for a nominal $500.0 \mathrm{mV} \pm 10 \%$ reading on the monitor voltmeter. Adjust RV9 on pcb 2 to give the same reading of $500.00 \mathrm{~mA} \pm 5$ bits.
4. Increase the current to $950 \mathrm{~mA} \pm 10 \%$ and check that the reading will hold for 1 minute.
5. Remove the Current Source.

AC ZERO

Switch to 'V.AC' mode. Short circuit TR1 (pcb 2) collector (case) to 0V. Adjust RV4 until the readings stop reducing. Reading must be less than 5 bits. Remove the short circuit.

AC SCALE

1. Select 'V.AC' mode. Connect the input to $1 \mathrm{~V} \pm 0.1 \%$ absolute 1 kHz sinewave. On pcb 2 , adjust RV3 and link LKZ to give 1.00000 V , with at least ± 50 bit adjustment on RV3.

AC ATTENUATOR

1. Select 'V.AC' mode. Connect the input to $10 \mathrm{~V} \pm 0.2 \%$ absolute 1 kHz sinewave. Adjust RV4 (pcb 2) to obtain $10.0000 \mathrm{~V} \pm 50$ bits.
2. Increase the input to $100 \mathrm{~V} \pm 0.2$ absolute 1 kHz sinewave. Adjust RV5 (pcb 2) to obtain $100.000 \mathrm{~V} \pm 50$ bits.

INTERFERENCE REJECTION

SERIES MODE

1. Connect instrument as shown in Fig. 4.2.

Fig. 4.2. Interference Rejection:- Series Mode Test Circuit.
2. Switch to 'V.DC' mode and set (V.dc) to approximately 500 mV and (V.ac) to zero. Note the instrument reading.
3. Increase (V.ac) to 1 Volt. Reading must not change by more than 1 mV .

COMMON MODE

AC Rejection

1. Connect instrument as shown in Fig. 4.3.

Fig. 4.3. Interference Rejection:- Common Mode (ac) Test Circuit.
2. Switch to 'V.AC' mode and set (V.ac) to 100 V . Reading shall be less than 100 mV .

DC Rejection

1. Connect instrument as shown in Fig. 4.4.

Fig. 4.4. Interference Rejection:- Common Mode (dc) Test Circuit.
2. Switch to 'V.DC' mode and set (V.dc) to 500 V . Reading shall be less than 5 mV .

This concludes the setting up of the DMM and it should now be followed by a full calibration.

PART 2. CALIBRATION PROCEDURES

INTRODUCTION

The following calibration is basically the final calibration to which all instruments are subjected, prior to despatch from the factory.

For the greatest accuracy the DMM should be removed from its case and fitted into a Setting Up Case, Part No. 70502 before a calibration is attempted. Failing this, allowances must be made for variations in the working temperatures.

See Appendix for details of Setting Up Case.

PRELIMINARY PROCEDURE

The DMM will have to be removed from its case and fitted into the Setting Up Case (if available).

CAUTIONARY NOTES

1. IT IS ESSENTIAL THAT THE INSTRUMENT BE COMPLETELY ISOLATED FROM THE MAINS SUPPLY BEFORE REMOVING THE CASE, DUE TO THE POSITION AND UNPROTECTED NATURE OF THE ON/OFF SWITCH TERMINALS.
2. BEWARE OF THE GUARD PLATE POTENTIAL WITH INSTRUMENT CASE REMOVED.
3. Remove the $4,2.5 \mathrm{~mm}$ screws which secure the DMM case to the rear panel. See Fig. 4.1.
4. Remove the GUARD - Lo link (if fitted).
5. Gently ease out the rear panel and pcb assembly, away from the front panel.
6. Fit assembly into the Setting Up Case (if available), or position assembly in convenient position with the guard plate insulated if required and with easy access to the potentiometers.
7. Ensure that the correct mains selection has been made and that the correct rated fuse is fitted.

$$
\begin{array}{rll}
\text { For } & 230 \mathrm{~V}:- & 150 \mathrm{~mA} \mathrm{SLO} \mathrm{BLO} \\
& 115 \mathrm{~V}:- & 300 \mathrm{~mA} \mathrm{SLO} \mathrm{BLO}
\end{array}
$$

CALIBRATION

The calibration sequence must be carried out in the order given. Calibration should be carried out at an ambient temperature $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ after a warm-up period of approximately half an hour in the Setting-Up Case.

STANDARD SETTINGS

During the warm up period the DMM should be set to the following standard conditions.

1. Mode set to 'V.DC'.
2. Input terminals short circuited.
3. Apply power to the DMM and switch instrument ON.

CALIBRATION PROCEDURE 1

Select 'V.DC' on Mode Selector

TEST	INPUT		OPERATION	READING		RESULT
	VALUE	$\pm \%$		VALUE	\pm bits	
1	$1 \mathrm{M} \Omega / 1 \mu \mathrm{~F}$	10	Adj. Bd.1/RV2	$\pm 0.00 \mathrm{mV}$	2	
2	S/C	-	Adj. Bd.1/RV1	$\pm 0.00 \mathrm{mV}$	0	
3	$1 \mathrm{M} \Omega / 1 \mu \mathrm{~F}$	10	Adj. Bd.1/RV2	$\pm 0.00 \mathrm{mV}$	10	
4	$+0.10 \mathrm{mV}$	2	Adj. Bd.1/RV1 and repeat for equal $+v e$ and -ve readings.	0.10 mV	2	
5	$-0.10 \mathrm{mV}$	2		$-0.10 \mathrm{mV}$	2	
6	S/C	-	Check	$\pm 0.00 \mathrm{mV}$	2	
7	+9.5000V	0.001	Adj.Bd.1/RV7 (1)	9.5000 V	2	
8	+9.5000V	0.001	Check with $1 \mathrm{M} \Omega$ in series.	9.5000 V	50	
9	-9.5000V	0.001	Adj. Bd.1/RV8 (1)	-9.5000V	3	

NOTES:-

(1) Adjust for equal reading, split any deviations equally between readings.

CALIBRATION PROCEDURE 2

Select ' Ω ' on Mode Selector

TEST	INPUT		OPERATION		READING	
	VALUE	$\pm \%$		RESULT		
1	$105.000 \mathrm{k} \Omega$	0.001	Adj. Bd.2/RV2		5	
2	$50.000 \mathrm{k} \Omega$	0.002	Check	$50.000 \mathrm{k} \Omega$	9	
3	$5 \mathrm{k} \Omega$	-	-	-	-	
4	$10.5000 \mathrm{k} \Omega$	0.002	Check			
5	$5.0000 \mathrm{k} \Omega$	0.005	Check	$10.5000 \mathrm{k} \Omega$	10	
6	867.829Ω	0.005	Check	$5.0000 \mathrm{k} \Omega$	8	
7	$1.0500 \mathrm{k} \Omega$	0.005	Check	867.8Ω	4	
8	$0 / C$	-	Overload Check (1)	$1-----\mathrm{k} \Omega$	-	
9	S/C	-	Check	$1.0500 \mathrm{k} \Omega$	7	

NOTES:-

(1) Ensure that overload condition is indicated by a steady ' 1 ' being displayed and that the remaining 5 characters are blanked out.

CALIBRATION PROCEDURE 3

Select 'V.DC' on Mode Selector

TEST	INPUT		OPERATION	READING		RESULT
	VALUE	$\pm \%$		VALUE	\pm bits	
1	+9.5000	0.001	Check	9.5000	3	
2	+1.2000 V	0.002	Check	1.2000 V	2	
3	+0.9500 V	0.001	Check	950.00 mV	5	
4	+95.00 mV	0.002	Check	95.00 mV	2	
5	+10.00 mV	0.02	Check	10.00 mV	2	
6	-9.5000 V	0.001	Check	-9.5000 V	4	
7	1.2000	0.002	Check	1.2000 V	2	
8	-0.95000	0.001	Check	-950.00 mV	5	
9	-95.00 mV	0.002	Check	-95.00 mV	2	
10	-10.00 mV	0.02	Check	-10.00 mV	2	
11	+95.000 V	0.001	Adj. Bd 2/RV1	95.000 V	2	
12	+1000.00	0.005	Check	1000.00	9	
13	-120.00 V	0.002	Check	-120.00 V	3	

CALIBRATION PROCEDURE 4

Select ' Ω ' on Mode Selector

TEST	INPUT		OPERATION	READING		RESULT
	VALUE	$\pm \%$		VALUE	\pm bits	
1	$1.05000 \mathrm{M} \Omega$	0.005	Check	$1050.00 \mathrm{k} \Omega$	19	
2	$500.00 \mathrm{k} \Omega$	0.005	Check	$500.00 \mathrm{k} \Omega$	10	
3	$10.0000 \mathrm{M} \Omega$	0.01	Check	$10000.0 \mathrm{k} \Omega$	34	
4	$5.0000 \mathrm{M} \Omega$	0.01	Check	$5000.0 \mathrm{k} \Omega$	19	

CALIBRATION PROCEDURE 5

Select ' μ A.DC' on Mode Selector

TEST	INPUT		OPERATION		READING	
	VALUE	$\pm \%$		RESULT		
1	OC	-	Check	$\pm 0.000 \mu \mathrm{~A}$	4	
2	+1.00000 mA	0.005	Adj. Bd2/RV6	$1000.00 \mu \mathrm{~A}$	30	
3	$+9.000 \mu \mathrm{~A}$	0.005	Check	$9.000 \mu \mathrm{~A}$	5	
4	$+1.000 \mu \mathrm{~A}$	0.05	Check	$1.000 \mu \mathrm{~A}$	4	
5	-20 V	10	Overload Check	$-1---\mu \mathrm{A}$	-	
6	-1.00000 mA	0.005	Check	$-1000.00 \mu \mathrm{~A}$	30	
7	$-9.000 \mu \mathrm{~A}$	0.005	Check	$-9.000 \mu \mathrm{~A}$	5	
8	$-1.000 \mu \mathrm{~A}$	0.05	Check	$-1.000 \mu \mathrm{~A}$	4	

NOTES:-
(1) Recommend 100 V source via a 100 k ohm resistor.
(2) Recommend 9 V source via a 1 M ohm resistor.
(3) Recommend 10 V source via a 1 M ohm resistor.
(4) Recommend 1 V source via a 1 M ohm resistor.
(5) Ensure that overload is indicated by flashing ' 1 ' with the remaining 5 characters blanked out.
(6) For adjustment of this potentiometer the case must be removed.

CALIBRATION PROCEDURE 6

Select 'mA DC' on Mode Selector

TEST	INPUT		OPERATION	READING		RESULT
	VALUE	\pm \%		VALUE	\pm bits	
1	O/C		Check	0.000 mA	30	
2	95.00 mA	0.01	Check	95.000 mA	70	

CALIBRATION PROCEDURE 7

Select 'V.AC' on Mode Selector

TEST	INPUT		OPERATION	READING		RESULT
	VALUE	$\pm \%$		VALUE	\pm bits	
1	0.95000 V	0.02	At 1 kHz Adjust Bd. 2/RV3	950.00 mV	20	
2	1.00 mV	1	At 1 kHz Check	1.00 mV	9	
3	S/C		Check	0.00	9	
4	500.00 mV	0.02	At 1 kHz Check	500.00 mV	20	
5	95.00 mV	0.02	At 1kHz Check	95.00 mV	15	
6	0.95000 V	0.02	At 40Hz Check	950.00 mV	100	
7	0.95000 V	0.02	At 20kHz Check	950.00 mV	100	
8	0.95000 V	0.02	At 10kHz Check	950.00 mV	100	
9	95.00 mV	0.02	At 20kHz Check	95.00 mV	18	
10	9.5000 V	0.02	At 1 kHz Adjust Bd. 2/RV4 (1)	9.5000 V	20	
11	95.000 V	0.02	At 1 kHz . Adjust Bd. 2/RV5	95.000 V	20	
12	1.2000 V	0.02	At 1 kHz Check	1.2000 V	20	
13	9.5000 V	0.02	At 20kHz Check	9.5000 V	150	
14	95.000 V	0.02	At 20kHz Check	95.000 V	150	
15	750.00 V	0.05	At 1 kHz Check	750.00 V	50	
16	500.00 V	0.05	At 10kHz Check	500.00 V	100	
17	9.5000 V	0.02	At 10kHz Check	9.5000 V	150	

NOTES:

(1) For adjustment of this potentiometer the case must be removed.

This concludes the calibration of the DMM. If the instrument fails any of the prescribed tests it is suggested that the Setting Up Procedures in Section 4 be carried out, followed by a further calibration before any fault diagnosis is attempted.

The serviceable DMM should now be isolated from the supplies and refitted into its case.
NOTE:- Ensure that 'V.DC' is selected on both the switch and the front panel knob to ensure correct mating of the key flat.

Fig. 4.5. View of PCB Assembly, identifying the Potentiometers and their Functions.

SECTION 5 Parts Lists

This section contains detailed parts lists for each of the printed circuit boards fitted in the instrument. When ordering spare parts, it is essential to quote the instrument serial number, located on the rear panel, as well as the full description shown in the appropriate parts list.

COMPONENT PARTS LIST

ABBREVIATIONS

Circuit References

B	Battery
C	Capacitor (μ F)
CSR	Thyristor
D	Diode
FS	Fuse
IC	Integrated Circuit
L	Inductor
LP	Lamp (including Neon)
LK	Link
M	Meter
MSP	Mains Selector Panel
PL	Plug
R	Resistor (Ω)
RL	Relay
S	Switch
SK	Socket
T	Transformer
TP	Terminal Post (or Test Point)
TR	Transistor
V	Valve
X	Other Components

Also Used:-
RNL Non Linear Resistor (Ω)
RV Variable Resistor (S)
Component Composition
FIXED RESISTORS

Carbon Composition	CACP
Carbon Film	CAFM
Cracked Carbon	CKCA
Metal Film	MEFM
Metal OXide	MEOX
Power Wirewound	POWW
Precision Wirewound	PRWW
Temperature Sensitive	TEMP
Thick Film	TKFM
Thin Film	TNFM
Voltage Sensitive	VOLT

Component Composition (Cont'd) VARIABLE RESISTORS

Wirewound Preset Single Turn	WWPS
Wirewound Preset Multiturn	WWPN
Wirewound Front Panel Single Turn	WWFS
Wirewound Front Panel Multiturn	WWFM
Carbon Preset Single Turn	CAPS
Carbon Preset Multiturn	CAPM
Carbon Front Panel Single Turn	CAFS
Carbon Front Panel Multiturn	CAFM
Cermet Preset Single Turn	CMPS
Cermet Preset Multiturn	CMPM
Cermet Front Panel Single Turn	CMFS
Cermet Front Panel Multiturn	CMFM

CAPACITORS

Air
Aluminium Electrolytic
Aluminium Solid
Polycarbonate
Ceramic
Polyester Foil
Polyester Metallised
Glass
Mica
Metallised Lacquer
Paper Foil
Paper Metallised
PTFE
Polypropylene Film
Polystyrene
Tantalum Dry
Tantalum Foil
Tantalum Wet

WWPS
WWPN
WWFS
WWFM
CAPM
CAFS
CMPM
CMPN
CMFS CMFM

AIR
ALME
ALMS
CARB
CERM
ESTF
ESTM
GLAS
MICA
MLAC
PAPF
PAPM
PTFE
PTFE
PYLN
STYR
STVR
TAND
TANF
TANW

PCB No. 1

Cct Ref.	General Description				Solartron Part No.	Cct Ref.	General Description				Solartron Part No.
R1	CACP	1000	1/8W	10\%	172031000	R79	CACP	10k	1/8W	10\%	172041000
R2	CACP	470	1/8W	10\%	172024700	R80	CACP	33k	1/8W	10\%	172043300
R3	CACP	47k	1/8W	10\%	172044700	R81	CACP	33k	1/8w	10\%	172043300
R4	CACP	47k	1/8W	10\%	172044700	R82	CACP	100k	1/8W	10\%	172051000
R5	CACP	10	1/8W	10\%	172011000	R83	CACP	4.7k	1/8W	10\%	172034700
R6	CACP	1.5 M	1/8W	10\%	172061500	R84	CACP	10k	1/8W	10\%	172041000
R7	CACP	220k	1/8W	10\%	172052200	R85	CACP	100k	1/8W	10\%	172051000
R8	CACP	22	1/8W	10\%	172012200	R86	CACP	4.7k	1/8W	10\%	172034700
R9	CACP	220k	1/8W	10\%	172052200	R87	MEFM	33k		0.5\%	
R10	CACP	10k	1/8W	10\%	172041000	R88	MEFM	965 k	$1 / 4 \mathrm{~W}$	0.5\%	160400530
R11	CACP	220k	1/8W	10\%	172052200	R89	MEFM	470	$1 / 4 \mathrm{~W}$	0.5\%	198224701
R12	CACP	220k	1/8W	10\%	172052200	R90	MEFM	3.6 k	$1 / 8 \mathrm{~W}$	0.5\%	192733602
R13	CACP	100	1/8W	10\%	172021000	R91	CACP	4.7k	1/8W	10\%	172034700
to	MEOX	22k	1/4W	5\%	195642200	R92	CACP	4.7 k	1/8W	10\%	172034700
R19					195642200	R93	MEFM	10k	$1 / 8 \mathrm{~W}$.25\%	192841002
R20	MEOX	9.1k	1/4W	5\%	195639100	R94	MEFM	101	1/8W	.25\%	192821012
R21	MEOX	9.1k	1/4W	5\%	195639100	R95 R96	PRWW	9.75 k 15.5 K	$\begin{aligned} & 1 / 4 \mathrm{~W} \\ & 1 / 4 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	169606901
R22	MEOX	100k	1/4W	5\%	195651000						
R23	MEOX	470	1/2W	5\%	193524700	R98	MEFM MEFM	649	1/8w	1\%	$\begin{aligned} & 160400430 \\ & 160400420 \end{aligned}$
R24	CACP	3.3k	1/4W	10\%	172333300	R98		649			
R25	CACP	3.3k	1/4W	10\%	172333300	R99	MEFM	332	1/8W	1\%	160400419
R26	CACP	22	1/8W	10\%	172012200	R100	MEFM	169	1/8W	1\%	160400418
R27	CACP	3.3 K	$1 / 4 \mathrm{~W}$	10\%	172333300	R101	MEFM	86.6	1/8W	1\%	160400417
R28	CACP	3.3k	1/4W	10\%	172333300	R102	PRWW	40k	1/4W	0.05\%	169607001
R29	CACP	47	1/8W	10\%	172014700	R103					
R30	CACP	22k	1/8w	10\%	172042200						
R31	CACP	100k	1/8w	10\%	172051000	R104	MEFM	10k	1/8W	. 25%	192841002
R32	CACP	68k	1/8W	10\%	172046800	R105	MEFM	101	1/8W	. 25%	192821012
						R106	CACP	1000	1/8W	10\%	172031000
R33	CACP	33 k	1/8W	10\%	172043300						
R34	CACP	33k	1/8W	10\%	172043300	R107	CACP	1000	1/8W	10\%	172031000
R35	CACP	4.7k	1/8W	10\%	172034700	R108	CACP	8.2k	1/8W	10\%	172038200
R36	CACP	3.3 K	1/8W	10\%	172033300	R109	CACP	8.2k	1/8W	10\%	172038200
						R110	CACP	47k	1/8W	10\%	172044700
R37	CACP	22M	1/4W	10\%	172372200						
R38	CACP	220	1/8W	10\%	172022200	R111	CACP	47k	1/8W	10\%	172044700
R39	CACP	33 k	1/8w	10\%	172043300	R112	MEOX	1000	1/4W	5\%	195631000
R40	MEFM	110k	1/4W	0.5\%	198251101	R113	CACP	33k	1/8w	10\%	172043300
						R114	CACP	100k	1/8W	10\%	172051000
R41	MEFM	1M	1/4W	1\%	198361002						
R42	MEOX	22k	1/4W	5\%	195642200	R115	CACP	33k	1/8W	10\%	172043300
R43	MEFM	18k	1/8W	0.5\%	192741802	R116	CACP	33 k	1/8W	10\%	172043300
R44	MEFM	18k	1/8W	0.5\%	192741802	R123	CACP	10 k	1/8W	10\%	172041000
R45	CACP	2.2k	1/8W	10\%	172032200	C1	ESTM	. 22	100 V	10\%	225452200
R46	CACP	2.2 K	1/8W	10\%	172032200	C 2	ESTM	. 047	100V	10\%	225444700
R47	CACP	2.2 M	$1 / 8 \mathrm{~W}$	10\%	172062200	C3	TANW	330	6 V	20\%	265283300
R48	CACP	220	$1 / 8 \mathrm{~W}$	10\%	172022200	C4	CERM	3.3 p	200V	15\%	240603300
R49	CACP	33k	1/8W	10\%	172043300	C5	ESTM	. 22	100V	10\%	225452200
R50	CACP	33k	1/8W	10\%	172043300	C6	TANW	47	6 V	20\%	265274700
R52	CACP	2.2k	1/8W	10\%	172032200	C7	CERM	150p	500 V	20\%	241321500
R53	CACP	100k	1/8W	10\%	172051000	C8	CERM	15p	500 V	20\%	241311500
R54	CACP	4.7k	1/8W	10\%	172034700						
						C9	ESTM	. 47	63 V	10\%	225154700
R55	CACP	33k	1/8W	10\%	172043300	C10	CERM	2.2p	200V	15\%	240602200
R56	CACP	33k	1/8W	10\%	172043300	C11	ESTM	. 47	63 V	10\%	225154700
R57	CACP	33k	1/8W	10\%	172043300	C12	ALME	220	16 V	-20\%	273382200
R58	CACP	100k	1/8W	10\%	172051000					+100\%	
R59	CACP	4.7k	1/8W	10\%	172034700	C13	ALME	2200	10 V	-10\%	273192200
R60	CACP	10k	1/8W	10\%	172041000					+100\%	
R61	CACP	33k	1/8W	10\%	172043300	C14	ALME	470	40 V	-10\%	273784700
R62	CACP	100k	1/8W	10\%	172051000					+100\%	
R63	CACP	4.7 k	1/8W	10\%	172034700	C15	ALME	470	40 V	-10%	273784700
R64	CACP	33k	$1 / 8 \mathrm{~W}$	10\%	172043300					$+100 \%$	
R65	CACP	33k	1/8w	10\%	172043300	C16	ALME	22	40 V	-10\%	273772200
R66	CACP	47k	$1 / 8 \mathrm{~W}$	10\%	172044700						
R67	CACP	33k	1/8W	10\%	172043300	C17	TANW	15	20 V	20\%	265871500
R68	CACP	100k	1/8W	10\%	172051000	C18	TANW	15	20 V	20\%	265871500
R69	CACP	4.7k	1/8w	10\%	172034700	C19	ESTM	0.47	63 V	10\%	225154700
R70	CACP	10k	1/8w	10\%	172041000	C20	CERM	33p	500 V	20\%	241313300
R71	CACP	33k	1/8W	10\%	172043300	C21	PTFE	. 1	100 V	2\%	208950001
R72	CACP	33k	1/8W	10\%	172043300	C22	TANW	15	20 V	20\%	265871500
R73	CACP	100k	1/8W	10\%	172051000	C23	ESTM	10	63 V	20\%	219971000
R74	CACP	4.7k	1/8W	10\%	172034700	C24	CERM	470p	500 V	20\%	241324700
R75	CACP	10k	1/8W	10\%	172041000	C25	CERIM	150p	500 V	20\%	241321500
R76	CACP	33 k	$1 / 8 \mathrm{~W}$	10\%	172043300	C26	CERM	150p	500 V	20\%	241321500
R77	CACP	100k	1/8W	10\%	172051000	C27	CERM	15p	500 V	20\%	241311500
R78	CACP	4.7k	$1 / 8 \mathrm{~W}$	10\%	172034700	C28	TANW	15	20 V	20\%	265871500

PCB No. 2

PCB No. 3

SECTIDN 6 Specifications

This section contains a copy of the technical specification applicable to this instrument.

This instrument is designed and manufactured to a higher specification than is claimed commercially. In order that that the user may benefit as appropriate, this technical manual may relate to a superior performance. In the event of contradictions between specifications, no additional claims are made for the instrument above that claimed in the current data sheet.
\(\left.$$
\begin{array}{ll}\text { General } \\
\text { Display } \\
\text { Type: } \\
\text { Scale Length: }\end{array}
$$ \quad $$
\begin{array}{l}7 \text { Bar Red Light emitting diodes } \\
\text { Polarity Indication: } \\
\text { Overload Indication: } \\
\text { Annunciator: }\end{array}
$$ \quad \begin{array}{l}Displayed for negative dc inputs

DC/AC / \mu \mathrm{A} / \mathrm{mA}, flashing 1, \Omega steady 1

RV, V, \mu \mathrm{A} / \mathrm{mA}, \Omega, \mathrm{k} \Omega\end{array}\right]\)| Automatic, redundant leading |
| :--- |
| zeros are blanked. |

Power Supply

Voltage:	$115 \mathrm{~V} / 230 \mathrm{~V}+10 \%-15 \%$	
Frequency:	$50 \mathrm{~Hz} \pm 1 \%$ or $60 \mathrm{~Hz} \pm 1 \%$	
Consumption:	12 VA	
Fuses:	230 V	150 mA
	115 V	Slo Blo

Size

Width:	216 mm	$(8.5 \mathrm{in})$
Height:	89 mm	$(3.5 \mathrm{in})$
Depth:	280 mm	$(11 \mathrm{in})$
Weight:	2.73 kg	$(6 \mathrm{lb})$

Technical Specification

${ }^{\circ}$ Manufacturing calibration temp. $23^{\circ} \mathrm{C}$.
Specification valid for calibration at 20 to $25^{\circ} \mathrm{C}$.
Temperature corrections need be applied only when operating beyond the temperature limits quoted under Limits of Error.

DC voltage (V DC)

AC voltage (V AC)

Full Scale $=$ Nominal Range $+10 \%$ (except 750 V where f.s. $=$ Nominal Range)
${ }^{\square}$ Typical limits for other frequency bands: 10 Hz to $40 \mathrm{~Hz}: \quad \pm 1.0 \%$ rdg. $\pm 0.1 \%$ f.s. 20 kHz to $50 \mathrm{kHz}: \quad \pm 1.0 \%$ rdg. $\pm 0.1 \%$ f.s. 50 kHz to $100 \mathrm{k} \mathrm{Hz}: \pm 4.0 \%$ rdg. $\pm 0.3 \%$ f.s.

Resistance (Ω)

Nominal	Input				mits of					nt
Range	Sensitivity	$\begin{array}{r} 24 \mathrm{hrs} \\ \pm \quad[\% \mathrm{rdg} . \end{array}$	$\begin{gathered} 1{ }^{\circ} \mathrm{C} \\ +\% \mathrm{f} . \mathrm{s} .] \end{gathered}$		$\begin{aligned} & \pm 5^{\circ} \mathrm{C} \\ & +\% \mathrm{f} . \mathrm{s} .\} \end{aligned}$	1 y [\%	${ }^{\circ}{ }^{\circ} \mathrm{C}$ $\% \mathrm{f} . \mathrm{s} .]$	Temp. [\% rdg	off. per \% f.s.]	Thro' R
$10 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	0.008	0.004	0.015	0.005	0.02	0.005	0.005	0.0002	$100 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	1Ω	0.006	0.003	0.015	0.004	0.02	0.004	0.005		$100 \mu \mathrm{~A}$
$1 \mathrm{M} / \Omega$	10Ω	0.015	0.004	0.025	0.005	0.03	0.005	0.005	0.0002	$1 \mu \mathrm{~A}$
$10 \mathrm{M} \Omega$	100Ω	0.03	0.005	0.05	0.005	0.05	0.005	0.005		$1 \mu \mathrm{~A}$
Maximum dissipation in unknown: 1 mW				Full Scale $=$ Nominal Range $+10 \%$				Overload Immunity		00V

DC current ($\mu \mathrm{A} / \mathrm{mA} \mathrm{DC}$)

Nominal	Input				imits of	or				Input
Range	Sensitivity	$\begin{array}{r} 24 \mathrm{hrs} \\ \pm[\% \mathrm{rdg} \end{array}$	$\begin{gathered} 1^{\circ} \mathrm{C} \\ +\% \mathrm{f} . \mathrm{s} .] \end{gathered}$		$\begin{aligned} & \pm 5^{\circ} \mathrm{C} \\ & +\% \mathrm{f} . \mathrm{s} .] \end{aligned}$	1 yea [\% rd	$5^{\circ} \mathrm{C}$ \% f.s.	Temp [\% rdg	$\begin{aligned} & \text { oeff. per }{ }^{\circ} \mathrm{C} \\ & \text { \% f.s.] } \end{aligned}$	Resistance
$100 \mu \mathrm{~A}$	1 nA	0.03	0.005	0.04	0.005	0.04	0.005	0.005	0.0002	$<5 \Omega$
1 mA	10nA	0.03	0.005	0.04	0.005	0.04	0.005	0.005		$<5 \Omega$
100 mA	$1 \mu \mathrm{~A}$	0.05	0.04	0.05	0.05	0.05	0.05	0.005	0.002	$<2 \Omega$
1 A	$10 \mu \mathrm{~A}$	0.05	0.005	0.05	0.005	0.05	0.005	0.005		$<2 \Omega$
Full Scale $=$ Nominal Range $+10 \%$				7054 only: external current shunt for 100 mA \& 1 A ranges						
Overload	mmunity	ges 1 \& ges 3 \&	$\begin{aligned} & 10 \mathrm{~mA} \\ & 1.1 \mathrm{~A} \end{aligned}$							

Common Mode Rejection

Measured with an imbalance of $1 \mathrm{k} \Omega$ in the input leads
Maximum Common Mode Voltage: 500 V dc or peak ac
$\begin{array}{ll}\text { DC Measurement: } & \text { Rejection of } \mathrm{dc}>120 \mathrm{~dB} \\ & \text { Rejection of } 50 / 60 \mathrm{~Hz} \pm 1 \%>120 \mathrm{~dB} \\ \text { AC Measurement: } & \text { Rejection of } \mathrm{dc}>120 \mathrm{~dB} \\ & \text { Rejection of } 50 / 60 \mathrm{~Hz} \pm 1 \%>40 \mathrm{~dB}\end{array}$

Series Mode Rejection

Ratio of peak interference to 1 digit reading error, produced
DC Measurements: Rejection of $50 / 60 \mathrm{~Hz} \pm 1 \%>60 \mathrm{~dB}$

APPENDIX

This section contains specialised selection procedures and/or test equipment to facilitate servicing.

CONTENTS

Page
FET Selection Procedure A2
Setting Up Case 70502 A3

FET SELECTION PROCEDURE

PURPOSE

To select four FET's type U1899E with Ron matched to within 1Ω at a drain-source current of $100 \mu \mathrm{~A}$.

TEST PROCEDURE

The following test procedure should be carried out using the test circuit shown below or Solartron Test Equipment TG1100/1.

TEST CIRCUIT

$$
\left.\begin{array}{l}
\mathrm{V}=10 \mathrm{~V} \\
\mathrm{R}=100 \mathrm{k}
\end{array}\right\} \quad \frac{\mathrm{V}}{\mathrm{R}}=100 \mu \mathrm{~A} \pm 0.2 \%
$$

(a) Devices to be tested should be allowed to settle to the ambient temperature of the chamber in which the matching operation is to be done.
This temperature should be $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
(b) Place the device under test in the test socket using tweezers or pliers to ensure that its temperature is not raised by handling.
(c) Press switch SA and note DVM reading.

Use the relation $1 \mathrm{mV}=10 \Omega$ to calculate the Ron value.
(d) Mark the top of the device with two coloured dots of paint as shown in following view employing the standard colour code.
Ron to be given to nearest whole number, e.g.

45.6Ω YELLOW-BLUE
$46.3 \Omega \quad$ YELLOW-BLUE
$46.5 \Omega \quad$ YELLOW-VIOLET

TOP VIEW
(e) Select sets of four devices, each with the same colour code.

COLOUR CODE

0	Black
1	Brown
2	Red
3	Orange
4	Yellow
5	Green
6	Blue
7	Violet
8	Grey
9	White

SETTING-UP CASE 70502

INTRODUCTION

In order to achieve the greatest accuracy during a calibration it is essential that the operating temperatures affecting circuit components are as near as possible to those experienced within the instrument case during normal operation.

The Setting-Up Case 70502 enhances the calibration accuracy by allowing access for adjustments whilst the instrument is functioning under normal working conditions.

GENERAL DESCRIPTION

The Setting-Up Case is basically a normal instrument case with holes drilled in convenient positions allowing access to the potentiometers. Fig. A1 shows the side view of the Case with the access holes and the relevant potentiometers.

Fig. A.1. View of Setting-Up Case showing potentiometer access holes.

