Gestetner RПCon 5avin

A292/A293
 A292P/A293P SERVICE MANUAL

(To be used in conjunction with A229 Service Manual)

Gestetner
 RICOM
 52VII

RICOH GROUP COMPANIES

Gestetner RICOM SaVIn

A292/A293
A292P/A293P
SERVICE MANUAL

It is the reader's responsibility when discussing the information contained within this document to maintain a level of confidentiality that is in the best interest of Ricoh Corporation and its member companies.

NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FASHION AND DISTRIBUTED WITHOUT THE PRIOR PERMISSION OF RICOH CORPORATION.

All product names, domain names or product illustrations, including desktop images, used in this document are trademarks, registered trademarks or the property of their respective companies.
They are used throughout this book in an informational or editorial fashion only and for the benefit of such companies. No such use, or the use of any trade name, or web site is intended to convey endorsement or other affiliation with Ricoh products.

- WARNING

The Service Manual contains information regarding service techniques, procedures, processes and spare parts of office equipment distributed by Ricoh Corporation. Users of this manual should be either service trained or certified by successfully completing a Ricoh Technical Training Program.

Untrained and uncertified users utilizing information contained in this service manual to repair or modify Ricoh equipment risk personal injury, damage to property or loss of warranty protection.

Ricoh Corporation

LEGEND

PRODUCT CODE	COMPANY		
	GESTETNER	RICOH	SAVIN
A292	3355	Aficio 551	2055DP
A293	3370	Aficio 700	2070DP
A292 w/G594 Controller	--	Aficio 551P	--
A293 w/G594 Controller	--	Aficio 700P	--

DOCUMENTATION HISTORY

REV. NO.	DATE	COMMENTS
$*$	$5 / 2000$	Original Printing

TABLE OF CONTENTS

COMPARISON BETWEEN A292/A293 AND A229

OVERALL INFORMATION

1. OVERALL MACHINE INFORMATION 1-1
1.1 SPECIFICATIONS 1-1
1.1.1 COPIER ENGINE 1-1
1.1.2 ADF 1-4
1.2 MACHINE CONFIGURATION 1-5
1.3 MECHANICAL COMPONENT LAYOUT 1-6
1.3.1 COPIER ENGINE 1-6
1.3.2 ADF 1-8
1.4 PAPER PATH 1-9
1.5 COPY PROCESS 1-10
1.6 DRIVE LAYOUT 1-12
1.6.1 COPIER ENGINE 1-12
1.6.2 ADF 1-13
1.7 ELECTRICAL COMPONENT DESCRIPTION 1-14
1.7.1 COPIER ENGINE 1-14
1.7.2 ADF 1-20
DETAILED DESCRIPTIONS
2. DETAILED DESCRIPTIONS 2-1
2.1 DOCUMENT FEEDER 2-1
2.1.1 PICK-UP ROLLER RELEASE 2-1
2.1.2 BOTTOM PLATE LIFT 2-2
2.1.3 PICK-UP AND SEPARATION 2-3
2.1.4 ORIGINAL FEED 2-4
2.1.5 ORIGINAL SIZE DETECTION 2-5
Original Length 2-5
Original Width 2-5
2.1.6 ORIGINAL TRANSPORT 2-6
2.1.7 ORIGINAL SKEW CORRECTION 2-7
2.1.8 ORIGINAL INVERSION AND FEED-OUT. 2-8
General Operation 2-8
Original Inversion 2-9
Original Exit (Single-Sided Original Mode) 2-10
Original Exit (Double-Sided Original Mode) 2-11
2.1.9 JAM CONDITIONS 2-12
Feed-in 2-12
Feed-out 2-12
Inversion 2-12
2.2 SCANNING 2-13
2.2.1 OVERVIEW 2-13
2.2.2 SCANNER DRIVE 2-14
2.2.3 ORIGINAL SIZE DETECTION IN BOOK MODE 2-15
2.3 IMAGE PROCESSING 2-16
2.3.1 OVERVIEW 2-16
2.3.2 SBU 2-17
2.3.3 AUTO IMAGE DENSITY (ADS) 2-18
2.3.4 IPU (IMAGE PROCESSING UNIT) 2-19
2.3.5 IMAGE PROCESSING STEPS AND RELATED SP MODES 2-20
2.3.6 AUTO SHADING 2-25
Black Level Correction 2-25
White Level Correction 2-25
2.3.7 BACKGROUND ERASE 2-26
2.3.8 INDEPENDENT DOT ERASE 2-27
2.3.9 FILTERING, MAIN SCAN MAGNIFICATION/REDUCTION 2-28
Overview 2-28
Filtering 2-28
Main Scan Magnification/Reduction. 2-29
Sub Scan Magnification 2-29
2.3.10 GAMMA (γ) CORRECTION 2-30
2.3.11 GRADATION PROCESSING 2-30
Three-graduation Processing 2-30
Four-graduation Processing 2-31
Error Diffusion and Dithering 2-31
2.3.12 LINE WIDTH CORRECTION 2-31
2.4 LASER EXPOSURE 2-32
2.4.1 AUTO POWER CONTROL 2-32
2.4.2 DUAL BEAM WRITING 2-33
2.4.3 LASER BEAM PITCH CHANGE MECHANISM 2-34
2.4.4 LD SAFETY SWITCHES 2-35
2.5 DRUM UNIT 2-36
2.5.1 PROCESS CONTROL 2-36
Overview 2-36
Drum potential sensor calibration 2-37
VSG adjustment 2-37
VG Adjustment 2-38
LD power adjustment 2-39
Toner Density Adjustment 2-39
VREF Update 2-40
2.5.2 DRUM UNIT COMPONENTS 2-41
2.5.3 DRUM CHARGE 2-42
Overview 2-42
Charge Corona Wire Cleaning Mechanism 2-43
2.5.4 DRUM CLEANING AND TONER RECYCLING 2-44
Overview 2-44
Drive Mechanism 2-45
Cleaning Blade Pressure Mechanism and Side-to-Side Movement 2-46
2.5.5 OTHERS 2-47
Air Flow Around the Drum 2-47
Pick-off Mechanism 2-48
2.6 DEVELOPMENT AND TONER SUPPLY 2-49
2.6.1 OVERVIEW 2-49
2.6.2 DEVELOPMENT MECHANISM. 2-50
2.6.3 DEVELOPMENT BIAS 2-51
2.6.4 TONER DENSITY CONTROL 2-52
Overview 2-52
Sensor control mode 2-52
Image pixel count control 2-53
2.6.5 TONER END DETECTION 2-54
Toner Near End 2-54
Toner End 2-54
2.6.6 TONER END RECOVERY 2-54
2.6.7 ABNORMAL TD AND ID SENSOR CONDITIONS 2-55
2.7 IMAGE TRANSFER AND PAPER SEPARATION 2-56
2.7.1 IMAGE TRANSFER AND PAPER SEPARATION MECHANISM 2-56
2.7.2 TRANSFER BELT UNIT LIFT MECHANISM 2-57
2.7.3 TRANSFER BELT CLEANING MECHANISM 2-58
2.8 PAPER FEED 2-59
2.8.1 OVERVIEW 2-59
2.8.2 DRIVE MECHANISM 2-60
2.8.3 TANDEM LCT - TRAY 1 2-61
Overview 2-61
Connecting the Left and Right Sides of the Tray 2-62
Paper Lift/Remaining Paper Detection. 2-63
Fence Drive 2-65
Rear Fence Drive 2-66
Tray Positioning 2-67
2.8.4 TRAY POSITIONING MECHANISM - TRAYS 1 TO 3 2-68
2.8.5 PAPER LIFT MECHANISM - TRAYS 2 AND 3 2-69
2.8.6 VERTICAL TRANSPORT MECHANISM 2-70
2.8.7 PAPER REGISTRATION 2-71
2.8.8 PAPER SIZE DETECTION - TRAY 2 2-72
2.9 IMAGE FUSING 2-73
2.9.1 OVERVIEW 2-73
2.9.2 FUSING ENTRANCE GUIDE 2-74
2.9.3 FUSING DRIVE MECHANISM 2-75
2.10 PAPER EXIT/DUPLEX 2-76
2.10.1 OVERVIEW 2-76
2.10.2 INVERTER 2-77
Feed-in and Jogging 2-77
Feed-out 2-78
2.10.3 DUPLEX TRAY FEED MECHANISM 2-79
2.10.4 BASIC DUPLEX FEED OPERATION 2-80
Longer than A4 / Letter lengthwise 2-80
2.11 ENERGY SAVER MODES 2-83
2.11.1 LOW POWER MODE 2-83
Entering low power mode 2-83
What happens in low power mode 2-83
Return to stand-by mode 2-83
INSTALLATION
3. INSTALLATION PROCEDURE 3-1
3.1 INSTALLATION REQUIREMENTS 3-1
3.1.1 ENVIRONMENT 3-1
3.1.2 MACHINE LEVEL 3-1
3.1.3 MINIMUM SPACE REQUIREMENTS 3-2
3.1.4 POWER REQUIREMENTS 3-2
3.2 COPIER (A229/A293) 3-3
3.1.1 ACCESSORY CHECK. 3-3
3.1.2 INSTALLATION PROCEDURE 3-4
3.3 LCT (A698) 3-14
3.3.1 ACCESSORY CHECK 3-14
3.3.2 INSTALLATION PROCEDURE 3-15
3.4 3,000-SHEET FINISHER (B312) 3-20
3.4.1 ACCESSORY CHECK 3-20
3.4.2 INSTALLATION PROCEDURE 3-21
3.5 PUNCH UNIT INSTALLATION (A812) FOR B312 FINISHER 3-24
3.5.1 ACCESSORY CHECK 3-24
3.5.2 PUNCH UNIT INSTALLATION 3-25
3.6 FINISHER (B302) 3-28
3.6.1 INSTALLATION PROCEDURE 3-28
3.7 PUNCH UNIT INSTALLATION (A812) FOR B302 FINISHER 3-31
3.7.1 ACCESSORY CHECK 3-31
3.1.2 PUNCH UNIT INSTALLATION 3-32
3.8 KEY COUNTER INSTALLATION 3-35
3.9 COPY CONNECTOR KIT INSTALLATION 3-36
3.10 COPY TRAY TYPE 700 INSTALLATION 3-39
SERVICE TABLES
4. SERVICE TABLES 4-1
4.1 GENERAL CAUTIONS 4-1
4.1.1 DRUM 4-1
4.1.2 DRUM UNIT 4-1
4.1.3 TRANSFER BELT UNIT 4-2
4.1.4 SCANNER UNIT 4-2
4.1.5 LASER UNIT 4-2
4.1.6 CHARGE CORONA 4-3
4.1.7 DEVELOPMENT 4-3
4.1.8 CLEANING 4-4
4.1.9 FUSING UNIT 4-4
4.1.10 PAPER FEED 4-4
4.1.11 USED TONER 4-4
4.2 SERVICE PROGRAM MODE 4-5
4.2.1 SERVICE PROGRAM MODE OPERATION 4-5
Service Program Access Procedure 4-5
Accessing Copy Mode from within an SP Mode 4-7
Selecting the Program Number 4-8
Inputting a Value or Setting for an SP Mode 4-9
4.2.2 SERVICE PROGRAM MODE TABLES 4-10
4.2.3 TEST PATTERN PRINTING (SP2-902) 4-66
Test Pattern Table (SP2-902-2: Test Pattern Printing - IPU) 4-66
Test Pattern Table (SP2-902-3: Test Pattern Printing - Printing) 4-66
4.2.4 INPUT CHECK 4-67
Main Machine Input Check (SP5-803) 4-67
ADF Input Check (SP6-007) 4-71
4.2.5 OUTPUT CHECK 4-72
Main Machine Output Check (SP5-804) 4-72
ADF Output Check (SP6-008) 4-73
4.2.6 SYSTEM PARAMETER AND DATA LISTS (SMC LISTS) 4-73
4.2.7 MEMORY ALL CLEAR (SP5-801) 4-74
4.2.8 SOFTWARE RESET 4-75
4.2.9 SYSTEM SETTING AND COPY SETTING (UP MODE) RESET 4-75
System Setting Reset 4-75
Copy Features Reset 4-75
4.3 PROGRAM AND DATA DOWNLOAD 4-76
4.3.1 OVERVIEW 4-76
4.3.2 DOWNLOADING SOFTWARE FROM FLASH ROM TO THE BIC 4-76
4.3.3 DOWNLOAD THE BICU SOFTWARE FROM BICU TO FLASH MEMORY CARD 4-78
4.3.4 DOWNLOAD NVRAM DATA TO THE BICU 4-79
4.3.5 DOWNLOAD NVRAM DATA FROM BICU TO FLASH MEMORY CARD 4-80
4.3.6 DOWNLOAD STAMP DATA TO THE BICU 4-81
4.4 USER PROGRAM MODE 4-82
4.4.1 HOW TO ENTER AND EXIT UP MODE 4-82
4.4.2 UP MODE TABLE 4-82
System Setting Table 4-82
Copy Features Table 4-83
4.4.3 IMAGE QUALITY SETTING BY UP MODE 4-87
Text Mode 4-87
Text/Photo Mode 4-91
Photo Mode 4-92
Pale Mode 4-93
Generation Mode 4-93
4.5 TEST POINTS/DIP SWITCHES/LEDS 4-94
4.5.1 DIP SWITCHES 4-94
4.5.2 TEST POINTS 4-94
4.5.3 FUSES 4-95
4.5.4 VARIABLE RESISTORS 4-96
4.5.5 LEDS 4-96
4.6 SPECIAL TOOLS AND LUBRICANTS 4-96
4.6.1 SPECIAL TOOLS 4-96
4.6.2 LUBRICANTS 4-96
4.7 FIRMWARE HISTORY 4-100
PREVENTIVE MAINTENANCE
5. PREVENTIVE MAINTENANCE SCHEDULE 5-1
5.1 PM TABLE 5-1
5.2 PM COUNTER 5-5
REPLACEMENT AND ADJUSTMENT
6. REPLACEMENT AND ADJUSTMENT 6-1
6.1 EXTERIOR 6-1
6.1.1 FILTERS 6-1
Ozone Filter: Duct 6-1
Filter Vacuum 6-1
6.2 DOCUMENT FEEDER 6-2
6.2.1 COVER REMOVAL 6-2
6.2.2 FEED UNIT REMOVAL AND SEPARATION ROLLER REPLACEMENT 6-4
6.2.3 FEED BELT REPLACEMENT 6-5
6.2.4 PICK-UP ROLLER REPLACEMENT 6-6
6.2.5 SENSOR REPLACEMENT 6-7
Entrance and Registration Sensors 6-7
Width Sensor 6-8
Exit Sensor and Inverter Sensor 6-9
6.2.6 TRANSPORT BELT REPLACEMENT 6-10
6.3 SCANNER UNIT 6-11
6.3.1 EXPOSURE GLASS 6-11
6.3.2 LENS BLOCK 6-12
6.3.3 ORIGINAL SIZE SENSORS 6-13
6.3.4 EXPOSURE LAMP 6-14
6.3.5 SCANNER MOTOR / MCU 6-15
Scanner Motor 6-15
MCU 6-15
6.3.6 SCANNER WIRES 6-16
Rear Scanner Drive Wire 6-19
Front Scanner Drive Wire 6-20
Reinstallation 6-21
6.4 LASER UNIT 6-23
6.4.1 CAUTION DECAL LOCATIONS 6-23
6.4.2 LD UNIT REPLACEMENT 6-24
6.4.3 POLYGON MIRROR MOTOR REPLACEMENT 6-25
6.5 DRUM UNIT 6-26
6.5.1 DRUM ENTRANCE SEAL AND DRUM POTENTIAL SENSOR REPLACEMENT 6-26
6.5.2 DRUM MOTOR REPLACEMENT. 6-27
6.5.3 TONER OUTPUT AND RECYCLING PUMP UNIT REPLACEMENT 6-28
6.6 DEVELOPMENT AND TONER SUPPLY 6-30
6.6.1 DEVELOPMENT AND AIR DUST FILTER REPLACEMENT 6-30
6.6.2 DEVELOPER REPLACEMENT 6-31
6.6.3 TONER END SENSOR REPLACEMENT 6-33
6.6.4 DEVELOPMENT MOTOR REPLACEMENT 6-33
6.7 TRANSFER BELT UNIT 6-34
6.7.1 TRANSFER BELT UNIT REMOVAL/INSTALLATION 6-34

- Removal 6-34
- Installation 6-34
6.8 PAPER FEED 6-36
6.8.1 PAPER TRAY REMOVAL 6-36
Tandem Tray Removal 6-36
6.8.2 REAR FENCE RETURN SENSOR REPLACEMENT 6-38
6.8.3 REAR FENCE HP SENSOR REPLACEMENT 6-39
6.8.4 BOTTOM PAPER SENSOR REPLACEMENT 6-40
6.8.5 BOTTOM PLATE LIFT WIRE REPLACEMENT 6-41
6.8.6 TANDEM LCT PAPER SIZE CHANGE 6-43
6.8.7 BY-PASS PAPER SIZE BOARD REPLACEMENT 6-46
6.8.8 PAPER FEED CLUTCH/RELAY CLUTCH REMOVAL 6-48
6.8.9 BY-PASS FEED MOTOR/CLUTCH REMOVAL 6-51
6.8.10 REGISTRATION MOTOR REMOVAL 6-52
6.8.11 PAPER TRAY UNIT REMOVAL 6-53
6.9 FUSING UNIT 6-54
6.9.1 FUSING UNIT REMOVAL 6-54
6.9.2 FUSING THERMISTOR AND FUSING THERMOFUSE REPLACEMENT 6-55
Fusing Thermistor Replacement 6-55
Fusing Thermofuse Replacement 6-55
6.9.3 FUSING LAMP REPLACEMENT 6-56
6.9.4 HOT ROLLER REPLACEMENT 6-57
6.9.5 OIL SUPPLY/CLEANING ROLLER REPLACEMENT 6-59
6.9.6 PRESSURE ROLLER CLEANING ROLLER REPLACEMENT 6-60
6.9.7 MAGNET POSITION ADJUSTMENT 6-61
6.10 PAPER EXIT/DUPLEX UNIT 6-62
6.10.1 1ST AND 2ND EXIT SENSOR 6-62
6.10.2 JOGGER MOTOR 6-63
6.10.3 DUPLEX ENTRANCE SENSOR 6-63
6.10.4 DUPLEX TRANSPORT/DUPLEX FEED CLUTCHES 6-64
6.10.5 DUPLEX TRANSPORT SENSOR 1 6-64
6.10.6 DUPLEX TRANSPORT SENSORS 2 \& 3 6-65
6.10.7 INVERTER EXIT CLUTCH 6-66
6.10.8 DUPLEX INVERTER SENSOR 6-66
6.11 BOARDS AND OTHER ITEMS 6-67
6.11.1 BICU BOARD 6-67
6.11.2 I/O BOARD 6-68
6.11.3 PSU 6-69
6.11.4 PAPER FEED CONTROL BOARD (PFC) 6-69
6.12 COPY IMAGE ADJUSTMENTS: PRINTING/SCANNING 6-70
6.12.1 PRINTING 6-70
Registration - Leading Edge 6-70
Registration - Side-to-Side 6-70
Tray 1 6-71
Tray 2 6-71
Tray 3 6-72
By-pass Tray 6-72
6.13 TOUCH SCREEN CALIBRATION 6-73
TROUBLESHOOTING

7. TROUBLESHOOTING 7-1
7.1 SERVICE CALL CONDITIONS 7-1
7.1.1 SUMMARY 7-1
7.1.2 SC CODE DESCRIPTIONS 7-2
7.2 ELECTRICAL COMPONENT DEFECTS 7-40
7.2.1 SENSORS 7-40
7.2.2 SWITCHES 7-44
7.3 BLOWN FUSE CONDITIONS 7-45
3,000-SHEET FINISHER B302
8. OVERALL MACHINE INFORMATION 8-1
1.1 SPECIFICATIONS 8-1
1.2 MECHANICAL COMPONENT LAYOUT 8-3
1.3 ELECTRICAL COMPONENT DESCRIPTION 8-4
1.4 DRIVE LAYOUT 8-6
9. DETAILED DESCRIPTIONS 8-7
2.1 TRAY AND STAPLER JUNCTION GATE 8-7
Upper Tray Mode 8-7
Sort/Stack Mode 8-7
Staple Mode 8-7
2.2 PAPER PRE-STACKING 8-8
2.3 JOGGER UNIT PAPER POSITIONING 8-9
Vertical Paper Alignment 8-9
Horizontal Paper Alignment 8-9
Paper Stack Correction 8-9
2.4 STAPLER UNIT MOVEMENT 8-10
Side-to-Side 8-10
Rotation (1) 8-11
Rotation (2) 8-11
2.5 STAPLER 8-12
2.6 FEED-OUT 8-14
2.7 SHIFT TRAY UP/DOWN MOVEMENT 8-15
2.8 SHIFT TRAY SIDE-TO-SIDE MOVEMENT 8-16
2.9 PUNCH UNIT DRIVE 8-17
2.10 PUNCH WASTE COLLECTION 8-18
2.11 JAM CONDITIONS 8-19
10. SERVICE TABLES 8-20
3.1 DIP SWITCHES 8-20
3.2 TEST POINTS 8-20
3.3 FUSES 8-20
11. REPLACEMENT AND ADJUSTMENT 8-21
4.1 COVER REPLACEMENT 8-21
Front Door 8-21
Left Inner Cover 8-21
Inner Cover 8-21
Table. 8-22
Upper Tray 8-22
Left Upper Cover 8-22
Left Lower Cover 8-22
Upper Cover 8-22
Rear Cover 8-22
Shift Tray 8-23
Front Shift Tray Cover 8-23
Rear Shift Tray Cover 8-23
4.2 POSITIONING ROLLER REPLACEMENT 8-24
4.3 ALIGNMENT BRUSH ROLLER REPLACEMENT 8-25
4.4 SENSOR REPLACEMENT 8-26
4.4.1 STACK HEIGHT 1, 2 AND EXIT GUIDE OPEN SENSOR 8-26
Stack Height Sensors 1 and 2 8-26
Exit Guide Open Sensor 8-26
4.4.2 UPPER TRAY PAPER LIMIT AND EXIT SENSOR 8-27
Upper Tray Paper Limit Sensor 8-27
Upper Tray Exit Sensor 8-27
4.4.3 SHIFT TRAY EXIT SENSOR. 8-28
4.4.4 ENTRANCE AND STAPLER TRAY ENTRANCE SENSORS 8-29
Entrance Sensor 8-29
Stapler Tray Entrance Sensor 8-29
4.4.5 PRE-STACK STOPPER SENSOR 8-30
4.4.6 STAPLE WASTE HOPPER SENSOR 8-31
4.4.7 STAPLER ROTATION HP AND STAPLER RETURN SENSORS 8-32
Stapler Rotation HP Sensor 8-32
Stapler Return Sensor 8-32
4.5 STAPLER REMOVAL 8-33
4.6 PUNCH POSITION ADJUSTMENT 8-34
Right to Left 8-34
Front to Rear 8-34
3,000-SHEET FINISHER B312
12. OVERALL MACHINE INFORMATION 9-1
1.1 SPECIFICATIONS 9-1
1.2 ELECTRICAL COMPONENT LAYOUT 9-4
1.3 ELECTRICAL COMPONENT DESCRIPTION 9-6
1.4 MECHANICAL COMPONENT LAYOUT 9-8
1.5 DRIVE LAYOUT 9-9
13. DETAILED DESCRIPTIONS 9-10
2.1 TRAY AND STAPLER JUNCTION GATE MECHANISM 9-10
Upper tray mode 9-10
Sort/stack mode 9-10
Staple mode 9-10
2.2 PRE-STACK MECHANISM 9-11
2.3 JOGGER UNIT PAPER POSITIONING MECHANISM 9-12
Vertical Paper Alignment 9-12
Horizontal Paper Alignment 9-12
2.4 STAPLER UNIT MOVEMENT MECHANISM 9-13
Side-to-side: 9-13
Rotation: 9-13
2.5 STAPLER 9-14
2.6 FEED-OUT MECHANISM 9-15
2.7 SHIFT TRAY UP/DOWN MECHANISM 9-16
2.8 SHIFT TRAY SIDE-TO-SIDE MECHANISM 9-17
2.9 PUNCH UNIT DRIVE MECHANISM 9-18
2.10 PUNCH WASTE COLLECTION MECHNISM. 9-19
2.11 JAM CONDITIONS 9-20
14. SERVICE TABLES 9-21
3.1 DIP SWITCHES 9-21
3.2 TEST POINTS 9-21
3.3 FUSES 9-21
15. REPLACEMENT AND ADJUSTMENT 9-22
4.1 COVER REPLACEMENT 9-22
Rear Cover 9-22
Upper Left Cover 9-22
Upper Cover 9-22
Front Door 9-22
Left Front Cover 9-22
Shift Tray 9-23
Lower Left Cover 9-23
Right Cover 9-23
Front Shift Tray Cover 9-23
Rear Shift Tray Cover 9-23
4.2 POSITIONING ROLLER REPLACEMENT 9-24
4.3 ALIGNMENT BRUSH ROLLER REPLACEMENT 9-25
4.4 SENSOR REPLACEMNT 9-26
4.4.1 STACK HEIGHT SENSOR 1 AND 2 9-26
4.4.2 UPPER TRAY PAPER LIMIT AND EXIT SENSOR 9-27
Upper Tray Paper Limit Sensor 9-27
Upper Tray Exit Sensor 9-27
4.4.3 SHIFT TRAY EXIT SENSOR 9-28
4.4.4 ENTRANCE AND STAPLER TRAY ENTRANCE SENSOR 9-29
Entrance Sensor 9-29
Stapler Tray Entrance Sensor 9-29
4.4.5 STAPLER ROTATION HP SENSOR 9-30
4.5 STAPLER REMOVAL 9-31
4.6 PUNCH POSITION ADJUSTMENT 9-32
Right to left 9-32
Front to rear 9-32
BOOKLET FINISHER A763
16. OVERALL MACHINE INFORMATION 10-1
1.1 SPECIFICATIONS 10-1
1.2 ELECTRICAL COMPONENT DESCRIPTION 10-3
1.3 MECHANICAL COMPONENT LAYOUT 10-6
17. DETAILED DESCRIPTIONS 10-7
2.1 JUNCTION GATE MECHANISM 10-7
2.1.1 SHIFT TRAY MODE 10-7
A4/LT sideways or shorter 10-7
Longer than A4 sideways 10-7
2.1.2 PROOF TRAY MODE 10-8
2.1.3 BOOKLET STITCH MODE 10-8
2.2 PRE-STACK MECHANISM 10-9
2.3 PAPER SHIFT MECHANISM 10-10
2.4 PAPER POSITIONING MECHANISM 10-11
2.5 STAPLER UNIT MOVEMENT MECHANISM 10-12
2.5.1 DRIVE 10-12
2.5.2 MOVEMENT 10-12
Front and Rear Stapling 10-12
Tow-position Stapling 10-12
2.6 STAPLER 10-13
2.7 SHIFT TRAY MECHANISM 10-14
2.8 BOOKLET UNIT GATE MECHANISM 10-15
2.9 RELAY ROLLER AND POSITIONING PLATE MECHANISM 10-17
2.10 POSITIONING ROLLER MECHANISM 10-18
2.11 BOOKLET UNIT JOGGER MOVEMENT MECHANISM. 10-19
2.12 BOOKLET STAPLER UNIT 10-20
2.13 PAPER FOLDER MECHANISM 10-21
18. INSTALLATION 10-23
3.1 ACCESSORY CHECK 10-23
3.2 INSTALLATION PROCEDURE 10-24
19. REPLACEMENT AND ADJUSTMENT 10-29
4.1 REMOVAL 10-29
4.1.1 UPPER DOOR 10-29
4.1.2 UPPER REAR COVER 10-30
4.1.3 LOWER REAR COVER. 10-30
4.1.4 TOP COVER 10-31
4.1.5 UPPER INNER COVER 10-31
4.1.6 SHIFT TRAY UNIT 10-32
4.1.7 UPPER SHIFT GUIDE 10-33
4.1.8 LOWER SHIFT GUIDE 10-33
4.1.9 EXIT UNIT 10-34
4.1.10 BUFFER ROLLER UNIT 10-35
4.1.11 STAPLER 10-36
4.1.12 FINISHER BOARD 10-37
4.1.13 BOOKLET UNIT 10-38
4.1.14 FOLDER ROLLERS 10-40
4.1.15 FOLDER PLATE 10-43
Removal 10-43
Reinstalling 10-44
4.1.16 BOOKLET STAPLER UNIT 10-45
Removal 10-45
Adjustment. 10-46
4.1.17 BOOKLET BOARD 10-48
4.1.18 POSITIONING PLATE UNIT 10-48
4.1.19 1ST AND 2ND BOOKLET UNIT GATES 10-49
4.2 ADJUSTMENT 10-50
4.2.1 SHIFT TRAY HEIGHT 10-50
4.2.2 JOGGER FENCE POSITION 10-51
4.2.3 STAPLING POSITOIN 10-52
4.2.4 BOOKLET STAPLING POSITION 10-53
20. SPECIFICATIONS 11-1
21. DETAILED DESCRIPTIONS 11-2
2.1 OVERVIEW 11-2
2.2 BASIC OPERATION 11-3
2.2.1 NO SORT AND NO STAPLE MODE 11-3
2.2.2 SORT, STAPLE MODE 11-4
2.2.3 OPERATION IN IRREGULAR CONDITIONS 11-5
Paper end during copying 11-5
Copy tray full. 11-5
Paper jam 11-5
LG KIT B375
22. LG KIT B375. 12-1
1.1 ACCESSORY CHECK 12-1
1.2 INSTALLATION PROCEDURE 12-2

©IMPORTANT SAFETY NOTICES

PREVENTION OF PHYSICAL INJURY

1. Before disassembling or assembling parts of the copier and peripherals, make sure that the copier power cord is unplugged.
2. The wall outlet should be near the copier and easily accessible.
3. Note that some components of the copier and the paper tray unit are supplied with electrical voltage even if the main power switch is turned off.
4. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
5. If the Start key is pressed before the copier completes the warm-up period (the Start key starts blinking red and green alternatively), keep hands away from the mechanical and the electrical components as the copier starts making copies as soon as the warm-up period is completed.
6. The inside and the metal parts of the fusing unit become extremely hot while the copier is operating. Be careful to avoid touching those components with your bare hands.

HEALTH SAFETY CONDITIONS

1. Never operate the copier without the ozone filters installed.
2. Always replace the ozone filters with the specified ones at the specified intervals.
3. Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Try to remove with eye drops or flush with water as first aid. If unsuccessful, get medical attention.

OBSERVANCE OF ELECTRICAL SAFETY STANDARDS

1. The copier and its peripherals must be installed and maintained by a customer service representative who has completed the training course on those models.
2. The NVRAM on the system control board has a lithium battery which can explode if replaced incorrectly. Replace the NVRAM only with an identical one. The manufacturer recommends replacing the entire NVRAM. Do not recharge or burn this battery. Used NVRAM must be handled in accordance with local regulations.

1. SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL

Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, developer, and organic photoconductors in accordance with local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

LASER SAFETY

The Center for Devices and Radiological Health (CDRH) prohibits the repair of laser-based optical units in the field. The optical housing unit can only be repaired in a factory or at a location with the requisite equipment. The laser subsystem is replaceable in the field by a qualified Customer Engineer. The laser chassis is not repairable in the field. Customer engineers are therefore directed to return all chassis and laser subsystems to the factory or service depot when replacement of the optical subsystem is required.

WARNING

Use of controls, or adjustment, or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

COMPARISON BETWEEN A292/A293 AND A229

SECTION 1: OVERALL INFORMATION

Section	Item	Description	Page
Specifications	Copy Size	Minimum: A5/51/2" $\times 81 / 2^{\prime \prime}$ Lengthwise in 2nd Tray	1-1
	Zoom	Minimum: 25\% (A229:32\%)	1-2
	Copying Speed	70/55 cpm (A229: 65/55 cpm)	1-2
	1 to 1 Copying Speed with ADF	$\begin{aligned} & 70 \mathrm{cpm} \text { (A229: } 50 \mathrm{cpm}) \\ & \text { ARDF: New A294 } \end{aligned}$	N/A
	Resolution	Scanning: 600 dpi (A229: 400 dpi$)$ Printing: 600 dpi (A229: 400 dpi)	1-2
	First Copy Time	Face Up: 3.5 seconds, Face Down: 5.3 seconds (A229: Face Up: 3.7 seconds, Face Down: 5.5 seconds)	1-2
	Copy Paper Capacity	Tray 1: 3,100 sheets (A229: 1,000 sheets) Tray 3: 550 sheets (A229: 1,500 sheets)	1-2
	Memory Capacity	$\begin{array}{\|l} \hline \text { RAM: } 48 \mathrm{MB}(\text { A229: } 12 \mathrm{MB}) \\ \text { HDD: } 4.3 \mathrm{~GB} \text { (A229: } 1.7 \mathrm{~GB}) \\ \hline \end{array}$	N/A
	Power Consumption	(Refer to service manual)	1-3
	Additional Feature	Document Server function is available as a standard function.	N/A
	Additional Feature	User Stamp, etc.	N/A
	Peripherals	Finisher (B312): Pre-stack function Finisher (A763): Folds paper in half with 2 staples Finisher (B302): Pre-stack function, 100 sheets for staple Punch Unit (for B312 B302, A812): 2 holes ($80 \mathrm{~mm} / 6.5 \mathrm{~mm}$) (Same as A229) 3 holes ($108-108 \mathrm{~mm} / 8 \mathrm{~mm}$) (Same as A229) 4 holes ($21-70-21 \mathrm{~mm} / 6.5 \mathrm{~mm}$) (New) 4 holes ($80-80-80 \mathrm{~mm} / 6.5 \mathrm{~mm}$) (New) 2 holes ($70 \mathrm{~mm} / 8 \mathrm{~mm}$) (New) LCT (A698): Upgraded version Copy Connector Unit (B322) Output Tray (B333) Tab Sheet Holder (B373) 81/2" x 14" Size Kit (B375)	1-4
	Consumable	```New Toner (NA: Type 5105D, EU/Asia: Type 5205D) New Developer (Type 15) Toner Particle: 9.5 \mum (A229: 7.5 \mum```	2-49

DIFFERENT POINTS

SECTION 2: DETAILED DESCRIPTIONS

Section	Item	Description	Page
Scanning	Overview	- The number of exposure lamp is one. (A229: 2 lamps) - The CCD is changed to 4-channel type because of a higher processing speed. (A229: 2 channels) - A reflector is added to 1 st scanner. - The Scanner Motor has been changed to a DC Servo type because of a higher processing speed. - The location of Lamp Regulator moves onto the 1st scanner.	2-13
Laser Exposure	Overview	- The LD unit and Polygon Motor have been changed because of a higher processing speed. - The method controlling the LD has been changed because the standard resolution has been changed from 400 dpi to 600 dpi .	N/A
Process Control	Image Density Control	The toner amount in the development unit is updated using Vsp/Vsg data in addition to the Vref update.	2-36
Drum Unit	Drum Flange	The holes for airflow have been added to Drum Flange to make cooling power up because of higher processing speed.	2-47
Drum Unit	Rotation Speed	$362 \mathrm{~mm} / \mathrm{s}$ (A229: $330 \mathrm{~mm} / \mathrm{s}$) This is because a higher copying speed.	N/A
	Corona Wire Cleaner	One of the conditions making the cleaner start moving "only if the fusing temperature is lower than $100^{\circ}{ }^{\circ}$ " has not been used any more because the other condition "only when 5000 or more copies have been made since the last movement" is effective enough to function.	2-43
Cleaning	Cleaning Brush	- The turning direction of the brush has been changed to the counter direction to increase the cleaning ability. - The brush has been changed from a rope type to a straight type. A rope type scrapes off the drum surface too much because of the change of the turning direction.	2-44
	Cleaning Blade Side-to-Side Movement	The location of the cam gear is changed onto the main frame to increase reliability.	2-46
Development	Toner Supply Control	TBA	N/A
	ID Sensor Pattern	The pattern has become darker to increase reliability of toner supply control.	N/A
	Lower Development Roller	The shaft of the roller does not turn. It is not necessary to lubricate conductive grease on the shaft.	N/A

Section	Item	Description	Page
Transfer	Transfer Belt	The surface treatment has been changed to increase cleaning ability.	N/A
	Cleaning Bias Roller	The nylon tube has been added as the surface of the cleaning bias roller to increase the cleaning ability. This allows to increasing the maximum charging voltage up to 1000 V (A229: 330 V).	N/A
	Bushing	A bearing has been added to the bushing to make the movement smoother.	N/A
	Gear	The gear has been changed to a diagonal type with the color of black to decrease a jitter level.	2-58
	Transfer Current	$\begin{array}{ll}\text { 1st Copy (Front): } & 65 \mu \mathrm{~A}(\mathrm{~A} 229: 60 \mu \mathrm{~A}) \\ \text { 2nd Copy (Front): } & 65 \mu \mathrm{~A}(\mathrm{~A} 229: 60 \mu \mathrm{~A}) \\ \text { By-pass Tray (Front): } & 75 \mu \mathrm{~A}(\mathrm{~A} 229: 70 \mu \mathrm{~A}) \\ \text { Post Card (Front): } & 165 \mu \mathrm{~A}(\mathrm{~A} 229: 150 \mu \mathrm{~A}) \\ \text { This is because of a higher drum rotation speed. }\end{array}$	$\begin{gathered} \hline \text { SP } \\ 2-301 \end{gathered}$
Paper Feed	Torque Limitter	The type of the Torque Limitter has been changed from a non-contact magnet type to a metal powder type to increase reliability.	N/A
	Paper size setting in 2nd tray	The paper size setting can be done at the front side of the tray for easier operation.	2-72
	By-pass Tray Switch	The By-pass Tray Switch has been deleted. The bypass tray indicator is always on the operation panel and turns on when paper is placed in the tray.	N/A
	Paper Feed Mode	The thick paper mode is used for any paper type in all paper feed stations to increase paper transportation ability.	N/A
Toner Recycling	Condition of "Full Toner Collection Bottle"	The number of copies, which can be made after the toner overflow switch is activated and the "full toner collection bottle" indication lights, becomes only "up to 100 copies". The other one "the copy job is allowed to end" is not effective any more.	N/A
Fusing	Inner Cover	The grip and the jam removal decal have been changed. The procedure of jammed paper removal has also been changed.	N/A
	Fusing Sensor	The Fusing Sensor has been added to detect a jammed paper with an accordion shape.	2-73
Paper Exit/Duplex	Inverter Exit Clutch	The Inverter Exit Clutch has been added to stop a paper coming into the duplex unit for a while. This is to keep the maximum productivity of printing even when it takes a longer time for image processing for a paper coming out of the duplex unit. When the clutch is ON, paper stops.	N/A
	Duplex Inverter Sensor	The Inverter Exit Sensor has been added to control the ON/OFF timing of the Inverter Exit Clutch.	2-79
	Jogger Start Timing	The Jogger Fences start moving 83 ms after the trailing edge of paper passes the Duplex Entrance Sensor. (A229: 100 ms)	N/A
Ozone Filter		An inlet is added to change the airflow direction of the exhaust fan to downward. This is to increase the cooling ability and decrease the ozone smell level. The shape of the rear cover has been changed.	N/A

Section	Item	Description	Page
Electrical Components	BICU Board	- Scanner control circuit has been independent from SBICU as MCU (Motor Control Unit) and Scanner Motor Drive Board is deleted. The name of SBICU is changed to BICU. This is because the Scanner Motor has been changed from a stepper motor to a servomotor to enable the copying speed in the ADF 1 to 1 mode to be 70 cpm . - The exposure lamp, APS sensor and scanner HP sensor are also connected to the MCU.	N/A
	1/O Board	The RDS function has been independent from the I/O board as RDS Board and has been controlled by the BICU board because of the following reasons: 1. The I / O board can completely turn off in the weekly timer off mode. 2. It has been possible that only the RDS board is replaced.	N/A
	PSU	A 38 V output has been added for the scanner motor that is changed from a stepper motor to a servomotor.	N/A
	CNB (Connector Board)	This is a new name of the Interface Board which the functions for the registration motor, by-pass motor and development motor are deleted from. Those functions are on the DRB (Driver Board) as a new board. This is to reduce the harnesses used.	N/A
	12V Power Supply Board	The DC/DC converter has been deleted and its function has moved to the PSU.	N/A
	DRB (Driver Board)	This is an interface board for the signal lines of the registration motor, by-pass motor and development motor. The power line for each motor is connected to the CNB.	N/A
	Copy Connect Board	The connection between the BICU and Copy Connect Board has been changed from via the FCC cable to via the interface board. This is to make installation easier.	N/A
	Printer Controller	The connection between the BICU and Printer Controller has been changed from only via the FCC cable to via the interface board and the FCC cable. This is to make installation easier.	N/A

SECTION 3: INSTALLATION

Section	Item	Description	Page
Installation Procedure	Finisher (B302, B312)	- The caps on the upper left cover of the copier have not been equipped, so that it is not necessary to remove them when a finisher is installed. - New type of grounding bracket.	$\begin{aligned} & 3-22 \\ & 3-29 \end{aligned}$
Installation Procedure	Output Tray	- A cavity has been made in each Paper Exit Roller and a plug is prepared beside each roller on the shaft. The plugs are necessary to be inserted into the cavities. - The caps on the upper left cover have become accessories of the Output Tray and are necessary to be installed. - The stack height sensors at the paper exit area have become accessories of the Output Tray and are necessary to be installed.	

SECTION 4.2.2.: SERVICE PROGRAM MODE TABLE

Mode No.	Mode	Description	Page
1-901	CPM change for thick paper	The setting range is changed from 0 to 2 to 0 to 3 as follows: 0 : None 1: 55 cpm at $165^{\circ} \mathrm{C}(\mathrm{A} 229: 50 \mathrm{cpm})$ 2: 45 cpm at $165^{\circ} \mathrm{C}(\mathrm{A} 229: 45 \mathrm{cpm})$ 3: 35 cpm (newly added)	4-12
2-001-3	Charge Corona Bias Adjustment	Factory setting: $-1300 \mu \mathrm{~A}$ (A229: $-1200 \mu \mathrm{~A}$) This is because the copy speed is increased.	4-12
2-201-2	ID Sensor Pattern	Factory setting: -400 V (A229: -440 V)	4-14
2-201-3	OHP Sheet	Factory setting: -300 V (A229: -550 V)	4-15
2-201-4	Development Performance	Factory setting: -280 V (A229: -320 V)	4-15
2-210	ID Sensor Interval	Factory setting: 10 copies (A229: 50 copies)	4-15
2-220	Vref Manual Setting	Factory setting: 3.0 V or 2.5 V (A229:2.5 V)	4-15
2-301-1	Transfer Current Adjustment	Factory setting: $65 \mu \mathrm{~A}$ (A229: $60 \mu \mathrm{~A}$) This is because the copy speed is increased.	4-16
2-301-2	Transfer Current Adjustment	Factory setting: $65 \mu \mathrm{~A}$ (A229: $60 \mu \mathrm{~A}$) This is because the copy speed is increased.	4-16
2-301-3	Transfer Current Adjustment	Factory setting: $75 \mu \mathrm{~A}$ (A229: $70 \mu \mathrm{~A}$) This is because the copy speed is increased.	4-16
2-301-4	Transfer Current Adjustment	Factory setting: $165 \mu \mathrm{~A}$ (A229: $150 \mu \mathrm{~A}$) This is because the copy speed is increased.	4-16
2-301-6	Transfer Current Adjustment	This function is new.	4-16
2-801	TD Sensor Initial Setting	This function can also be performed in the Wait condition.	4-17
$\begin{array}{\|l\|} \hline 2-902-4 \\ 2-902-5 \\ \hline \end{array}$	Printing Test Pattern	These functions are new.	4-17
2-906-2	Vcont Manual Setting	This function is new.	4-18
2-962	Auto Process Control	This function can also be performed in the Wait condition.	4-19
2-963	Toner Supply From Toner Bottle	This function can also be performed in the Wait condition.	4-19
2-966	Periodical Auto Process Control	This function is new.	4-20
2-967	Auto Image Density Adjustment	This function is new.	4-20
2-970	Transfer Belt Resistance Value Display	This function is new.	4-20
2-971	Output Value Measured Between Copies	This function is new.	4-20
3-001-2	ID Sensor PWM Setting	This function can also be performed in the Wait condition.	4-20
3-902-7	Process Control Data Display	This function is new.	4-21
4-015	Scanner Speed Adjustment	This function is new.	4-22
4-902	SBU Setting	All the functions in SP4-901-X are shifted to SP4-902-X.	$\begin{gathered} 4-23 \\ \text { to } 4-27 \end{gathered}$

$\begin{array}{c}\text { Mode } \\ \text { No. }\end{array}$	Mode	Description	Page
$5-824$	Upload NVRAM Data	This function is new.	$4-50$
$5-825$	Download NVRAM Data	This function is new.	$4-50$
$5-826$	Program Upload	This function is new.	$4-50$
$5-829$	Stamp Data Download	This function is new.	$4-50$
$5-921$	Stamp Data Download	This function is new.	$4-51$
$5-922$	$\begin{array}{l}\text { Counter Operation } \\ \text { Setting }\end{array}$	This function is new.	$4-51$
$5-923$	Edge Erase Standard	This function is new.	$4-51$
$5-954$	$\begin{array}{l}\text { Copy Server password } \\ \text { Display }\end{array}$	(A229: SP5-940)	$4-51$
$5-965$	$\begin{array}{l}\text { All Copy Server File } \\ \text { Delete }\end{array}$	This function is new.	$4-51$
$6-116$	Thick Paper Count	This function is new.	$4-53$
$6-801$	Copy Connect I/F Test	This function is new.	$4-53$
$6-901$	$\begin{array}{l}\text { Original Exchange Time } \\ \text { Adjustment }\end{array}$	This function is new.	$4-53$
$6-902$	$\begin{array}{l}\text { Saddle Stitch } \\ \text { Adjustment }\end{array}$	This function is new.	$4-53$
$7-304-24$	$\begin{array}{l}\text { Total Copies By Copy } \\ 7-304-25 \\ \text { Mode } \\ 7-304-26\end{array}$	These functions are new.	$4-56$
$7-330$	Connect Copy Job	This function is new.	$4-58$
$7-331$	Connect Copy: Copy	This function is new.	$4-58$
$7-332$	$\begin{array}{l}\text { Connect Copy: Copy } \\ \text { Number by Copy Mode } \\ 7-333\end{array}$	These functions are new.	$4-58$
$7-504-35$			
to	$\begin{array}{l}\text { Copy Jam Counter by } \\ 7-504-40\end{array}$	These functions are new.	$4-61$
$7-808$	Counters Reset	$\begin{array}{l}\text { The counters which are reset: SP7-003, SP7- } \\ 006, ~ S P 7-206 ~ a n d ~ S P 7-101-132 ~(A 229: ~ S P 7-~\end{array}$	
003, SP7-006 and UP1-19-2)			

DIFFERENT POINTS

SECTION 4.2.4: INPUT CHECK

Class 3 no.	Bit no.	Description	Reading	
			0	1
9(Motor Lock/Transport)	7	Drum Motor Lock	Overload	Normal
	6	By-pass Feed Motor Lock	Overload	Normal
	5	Development Motor Lock	Overload	Normal
	4	Fusing Motor Lock	Overload	Normal
	3	LD Unit Home position Sensor	Detected	Not detected
	2	Fusing Sensor	Paper detected	No paper
	1	Exit Sensor	Paper detected	No paper
	0	Tray Paper Limit Sensor	Not full	Full
$\begin{gathered} 12 \\ \text { (LCT2) } \end{gathered}$	7	Fusing Cooling Fan Motor Lock	Overload	Normal
	6	Not Used		
	5	Front Door Safety Switch	Closed	Open
	4	Not Used		
13(By-pass)	7	LCT Paper Position Sensor	Detected	Not detected
	6	Toner End Sensor	Toner End	Not toner end
	5	Not Used		
	4	Relay Sensor	Paper detected	No paper
	3	By-pass Paper End Sensor	Not paper end	Paper end
	2	Registration Sensor	Paper detected	No paper
	1	Not Used		
	0	Not Used		
14 (Unit Set)	7	Inverter Exit Sensor	Detected	Not detected
	6	Not used		
	5	Key Counter Set	Set	Not set
	4	Total Counter Set	Set	Not set
	3	Polygon Motor Cooling Fan Lock	No lock	Lock
	2	Toner Recycling Sensor	Pulse	Pulse
	1	Drum Unit Set	Set	Not set
	0	Fusing Unit Set	Set	Not set

SECTION 4.2.5: OUTPUT CHECK

No.	Description	No.	Description
47	Inverter Exit Clutch	71	
72		73	
74		77	
78		79	

SECTION 5.1: PM TABLE

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline 450 \\ K \end{gathered}$	Expected Life	NOTE
SCANNER/OPTICS						
1st, 2nd, 3rd Mirror		C	C	C		Optics cloth
Reflectors		C	C	C		Optics cloth (Newly added)
White Reference Plate		1	1	1		Water (Newly added)
Scanner Guide Rails		C	C	C		Dry cloth
Exposure Glass	C	C	C	C		Dry cloth or alcohol
Toner Shield Glass		C	C	C		Optics cloth
Optics Dust Filter		1	R	I		Blower brush
AROUND THE DRUM						
Charge Corona Wire		C	C	c	300K	Dry Cloth A229: 150K-Replacement
Charge Corona Casing		C	C	C		Damp cloth
Corona Wire Cleaner		c	c	C	300K	A229: 150K-Cleaning
Drum Potential Sensor		C	C	C		Blower brush
Charge Corona Grid		C	C	C	300K	Blower brush A229: 150K-Cleaning
ID Sensor		C	C	C		Blower brush; initialize with SP3-001-2 after cleaning.
Quenching Lamp		C	C	C		Dry cloth
Pick-off Pawls		C	C	C		Dry cloth Replace if necessary.
Cleaning Blade					300K	A229: 150K-Replacement
Cleaning Brush					300K	A229: 300K-Replacement
Cleaning Brush Seal			C			Dry cloth
Cleaning Side Seals		1	1	1		Dry cloth
Cleaning Entrance Seal		C	C	C		Dry cloth Replace if necessary
DEVELOPMENT UNIT "Development Roller Shaft (Lower)" is deleted. (A229: 150K-Lubricate)						
Developer			R			
Side Seals		1	I	1		Dry cloth or blower brush
Development Filter		R	R	R		
Entrance Seal		C	C	C		Dry cloth or blower brush
Air Filter - Large/ Small		R	R	R		
Drive Gears		C	C	C		Blower brush
Toner Bottle Holder		C	C	C		Dry cloth or vacuum cleaner
Toner Hopper Entrance		C	C	C		Dry cloth
Development Roller Shaft		C	C	C		Dry cloth or blower brush

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ K \end{gathered}$	Expected Life	NOTE
PAPER FEED						
Registration Rollers		C	C	C		Water or alcohol
Relay Rollers		C	C	C		Water or alcohol
Paper Dust Remover		C	C	C		Dry cloth
Registration Sensor		C	C	C		Blower brush
Relay Sensor		C	C	C		Blower brush
Paper Feed Rollers		C	C	C	300K	Replace pick-up, feed and separation roller as a set. Check the counter value for each paper tray station (SP7-204). If the value has reached 300K, replace the rollers. After replacing the rollers, reset the counter (SP7-816). A229: 150K-Replacement
Paper Feed Guide Plate		C	C	C		Water or alcohol
Vertical Transport Rollers		C	C	C		Water or alcohol
Paper Feed Sensor		C	C	C		Blower brush
TRANSFER BELT UNIT						
Transfer Belt		C	C	C	450K	Dry cloth A229: 300K-Replacement
Cleaning Roller Cleaning Blade				C	450K	A229: 300K-Replacement
Transfer Entrance Guide Plate		C	C	C		Dry cloth
Belt Drive/Guidel Bias Roller/Cleaning Roller		C	C	C		Alcohol A229: 300K-Cleaning
Transfer Exit Guide Plate		C	C	C		Dry cloth
FUSING/PAPER EXIT "Pressure Roller Cleaning Brush" (EUlAsia only) is deleted. (A229: 150K-Replacement)						
Hot Roller		I	I	1	200K	A229: 150K-replacement
Hot Roller Bearings		1	I	I	600K	A229: Replace if necessary
Pressure Roller		1	1	I	450K	Replace as a set.
Pressure Roller Bearings		1	I	I	450K	A229: 300K-replacement
Fusing Thermistor	I	1	1	1		Replace if necessary
Hot Roller Strippers	C	C	C	C	300K	Water or alcohol A229: 300K-replacement
Oil Supply Roller Bushings	1	I	I	I		Replace if necessary
Pressure Roller Cleaning Roller and Bushings		R	R	R		Replace as a set
Oil Supply Roller		R	R	R		Replace as a set
Oil Supply Cleaning Roller		R	R	R		
Fusing Entrance and Exit Guide Plates		C	C	C		Clean with water or alcohol
Transport/Exit Rollers			C			Water
Exit Anti-static Brush			1			A229:150K-Inspection

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{4 5 0} \\ \mathrm{K} \end{gathered}$	Expected Life	NOTE
DUPLEX						
Entrance Sensor		C	C	C		Blower brush
Reverse Roller		C	C	C		Water or alcohol
Separation Rollers		C	C	C		
Duplex Roller		C	C	C		
Feed Rollers		C	C	C		
Entrance Anti-static Brush		I	I	I		
Reverse Junction Gate		C	C	C		Dry cloth
OTHERS						
Ozone Filter: PCU			R			
Ozone Filter: Duct			R			Newly added
Filter: Vacuum		R	R	R		Newly added
Used Toner Tank	I	I	I	I		Clean or Replace if necessary (about 1,000K copies). A229:1,500K-Inspection

| | EM | 80K | 160K | 240K | NOTE |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| ADF (the PM interval is for the number of originals that have been fed) | | | | | |
| Transport Belt | C | R | R | R | Belt cleaner |
| Feed Belt | C | R | R | R | Belt cleaner |
| Separation Roller | C | R | R | R | Dry or damp cloth |
| Pick-up Roller | C | R | R | R | Dry or damp cloth |
| Sensors | C | C | C | C | Belt brush |
| Drive Gears | | L | L | L | Grease G501 |

	EM	$\begin{gathered} 150 \\ K \end{gathered}$	$\begin{gathered} 300 \\ K \end{gathered}$	$\begin{gathered} 450 \\ K \end{gathered}$	Expected Life	NOTE
LCT						
Paper Feed Roller		C	C	C	300K	Check the counter value for the LCT (SP7-204-5). If the value has reached 200K, replace the rollers. After replacing the rollers, reset the counter (SP7-816-5). A229: 150K-Replacement
Pick-up Roller		c	c	C	300K	
Separation Roller		C	C	C	300K	
Bottom Plate Pad		C	C	C		Dry or damp cloth
Paper Feed Clutch					1,200K	A229: 1,500K-Replacement
Relay Clutch					1,200K	A229: 1,500K-Replacement
Pick-up Solenoid					2,400K	A229: 1,500K-Replacement

	EM	150 K	$\mathbf{3 0 0}$ K	$\mathbf{4 5 0}$ K	Expected Life	NOTE
3,000-SHEET FINISHER (50-SHEET STAPLER): B312						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	I	I	I	I	$\mathbf{2 , 4 0 0 K}$	A229: Replace if necessary.
Discharge Brush	C	C	C	C		Clean with a dry cloth.
Sensors	C	C	C	C		Blower brush
Jogger Fences	I	I	I	I		Replace if necessary.
Punch Waste Hopper	I	I	I	I		Empty the hopper.

	EM	$\mathbf{1 5 0}$ \mathbf{K}	$\mathbf{3 0 0}$ K	$\mathbf{4 5 0}$ K	Expected Life	NOTE
3,000-SHEET FINISHER	(100-SHHEET STAPLER):	B302				
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	I	I	I	I	$2,000 \mathrm{~K}$	Check the counter value for the total copies by copy mode for staple (SP7-304-6). If the value has reached 600. replace the brush roller.
Discharge Brush						
Sensors	C	C	C	C		Clean with a dry cloth.
Jogger Fences	C	C	C	C		Blower brush
Punch Waste Hopper	I	I	I	I		Replace if necessary.

	EM	$\mathbf{1 5 0}$ \mathbf{K}	$\mathbf{3 0 0}$ \mathbf{K}	$\mathbf{4 5 0}$ \mathbf{K}	Expected Life	NOTE
BOOKLET FINISHER: A763						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	I	I	I	I		Clean with a dry cloth.
Discharge Brush	C	C	C	C		Blower brush
Sensors	C	C	C	C		Replace if necessary.
Jogger Fences	I	I	I	I		Empty the hopper.
Punch Waste Hopper	I	I	I	I		

SECTION 7: TROUBLESHOOTING

Section	Item	Description	Page
Service Call Conditions	SC124	Scanner motor encoder signal error (New)	7-3
	SC125	Scanner motor speed error 1 (New)	7-3
	SC126	Scanner motor speed error 2 (New)	7-3
	SC127	Scanner motor encoder rotating direction error (New)	7-3
	SC128	Scanner motor start error (New)	7-4
	SC129	Scanner motor speed control error (New)	7-4
	SC130	SBU error (New)	7-4
	SC300	Charge corona output error 1 (A229: SC302-01)	7-5
	SC301	Charge corona output error 2 (A229: SC302-02)	7-5
	SC302	Charge corona output error 3 (A229: SC302-03)	7-5
	SC303	Charge corona output error 4 (A229: SC302-04)	7-5
	SC305	Charge corona wire cleaner error 1 (A229: SC303-01)	7-5
	SC306	Charge corona wire cleaner error 2 (A229: SC303-02)	7-6
	SC310	Potential sensor error 1 (A229: SC370-01)	7-6
	SC311	Potential sensor error 2 (A229: SC370-02)	7-6
	SC312	Potential sensor error 4 (A229: SC370-04)	7-7
	SC314	Potential sensor error 5 (A229: SC370-05)	7-7
	SC329	LD unit home position error 3 (A229: SC329)	7-9
	SC330	LD unit no initial setting (A229: SC329)	7-9
	SC331	LD unit home position error 4 (A229: SC329)	7-10
	SC332	LD unit present position error (A229: SC329)	7-10
	SC335	Polygonal mirror motor error 1 (A229: SC320)	7-10
	SC336	Polygonal mirror motor error 2 (A229: SC320)	7-11
	SC337	Polygonal mirror motor error 3 (A229: SC320)	7-11
	SC338	Polygonal mirror motor error 1 (A229: SC320)	7-11
	SC340	TD sensor output error (A229: SC390-01)	7-12
	SC341	TD sensor adjustment error 1 (A229: SC390-02)	7-12
	SC342	TD sensor adjustment error 2 (A229: SC390-03)	7-13
	SC345	Development bias leak (A229: SC391)	7-13
	SC350	ID sensor error 1 (A229: SC350-01)	7-13
	SC351	ID sensor error 2 (A229: SC350-02)	7-14
	SC352	ID sensor error 3 (A229: SC350-03)	7-14
	SC353	ID sensor error 4 (A229: SC350-04)	7-15
	SC354	ID sensor error 5 (A229: SC350-05)	7-15
	SC360	Hard disk detection error 1 (A229: SC360)	7-15
	SC362	Hard disk detection error 2 (A229: SC360)	7-16
	SC364	Hard disk drive error (A229: SC361)	7-16
	SC366	Hard disk bad sector maximum (New)	7-16
	SC367	Hard disk (HDD:R) bad sector maximum (New)	7-16
	SC370	IMAC (image compression IC) input FIFO error (A229: SC362)	7-17
	SC372	IMAC (image compression IC) output FIFO error (A229: SC362)	7-17
	SC374	IMAC (image compression IC) modes setting error (A229: SC362)	7-17
	SC376	Data transmission error (A229: SC363)	7-17
	SC380	Data transmission time out (video input) (New)	7-18
	SC382	Data transmission time out (video output) (New)	7-18
	SC384	Data transmission time out (connect copy) (A229: SC364)	7-18
	SC386	Data transmission time out (Hard disk write) (New)	7-18
	SC388	Data transmission time out (Hard disk read) (New)	7-18
	SC390	CRC error (A229: SC366)	7-19

DIFFERENT POINTS

Section	Item	Description	Page
Service Call Conditions	SC391	Image storage address error (A229: SC365)	7-19
	SC400	Transfer roller leak error (A229: SC401-01)	7-19
	SC401	Transfer roller open error (A229: SC401-02)	7-19
	SC493	Exhaust fan motor lock (New)	7-20
	SC494	Fusing exhaust fan motor lock (New)	7-20
	SC501	1st tray lift malfunction (A229: SC501)	7-21
	SC502	2nd tray lift malfunction (A229: SC502)	7-22
	SC505	LCT tray malfunction (optional LCT) (A229: SC510)	7-22
	SC510	Paper feed motor lock (A229: SC506)	7-22
	SC511	LCT motor lock (optional LCT) (A229: SC507)	7-23
	SC515	Tandem rear fence motor error (A229: SC508)	7-23
	SC516	Tandem side fence motor error (A229: SC511)	7-23
	SC520	Duplex jogger motor error 1 (A229: SC521-1)	7-23
	SC521	Duplex jogger motor error 2 (A229: SC521-2)	7-24
	SC543	Fusing overheat error 1 (software) (A229: SC543)	7-25
	SC544	Fusing overheat error 1 (hardware) (A229: SC543)	7-25
	SC546	Fusing temperature stability error (A229: SC546)	7-26
	SC547	Zero cross signal malfunction (A229: SC547)	7-26
	SC620	Communication error between BICU and ADF 1 (A229: SC620-1)	7-27
	SC621	Communication error between BICU and ADF 2 (A229: SC620-2)	7-27
	SC622	Communication error between BICU and ADF 3 (A229: SC620-3)	7-27
	SC625	Communication error between BICU and finisher 1 (A229: SC621)	7-28
	SC626	Communication error between BICU and finisher 2 (A229: SC621)	7-28
	SC635	Communication error between BICU and paper feed board 1 (A229: SC623)	7-28
	SC636	Communication error between BICU and paper feed board 2 (A229: SC623)	7-29
	SC650	Key card error 1 (Japan only)	-
	SC651	Key card error 2 (Japan only)	-
	SC652	Key card error 3 (Japan only)	-
	SC653	Key card error 4 (Japan only)	-
	SC701	ADF original pick-up malfunction 2 (New)	7-29
	SC702	ADF feed-in motor lock (New)	7-30
	SC703	ADF transport motor lock (New)	7-30
	SC704	ADF feed-out motor lock (New)	7-30
	SC705	ADF bottom plate motor error (New)	7-31
	SC720	Finisher transport motor error (New)	7-31
	SC731	Finisher paper exit guide plate motor lock (New)	7-33
	SC735	Finisher pre-stack motor error (New)	7-33
	SC736	Finisher paper exit guide plate motor error (New)	7-34
	SC737	Finisher disposal staple full (New)	7-34
	SC738	Finisher shift tray lift motor error (New)	7-34
	SC740	1,000-sheet finisher error in finisher area (New)	7-34
	SC741	1,000-sheet finisher error in saddle stitching area (New)	7-34
	SC901	Mechanical total counter error (New)	7-35
	SC956	Scanner parameter setting ID error (New)	7-36
	SC957	Scanner return ID error (New)	7-36
	SC958	Scanner ready ID error (New)	7-36
	SC959	Printer setting ID error (A229: SC959)	7-36
	SC960	Printer return ID error (A229: SC960)	7-37

Section	Item	Description	Page
Service Call Conditions	SC970	Scanner ready error (New)	7-38
	SC984	HDD response error (A229: SC981)	7-38
	-	SC370-3 is deleted. (A229: Page 7-9)	-
	-	SC370-6 is deleted. (A229: Page 7-10)	-
	-	SC370-7 is deleted. (A229: Page 7-11)	-
	-	SC491 is deleted. (A229: Page 7-13)	-
	Connector Number	Connector numbers are changed.	$\begin{gathered} 7-40 \\ \text { to } \\ 7-44 \end{gathered}$
	Sensors	Duplex Inverter Sensor (S35) and Fusing Exit sensor (S43) are added	$\begin{aligned} & 7-42 \\ & 7-43 \end{aligned}$
Blown Fuse Conditions	Fuse	The number of fuses is decreased.	7-45

SECTION 9: OPTION - 3,000-SHEET FINISHER ("B312")

Section	Item	Description	Page
Specifications	Paper weight in punch mode	The maximum paperweight, that the 2-hole and 3-hole punch units can handle, has become $157 \mathrm{~g} / \mathrm{m}^{2}$. (A229: $128 \mathrm{~g} / \mathrm{m}^{2}$) The 4-hole types can handle up to $128 \mathrm{~g} / \mathrm{m}^{2}$.	B312-1
	Paper size in staple mode	The paper sizes with the same width like A3 and A4 sideways and LG and LT sideways can be stapled together.	B312-1
Component		- A motor and a sensor to move the Paper Exit Guide Layout	Plate have been added. A motor and a junction gate solenoid for the Pre- stack function have been added.
Paper feed	Pre-stack function	The pre-stack tray and a junction gate have been added to increase the productivity when using A4, LT and B5 sideways. The pre-stack tray holds the first paper of next job until the stapling for the present job is finished and sends it to the staple tray together with the second paper.	B312-9

SECTION 10: OPTION - 1,000-SHEET FINISHER ("A763")

Section	Item	Description
Finisher	Paper Size	A3 to A5, DLT to LT
	Output Tray	Proof tray, Shift tray and Saddle stitching (Center stapling) tray
	Paper Weight	Proof tray: $\quad 64$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb Shift tray: $\quad 64$ to $128 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 34 lb Saddle stitching tray: 64 to $128 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 34 lb
	Paper Capacity	Proof tray: A4/LT or smaller: 50 sheets Larger than A4/LT: 30 sheets Shift tray: A4/LT or smaller: 1,000 sheets (without staples) 750 sheets (with staples) Larger than A4/LT: 500 sheets (With/without staples)
	Staple Position	```3 positions 1 staple (Front Slant or Rear Slant) 2 staples```
	Stapler Capacity	A4/LT or smaller: 50 sheets $\left(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\right)$ Larger than A4/LT: 30 sheets $(80 \mathrm{~g} / \mathrm{m} 2,20 \mathrm{lb})$
	Stapler Replenishment	Cartridge (5,000 staples) Type H (5 cartridges/box)
	Paper Size for Stapling	1 staple: A3 to B5, DLT to LT 2 staples: A3 to A4/B5 sideways, DLT to LT sideways
	Power Source	24 Vdc (from copier)
	Power Consumption	55 W
	Weight	$45 \mathrm{~kg}, 20.5 \mathrm{lb}$
	Dimension	$689 \times 582 \times 1,047 \mathrm{~mm}, 27 \times 23 \times 41$ inches
Saddle Stitching	Saddle Stitching	Folding in half with/without stapling
	Paper Size	A3 to A4 lengthwise, DLT to LT lengthwise
	Stapler Capacity	15 sheets (including a cover page)
	Paper Weight	64 to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb (Cover page: up to $128 \mathrm{~g} / \mathrm{m}^{2}, 34 \mathrm{lb}$)
	Tray Capacity	25 sets (Up to 5 sheets/set) 20 sets (Up to 10 sheets/set) 10 sets (Up to 15 sheets/set)
	Staple Position	2 staples (adjustable)
	Stapler Replenishment	Cartridge (2,000 staples) Type E (4 cartridges/box)
	Power Consumption	160 W

OVERALL INFORMATION

1. OVERALL MACHINE INFORMATION

1.1 SPECIFICATIONS

1.1.1 COPIER ENGINE

Configuration:	Console
Copy Process:	Dry electrostatic transfer system
Originals:	Sheet/Book
Original Size:	Maximum A3/11" $\times 17{ }^{\prime \prime}$
	Minimum B6, 51/2"x 81/2" (using ADF)
Original Alignment:	Rear left corner
Copy Paper Size:	Maximum A3/11" x 17" (2nd/3rd Tray, By-pass) Minimum A5/51/2" x 81/2" (2nd/3rd Tray) A6/51/2" x 81/2" lengthwise (By-pass)
	Tandem LCT (1st Tray) A4/81/2" x 11" sideways only
Duplex Copying:	Maximum A3/11" x 17" Minimum A5/51/2" x 81/2" lengthwise
Copy Paper Weight:	Paper tray: $52.3 \sim 127.9 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 34 \mathrm{lb}$ Bypass feed table: $52.3 \sim 157 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 41.7 \mathrm{lb}$ Duplex copying: $64 \sim 104.7 \mathrm{~g} / \mathrm{m}^{2}, 17 \sim 28 \mathrm{lb}$
Reproduction Ratios:	6 reduction and 5 enlargement

	Metric Version	Inch Version
Enlargement	400%	400%
	200%	200%
	141%	155%
	122%	129%
	115%	121%
Full Size	100%	100%
Reduction	93%	93%
	82%	85%
	75%	78%
	71%	73%
	65%	65%
	50%	50%

Zoom:	25 ~ 400\%
Copy Speed:	A292: Max. 55 cpm (A4 / 81/2" x 11" sideways) A293: Max. 70 cpm (A4 / 81/2" x $11^{\prime \prime}$ sideways)
Resolution:	Scanning: 600 dpi Printing: 400/600 dpi
Gradation:	256 levels
Warm-up Time:	Less than 330 s (from Off-mode) Less than 30 s (from Low Power Mode)
First Copy Time: (1st Tray)	Less than 3.5 s (A4/LT, Face up mode) Less than 5.3 s (A4/LT, Face down mode)
Copy Number Input:	Ten-key pad, 1 to 999
Copy Paper Capacity:	Tray 1: 3100 sheets (when used as a tandem tray) Tray 2: 550 sheets Tray 3:550 sheets By-pass Tray: 50 sheets
Copy Tray Capacity: (Output Tray)	A4/81/2" x 11" : 500 sheets ($100 \mu \mathrm{~m}$ thickness paper) A3/11" x 17" : 250 sheets
Memory Capacity:	RAM: 48 MB HDD: 4.3 GB
Toner Replenishment:	Cartridge exchange (1220g/ cartridge)
Toner Yield:	42k copies/cartridge (A4 sideways, 6% full black, 1 to 5 copying, including toner recycling ratio 20\%)
Power Source:	North America: $120 \mathrm{~V}, 60 \mathrm{~Hz}, 20 \mathrm{~A}$ Europe/Asia: $220 \sim 240 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}, 10 \mathrm{~A}$

Power Consumption: A292/A293 copier (120 V Model)

	Copier only	Full system*
Warm-up	About 1.290 kW	About 1.300 kW
Stand-by	About 0.255 kW	About 0.270 kW
Copying	About 1.630 kW	About 1.650 kW
Maximum	Less than 1.75 kW	Less than 1.75 kW
Energy Saver	About 0.230 kW	About 0.240 kW
Low Power	About 0.225 kW	About 0.235 kW
Off Mode	About 0.009 kW	About 0.009 kW

A292/A293 copier (220 to 240 V Model)

	Copier only	Full system *
Warm-up	About 1.255 kW	About 1.300 kW
Stand-by	About 0.270 kW	About 0.285 kW
Copying	About 1.610 kW	About 1.590 kW
Maximum	Less than 1.75 kW	Less than 1.75 kW
Energy Saver	About 0.245 kW	About 0.255 kW
Low Power	About 0.240 kW	About 0.250 kW
Off Model	About 0.012 kW	About 0.012 kW

*Full System:
Mainframe with LCT and Finisher (B302)
Noise Emission:
Sound Power Level: The measurements were made in accordance with ISO 7779 at the operator position.

	Copier only	Full system
Stand-by	Less than $49 \mathrm{~dB}(A)$	Less than $49 \mathrm{~dB}(A)$
Copying (ADF 1 to 1)	Less than $75 \mathrm{~dB}(A)$	Less than $75 \mathrm{~dB}(A)$
Copying (From Memory)	Less than $71 \mathrm{~dB}(A)$	Less than $71 \mathrm{~dB}(A)$

Sound Pressure Level: The measurements were made in accordance with ISO 7779.

	Copier only	Full system
Stand-by	Less than $35 \mathrm{~dB}(\mathrm{~A})$	Less than $35 \mathrm{~dB}(\mathrm{~A})$
Copying (ADF 1 to 1)	Less than $65 \mathrm{~dB}(\mathrm{~A})$	Less than $65 \mathrm{~dB}(\mathrm{~A})$
Copying (From Memory)	Less than $58 \mathrm{~dB}(\mathrm{~A})$	Less than $58 \mathrm{~dB}(\mathrm{~A})$

Dimensions:
(W x D x H)
Weight:
$690 \times 750 \times 1138 \mathrm{~mm}$ (27.2" x 29.5" x 44.8") (without ADF right exit tray, and options)
188 kg (without options)

Optional Equipment: - Output tray (B333-17)

- Finisher (A763)
- Finisher (B302)
- Finisher (B312)
- Punch unit (A812-30, -31, -32, -57, 67)
- Large capacity tray (A698)
- Copy connector kit (B322)
- LG kit (A375)
- Tab sheet holder (B373)

1.1.2 ADF

Original Size:

Original Weight:
Normal Original Mode: $52 \sim 156 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 42 \mathrm{lb}$
Thin Original Mode: $40 \sim 156 \mathrm{~g} / \mathrm{m}^{2}, 11 \sim 42 \mathrm{lb}$ Duplex Original Mode: $52 \sim 128 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 34 \mathrm{lb}$
Table Capacity: 100 sheets ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$)

Original Standard Position:
Separation:
Rear left corner
FRR
Original Transport:
One flat belt
Original Feed Order:
Power Source:
From the top original
DC 24 V and DC 38 V from the copier
Power Consumption:
130 W
Dimensions (W x D x H): $\quad 680 \times 560 \times 150 \mathrm{~mm}$

1.2 MACHINE CONFIGURATION

Item	Machine Code	No.
Mainframe	A292/A293	3
Output Tray	B333	2
Finisher	A763, B302, B312	1
Large Capacity Tray	A698	4
Punch Unit (Option for Finisher)	A812-30 (4 holes) European A812-31 (4 holes) European A812-32 (2 holes) A812-57 (3 holes) A812-67 (2 holes)	Inside the Finisher
	B322	
	B375	
	B373	

MECHANICAL COMPONENT LAYOUT

1.3 MECHANICAL COMPONENT LAYOUT

1.3.1 COPIER ENGINE

1. 3rd Mirror
2. 2nd Mirror
3. 1st Mirror
4. Exposure Lamps
5. LD Unit
6. Cylindrical Lens
7. Polygonal Mirror
8. Cleaning Brush
9. Quenching Lamp
10. Barrel Toroidal Lends (BTL)
11. F-theta Mirror
12. SBU
13. Charge Corona Unit
14. Shield Glass
15. Laser Synchronization Detector
16. Optics Cooling Fan Motor
17. Drum Cleaning Blade
18. Drum Potential Sensor
19. Drum
20. Pick-off Pawl
21. Development Unit
22. TD Sensor
23. Pick-up Roller
24. Feed Roller (By-pass Tray)
25. Separation Roller
26. Registration Rollers
27. Transfer Belt Unit
28. Relay Roller
29. Vertical Transport Rollers
30. Feed Roller
31. Separation Roller
32. Tray 1 (Tandem LCT)
33. Tray 2 (550-sheet Tray)
34. Tray 3 (550-sheet Tray)
35. Pick-up Roller
36. Duplex Feed Roller
37. Duplex Transport Rollers
38. Reverse Trigger Roller
39. Inverter Unit Paper Exit Roller
40. Inverter Feed Roller
41. Pressure Roller
42. Transport Rollers
43. Paper Exit Rollers
44. Curl Correction Roller
45. Hot Roller

1.3.2 ADF

1. Separation Roller
2. Feed Belt
3. Pick-up Roller
4. Bottom Plate
5. Original Tray
6. Upper Tray Exit Roller
7. Inverter Gate
8. Inverter Guide Roller
9. Inverter Sensor
10. Right Tray Exit Roller
11. Right Exit Tray
12. Exit Gate
13. Inverter Roller
14. Exit Sensor
15. Upper Exit Tray
16. Transport Belt
17. Registration Sensor
18. Lower Transport Roller
19. Width Sensor
20. Upper Transport Roller
21. Entrance Sensor

1.4 PAPER PATH

1. ADF
2. By-pass Tray
3. Optional LCT
4. Tray 3 (550-sheet Tray)
5. Tray 2 (550-sheet Tray)
6. Tray 1 (Tandem LCT)
7. Duplex Unit
8. Finisher
9. Inverter Unit
10. Shift Tray
11. Upper Tray

1.5 COPY PROCESS

1. EXPOSURE

A xenon lamp exposes the original. Light reflected from the original passes to the CCD, where it is converted into an analog data signal. This data is converted to a digital signal, processed, and stored in the memory. At the time of printing, the data is retrieved and sent to the laser diode. For multi-copy runs, the original is scanned once only and stored to the hard disk.

2. DRUM CHARGE

An OPC (organic photoconductor) drum is used in this machine. In the dark, the charge corona unit gives a negative charge to the drum. The grid plate ensures that corona charge is applied uniformly. The charge remains on the surface of the drum because the OPC layer has a high electrical resistance in the dark.
3. LASER EXPOSURE

The processed data from the scanned original is retrieved from the hard disk and transferred to the drum by two laser beams, which form an electrostatic latent image on the drum surface. The amount of charge remaining as a latent image on the drum depends on the laser beam intensity, which is controlled by the BICU board.

4. DRUM POTENTIAL SENSOR

The drum potential sensor detects the electric potential on the drum to correct various process control elements.

5. DEVELOPMENT

The magnetic developer brush on the development rollers comes in contact with the latent image on the drum surface. Toner particles are electrostatically attracted to the areas of the drum surface where the laser reduced the negative charge on the drum.

6. IMAGE TRANSFER

Paper is fed to the area between the drum surface and the transfer belt at the proper time to align the copy paper and the developed image on the drum. Then, the transfer bias roller applies a high positive charge to the reverse side of the paper through the transfer belt. This positive charge pulls the toner particles from the drum to the paper. At the same time, the paper is electrically attracted to the transfer belt.

7. PAPER SEPARATION

Paper separates from the drum as a result of the electrical attraction between the paper and the transfer belt. The pick-off pawls also help separate the paper from the drum.

8. ID SENSOR

The laser forms a sensor pattern on the drum surface. The ID sensor measures the reflectivity of the pattern. The output signal is one of the factors used for toner supply control.

9. CLEANING

The cleaning brush removes toner remaining on the drum after image transfer and the cleaning blade scrapes off all remaining toner.

10. QUENCHING

The light from the quenching lamp electrically neutralizes the charge on the drum surface.

1.6 DRIVE LAYOUT

1.6.1 COPIER ENGINE

5

1. Drum Motor
2. Scanner Motor
3. Fusing/Duplex Motor
4. Toner Recycling Clutch
5. Paper Feed Motor
6. Toner Collection Motor
7. Registration Motor
8. Relay Clutch
9. By-pass Feed Motor
10. By-pass Feed Clutch
11. Development Motor
(1) Cleaning Unit
(2) Scanner Unit
(3) Transfer Belt Unit
(4) Fusing Unit
(5) Duplex Unit
(6) Paper Feed Units
$(7$ Toner Hopper
(8) Development Unit
© Drum

1.6.2 ADF

1. Pick-up Motor
2. Bottom Plate Motor
3. Feed-in Motor
4. Transport Motor
5. Upper Exit Roller
6. Feed-out Motor
7. Right Exit Roller
8. Transport Belt
9. Lower Transport Roller
10. Upper Transport Roller
11. Separation Roller
12. Feed Belt
13. Pick-up Roller
14. Feed-in Clutch

1.7 ELECTRICAL COMPONENT DESCRIPTION

Refer to the electrical component layout on the reverse side of the point-to-point diagram for the location of the components using the symbols and index numbers.

1.7.1 COPIER ENGINE

Symbol	Name	Function	Index No.
Motors			
M1	Scanner	Drives the 1st and 2nd.	15
M2	Polygonal Mirror	Turns the polygonal mirror.	22
M3	LD Positioning	Rotates the LD unit to adjust the LD beam pitch when a different resolution is selected.	25
M4	Drum	Drives the drum and cleaning unit.	36
M5	Development	Drives the development unit.	37
M6	Toner Supply	Rotates the toner bottle to supply toner to the development unit.	43
M7	Charge Corona Wire Cleaner	Drives the charge corona wire cleaner.	68
M8	Fusing/Duplex	Drives the fusing unit, duplex unit, inverter unit, and paper exit rollers.	44
M9	Toner Collection	Transports the collected toner to the toner collection bottle.	3
M10	Toner Recycling	Drives the air pump to send recycled toner to the development unit.	6
M11	Paper Feed	Drives all feed and transport rollers in the paper tray unit.	124
M12	1st Tray Lift	Raises and lowers the bottom plate in the 1st paper tray.	125
M13	2nd Tray Lift	Raises the bottom plate in the 2nd paper tray.	126
M14	3rd Tray Lift	Raises the bottom plate in the 3rd paper tray.	127
M15	By-pass Feed	Drives the by-pass feed rollers.	41
M16	Registration	Drives the registration rollers.	40
M17	Rear Fence	Moves the paper stack in the left tandem tray to the right tandem tray.	136
M18	Jogger	Drives the jogger fences to square the paper stack in the duplex unit.	94
M19	Optics Cooling Fan	Removes heat from the optics unit.	21
M20	Drum Cooling Fan	Sends the air to the drum inside.	38
M21	Exhaust Fan	Removes heat from around the fusing unit.	37
M22	Fusing Fan	Removes heat from around the fusing unit.	34

Symbol	Name	Function	$\begin{gathered} \hline \text { Index } \\ \text { No. } \end{gathered}$
M23	Duplex Cooling Fan	Removes heat from around the duplex unit.	42
M24	Exit Cooling Fan	Removes heat from the exit unit.	45
M25	PSU Cooling Fan	Removes heat from around the PSU.	54
M26	SBU Cooling	Removes the heat from around CCD.	19
Magnetic Clutches			
MC1	Toner Supply	Turns the toner supply roller to supply toner to the development unit.	39
MC2	Toner Recycling	Drives the toner recycling unit.	1
MC3	1st Paper Feed	Starts paper feed from tray 1.	100
MC4	2nd Paper Feed	Starts paper feed from tray 2.	104
MC5	3rd Paper Feed	Starts paper feed from tray 3.	109
MC6	By-pass Feed	Starts paper feed from the by-pass table.	78
MC7	Inverter Exit Clutch	Drives the inverter exit roller.	88
MC8	Duplex Transport	Drives the duplex transport rollers to transport the paper to the duplex feed rollers.	89
MC9	Duplex Feed	Starts paper feed out of the duplex tray back into the machine via to the relay rollers.	91
MC10	1st Vertical Relay	Drives the 1st vertical transport rollers.	101
MC11	2nd Vertical Relay	Drives the 2nd vertical transport rollers.	105
MC12	3rd Vertical Relay	Drives the 3rd vertical transport rollers.	108
MC13	Bank Relay	Drives the bank relay roller.	103
MC14	Relay	Drives the relay rollers.	81
Switches			
SW1	Main Power	Provides power to the machine. If this is off, there is no power supplied to the machine.	9
SW2	Operation	Provides power for machine operation. The machine still has power if this switch is off.	27
SW3	Front Door Safety Switch 1	Cuts the +5 V LD dc power line.	10
SW4	Front Door Safety Switch 2	Detects if the front door is open or not, and cuts the +24 V dc power line.	11
SW5	Front Door Safety Switch 3	Cuts the +5 V LD dc power line.	12
SW6	Lower Front Door Safety	Cuts the +24 V dc power line.	8

Symbol	Name	Function	Index No.
SW7	Toner Collection Bottle Set	Detects if the toner collection bottle is set or not.	5
SW8	Toner Overflow	Detects when the toner collection bottle is full.	4
SW9	Paper Size	Determines the size of paper in tray 2.	3
Solenoids			
SOL1	Transfer Belt Lift	Controls the up-down movement of the transfer belt unit.	70
SOL2	1st Pick-up	Controls the up-down movement of the pick-up roller in tray 1.	99
SOL3	2nd Pick-up	Controls the up-down movement of the pick-up roller in tray 2.	106
SOL4	3rd Pick-up	Controls the up-down movement of the pick-up roller in tray 3.	110
SOL5	By-pass Pick-up	Controls the up-down movement of the pick-up roller for by-pass feed.	76
SOL6	1st Separation Roller	Controls the up-down movement of the separation roller in tray 1.	102
SOL7	2nd Separation Roller	Controls the up-down movement of the separation roller in tray 2.	107
SOL8	3rd Separation Roller	Controls the up-down movement of the separation roller in tray 3.	111
SOL9	Right Tray Lock	Locks the right tandem tray during paper feed from tandem tray.	126
SOL10	Left Tray Lock	Locks the left tandem tray during more the paper from left tray to right tray.	123
SOL11	Front Side Fence	Opens the front side fence of right tandem tray.	134
SOL12	Rear Side Fence	Opens the rear side fence of right tandem tray.	130
SOL13	Duplex Inverter Gate	Moves the junction gate to direct copies to the duplex tray or to the paper exit.	96
SOL14	Reverse Roller	Controls the up-down movement of the reverse trigger roller.	95
SOL15	Guide Plate	Opens the guide plate when a paper misfeed occurs around this area.	80
SOL16	Inverter Gate	Opens the inverter gate during a duplex job.	74
Sensors			
S1	Scanner HP	Informs the CPU when the 1st and 2nd scanners are at home position.	32
S2	Original Width	Detects original width. This is one of APS (Auto Page Select) sensors.	33

Symbol	Name	Function	$\begin{array}{c}\text { Index } \\ \text { No. }\end{array}$
S3	Original Length 1	$\begin{array}{l}\text { Detects original length. This is one of } \\ \text { APS (Auto Page Select) sensors. }\end{array}$	16
S4	Original Length 2	$\begin{array}{l}\text { Detects original length. This is one of } \\ \text { APS (Auto Page Select) sensors. }\end{array}$	18
S5	$\begin{array}{l}\text { LD Unit Home } \\ \text { Position }\end{array}$	$\begin{array}{l}\text { Informs the CPU when the LD unit is } \\ \text { at home position. }\end{array}$	24
S6	Drum Potential	Detects the drum surface potential.	66
S7	Toner Density (TD)	$\begin{array}{l}\text { Detects the amount of toner in the } \\ \text { developer. }\end{array}$	73
S8	Image Density (ID)	$\begin{array}{l}\text { Detects the density of the ID sensor } \\ \text { pattern on the drum. }\end{array}$	69
S9	Toner End	Detects toner end.	72
S10	$\begin{array}{l}\text { Toner Collection } \\ \text { Motor }\end{array}$	$\begin{array}{l}\text { Monitors the toner collection motor. }\end{array}$	7
S11	Toner Recycling	$\begin{array}{l}\text { Monitors the toner recycling and } \\ \text { collection unit operation. }\end{array}$	2
S12	1st Paper Feed	$\begin{array}{l}\text { Controls the 1st paper feed clutch } \\ \text { off/on timing and the 1st pick-up } \\ \text { solenoid off timing. }\end{array}$	120
S13	2nd Paper Feed	$\begin{array}{l}\text { Controls the 2nd paper feed clutch } \\ \text { off/on timing and the 2nd pick-up } \\ \text { solenoid off timing. }\end{array}$	116
S14	3rd Paper Feed	$\begin{array}{l}\text { Controls the 3rd paper feed clutch } \\ \text { off/on timing and the 3rd pick-up } \\ \text { solenoid off timing. }\end{array}$	114
S15	1st Tray Lift	$\begin{array}{l}\text { Detects when the paper in tray 1 is at } \\ \text { the correct height for paper feed. }\end{array}$	122
S16	2nd Tray Lift	$\begin{array}{l}\text { Detects when the paper in tray 2 is at } \\ \text { the correct height for paper feed. }\end{array}$	118
S17	3rd Tray Lift	$\begin{array}{l}\text { Detects when the paper in tray 3 is at } \\ \text { the correct height for paper feed. }\end{array}$	112
S18	1st Paper End	$\begin{array}{l}\text { Informs the CPU when tray 1 runs out } \\ \text { of paper. }\end{array}$	121
S19	2nd Paper End	$\begin{array}{l}\text { Informs the CPU when tray 2 runs out } \\ \text { of paper. }\end{array}$	117
S20	3rd Paper End	$\begin{array}{l}\text { Informs the CPU when tray 3 runs out } \\ \text { of paper. }\end{array}$	113
S21	By-pass Paper End	$\begin{array}{l}\text { Informs the CPU that there is no } \\ \text { paper in the by-pass feed table. }\end{array}$	77
S22	1st Paper Near End	$\begin{array}{l}\text { Informs the CPU when the paper in } \\ \text { tray 1 is almost finished. }\end{array}$	140
$\begin{array}{l\|\|l\|l\|\|}\hline \text { 2nforms the CPU when the paper in } \\ \text { tray 2 is almost finished. }\end{array}$	119		
$\begin{array}{l\|l\|l\|\|}\hline \text { Informs the CPU when the paper in } \\ \text { tray 3 is almost finished. }\end{array}$	115		
tray rear fence is in the home position.			

Symbol	Name	Function	Index No.
S26	Rear Fence Return	Informs the CPU when the tandem tray rear fence is in the return position.	132
S27	Front Side Fence Open	Defects that the front side fence of tandem tray is opened.	135
S28	Front Side Fence Close	Defects that the front side fence of tandem tray is closed.	138
S29	Rear Side Fence Open	Defects that the rear side fence of tandem tray is opened.	142
S30	Rear Side Fence Close	Defects that the rear side fence of tandem tray is closed.	141
S31	Right Tray Down	Detects when the bottom plate of the right tandem tray is completely lowered to stop the 1st tray lift motor.	133
S32	Right Tray Paper	Detects whether there is paper or not in the right tray of tandem tray.	131
S33	Left Tandem Tray Paper	Detects whether there is paper or not in the left tray of tandem tray.	137
S34	Duplex Entrance Sensor	Detects the leading and trailing edges of the paper to determine the reverse roller solenoid on or off timing.	98
S35	Duplex Inverter	Defects the leading edge and tray edges of the paper to determine the inverter exit clutch on or off timing.	97
S36	Duplex Transport Sensor 1	Detects the position of paper in the duplex unit.	87
S37	Duplex Transport Sensor 2	Detects the position of paper in the duplex unit.	93
S38	Duplex Transport Sensor 3	Detects the position of paper in the duplex unit.	92
S39	Duplex Jogger HP	Detects if the duplex jogger fences are at the home position or not.	90
S40	Relay	Detects misfeeds.	82
S41	Registration	Detects misfeeds and controls registration clutch off-on timing.	83
S42	Guide Plate Position	Detects whether the registration guide plate is closed or not.	75
S43	Fusing Exit	Defects misfeeds	62
S44	1st Exit	Detects misfeeds.	84
S45	2nd Exit	Detects misfeeds.	85
S46	Tray Paper Limit (option)	Detects paper overflow on the output tray.	86
PCBs			
PCB1	BICU	Controls all base engine functions both directly and through other control boards.	20

Symbol	Name	Function	Index No.
PCB2	PSU	Provides dc power to the system and ac power to the fusing lamp and heaters.	53
PCB3	IOB	Controls the mechanical parts of the machine (excluding the scanner unit section), and the fusing lamp.	47
PCB4	SBU	Contains the CCD, and outputs a video signal to the SBICU board.	17
PCB5	MCU	Controls the components in the scanner unit.	46
PCB6	Lamp Regulator	Provides dc power to the exposure lamp.	14
PCB7	CNB	Passes signals and dc supplies from the PSU and IOB to motors and other components.	59
PCB8	DRB	Drives the registration, by-pass feed and development motor.	50
PCB9	Paper Feed Control Board (PFB)	Controls the mechanical parts of all paper feed sections.	52
PCB10	Operation Panel 1	Controls the components on the righthand side of the operation panel.	28
PCB11	Operation Panel 2	Controls the components on the lefthand side of the operation panel.	31
PCB12	LCD Control	Controls the LCD.	30
PCB13	By-pass Paper Size	Detects the paper width on the bypass tray.	79
PCB14	Mother (Option)	Connects the printer control board.	-
PCB15	Printer Control (Option)	Receives print data from a PC.	-
PCB16	Copy Connect	Receives and sends data to other copier.	-
PCB17	RSS Board	Passes signal for RDS function	51
Lamps			
L1	Exposure Lamp	Apply high intensity light to the original for exposure.	13
L2	Fusing Lamp 1	Provides heat to the hot roller.	64
L3	Fusing Lamp 2	Provides heat to the hot roller.	63
L4	Quenching	Neutralizes any charge remaining on the drum surface after cleaning.	67
Power Packs			
PP1	Charge	Provides high voltage for the charge corona wires and the grid plate.	65
PP2	Development	Provides high voltage for the development unit.	49
PP3	Transfer	Provides high voltage for the transfer belt.	71

ELECTRICAL COMPONENT DESCRIPTION

Symbol	Name	Function	
Index No.			
Others			
TF1	Fusing Thermofuse	Opens the fusing lamp circuit if the fusing unit overheats.	61
TH1	Fusing Thermistor	Detects the temperature of the hot roller.	60
H1	Drum	Turns on when the main switch is off to prevent moisture from forming around the drum.	58
H2	Tray Heater 1	Turns on when the main switch is off to keep paper dry in the paper tray.	57
H3	Tray Heater 2	Turns on when the main switch is off to keep paper dry in the paper tray.	55
CB1	Circuit Breaker	Provides back-up high current protection for the electrical components.	56
HDD 1	HDD	Scanned image data is compressed and held here temporarily.	48
LCD 1	LCD	Displays the operation menus and messages.	29
LSD 1	Laser Synchronization Detector	Detects the laser beam at the start of the main scan.	23
LDU1	Laser Diode Unit	Controls the laser diode. 26 TP1 Touch Panel	Monitors the key matrix.

1.7.2 ADF

Symbol			Function		Index No.
Motors					
M1	Pick-up	Moves the pick-up roller up and down.	3		
M2	Feed-in	Drives the feed belt, and the separation, pick-up, and transport rollers.	8		
M3	Transport Belt	Drives the transport belt.	9		
M4	Feed-out	Drives the exit and inverter rollers.	14		
M5	Bottom Plate	Moves the bottom plate up and down.	7		
Sensors	APS Start	Informs the CPU when the DF is opened and closed (for platen mode) so that the original size sensors in the copier can check the original size.	12		
S1	Detects whether the DF is lifted or not.	13			
S2	DF Position	Detects whether an original is on the table.	19		
S3	Original Set	Detects whether the bottom plate is in the down position or not.	20		
S4	Bottom Plate HP				

DETAILED DESCRIPTIONS

2. DETAILED DESCRIPTIONS

2.1 DOCUMENT FEEDER

2.1.1 PICK-UP ROLLER RELEASE

When the original set sensor is off (no original on the original tray), the pick-up roller stays in the up position.

When the original set sensor turns on (or when the trailing edge of a page passes the entrance sensor while pages remain on the original tray), the pick-up motor [A] turns on. The cam $[B]$ rotates away from the pick-up roller release lever [C]. The lever then rises and the pick-up roller [D] drops onto the original.
When the original reaches the entrance sensor, the pick-up motor turns on again. The cam pushes the lever down, and the pick-up roller rises until the pick-up roller HP sensor [E] detects the actuator [F].

2.1.2 BOTTOM PLATE LIFT

When an original is placed on the original tray, the original set sensor [A] turns on, the pick-up roller [B] drops on to the original, and the bottom plate position sensor [C] turns off. Then the bottom plate motor [D] turns on and lifts the bottom plate [E] by raising the lift lever [F] until the bottom plate position sensor turns on.

The level of the pick-up roller drops as the stack of originals becomes smaller, and eventually, the bottom plate position sensor [C] turns off. Then, the bottom plate motor turns on and lifts the bottom plate until the bottom plate position sensor turns on. This keeps the original at the correct height for feeding.

2.1.3 PICK-UP AND SEPARATION

The original separation system is a Feed and Reverse Roller (FRR) system. The pick-up roller [A], feed belt [B], and separation roller [C] are driven by the feed-in motor [D].
To drive this mechanism, the feed-in motor [D] and feed-in clutch [E] turn on.
When two sheets of originals are fed by the pick-up roller, the separation roller turns in the opposite direction to the feed belt and the 2nd sheet is pushed back to the original tray. When there is only one sheet between the feed belt and separation roller, the separation roller rotates in the same direction as the feed belt. This is because the separation roller contains a torque limiter.

2.1.4 ORIGINAL FEED

When the leading edge of the original turns the entrance sensor [A] on, the feed-in clutch [B] turns off and the drive for the feed belt is released. The original is fed by the transport rollers [C].
At the same time, the pick-up motor starts again and the pick-up roller [D] is lifted up. When the pick-up roller HP sensor turns on, the pick-up motor stops (see Pickup Roller Release).

2.1.5 ORIGINAL SIZE DETECTION

[E]

The DF detects the original size by combining the readings of original length sensor [A], and original width sensors-1 [B], -2 [C], and $-3[D]$.

Original Length

The original length sensor and the disk [E] (connected to the transport roller) generate a pulse signal. The CPU counts pulses, starting when the leading edge of the original turns on the registration sensor [F], until the trailing edge of the original turns off the entrance sensor [G].

Original Width

The CPU detects original width using three original width sensors $-1,-2,-3$ as shown above. Three small circles on the diagram indicate the positions of the sensors.

2.1.6 ORIGINAL TRANSPORT

The transport belt $[A]$ is driven by the transport belt motor $[B]$. The transport belt motor starts when the copier sends an original feed-in signal.

Inside the transport belt are six pressure rollers which maintain the correct pressure between the belt and original. The pressure roller [C] closest to the left original scale is made of rubber for the stronger pressure needed for thick originals. The other rollers are sponge rollers.

Normally, originals are manually placed at the left rear corner, so an original [D] fed from the DF must also be at this position. But if the original is fed along the rear scale [E], original skew, jam, or wrinkling may occur.
To prevent such problems, the original transfer position is set to 3.5 mm away from the rear scale as shown. The 3.5 mm gap is compensated for by changing the starting position of the main scan.

2.1.7 ORIGINAL SKEW CORRECTION

The transport belt motor remains energized to carry the original about 7 mm past the left scale $[A]$ (see the middle drawing). Then the motor stops and reverses to feed the original back against the left scale (see the bottom drawing). This forces the original to hit the left scale, which aligns the trailing edge to minimize original skew on the exposure glass.
If thin original mode is selected, the original is not forced back against the left scale. This is to prevent damage to the original.
After a two-sided original has been inverted to copy the 2nd side, it is fed in from the inverter against the left scale (see the bottom drawing; the top two drawings do not apply in this mode).

The amount of reverse feed against the left scale can be adjusted with SP modes.

2.1.8 ORIGINAL INVERSION AND FEED-OUT

General Operation

When the scanner reaches the return position, the copier's CPU sends the feed-out signal to the DF. When the DF receives the feed-out signal, the transport belt motor and feed-out motor [A] turn on. The original is then fed out to the exit tray or fed back to the exposure glass after reversing in the inverter section.

This DF has two exit trays. For single-sided original mode, the original is fed out to the right exit tray and for double-sided original mode, the original is fed out to the upper exit tray.
This causes the originals to be fed out in the correct order on the exit trays and allow the maximum one-to-one copy speed for each mode. The user can change the exit tray to the upper exit tray for single-sided mode (for example, if there is not enough space in the room for the right exit tray to be installed). However, one-toone copy speed for this mode is reduced.

Original Inversion

When the DF receives the original invert signal from the copier, the transport belt motor, feed-out motor, exit gate solenoid $[A]$, and inverter gate solenoid $[B]$ turn on and the original is fed back to the exposure glass through the inverter roller [C], exit gate [D], inverter guide roller [E], inverter gate [F], and inverter roller.
The transport belt motor turns in reverse shortly after the leading edge of the original turns on the inverter sensor [G], and feeds the original to the left scale.

DOCUMENT FEEDER

Original Exit (Single-Sided Original Mode)

[B]

The exit gate solenoid [A] remains off and the original is fed out to the right exit tray. The transport belt motor turns off after the exit sensor [B] turns off.
To stack the originals neatly on the exit tray, the feed-out motor speed is reduced 30 mm before the trailing edge of the original turns off the exit sensor.

Original Exit (Double-Sided Original Mode)

The exit gate solenoid $[A]$ turns on and the inverter gate solenoid $[B]$ remains off, and the original is fed out to the upper tray. The transport belt motor turns off when the trailing edge of the original passes through the exit sensor [C].
To stack the originals neatly on the upper tray, the feed-out motor speed is reduced shortly after the trailing edge of the original turns off the inverter sensor [D].

2.1.9 JAM CONDITIONS

Feed-in

1. The entrance sensor $[A]$ is still off 500 ms after the feed-in motor turned on.
2. The registration sensor $[B]$ is still not off 300 ms after the feed-in motor speed increased.
3. The entrance sensor is still on when the feed-in and transport motors have fed the original 442 mm after the registration sensor turned on.

Feed-out

4. The registration sensor is still on when the feed-in and transport motors have fed the original 751 mm after the registration sensor turned on.
5. The exit sensor [C] is still off when the transport and feed-out motors have fed the original 129 mm after the feed-out motor turned on.
6. The exit sensor is still on when feed-out motor has fed the original $X \mathrm{~mm}$ ($\mathrm{X}=$ original length $\times 1.3$) after the exit sensor turned on.

Inversion

7. The exit sensor is still off when the transport and exit motors have fed the original 198 mm after the transport motor turned on to feed the original to the inverter section.
8. The exit sensor is still on when the feed-out motor has fed the original X mm ($\mathrm{X}=$ original length $\times 1.3$) after the exit sensor turned on.
9. The inverter sensor [D] is still off when the transport and feed-out motors have fed the original 96 mm after the exit sensor turned on.
10. The inverter sensor is still off when the transport and feed-out motors have fed the original 96 mm to the exposure glass after the exit sensor turned off.

2.2 SCANNING

2.2.1 OVERVIEW

The original is illuminated by the exposure lamp (a xenon lamp in this model) [A]. The image is reflected onto a CCD (charge coupled device) $[B]$ via the 1st, 2nd, and 3rd mirrors, and through the lens [C].
The 1st scanner consists of the exposure lamp, the 1st mirror and the lamp regulator [D].
The exposure lamp is energized by a dc supply $(24 \mathrm{~V})$ to avoid uneven light intensity while the 1st scanner moves in the sub scan direction (down the page). The entire exposure lamp surface is frosted to ensure even exposure in the main scan direction (across the page).

There is an optics cooling fan [E] on the right side of the optics cavity to draw cool air inside. The hot air exits through the vents in the upper cover. The fan operates whenever the operation switch is turned on.

2.2.2 SCANNER DRIVE

The scanner drive motor is a dc servo motor. The 1st and 2nd scanners [A, B] are driven by the scanner drive motor [C] through the timing belt [D], scanner drive pulley [E], scanner drive shaft [F], and two scanner wires [G].

The MCU board controls the scanner drive motor. In full size mode, the 1st scanner speed is $425 \mathrm{~mm} / \mathrm{s}$ during scanning. The 2 nd scanner speed is half that of the 1st scanner.

In reduction or enlargement mode, the scanning speed depends on the magnification ratio. The returning speed is always the same, whether in full size or magnification mode. The image length is changed in the sub scan direction by changing the scanner drive motor speed, and in the main scan direction it is changed by image processing on the BICU board.
Magnification in the sub-scan direction can be adjusted by changing the scanner drive motor speed using SP4008.

2.2.3 ORIGINAL SIZE DETECTION IN BOOK MODE

Original Size		Length Sensor		Width Sensor			SP4301 Display
A4/A3 Version	LT/DLT Version	2	1	3	4	5	
A3	$11{ }^{\prime \prime} \times 17{ }^{\prime \prime}$	i	i	i	i	i	10011111
B4	10 x 14"	i	i	i	i	X	10011110
F4	81/2" x 14" (8" x 13")	i	i	i	X	X	10011100
A4-L	81/2" x 11"	X	i	i	X	X	10001100
B5-L	-	X	i	X	X	X	10001000
A5-L	51/2" x 81/2"	X	X	X	X	X	10000000
A4-S	11 " x 81/2"	X	X	i	i	i	10000111
B5-S	-	X	X	i	i	X	10000110
A5-S	81/2" x 51/2"	X	X	i	X	X	10000100

-L: Lengthwise, -S: Sideways, O: High (Paper Present), X: Low

The original size data is taken by the main CPU when the DF position sensor is activated. This is when the DF is positioned about 15 cm above the exposure glass. At this time, only the sensor(s) located underneath the original receive the reflected light and switch on. The other sensor(s) are off. The main CPU can recognize the original size from the on/off signals from the five sensors.
If the copy is made with the platen open, the main CPU decides the original size from the sensor outputs when the Start key is pressed.
The above table shows the outputs of the sensors for each original size. This original size detection method eliminates the necessity for a pre-scan and increases the machine's productivity. However, if the by-pass tray is used, the machine assumes that the copy paper is lengthwise. For example, if A4 sideways paper is placed on the by-pass tray, the machine thinks it is A3 paper and scans the full A3 area, disregarding the original size sensors. However, for each page, the data signal to the laser diode is stopped to match the copy paper length detected by the registration sensor. This means that copy time for the first page may be slower (because of the longer time required for scanning), but it will be normal for the rest of the job.

2.3 IMAGE PROCESSING

2.3.1 OVERVIEW

The CCD generates an analog video signal. The SBU (Sensor Board Unit) converts the analog signal to an 8-bit digital signal, then it sends the digital signal to the BICU (Base-engine, and Image Processing Control Unit) board.
The BICU board can be divided into two image processing blocks; the IPU (Image Processing Unit) and the memory control IC. These two ICs mainly do the following:

- IPU: Auto shading, filtering, magnification, γ correction, gradation processing, and video path control
- Memory Controller: Image compression, image rotation, interface with HDD controller, image repeat, and combine originals

Finally, the BICU board sends the video data to the LD drive board.

2.3.2 SBU

The CCD converts the light reflected from the original into an analog signal. The CCD line has 7,500 pixels and the resolution is $600 \mathrm{dpi}(23.6$ lines $/ \mathrm{mm}$).
The CCD has four output lines: OS1, OS2, OS3, and OS4. OS1 and OS2 are for the first half of the scan line (Non-operation side), and OS3 and OS4 are for the last half of the scan line (Operation side). There are two analog processing ICs; one handles the first half line (OS 1 and OS2) and the other handles the last half line (OS3 and OS4). The analog processing IC performs the following operations:

1) Combines the odd and even signals into one line signal.
2) Adjust the black reference level of each CCD output channel.
3) Amplifies the analog signal from the CCD.

After the above processing, the analog signals are converted to 8 -bit signals by the A/D converter. This gives a value for each pixel on scale of 256 grades. Then, the two 8-bit signals are sent to the BICU board through the LVDS (Low Voltage Differential Signaling). The LVDS is a noise-resistant interface.

2.3.3 AUTO IMAGE DENSITY (ADS)

This mode prevents the background of an original from appearing on copies.
The copier scans the auto image density detection area [A]. This corresponds to a narrow strip at one end of the main scan line, as shown in the diagram. As the scanner scans down the page, the IPU on the BICU detects the peak white level for each scan line, within this narrow strip only. From this peak white level, the IPU determines the reference value for A/D conversion for the scan line. Then, the IPU sends the reference value to the A/D controller on the SBU.

When an original with a gray background is scanned, the density of the gray area is the peak white level density. Therefore, the original background will not appear on copies. Because peak level data is taken for each scan line, ADS corrects for any changes in background density down the page.

As with previous digital copiers, the user can select manual image density when selecting auto image density mode and the machine will use both settings when processing the original.

2.3.4 IPU (IMAGE PROCESSING UNIT)

Overview

The image data from the SBU goes to the IPU (Image Processing Unit) IC on the BICU board, which carries out the following processes on the image data.

1. Auto shading
2. Text/Photo separation
3. Background/Independent dot erase
4. Filtering (MTF and smoothing)
5. Magnification
6. γ correction
7. Grayscale processing
8. Error diffusion
9. Dithering
10. Video path control
11. Test pattern generation

2.3.5 IMAGE PROCESSING STEPS AND RELATED SP MODES

Text Mode

MTF filtering is used in text mode. The MTF filtering coefficient and strength can be adjusted individually for both main and sub scan. Low density originals are produced better when a stronger MTF filter is selected, but in this case, moiré tends to appear.

With UP Mode (Copy Features - General Features - Original Mode Quality Level), the user can select 'Soft', 'Normal', 'Sharp', and 'SP Mode Changed'. The settings of the SP modes indicated with an asterisk (*) are not used unless the user selects 'SP Mode Changed'.

	Image Processing Steps	Related SP Modes
Input Correction 1	Auto Shading	
Input Correction 2	Background Erase	- SP4903-065 * (Scanner Gamma Threshold Level) SP4903-070 * (Background Erase Level)
	Independent Dot Erase	- SP4903-060 (Independent Dot Erase Level)
Filtering	$\underset{\text { MTF }}{\downarrow}$	- SP4903-010 to 011 * (Pre-Filter Coefficient) - SP4903-020 to 035 * (MTF Filter Strength)
Magnification	Main Scan Magnification	- SP2909-001 (Main Scan Magnification)
ID Control	γ Correction	- SP4903-84 * (Scanner gamma setting)
Gradation	Error Diffusion/ Line Width Correction	- SP4903-78 to 80 *, 4904-20 (Line Width Correction Type)

Photo Mode

Normally, the smoothing filter is used in photo mode but MTF filtering can also be selected with SP mode.

With UP Mode (Copy Features - General Features - Original Mode Quality Level), the user can select 'Screen Printed', 'Normal', 'Continuous Tone', and 'SP Mode Changed'. The settings of the SP modes indicated with an asterisk (*) are not used unless the user selects 'SP Mode Changed'.
When the user selects "Normal Paper" and "Continuous Tone", error diffusion is used for the gradation process. However, if the user selects "Screen Printed", dither processing is used.

	Image Processing Path	Related SP Modes
Input Correction 1	Auto Shading	
Input Correction 2		- SP4903-66 * (Scanner Gamma Thresh Level) - SP4903-071 * (Background Erase Level)
Filtering	Smoothing/MTF	- SP4903-012 * (Pre Filter Coefficient) - SP4903-009* (Filter Type Selection) - SP4903-036 to 038 * (Smoothing/MTF Filter Coefficient Level in Photo Mode) - SP4904-006 (Smoothing Filter Level)
Magnification	Main Scan Magnification	- SP2909-001 (Main Scan Magnification)
ID Control	γ Correction	
Gradation	Error Diffusion/ Dither Matrix	- SP4904-002 * (Grayscale Process Selection: Dither or Error Diffusion)

Text/Photo Mode

MTF filtering is used for text/photo mode.
With UP Mode (Copy Features - General Features - Original Mode Quality Level), the user can select 'Photo Mode', 'Normal', 'Text Mode', and 'SP Mode Changed'. The settings of the SP modes indicated with an asterisk (*) are not used unless the user selects 'SP Mode Changed'.

	Image Processing Path	Related SP Modes
Input Correction 1	Auto Shading	
Input Correction 2	Background Erase	- SP4930-67* (Scanner Gamma Thresh Level) - SP4903-072 * (Background Erase Level) - SP4906* (On/Off in Text/Photo Mode) - SP4903-062 (Independent Dot Erase Level)
	Independent Dot Erase	
Filtering	$\frac{\downarrow}{\mathrm{MTF}}$	- SP4903-013 to 014 * (Pre Filter Coefficient) - SP4903-039 to 054 * (Filter Level and Strength) - SP4904-007 (Texture Erase Filter Level)
Magnification	Main Scan Magnification	- SP2909-001 (Main Scan Magnification)
ID Control	γ Correction	- SP4903-85 * (Scanner gamma setting)
Gradation	Error Diffusion/ Line Width Correction	- SP4904-003, 005 * (Error Diffusion) - SP4903-81 to 83 *, SP4904-22 (Line Width Correction Type)

Pale Mode

The image processing for pale mode is basically the same as in text mode. However, the contrast of the original is low. So, to preserve details, a stronger MTF filter is used. Also, the independent dot erase level is set at a lower level, so that only the faintest of dots are deleted; this ensures that dotted lines and periods are not deleted.
With UP Mode (Copy Features - General Features - Original Mode Quality Level), the user can select 'Soft', 'Normal', 'Sharp', and 'SP Mode Changed'. The settings of the SP modes indicated with an asterisk (*) are not used unless the user selects 'SP Mode Changed'.

	Image Processing Path	Related SP Modes
Input Correction 1	Auto Shading	
Input Correction 2	Background Erase	- SP4903-068 * (Scanner Gamma Thresh Level) - SP4903-73 * (Background Erase Level)
	Independent Dot Erase	- SP4903-063 (Independent Dot Erase Level)
Filtering		- SP4903-015 * (Pre Filter) - SP4903-055 to 056 * (MTF Filter Coefficient - Pale Originals)
Magnification	Main Scan Magnification	- SP2909-001 (Main Scan Magnification)
ID Control	γ Correction	
Gradation	Grayscale Processing/ Line Width Correction	- SP4904-23 (Line Width Correction Type)

Generation Copy Mode

The image processing for generation mode is basically the same as in text mode, except that in order to prevent lines in the main scan direction from being reproduced too thickly, line width correction is applied for the final gradation treatment. Also, to reduce unwanted black dots, a weaker MTF filter is used; this ensures that isolated dots do not get bigger, and are spread out. These dots will then be deleted by the independent dot erase feature. This feature, however, is kept at a low setting to ensure that important details such as dotted lines and periods are not deleted.
With UP Mode (Copy Features - General Features - Original Mode Quality Level), the user can select 'Soft', 'Normal', 'Sharp', and 'SP Mode Changed'. The settings of the SP modes indicated with an asterisk (*) are not used unless the user selects 'SP Mode Changed'.

	Image Processing Path	Related SP Modes
Input Correction 1	Auto Shading	
Input Correction 2	Background Erase	- SP4903-069 * (Scanner Gamma Thresh Level) - SP4903-074 * (Background Erase Level)
	Independent Dot Erase	- SP4903-064 (Independent Dot Erase Level)
Filtering		- SP4903-016 * (Pre Filter Coefficient) - SP4903-057 to 058 * (MTF Filter Coefficient Generation Copy)
Magnification	Main Scan Magnification	- SP2909-001 (Main Scan Magnification)
ID Control	γ Correction	
Gradation	Grayscale Processing/ Line Width Correction	- SP4903-75 to 77^{*}, SP4904-24 (Line Width Correction Type)

2.3.6 AUTO SHADING

Two things happen during auto shading.

Black Level Correction

The black level is zeroed for each scan line of data by reading the dummy elements at the end of the CCD signal for each scan line, which should be black.

White Level Correction

The data is corrected for variations in white level across the main scan. To do this, a white reference plate is scanned before each original (book mode) or every 30 s (ADF mode). This corrects for the following effects on each pixel:

- Loss of brightness at the ends of the exposure lamp and the edges of the lens
- Variations in sensitivity among the CCD elements
- Distortions in the light path

2.3.7 BACKGROUND ERASE

Background Erase

The background erase process is used only when setting of SP 4-903-70 to 75 is changed from the default setting (the default is 'disabled').
Usually, dirty background is erased using Auto Image Density (ADS). Background Erase should be used when ADS cannot fully erase the dirty background.
There are two Background Erase modes. The one that is being used depends on the SP mode setting. Setting 2 has a stronger effect than setting 1, but setting 2 may cause sudden changes in the data around the threshold level.

Setting 1: MTF correction is not applied to any low image density data that remains after auto shading if the data is lower than a threshold level [A]. The overall effect is to reduce the background in a similar way to that shown by the dotted line in the diagram. This process can be applied for each image mode (except for photo mode) by changing the setting of SP4-903-70, 72, 73 or 74.

Setting 2: Any low image density data that remains after auto shading will be treated as " 0 " if the data is lower than a threshold level [A]. The background is cut off as shown by the solid vertical line in the diagram at $[A]$. This process can be applied for each image mode by changing the setting of SP4-903-70, 71, 72, 73 or 74 .

The thresholds can be changed with SP4-903-65 to 69.

2.3.8 INDEPENDENT DOT ERASE

By default, this process is used in all image processing modes except for photo mode. This function allows independent black dots appearing on copies to be erased.

As shown in the drawing below, the software compares each pixel with the pixels in the surrounding 5×5 area (except for the immediately adjacent pixels).
If all of the surrounding pixels are white, and the difference between the value of the object pixels and the average of the surrounding pixel is larger than the threshold level, the object pixel is either changed to 0 (white) or reduced in density. The combination of the threshold value and the pixel data reduction ratio depends on the setting of SP4-903-60, 62, 63 or 64. If a larger number is selected, the effect of independent dot erase will be stronger. If 0 is selected, independent dot erase is disabled.

20	40	30	20	40
30	0	70	30	30
30	10	50	20	30
60	20	0	30	0
20	30	40	30	30

Object pixel
\square Surrounding pixels to be used for calculation

Ignored pixels

2.3.9 FILTERING, MAIN SCAN MAGNIFICATION/REDUCTION

Overview

After auto shading, the image data is processed by both filtering and main scan magnification. However, to reduce the occurrence of moiré in the image, the processing order depends on the reproduction ratio, as follows.

1. 64% reduction or less

Main Scan Reduction \rightarrow Filtering
2. 65% reduction or higher

Filtering \rightarrow Main Scan Magnification

Filtering

By default, an individual MTF filter is used for each image processing mode, to enhance the desired image qualities. (For Photo mode, smoothing filter is selected as the default setting.)

A stronger MTF filter emphasizes sharpness and leads to better reproduction of low image density areas, but may leads to the occurrence of moiré in the image.

The MTF filter strength can be changed by changing the coefficient (MTF Filter Level) and strength of the MTF filter in combination using SP mode. Refer to the combination chart in 'Image Quality Setting by UP Mode' in section 4. The filter coefficient and strength can be adjusted in the main scan and sub scan directions individually. This allows the copy quality to be adjusted more precisely, to match the originals normally scanned by a particular customer.
Example: In a case when vertical lines (sub scan) are reproduced clearly, but horizontal lines (main scan) are not reproduced clearly, the technician can adjust the main scan filter only.

For photo mode, the smoothing filter is the default filter, but the MTF filter may be selected by SP mode 4-903-9. This is effective when putting more weight on improving the resolution when copying from "continuous tone" originals.

Main Scan Magnification/Reduction

Scanned Data
Points
Calculated Data Points
Enlarged Image
Data Points
140\% Enlargement

However, reduction and enlargement in the main scan direction are handled by the IPU chip on the BICU board.

Scanning and laser writing are done at a fixed pitch (the CCD elements cannot be squeezed or expanded). So, to reduce or enlarge an image, imaginary points are calculated that would correspond to a physical enlargement or reduction of the image. The correct image density is then calculated for each of the imaginary points based on the image data of the nearest four true points. The calculated image data then becomes the new (reduced or enlarged) image data.
Main scan magnification can be disabled with SP4-903-5 to test the IPU chip.

Sub Scan Magnification

When the selected magnification is 50% or larger, the image magnification in the sub scan direction is changed by changing the scanner speed. (As the magnification ratio increases, the scanner speed is reduced.)

However, when a magnification ratio smaller than 50% is selected, the required scanner speed exceeds the limit of the scanner motor. So, the scanner speed is reduced to half of the required speed for that reduction ratio. As a result, there are twice as many scan lines as needed. So alternate lines are removed.
Foe example, if a 49% magnification ratio is selected, the scanner speed is the same as the speed of 98% magnification, but the number of sub scan lines used for the image is half of that for 98% magnification.

2.3.10 GAMMA (γ) CORRECTION

Gamma correction ensures accurate generation of the various shades in the gray scale from black to white, accounting for the characteristics of the scanner and printer.
Scanner gamma correction corrects the data output to the IPU to account for the characteristics of the scanner (e.g., CCD response, scanner optics).
Printer gamma correction corrects the data output from the IPU to the laser diode to account for the characteristics of the printer (e.g., the characteristics of the drum, laser diode, and lenses).
The scanner and printer gamma settings can be changed for the 'Service Mode' original type of text and text/photo modes, using SP4-903-84 and 85.

2.3.11 GRADATION PROCESSING

Various processes are available to try to reproduce various types of original as faithfully as possible.
The following processes are used in combination depending on the image mode settings.

1) Three-graduation processing
2) Four-graduation processing
3) Error diffusion
4) Dithering

These three processes are used as follows:

Text Mode:	Error diffusion + line width correction and four- graduation processing
Text/Photo Mode:	Error diffusion + line width correction and four- graduation processing
Photo Mode:	Error diffusion or dithering, and three-graduation processing
Generation Copy Mode:Error diffusion + line width correction, and three- graduation processing	
Pale Mode:	Error diffusion and four-graduation processing

Three-graduation Processing

This mode is used in Photo mode.
The image density data after gamma correction is changed into three-graduation data (full dot, half dot, or blank) using two thresholds. With this processing, halftone images are reproduced smoother than with four-graduation processing because of stable dot image reproduction due to only one intermediate density level.

Four-graduation Processing

This process is used in Text mode and Text/Photo mode.
The image density data after gamma correction is changed into 2-bit data using 3 thresholds. The four graduations are reproduced by laser power control. This process is suitable for reproducing fine originals which do not include halftone areas.

Error Diffusion and Dithering

Error diffusion reduces the difference in contrast between light and dark areas of a halftone image. Each pixel is corrected using the difference between it and the surrounding pixels. The corrected pixels are then corrected using an error diffusion matrix.

With dithering, each pixel is compared with a pixel in a dither matrix. Several matrixes are available, to increase or decrease the detail on the copy.

Comparing with dithering, error diffusion gives a better resolution, and is more suitable for "continuous toned" originals. On the other hand, dithering is more suitable for "screen printed" originals.
In Photo mode, when the user selects "Normal Paper" or "Continuous Tone", error diffusion is used. However, if the user selects "Screen Printed", dither processing is used. If the user selects "SP Mode Changed", then error diffusion or one of three types dither matrix can be selected with SP4-904-002. There are three types of dither matrix, $8 " \times 8 ", 6 " \times 6 "$, and $4 " \times 4$ ". A larger dither matrix causes halftone areas to become coarser.

2.3.12 LINE WIDTH CORRECTION

This function is effective for Text, Text/Photo and Generation modes.
The software compares each pixel with adjacent pixels. If the differences between the object pixel and adjacent pixels are more than a threshold, the software judges that the pixel is on a line edge, and line width correction is applied.

The line width correction setting can be changed separately for Text, Text/Photo and Generation modes. The widths of vertical and horizontal lines can be corrected separately.

- Thinner 1: If the pixel is on the edge of a line, its density is multiplied by 0.75
- Thinner 2: If the pixel is on the edge of a line its density is multiplied by 0.5
- Thicker: If the pixel is on the edge of a line, 48 is added to its density

The threshold for detecting edges of lines can also be changed separately for vertical lines and horizontal lines.

Use SP4-903-75 to 83 to adjust the line width correction settings.
Line width can also be corrected by adjusting the laser output (SP4904-20 to 24).

2.4 LASER EXPOSURE

2.4.1 AUTO POWER CONTROL

IC2 and IC3 on the LDDR drive the laser diodes. Even if a constant electric current is applied to the laser diode, the intensity of the output light changes with the temperature. The intensity of the output decreases as the temperature increases.

In order to keep the output level constant, IC2 and IC3 monitor the current passing through the photodiode (PD). Then they increase or decrease the current to the laser diode as necessary, comparing it with the reference levels (REF1 and REF2). This auto power control is done just after the machine is turned on and during printing while the laser diode is active.
The reference levels are adjusted on the production line. Do not touch the variable resistors on the LDDR in the field.

2.4.2 DUAL BEAM WRITING

This LD unit has two laser diodes; LD1 [A] and LD2 [B] for writing the image. This means that each face of the polygon mirror writes two main scan lines, and twelve main scans are produced when the polygon mirror rotates once. The reasons for this mechanism are as follows.

1) To reduce the polygon motor rotation speed
2) To reduce the noise generated by the polygon motor
3) To reduce the frequency of the image data clock

Two laser beams are transferred to the polygon mirror [C] through collimating lens [D] and prism [E]. The two laser beams arrive on the drum surface about 2 mm away from each other in the main scan direction and about 0.04 mm (at 600 dpi) in the sub scan direction (see the next page).
The reason for the two-mm difference in the main scan direction is so that the machine can detect a laser synchronization signal for each beam.

2.4.3 LASER BEAM PITCH CHANGE MECHANISM

A printer option is available for this machine and the resolution of the printer is 400 dpi or 600 dpi . The machine changes the resolution between 400 and 600 dpi by rotating the LD unit.
When the LD positioning motor $[A]$ turns, the metal block $[B]$ (which contacts the LD unit housing [C]) moves up and down. This changes the position of the L2 laser beam (L1 does not move).

Both LD unit positions are at fixed distances from the LD home position sensor [D] (measured by motor pulses). Usually, the LD unit moves directly to the proper position. However, when the number of times that the resolution has changed reaches the value of SP2-109-5, the LD unit moves to the home position (the home position sensor activates), then it moves to the proper position. This recalibrates the LD unit positioning mechanism.

2.4.4 LD SAFETY SWITCHES

To ensure technician and user safety and to prevent the laser beam from inadvertently switching on during servicing, there are two safety switches located at the front cover. These two switches are installed in series on the LD5 V line coming from the power supply unit (PSU) through the BICU board.
When the front cover or the upper right cover is opened, the power supply to the laser diode is interrupted.

2.5 DRUM UNIT

2.5.1 PROCESS CONTROL

Overview

The drum potential will gradually change because of the following factors.

- Dirty charge corona casing and grid plate
- Changes in drum sensitivity

To maintain good copy quality, the machine does the following just after the main switch has been turned on (if the fusing temperature is less than $100^{\circ} \mathrm{C}$ and SP3901 is on).

1) Potential Sensor Calibration
2) VSG Adjustment
3) $V G($ Grid Voltage) Adjustment
4) LD Power Adjustment
5) VREF Update
6) Density Adjustment

This process is known as 'Process Control Initial Setting'. The rest of this section will describe these steps in more detail.
Processes 1, 3, and 4 in the above list compensate for changes in drum potential. Processes 2 and 5 are for toner density control; see the "Development and Toner Supply" section for more details.

Drum potential sensor calibration

The drum potential sensor $[A]$ detects the electric potential of the drum surface $[B]$.
Since the output of the sensor is affected by environmental conditions, such as temperature and humidity, the sensor needs recalibration at times. This is done during process control initial setting.

The development power pack [C] has two relay contacts. Usually RA102 grounds the drum. However, to calibrate the sensor, the BICU switches RA102 and RA101 over, which applies the power pack output voltage to the drum shaft [D].

The machine automatically calibrates the drum potential sensor by measuring the output of the sensor when -200 V and -700 V are applied to the drum. From these two readings, the machine can determine the actual drum potential from the potential sensor output that is measured during operation.
During calibration, if the rate of change in drum potential sensor response to applied voltage is out of the target range, SC310 or 311 is logged and auto process control turns off. The VG and LD power adjustments are skipped; VG is set to the value stored in SP2-001-01, and LD power is set to the values stored in SP2-103.

VsG adjustment

This calibrates the ID sensor output for a bare drum to $4.0 \pm 0.2 \mathrm{~V}$. It does this by changing the intensity of the light shining on the drum from the sensor. This is done automatically during process control initial setting, and it can also be done manually with SP3-001-002.
If the ID sensor output cannot be adjusted to within the standard, SC353 or 354 is logged and toner density control is done using the TD sensor only.
For details of how the machine determines an abnormal sensor detection, see section 7 (Troubleshooting).

DRUM UNIT

Vg Adjustment

The potential on unexposed areas of the drum (VD) gradually changes during drum life. To keep VD constant, the grid voltage (VG) is adjusted during process control initial setting.

The BICU checks VD using the drum potential sensor [A]. If it is not within the target range ($-900 \mathrm{~V} \pm 10 \mathrm{~V}$), the BICU adjusts VG (Grid Voltage) through the Charge/Grid power pack to get the correct target voltage.
The most recently detected values can be displayed with SP3-902-2 (VD) and 3-902-4 (VG).
If the CPU cannot get VD within the target range by changing VG, VG is set to the value in SP2001-001 and SC312 is logged.
For details of how the machine determines an abnormal sensor detection, see section 7 (Troubleshooting).

LD power adjustment

This adjustment uses the drum potential sensor to keep the ID sensor pattern at the same density, so that VREF will be updated correctly (see the next page).

The VH pattern is developed using the current LD power. The drum potential sensor detects the potential on this pattern. The LD power is adjusted until VH becomes $-300 \mathrm{~V} \pm 20 \mathrm{~V}$.

This is done only during process control initial setting.
The latest VH can be displayed using SP3-902-3. The corrected LD power can be displayed using SP3-902-5 (the default is stored in SP2-103-1-4). See "Laser exposure" for more details about laser power.
If VH cannot be adjusted to within the standard within 25 attempts, LD power is set to the latest value (the one used for the 25th attempt) and SC314 is logged.
For details of how the machine determines an abnormal sensor detection, see section 7 (Troubleshooting).

Toner Density Adjustment

This adjustment uses the ID sensor to maintain the toner density in the development unit to around the target range as follows.

Vsp/Vsg \geq Target range: Supply Toner
Vsp/Vsg \leq Target range: Consume Toner

DRUM UNIT

Vref Update

The TD sensor reference voltage (VREF) is updated to stabilize the concentration of toner in the development unit as follows;
New VREF $=$ Current VREF $+\Delta$ VREF
$\Delta \mathrm{VREF}$ is determined using the following $\mathrm{Vsp} / \mathrm{Vsg}$ and $\mathrm{VREF}-\mathrm{V} T$ table

	Vsp/Vsg (B)				
VREF- V_{T} (A)		$\mathrm{B}<0.055$	$0.055<\mathrm{B}=<0.07$	$\cdots \cdots \cdots$	$0.15<\mathrm{B}$
	$\mathrm{A}=<-0.2$	0.25	0.22	$:$	-0.03
	$-0.2<\mathrm{A}=<-0.1$	0.25	0.22	$:$	-0.05
	$:$	\vdots	\vdots	\vdots	\vdots
	$:$	$0.2<\mathrm{A}$	0	$:$	\vdots

VT: TD Sensor Output

When SC350, 351 or 352 (ID Sensor Abnormal) is generated, VREF is not updated. The machine uses the current value.

VREF is updated during process control initial setting. It is also updated if both of the following conditions exist:

- 10 or more copies have been made since the last VREF update
- The copy job is finished

2.5.2 DRUM UNIT COMPONENTS

The drum unit consists of the components shown in the above illustration. An organic photoconductor drum (diameter: 100 mm) is used for this model.

1. OPC Drum
2. Drum Potential Sensor
3. Pick-off Pawl
4. Image Density Sensor
5. Toner Collection Coil
6. Cleaning Brush
7. Cleaning Blade
8. Charge Power Pack
9. Quenching Lamp
10. Charge Corona Unit

DRUM UNIT

2.5.3 DRUM CHARGE

Overview

This copier uses a double corona wire scorotron system to charge the drum. Two corona wires are needed to give a sufficient negative charge to the drum surface. The stainless steel grid plate makes the corona charge uniform and controls the amount of negative charge on the drum surface by applying a negative grid bias voltage.
The charge power pack [A] gives a constant corona current to the corona wires (-1300 $\mu \mathrm{A}$).
The bias voltage to the grid plate is automatically controlled to maintain the correct image density in response to changes in drum potential caused by dirt on the grid plate and charge corona casing. This is described in the Process Control section in more detail.

Charge Corona Wire Cleaning Mechanism

Air flowing around the charge corona wire may deposit toner particles on the corona wires. These particles may interfere with charging and cause low density bands on copies.
The wire cleaner pads [A] automatically clean the wires to prevent such a problem.
The wire cleaner is driven by a dc motor [B]. Normally the wire cleaner [C] is located at the front end (this is the home position). Just after the main switch is turned on, the wire cleaner motor turns on to bring the wire cleaner to the rear and then back to the home position. When the wire cleaner moves from the rear to the home position (black arrow in the illustration), the wire cleaner pads clean the wires. This is only done when 5000 or more copies have been made since the wires were cleaned last.

2.5.4 DRUM CLEANING AND TONER RECYCLING

Overview

This copier uses a counter blade system to clean the drum. In a counter blade system, the drum cleaning blade $[A]$ is angled against drum rotation. The counter blade system has the following advantages:

- Less wearing of the cleaning blade edge
- High cleaning efficiency

Due to the high efficiency of this cleaning system, the pre-cleaning corona and cleaning bias are not used for this copier.

The cleaning brush $[B]$ supports the cleaning blade. The brush removes toner from the drum surface and any remaining toner is scraped off by the cleaning blade. Toner on the cleaning brush is scraped off by the mylar [C] and falls onto the toner collection coil [D]. The coil transports the toner to the toner collector bottle.
To remove any accumulated toner at the edge of the cleaning blade, the drum turns in reverse for about 10 mm at the end of every copy job. The accumulated toner is deposited on the drum and is removed by the cleaning brush.

Drive Mechanism

Drive from the drum motor [A] is transmitted to the cleaning unit drive gear via the timing belt [B] and the cleaning unit coupling [C]. The cleaning unit drive gear [D] then transmits the drive to the front through the cleaning brush [E]. The gear at the front drives the toner collection coil gear [F].

Cleaning Blade Pressure Mechanism and Side-to-Side Movement

The spring [A] always pushes the cleaning blade against the drum. The cleaning blade pressure can be manually released by pushing up the release lever [B]. To prevent cleaning blade deformation during transportation, the release lever must be locked in the pressure release (upper) position.
The pin [C] at the rear end of the cleaning blade holder touches the cam gear [D], which moves the blade from side to side. This movement helps to disperse accumulated toner to prevent early blade edge wear.

2.5.5 OTHERS

Air Flow Around the Drum

The drum cooling fan $[\mathrm{A}]$ provides air flow into the drum to cool the drum and the charge corona unit to prevent uneven build-up of negative ions that can cause uneven drum surface charge. The exhaust fan $[B]$ located above the fusing unit causes air to flow out of the machine.
An ozone filter [C] absorbs the ozone around the drum.
To keep the temperature inside the machine constant, the drum cooling fan and the exhaust fan turn slowly during stand-by, and turn quickly during copying.

DRUM UNIT

Pick-off Mechanism

The pick-off pawls are always in contact with the drum surface as a result of weak spring pressure. They move from side to side during the copy cycle to prevent drum wear at any particular location. This movement is made via a shaft [A] and an a cam [B].

2.6 DEVELOPMENT AND TONER SUPPLY

2.6.1 OVERVIEW

- Paddle Roller [A]
- Upper Development Roller [B]
- Lower Development Roller [C]
- Toner Density Sensor [D]
- Developer Agitator [E]
- Toner Auger [F]
- Development Filter [G]
- Toner Supply Motor [H]
- Toner End Sensor [I]
- Toner Agitator [J]
- Toner Supply Roller [K]
- Toner Hopper [L]

This copier uses a double roller development (DRD) system. Each roller has a diameter of 20 mm .

This system differs from single roller development systems in that:
(1) It develops the image in a narrower area
(2) It develops the image twice
(3) The relative speed of each development roller against the drum is reduced.

Also, this machine uses fine toner (about $9.5 \mu \mathrm{~m}$) and developer (about $80 \mu \mathrm{~m}$). Both the DRD system and new consumables improve the image quality, especially of thin horizontal lines, the trailing edges of the half-tone areas, and black cross points.

The machine contains a toner recycling system. The recycled toner is carried to the toner hopper [L] by the toner recycling motor and mixed with new toner by the toner agitator [J]. (The toner recycling system is described in the "Drum Cleaning And Toner Recycling section".)

2.6.2 DEVELOPMENT MECHANISM

The paddle roller [A] picks up developer and transports it to the upper development roller [B]. Internal permanent magnets in the development rollers attract the developer to the development roller sleeve. The upper development roller carries the developer past the doctor blade [C]. The doctor blade trims the developer to the desired thickness and creates backspill to the cross mixing mechanism.
In this machine, black areas of the latent image are at a low negative charge (about -120 V) and white areas are at a high negative charge (about -900 V).
\Rightarrow The development roller is given a negative bias (-550 V) to attract negatively charged toner to the black areas of the latent image on the drum.

The development rollers continue to turn, carrying the developer to the drum [D]. When the developer brush contacts the drum surface, the low-negatively charged areas of the drum surface attract and hold the negatively charged toner. In this way, the latent image is developed.

2.6.3 DEVELOPMENT BIAS

To attract negatively charged toner to the black areas of the latent image on the drum, the development power pack [A] applies the negative development bias to the upper and lower sleeve roller through the terminal $[B]$ and roller shafts [C].
Also, the bias is applied to the lower casing through the spring which is mounted on the front lower development shaft. The bias applied to the lower casing prevents toner from being attracted back from the drum.

2.6.4 TONER DENSITY CONTROL

Overview

There are two modes for controlling toner supply: sensor control mode and image pixel count control mode. The mode can be changed with SP2-208. The factory setting is sensor control mode. Image pixel count mode should only be used if the TD and ID sensor are defective.

Sensor control mode

In sensor control mode, the machine varies toner supply for each copy to maintain the correct proportion of toner in the developer and to account for changes in drum reflectivity over time. The adjustment depends on two factors.

- The amount of toner required to print the page (based on the black pixel amount for the page)
- Readings from the TD sensor [A] and ID sensor [B].

Toner density sensor initial setting

When the new developer is installed, TD sensor initial setting must be done using SP2-801. This sets the sensor output to 3.0V. This value will be used as the TD sensor reference voltage (VREF).
If Vt cannot be adjusted to within standard, SC341 or 342 is generated and the machine cannot make copies.

VSP and VSG detection

The ID sensor detects the following voltages.

- VsG: The ID sensor output when checking the drum surface
- VSP: The ID sensor output when checking the ID sensor pattern

In this way, the reflectivity of both the drum and the pattern on the drum are checked.

The ID sensor pattern is made on the drum with the charge corona and laser diode. VSP/VSG is detected at the end of a copy job of more than 10 pages to update the TD sensor reference voltage (VREF). This interval can be changed using SP2-210. This compensates for any variations in the reflectivity of the pattern on the drum or the reflectivity of the drum surface.

Vref Update

VREF is updated using VsP/VsG and V . This is done (or at the end of a copy job of more than 10 pages, and during process control initial setting. See "Vref Update" in the Process Control section for details.

VT detection

The toner density in the developer is detected once every copy cycle after the trailing edge of the image passes through the development roller.

Image pixel count

For each copy, the CPU adds up the image data value of each pixel and converts the sum to a value between 0 and 255. (The value would be 255 if the page was completely black.)

Gain Determination

GAIN is another factor in the toner supply clutch on time calculation. Its value can be $0,1,2,3$, or 4 . It is calculated every copy using "VREF - VT".

Toner Supply Clutch On Time Calculation

The toner supply clutch on time for each copy is decided using the following formula: (GAIN \times Image pixel count $\times 0.7 \mathrm{mg} / \mathrm{cm}^{2} /$ Toner Supply Rate) +50 ms The toner supply rate can be changed using SP2-209.

Image pixel count control

This mode should only be use as a temporary countermeasure while waiting for replacement parts, such as a TD sensor. This mode controls the toner supply using the same formula for the toner supply clutch on time. However, the GAIN value is fixed at 0.7.

2.6.5 TONER END DETECTION

Toner near end and toner end are detected every copy using the toner end sensor and toner supply motor as follows.

Toner Near End

When the toner end sensor is on for two consecutive pages, the toner supply motor turns on for 1.1 s . If the toner supply motor has turned on more than 30 times during the last 100 prints, "Toner Near End" is displayed.

The "Toner Near End" condition is cleared if the toner end sensor turns off.

Toner End

If the toner end sensor has been continuously on for 200 copies (toner end sensor copy counter), "Toner End" is displayed.
If the toner end sensor is off twice consecutively, the toner end sensor copy counter is reset to 0 .

2.6.6 TONER END RECOVERY

If the front door is opened and closed while a toner near end or toner end condition exists, the machine will attempt to recover using measurements from the toner end sensor and TD sensor.

At this time, the drum and development motor, charge and development bias turn on.

The toner supply motor turns on for 1.1 s , then the toner supply clutch turns on for 1s. Then the CPU checks the toner end sensor output.

If the toner end sensor is off (meaning that there is toner in the toner hopper), the CPU compares VT and VREF.

If VT is less than or equal to VREF (meaning that there is enough toner in the development unit), the CPU waits for 20s to mix the toner in the developer evenly. Then the above components turn off, and the toner end or toner near end is cleared.

If VT is more than VREF, the CPU turns on the toner supply clutch for 1 s again until VT becomes less than or equal to VREF.
If the toner end sensor output remains on even after trying the above procedure 7 times, the components turn off and "Toner End" remains on.

2.6.7 ABNORMAL TD AND ID SENSOR CONDITIONS

If the TD sensor and/or ID sensor is/are defective, the toner supply mode is changed as follows.

TD Sensor Defective

The toner supply amount is controlled by the ID sensor. ID sensor output is used to decide the GAIN factor for the toner supply clutch on time calculation. SC340 is logged.

ID Sensor Defective

The toner supply amount is controlled by the TD sensor. However, TD sensor reference output VREF is not updated.
SC350, 351, 352, 353 or 354 is logged.

TD and ID sensor defective

Toner supply mode is changed to image pixel count mode.

2.7 IMAGE TRANSFER AND PAPER SEPARATION

2.7.1 IMAGE TRANSFER AND PAPER SEPARATION MECHANISM

After the image transfer is completed, the charge on the transfer belt holds the paper to the transfer belt. After separating the paper from the transfer belt, the transfer belt is discharged by the transfer belt drive roller [A].
The transfer power pack $[B]$ inside the transfer belt unit monitors the current (l1 and I2) fed back from the drive rollers at each end of the transfer belt.

Then, the power pack adjusts It to keep the current (14) constant, even if the paper, environmental conditions, or transfer belt surface resistance change.

The varistor [C] keeps the voltage at the cleaning bias roller [D] constant if there are fluctuations.

2.7.2 TRANSFER BELT UNIT LIFT MECHANISM

The transfer belt lift solenoid [A] inside the transfer belt unit turns on to raise the transfer belt into contact with the drum. The front lever [B] and the rear lever [C] are connected to the solenoid by links [D], and they push up the stays [E] when the solenoid turns on.

The solenoid turns off after the copy job is finished. The transfer belt must be released from the drum for the following reasons:

1. To prevent the ID sensor pattern on the drum from being rubbed off by the transfer belt, because the transfer belt is located between the development unit and the ID sensor.
2. To decrease the load on the bias roller cleaning blade, it is better to prevent toner on non-image areas (for example VD, VH, ID sensor patterns developed during process control data initial setting) from being transferred onto the transfer belt.
3. To prevent drum characteristics from being changed by coming into contact with material of the rubber belt.

2.7.3 TRANSFER BELT CLEANING MECHANISM

Some toner may adhere to the transfer belt when paper jams occur, or when the by-pass feed table side fences are set in the wrong position. The adhered toner must be removed to prevent the rear side of the copy paper from getting dirty.
The cleaning roller $[A]$ is always in contact with the transfer belt. It collects toner and paper dust adhering to the surface of the transfer belt. This is because a positive bias is applied to the cleaning roller and this attracts the negatively charged toner on the transfer belt.

A counter blade system cleans the cleaning roller. The cleaning blade [B] scrapes off toner collecting on the cleaning roller [A]. The gear [C] moves the agitator plate [D] from side to side to transport toner to the toner collection coil [E]. Toner cleaned off the transfer belt is transported to the waste toner collection bottle by the coil.

2.8 PAPER FEED

2.8.1 OVERVIEW

This model has three built-in paper feed trays: tandem LCT (1st tray) [A] (1550 + 1550 sheets), universal tray (2nd tray) [B] (550 sheets), and single-size tray (3rd tray) [C] (550 sheets).

Paper can also be fed using the by-pass feed table [D] which has an independent feed mechanism. The by-pass feed table can hold 50 sheets of paper.
All feed stations use an FRR feed system.

PAPER FEED

2.8.2 DRIVE MECHANISM

[A] Paper Feed Motor
[B] Paper Feed Clutches
[C] Vertical Relay Clutches
[D] Relay Clutch
[E] By-pass Feed Motor
[F] By-pass Feed Clutch
[I] Bank Relay Clutch

The paper feed motor [A] drives feed, pick-up, and separation rollers in the trays via timing belts, clutches $[B]$, and gears. The paper feed motor also drives the vertical transport rollers and the relay roller. Drive is transferred to each of the four vertical transport rollers by a vertical relay clutch [C], and to the relay roller by the relay clutch [D].

The by-pass feed motor [E] drives all the rollers in the by-pass tray via gears and a clutch [F].

The second vertical relay clutch has a one-way-gear [G]. This prevents the clutch from slipping when the knob $[\mathrm{H}]$ is turned to remove jammed paper in the paper feed tray and vertical transport area.

2.8.3 TANDEM LCT - TRAY 1

Overview

1,550 sheets of paper can be set in each of the left [A] and right trays [B]. Paper is fed from the right tray. When the paper in the right tray runs out, the paper in the left tray automatically transfers to the right tray. After the paper transfer to the right tray, paper feeding resumes.
Normally both the right and the left trays are joined together. However, during copying, if there is no paper in the left tray, the left tray can be pulled out to load paper. During that time, the right tray stays in the machine and paper feed continues.

PAPER FEED

Connecting the Left and Right Sides of the Tray

Normally the left tray lock lever [A] in the left tray catches the pin $[B]$ in the right tandem tray. During copying, if there is no paper in the left tray, the tandem tray connect solenoid [C] turns on to release the tray lock lever so that the left tray separates from the right tray. Therefore, the left tray can be pulled out to load paper while paper is still being fed into the machine from the right tray.

When the tandem tray is drawn out fully, the projection [D] pushes up the left tray lock lever $[A]$ so that both trays separate for easier paper loading.

Paper Lift/Remaining Paper Detection

The machine detects when the 1st tray has been placed in the machine by monitoring the tray set signal through the connector.

When the machine detects that the 1st paper tray is set in the machine, the right 1 st tray paper sensor [N] (under the tray) checks whether there is paper in the right tandem tray.
NOTE: The right half of the tray holds up to 1,550 sheets. So, if the right 1st tray paper sensor was not present and the tray was empty, the bottom plate would have to lift up fully until the paper end sensor at the top of the tray detected that there was no paper, and this would waste several seconds.
If paper is detected, the lift motor [A] rotates and the coupling gear $[B]$ on the tray lift motor engages the pin [C] of the lift shaft [D]. The tray wires [E] are fixed in the slots [F] at the ends of the tray support rods [G, H]. When the lift motor rotates clockwise, the tray support rods and the tray bottom plate [l] move upward. The tray goes up until the top paper pushes up the pick-up roller and the lift sensor in the 1st feed unit is activated, and the paper end sensor at the top of the tray is deactivated.

When the actuator [K] on the front end of the right support rod [G] activates the paper near end sensor [J], the paper near end condition is detected.

When removing the tray, the coupling gear [B] separates from the pin [C], so that the tray bottom plate moves downward. The tray lowers until the actuator activates the tray down sensor [L]. The damper [M] lets the tray bottom plate drop down slowly.

When the lift motor turns on, the pick-up solenoid [A] activates to lower the pick-up roller [B]. When the top sheet of paper reaches the correct height for paper feed, the paper pushes up the pick-up roller and the actuator [C] on the pick-up roller supporter [D] activates the lift sensor [E] to stop the lift motor.

After several paper feeds, the paper level gradually lowers then the lift sensor is de-activated and the lift motor turns on again until the lift sensor is activated again.

When the tray is drawn out of the feed unit, the lift motor coupling gear [F] disengages the pin [G] of the lift shaft [H], then the tray bottom plate [I] drops (the damper slows the fall, as explained on the previous page).
There is also a paper end sensor for the 1st tray, which works in the same way as the sensor in the 2nd and 3rd trays.

Fence Drive

The side fences [A] of the right tray are normally closed. They open only when paper in the left tray goes to the right tray.

The side fence solenoids $[B]$ drive the side fences. When the paper loaded in the left tray transfers to the right tray, the side fence solenoids turn on to open the side fences until the side fence positioning sensor [C] activates.

When the rear fence in the left tray has pushed the paper stack into the right tray, the side fence solenoids turn off to close the side fences. Then, when the side fence close sensor [D] actuates after pushing the tandem tray in, the LCD displays a message advising the user to set some paper in the left side of the tandem tray.

PAPER FEED

Rear Fence Drive

[E]

When the left 1st tray paper sensor [A] detects paper but the right 1st tray paper sensor does not, the rear fence drive motor $[B]$ (a DC motor) in the left tray turns counter-clockwise causing the rear fence [C] to push the paper stack into the right tray.
When the actuator on the rear fence activates the rear fence return position sensor [D], the rear fence drive motor turns clockwise until the actuator activates the rear fence HP sensor [E].
While the rear fence is moving, the left 1st tray lock solenoid [F] turns on and the lock lever [G] locks the left tray.

Tray Positioning

Side-to-side Positioning

When the feed tray is set in the paper feed unit, the side-to-side positioning plate $[A]$ presses the feed tray against the stopper [B]. By moving the positioning plate, the tray position can be changed to adjust the side-to-side registration.

2.8.4 TRAY POSITIONING MECHANISM - TRAYS 1 TO 3

When the tray is placed in the paper feed unit, the lock lever [A] drops behind the lock plate $[B]$ on the support bracket to lock the tray in the proper position.

2.8.5 PAPER LIFT MECHANISM - TRAYS 2 AND 3

When the machine detects that the paper tray has been placed in the machine, the lift motor [A] turns on. The coupling gear [B] on the tray lift motor engages the pin [C] on the lift arm shaft [D], then it turns the tray lift arm [E] to lift the tray bottom plate [F].

2.8.6 VERTICAL TRANSPORT MECHANISM

The vertical transport rollers $[A]$ in each feed unit are all driven by the paper feed motor. The vertical transport rollers and the idle vertical transport rollers [B], on the inner and outer vertical guide plates, transport the paper up from each feed unit towards the relay and registration rollers.
The vertical transport guides [C] can be opened to remove jammed paper in the vertical transport area.

2.8.7 PAPER REGISTRATION

Overview

The registration sensor $[\mathrm{A}]$ is positioned just before the registration rollers $[\mathrm{B}]$.
When the paper leading edge activates the registration sensor, the registration motor is off and the registration rollers are not turning. However, the relay clutch [C] stays on for a bit longer. This delay allows time for the paper to press against the registration rollers and buckle slightly to correct skew. Then, the registration motor energizes and the relay clutch re-energizes at the proper time to align the paper with the image on the drum. The registration and relay rollers feed the paper to the image transfer section.

The registration sensor is also used for paper misfeed detection.

2.8.8 PAPER SIZE DETECTION - TRAY 2

SW Actuated - 0 De-actuated - 1	Paper size	L: Lengthwise S: Sideways
	A4/A3 Version	LT/DLT Version
01111	A3-L	11" x 17"-L
00111	81/4" x 13"	81/2" x 14"-L
10011	A4-L	81/2" $\times 11^{\prime \prime-L}$
01001	A4-S	81/2" x 11"-S
00100	81/2" x 13"	51/2" \times 81/2"-L
00010	A5-L	51/2" $\times 81 / 2^{\prime \prime}-\mathrm{S}$
00001	A5-S	8" $\times 101 / 2^{\prime \prime}-\mathrm{L}$
10000	-	8" x 10"-L
11000	-	8" x 13"-L
11100	-	10" x 14"-L
11110	*	*

For the first and the third feed trays, the paper size has to be stored with a UP mode.

For the second feed tray (universal tray), the paper size switch [A] detects the paper size. The paper size switch contains five microswitches. The paper size switch is actuated by an actuator plate $[B]$ at the rear of the tray. Each paper size has its own unique combination as shown in the table and the CPU determines the paper size by the combination.

Using the asterisk setting (*), a wider range of paper sizes can be used, but the size has to be entered with a UP mode.

2.9 IMAGE FUSING

2.9.1 OVERVIEW

After the developed latent image is transferred from the drum to the paper, the copy paper enters the fusing unit. Then the image is fused to the copy paper by a heat and pressure process through the use of a hot roller $[\mathrm{A}]$ and a pressure roller [B].

There are two fusing lamps [C] in the hot roller. Both lamps are 550 W lamps. They switch on and off at the same time.

The fusing lamps turn on and off to keep the operating temperature at $185^{\circ} \mathrm{C}$. The CPU monitors the hot roller surface temperature through a thermistor [D] which is in contact with the hot roller surface. A thermofuse [E] protects the fusing unit from overheating.

The hot roller strippers [F] separate the copy paper from the hot roller and direct it to the fusing exit rollers [G]. The exit sensor in the inverter and paper exit unit monitors the progress of the copy paper through the fusing unit and acts as a misfeed detector while the exit rollers feed the copy paper to the inverter section.
The hooking position of the tension springs [H] on the pressure lever [I] adjusts the roller pressure.
The oil supply roller [J] applies a light coat of silicone oil to the hot roller. The oil supply cleaning roller $[\mathrm{K}]$ removes the paper dust attached to the cleaning roller.
The fusing sensor [L] detects concertina jams at the fusing unit exit. This sensor is needed because the user may not see this type of jam inside the machine when removing jams at the exit.

2.9.2 FUSING ENTRANCE GUIDE

The entrance guide [A] for this machine is adjustable for thick or thin paper.
For thin paper, the entrance guide should be in the upper position (this is the standard position). This slightly lengthens the paper path which prevents the paper from creasing in the fusing unit.

For thick paper, move the entrance guide to the lower position. This is because thick paper does not bend as easily, and is therefore less prone to creasing. Also, the lower setting allows more direct access to the gap between the hot and pressure rollers. This prevents thick paper from buckling against the hot roller, which can cause blurring at the leading edge of the copy.
In this model, the transfer belt improves paper transport and the paper path to the fusing entrance is stabilized. This reduces the chance of paper creasing due to paper skew in the fusing unit.

2.9.3 FUSING DRIVE MECHANISM

The fusing drive gear [A] transmits drive from the fusing/duplex drive motor $[B]$ to the gear [C], which drives the hot roller gear [D].
Rotation passes from the gear [C] through the idle gear [E] to the exit roller drive gear [F].
The pressure roller is driven by the friction between the hot and pressure rollers.

2.10 PAPER EXIT/DUPLEX

2.10.1 OVERVIEW

The printed page from the fusing unit goes either straight through to the output tray or finisher, or downward through to the inverter or duplex unit, depending on the position of the junction gate [A].

If the page is fed out directly, it arrives on the tray face-up. If the user selected face-down output, the page goes to the inverter $[B]$ before being fed out.

If the user selects duplex mode, the page is directed to the duplex tray [C] after inverting, and back to the machine for printing the second side.

2.10.2 INVERTER

Feed-in and Jogging

When the paper is fed to the jogger section by the inverter feed roller [A], it pushes down the gate $[B]$. After the paper passes through the gate $[B]$, the jogger fences [C] move to square the paper. This happens every page.
NOTE: The gate has no solenoid. A spring pushes the gate back up again after the paper has gone.
The jogger motor (a stepper motor) [D] moves the jogger fences [C] inward or outward.

When the main switch is turned on, the jogger motor places the jogger fences at the home position, which is determined by monitoring the signal from the jogger home position sensor [E].
When the start key is pressed, the jogger motor positions the jogger fences 10 mm away from the selected paper size to wait for the paper.
When the paper is delivered to the jogger fences, the jogger fences move inward to square the paper. After this, the jogger fences move back to the previous position (10 mm away from the paper).

PAPER EXIT/DUPLEX

Feed-out

After jogging, the reverse roller solenoid $[A]$ energizes to push down the reverse trigger roller [B]. The reverse roller [C] turns counterclockwise continuously, so the paper starts to reverse when the reverse trigger roller is down and catches the paper between the rollers.

The paper is fed from the reverse roller to the inverter exit roller [D]. After the paper starts to be fed by the inverter exit roller, the reverse trigger roller moves back up.

2.10.3 DUPLEX TRAY FEED MECHANISM

In duplex mode, after the paper leaves the inverter, the duplex inverter solenoid [A] switches the junction gate $[B]$ to direct the paper to the duplex tray. The paper is fed through the duplex tray by duplex transport rollers 1 [C] and 2 [D], and the duplex feed roller [E].
If duplex mode is not selected, the solenoid does not switch the junction gate, and the paper goes to the output tray or finisher face down.
The duplex inverter sensor [F] controls the on/off timing of the inverter exit clutch which stops paper coming into the duplex unit for a while. If image processing for the page coming out of the duplex unit is taking a long time, this mechanism prevents the paper entering the duplex unit from slipping over the paper at the duplex unit exit and accidentally being fed out of the unit first. The mechanism maintains the maximum productivity of printing while preventing this type of duplex feed error. When the clutch is on, paper stops.

2.10.4 BASIC DUPLEX FEED OPERATION

\Rightarrow Longer than A4 / Letter lengthwise (8.5 x 11 L)

The duplex unit can process two sheets of copy paper
Example: 8 pages. The number $[A]$ in the illustration shows the order of pages. The number $[\mathrm{B}]$ in the illustration shows the order of sheets of copy paper (if shaded, this indicates the second side).

1. The first 2 sheets are fed and printed.
1) 1st sheet printed (1st page)
2) 2nd sheet printed (3rd page)

2. The first 2 sheets go into the duplex unit

3. The back of the 1 st sheet (2nd page) is printed.
4. The 3rd sheet (5th page) is fed and printed.
5. The 1 st sheet (1 st and 2 nd pages) is fed out.
6. The back of the 2 nd sheet (4th page) is printed.
7. The 4th sheet (7th page) is fed and printed.

8. The 2 nd sheet (3rd and 4 th pages) is fed out
9. The back of the 3rd sheet (6th page) is printed.

10. The 3rd sheet (5th and 6th pages printed) is fed out.
11. The back of the 4 th sheet (8 th page) is printed.
12. The 4th sheet (7th and 8th pages) is fed out.

2.11 ENERGY SAVER MODES

2.11.1 LOW POWER MODE

Entering low power mode

The low power shift timer runs out after the end of a job.

What happens in low power mode

The fusing lamp drops to a certain temperature, that depends on the setting of SP5-920 (the default is $177^{\circ} \mathrm{C}$). The other conditions are the same as for energy saver mode.

Return to stand-by mode

The machine returns to standby mode in exactly the same way as from energy saver mode.

The recovery time from low power mode depends on the setting of SP5-920. The default (from $177^{\circ} \mathrm{C}$) is about 20 seconds.

Recovery Time	Operation Switch	Energy Saver LED	Fusing Temp.	System +5V	Main Power LED
About 20 seconds	On	On	$170^{\circ} \mathrm{C}(\mathrm{A} 292)$ $177^{\circ} \mathrm{C}(\mathrm{A} 293)$	On	On

INSTALLATION

3. INSTALLATION PROCEDURE

3.1 INSTALLATION REQUIREMENTS

3.1.1 ENVIRONMENT

1. Temperature Range: $10^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $\left.89.6^{\circ} \mathrm{F}\right)$
2. Humidity Range: 15% to $80 \% \mathrm{RH}\left(27^{\circ} \mathrm{C} 80 \%, 32^{\circ} \mathrm{C} 54 \%\right)$
3. Ambient Illumination: Less than 1,500 lux (do not expose to direct sunlight or strong light.)
4. Ventilation: Room air should turn over at least 3 times per hour Less than $0.10 \mathrm{mg} / \mathrm{m}^{3}\left(2.7 \times 10^{-6} \mathrm{oz} / \mathrm{yd}^{3}\right)$
5. Ambient Dust:
6. If the place of installation is air-conditioned or heated, do not place the machine where it will be:
1) Subjected to sudden temperature changes
2) Directly exposed to cool air from an air-conditioner
3) Directly exposed to heat from a heater
7. Do not place the machine where it will be exposed to corrosive gases.
8. Do not install the machine at any location over 2,000 m (6,500 feet) above sea level.
9. Place the copier on a strong and level base.
10. Do not place the machine where it may be subjected to strong vibrations.

3.1.2 MACHINE LEVEL

1. Front to back: Within $5 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ of level
2. Right to left: Within $5 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ of level

NOTE: The machine legs may be screwed up or down in order to level the machine. Set a carpenter's level on the exposure glass.

3.1.3 MINIMUM SPACE REQUIREMENTS

Place the copier near the power source, providing clearance as shown below. The same amount of clearance is necessary when optional equipment is installed.

More than 70 cm, 27.6"

3.1.4 POWER REQUIREMENTS

\triangle CAUTION1. Make sure the plug is firmly inserted in the outlet.
2. Avoid multi-wiring.
3. Do not set anything on the power cord.

1. Input voltage level:
2. Permissible voltage fluctuation:
$120 \mathrm{~V} / 60 \mathrm{~Hz}$: More than 20 A 220~240 V/50-60 Hz: More than 10 A 10\%

3.2 COPIER (A229/A293)

3.2.1 ACCESSORY CHECK

Check the quantity and condition of the accessories in the box against the following list:
Description Q'ty

1. Model Name Decal (-15, -22 machines) 1
2. Operation Instructions - English (-14, -15, -17, -22, -26, -29 machines) 1
3. NECR with Envelope - English (-17 machines) 1
4. NECR - Multi-language (-27, -29 machines) 1
5. Operation Panel Brand Decal (-22 machines) 1
6. Paper Size Decal 1
7. Decal - Face Up 1
8. Original Exit Tray 1
9. Tapping Screw $-\mathrm{M} 4 \times 8$ 3
10. Plastic Mylar - Large 2
11. Plastic Mylar - Small 1
12. Leveling Shoes 2
13. Operation Instruction Holder 1

3.2.2 INSTALLATION PROCEDURE

. CAUTION
 Rating Voltage for Peripherals

Make sure to plug the cables into the correct sockets.

FINISHER

"Rating voltage of Output Connector for Accessory; Max. DC 24 V"

[^0]NOTE: Since the installation procedure is not packed with the copier as an accessory, always bring this manual with you.

©CAUTION

Keep the power cord unplugged when starting the following procedure.
NOTE: 1) Keep the shipping retainers after installing the machine. They will be reused if the machine is moved to another location in the future.
2) Insert the leveling shoes $[A]$ under the leveling feet $[B]$ at the front, and level the machine before starting the installation. (The leveling feet [B] can be screwed up or down.) Extra leveling shoes and leveling feet are available as spare parts.

1. Remove the strips of tape from the outside as shown above.
2. Keep the factory setting data sheet [C] for future usage.

3. Draw out trays 1 and 2, and take out the accessory items [A] placed inside.
4. Remove the strips of tape from the inside and spring retainer $[B]$ as shown above.

5. Open the front cover and remove the strips of tape $[A]$.
6. Remove the blade release pin $[B]$ together with the transfer belt lock plate [C] (1 screw).
7. Pull out the fusing unit. Lower the lever [D], remove the oil supply unit [E], and remove the front and rear clamps [F]. Reinstall the oil supply unit and push in the fusing unit. Remove the strip of filament tape [G] from the fusing unit.

8. Remove the shutter inner cover $[A]$ (1 screw).
9. Remove the screw $[B]$ securing the toner bottle holder.
10. Swing out the toner bottle holder [C].
11. Remove the screw [D] that holds the drum stay [E].
12. Remove the drum stay knob [F] and the drum stay (turn the knob clockwise to remove it).

13. Disconnect two connectors [A].
14. Pull out the development unit [B] as shown.

NOTE: 1) To prevent scratches on the drum, push the development unit to the right while pulling it out.
2) When pulling out the development unit, do not pull the knob [C].
3) Place the development unit on a clean sheet of paper [D], to prevent foreign matter from being attracted to the sleeve rollers.
15. Remove the two screws $[E]$ that hold the toner hopper [F].
16. Remove the toner hopper by lifting it out.

17. Pour in one pack of developer [A] while turning the knob [B]. Distribute the developer evenly along the development unit.
18. Attach the toner hopper [C] to the development unit (2 screws).
19. Install the development unit in the machine.
20. Connect two connectors [D].
21. Attach the drum stay [E] and attach the drum stay knob [F] and one screw [G].

NOTE: When installing the drum stay, be careful not to pinch the cables, and keep the cables away from the gear $[\mathrm{H}]$.

22. Set the toner bottle holder in position (1 screw [A]) and attach the shutter inner cover [B] (1 screw).
NOTE: When attaching the shutter cover, make sure that the pin [C] in the shutter engages the stopper [D].
23. Install a toner bottle by following the instructions on the decal.
24. Attach the three plastic mylar strips [E] to the back of the original exit tray [F].

NOTE: 1) The small mylar strip should be in the middle.
2) The mylar strips must be attached to the tray side [G] first, then to the base copier side $[\mathrm{H}]$.

25. Install the original exit tray [A] (3 screws).
26. Connect the ARDF connector $[B]$ to the socket at the rear of the copier.
27. Attach the face up decal [C] to the feed tray as shown.
28. Plug in the power cord, then turn on the main power switch and the operation switch.
NOTE: Do not make any copies until after SP2963 has finished in step 30.
29. Before the machine automatically starts the Auto Process Control (within approximately 2 minutes after the main switch is turned on), enter SP mode as follows:

1) Press the clear modes key.
2) Enter "107"
3) Hold down the clear/stop key for more than 3 seconds.

$$
\because \because(\because) \rightarrow 0 \rightarrow(7 \rightarrow 0
$$

NOTE: If you cannot enter the SP mode before the machine automatically starts Auto Process Control, do not turn off the main switch until step 30 finishes.
30. Select "Copy SP" on the LCD, and perform the initial setting as follows:

1) Enter " 2963 " using the numeric keys.
2) Press the "Enter" key.
3) Press the "Start" key on the LCD.

NOTE: This SP mode performs the TD initial setting and the forced toner supply. It will stop automatically when both procedures have finished.
31. Initialize the electrical copy counter using SP7-825.
32. If necessary, select the correct display language (SP5-009).
33. Press the "Exit" key on the LCD to exit SP mode.
34. Change the paper size for all paper trays to suit the customer's requests. (See section 3.3 "Paper Size Change" for details.)
35. Attach the appropriate paper size decals, which are included as accessories, to each paper feed tray.
36. Check copy quality and machine operation.

3.3 LCT (A698)

3.3.1 ACCESSORY CHECK

Check the accessories in the box according to the following list:

Description Q'ty

1. LCT Feed Unit ... 1
2. Small Cap - Left Cover .. 1
3. Tapping Screw - M4 x 8... 3
4. Philips Pan Head Screw - M4 x 16 3
5. Philips Pan Head Screw - M4 x 6 .. 1
6. Installation Procedure (English)... 1
7. New Equipment Condition Report (Multi-language)............. 1

3.3.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Unplug the copier power cord before starting the following procedure.

1. Remove the four strips of tape $[A]$.
2. Open the LCT cover $[B]$ and remove the tape $[C]$ fixing the paper trailing edge stopper.
3. Remove the tray cushion [D] secured with strips of tape [E].
4. Remove the LCT connector [F] (3 screws).

5. Remove the feed unit cover [A] (2 screws) and free the LCT connectors [B].
6. Remove the shipping retainers [C].
7. Install the LCT feed unit [D] to the copier (3 screws - M 4×8).

8. Install the LCT connector $[\mathrm{A}]$ to the copier.
1) Remove the three caps $[B]$.
2) Set the two pins [C] of the LCT connector into the two holes [D] on the copier.
3) Install the LCT connector to the copier (3 screws - M4 x 16).
9. Remove the screw fixing the upper cover hinge $[E]$ then slide and remove the LCT cover [F] (1 screw).
10. Remove the rear upper cover [G] (2 screws).

11. Hold the upper stay [A] of the LCT and place the LCT on the plates $[B]$ of the LCT connector.

[^1]
15. Connect the connectors.

- Between the copier and the LCT (2 connectors).
- Between the LCT and the LCT feed unit (2 connectors).

16. Secure the protective earth wire $[A]$ on the copier (1 screw $-\mathrm{M} 4 \times 6$).
17. To install this LCT to the A292/A293 copier, the DIP SW [B] must be set as 288.3 rpm . (To install to the A229 copier, the DIP SW setting is 270 rpm .)
18. Install the rear upper cover [C] (2 screws).
19. Install the LCT cover [D] (1 screw).
20. Plug in the copier and check machine operation.

NOTE: The copier automatically recognizes that the LCT has been installed.

3.4 3,000-SHEET FINISHER (B312)

3.4.1 ACCESSORY CHECK

Check the accessories in the box according to the following list:

No.	Description	Q'ty
1	Front Joint Bracket	1
2	Rear Joint Bracket	1
3	Entrance Guide Plate	1
4	Shift Tray	1
5	Exit Guide Mylar	1
6	Staple Position Decal	1
7	Tapping Screw - M3 x 6	1
8	Tapping Screw - M4 $\times 14$	4
9	Tapping Screw - M3 $\times 8$	4
10	Cushion	1
11	Lower Grounding Plate	1
12	Installation Procedure (English)	1
13	New Equipment Condition Report (Multi-language)	1

3.4.2 INSTALLATION PROCEDURE

[^2]1. Unpack the finisher and remove the tapes.

2. Install the front joint bracket [A] and rear joint bracket [B] (2 screws - M4 x 14 each).
3. Install the lower grounding plate [C].
4. The position of the cushion [D] varies depending on which base copier or peripherals that are installed. Attach the cushion on the plate as follows

- Position [E] for A292/A293 copier.
- Position [F] when the optional mailbox (G909) in installed.

5. Install the entrance guide plate [G] (2 screws).

Installation
6. Open the front door of the finisher, and remove the screw $[A]$ which secures the locking lever [B]. Then pull the locking lever.
7. Align the finisher on the joint brackets, and lock it in place by pushing the locking lever.
NOTE: Before securing the locking lever, make sure that the top edges of the finisher and the copier are parallel from front to rear as shown [C].
8. Secure the locking lever (1 screw) and close the front door.
9. Install the shift tray [D] (4 screws).
10. Connect the finisher cable [E] to the main machine.
11. Attach the staple position decal [F] to the ARDF as shown.
12. Turn on the main power switch and check the finisher operation.

3.5 PUNCH UNIT INSTALLATION (A812) FOR B312 FINISHER

3.5.1 ACCESSORY CHECK

Check the accessories in the box against the following list.
Description Q'ty

1. Spacer -2 mm 1
2. Spacer -1 mm 2
3. Stepped Screw - Short 1
4. Stepped Screw - Long 1
5. Punch Unit Knob 1
6. Spring 1
7. Harness - Long 1
8. Harness - Short 1
9. Hopper 1
10. Punch Position Decal 1
11. Tapping Screw $-\mathrm{M} 4 \times 10$ 2
12. Screw with Flat Washer - M4 x 6 1
13. New Equipment Condition Report (Multi-language) 1

3.5.2 PUNCH UNIT INSTALLATION

\triangle CAUTION
 Unplug the copier power cord and remove the 3,000-sheet finisher from the copier before starting the following procedure.

1. Unpack the punch unit and remove the shipping retainers [A] (4 screws) and [B] (1 screw).
2. Open the front door and remove the hopper cover [C] (2 screws).
3. Remove the rear cover (2 screws) and remove the transport guide plate [D] (4 screws).

4. Install the spacer $[\mathrm{A}]$ (thickness $=2 \mathrm{~mm}$).

NOTE: There are three spacers in the accessory box. Do not lose the other two spacers (1 mm), because they are used for adjusting the punch hole position.
5. Install the punch unit $[B]$ and secure it with a long stepped screw [C].
6. Install the punch unit knob [D] (1 screw).
7. Secure the rear of the punch unit (2 screws [E]).

Installation
8. Install the sensor bracket [A] (1 short stepped screw, 1 spring).
9. Connect the cables $[B]$.

NOTE: 1) The cable binders [C] must not be between the cable clamps [D].
2) The cable binder [E] must be positioned to the left of the cable clamp.
10. When a three-punch-hole-unit is installed: Change switch 1 of DIP SW 100 on the punch drive board to ON.
11. Slide the hopper [F] into the finisher.
12. Reassemble the finisher and attach it to the copier. Then check the punch unit operation.

3.6 FINISHER (B302)

3.6.1 INSTALLATION PROCEDURE

. CAUTION
 Unplug the machine power cord before starting the following procedure.

1. Unpack the finisher and remove the tapes and shipping retainers as shown above.
2. Open the front door and remove the shipping retainers. Remove the bracket [A] (2 screws) securing the stapler unit.
3. Install the front joint bracket [B] and rear joint bracket [C] (two M4 $\times 14$ screws each) on the left side of the copier.
4. Remove the connection plate [D].

5. Install the grounding plate [A] (two M3 x 6 screws).

NOTE: Set the grounding plate so that there is no gap between the grounding plate and the bottom frame of the finisher (as shown).
6. - A294/A295 copiers only -

Install the rear tray as shown [B] (two M4 x 8 screws).
NOTE: The edge of the rear tray should be aligned with the edge of the finisher (as shown).
7. Attach the cushion [C] to the right side of the upper cover.
8. Install the entrance guide plate [D] (two M3 $\times 6$ screws).

9. Open the front door of the finisher, and remove the screw [A] which secures the locking lever. Then pull the locking lever [B].
10. Align the finisher on the joint brackets, and lock it in place by pushing the locking lever [B].
NOTE: Before securing the locking lever, make sure that the top edges of the finisher and the copier are parallel from front to rear as shown [C].
11. Secure the locking lever (1 screw) and close the front door.
12. Install the shift tray [D] (four M3 $\times 8$ screws).
13. Connect the finisher cable [E] to the copier.

3.7 PUNCH UNIT INSTALLATION (A812) FOR B302 FINISHER

3.7.1 ACCESSORY CHECK

Check the quantity and condition of the accessories in the box against the following list:
Description
Quantity

1. Spacer -2 mm 1
2. Spacer-1 mm.. 2
3. Stepped Screw - Short 1
4. Stepped Screw - Long.. 1
5. Punch Unit Knob.. 1
6. Spring ... 1
7. Hopper.. 1
8. Tapping Screw - M4 x 10.. 2
9. Screw with Flat Washer - M4 x $6 \ldots . ~ . ~ . ~ 1 ~ 1 ~$
10. Sensor Bracket ... 1
11. Punch Position Decal ... 1

3.7.2 PUNCH UNIT INSTALLATION

. CAUTION
 Unplug the copier power cord and remove the finisher from the copier before starting the following procedure.

Unpack the punch unit and remove the shipping retainers $[A]$ (4 screws) and $[B]$ (1 screw)

1. Remove the inner cover [C] of the finisher and remove the caps [D].
2. Remove the rear cover of the finisher (2 screws) and remove the transport guide plate [E] (4 screws).

3. Install the spacer $[\mathrm{A}]$ (thickness $=2 \mathrm{~mm}$).

NOTE: There are three spacers in the accessory box. Do not lose the other two spacers (1 mm), because they are used for adjusting the punch hole position.
4. Reinstall the inner cover.
5. Install the punch unit $[B]$ and secure it with a long stepped screw [C].
6. Install the punch unit knob [D] (1 screw).
7. Secure the rear of the punch unit (2 screws [E]).

8. Install the sensor bracket [A] (1 short stepped screw, 1 spring).
9. Connect the cables $[B]$ as shown.
10. Slide the hopper [C] into the finisher.
11. Reassemble the finisher and attach it to the copier. Then check the punch unit operation.

3.8 KEY COUNTER INSTALLATION

1. Hold the key counter plates $[A]$ on the inside of the key counter bracket $[B]$ and insert the key counter holder [C].
2. Secure the key counter holder to the bracket (2 screws).
3. Attach the key counter cover [D] (2 screws).
4. Remove the small cover [E] on the right side of the copier as shown.
5. Remove the jumper connector [F].
6. Install the stepped screw [G].
7. Install the key counter assembly [H] (1 screw).
8. Instruct the user's key operator to enable the key counter with the User Tools (User Tools - System Settings - Count Manager - Key Counter).

3.9 COPY CONNECTOR KIT INSTALLATION

1. If the optional LCT is installed, remove it from the copier.
2. Remove the original exit tray.
3. Remove the paper feed cover [A] (2 screws).
4. Remove the upper right cover [B] (2 screws).
5. Remove the connector cover [C] and the clamp cover [D] from the upper right cover.
6. Remove the connecting plate [E] (3 screws).

7. Connect the harness $[A]$ between the interface board $[B]$ and the connector board [C].
8. Connect the cable [D] to the boards.

NOTE: The terminals [E] must face the right hand side of the machine.
9. Install the interface board [F] (1 connector).
10. Install the connector board [G] (3 screws).

NOTE: Push the HDD cable [H] into the inside of the machine.
11. Reassemble the machine.

12. Install the other copy connector kit in the other machine.
13. Connect the two machines with the cable $[A]$ and secure it with clamps $[B]$ (1 screw each).
14. Check the operation.
\Rightarrow NOTE: To enable the Connect Copy Feature:

1. Select User Tools.
2. Select Copy/Document Server Features
3. Select Count Manager
4. Set Connect Copy Master to YES.

3.10 COPY TRAY TYPE 700 INSTALLATION

3.10.1 ACCESSORY CHECK

Check the accessories in the box against the following list.

Description Q'ty

1. Copy Tray ... 1
2. Tray Paper Limit Sensor Assembly...................................... 1
3. Cap - 222 ... 4
4. Connector Cap .. 1
5. Philips Tapping Screw - M4x8... 2

3.10.2 INSTALLATION PROCEDURE

1) Remove the left cover [A] (2 screws).
[A]

2) Slide the collars (black) [B] into the holes in the rubber rollers [C] of the exit drive roller.

\Rightarrow
3) Remove the shorting connector $[A]$.
4) Install the tray paper limit sensor assembly [B].

[B]
5) Reinstall the left cover.
6) Install the four caps ($\phi 22$) [C] and the connector cap [D].
7) Install the copy tray [E].

SERVICE TABLES

4. SERVICE TABLES

4.1 GENERAL CAUTIONS

Do not turn off either of the power switches while any of the electrical components are active. Doing so might cause damage to units such as the transfer belt, drum, and development unit when they are pulled out of or put back into the copier.

4.1.1 DRUM

An organic photoconductor (OPC) drum is more sensitive to light and ammonia gas than a selenium drum. Follow the cautions below when handling an OPC drum.

1. Never expose the drum to direct sunlight.
2. Never expose the drum to direct light of more than 1,000 Lux for more than a minute.
3. Never touch the drum surface with bare hands. When the drum surface is touched with a finger or becomes dirty, wipe it with a dry cloth or clean it with wet cotton. Wipe with a dry cloth after cleaning with wet cotton.
4. Never use alcohol to clean the drum; alcohol dissolves the drum surface.
5. Store the drum in a cool, dry place away from heat.
6. Take care not to scratch the drum as the drum layer is thin and is easily damaged.
7. Never expose the drum to corrosive gases such as ammonia gas.
8. Always keep the drum in the protective sheet when keeping the drum unit, or the drum itself, out of the copier. Doing so avoids exposing it to bright light or direct sunlight, and will protect it from light fatigue.
9. Dispose of used drums in accordance with local regulations.
10. When installing a new drum, do the Auto Process Control Data Adjustment (SP 2-962).

4.1.2 DRUM UNIT

1. Before pulling out the drum unit, place a sheet of paper under the drum unit to catch any spilt toner.
2. Make sure that the drum unit is set in position and the drum stay is secured with a screw before the main switch is turned on. If the drum unit is loose, poor contact of the drum connectors may cause electrical noise, resulting in unexpected malfunctions (RAM data change is the worst case).
3. To prevent drum scratches, remove the development unit before removing the drum unit.

4.1.3 TRANSFER BELT UNIT

1. Never touch the transfer belt surface with bare hands.
2. Take care not to scratch the transfer belt, as the surface is easily damaged.
3. Before installing the new transfer belt, clean all the rollers and the inner part of the transfer belt with a dry cloth to prevent the belt from slipping.

4.1.4 SCANNER UNIT

1. When installing the exposure glass, make sure that the white paint is at the rear left corner.
2. Clean the exposure glass with alcohol or glass cleaner to reduce the amount of static electricity on the glass surface.
3. Use a cotton pad with water or a blower brush to clean the mirrors and lens.
4. Do not bend or crease the exposure lamp flat cable.
5. Do not disassemble the lens unit. Doing so will throw the lens and the copy image out of focus.
6. Do not turn any of the CCD positioning screws. Doing so will throw the CCD out of position.

4.1.5 LASER UNIT

1. Do not loosen the screws that secure the LD drive board to the laser diode casing. Doing so would throw the LD unit out of adjustment.
2. Do not adjust the variable resistors on the LD unit, as they are adjusted in the factory.
3. The polygon mirror and F-theta lenses are very sensitive to dust. Do not open the optical housing unit.
4. Do not touch the glass surface of the polygon mirror motor unit with bare hands.
5. After replacing the LD unit, do the laser beam pitch adjustment. Otherwise, an SC condition will be generated.

4.1.6 CHARGE CORONA

1. Clean the corona wires with a dry cloth. Do not use sandpaper or solvent.
2. Clean the charge corona casing with water first to remove NOx based compounds. Then clean it with alcohol if any toner still remains on the casing.
3. Clean the end block with a blower brush first to remove toner and paper dust. Then clean with alcohol if any toner still remains.
4. Do not touch the corona wires with bare hands. Oil stains from fingers may cause uneven image density on copies.
5. Make sure that the wires are correctly between the cleaner pads and that there is no foreign material (iron filings, etc.) on the casing.
6. When installing new corona wires, do not bend or scratch the wire surface. Doing so may cause uneven charge. Also be sure that the corona wires are correctly positioned in the end blocks. (See Charge Corona Wire Replacement)
7. Clean the grid plate with a blower brush (not with a dry cloth).
8. Do not touch the charge grid plate with bare hands. Also, do not bend the charge grid plate or make any dent in it. Doing so may cause uneven charge.

4.1.7 DEVELOPMENT

1. Be careful not to nick or scratch the development roller.
2. Place the development unit on a sheet of paper after removing it from the copier.
3. Never disassemble the development roller assembly. The position of the doctor plate is set with special tools and instruments at the factory to ensure the proper gap between the doctor blade and the development roller.
4. Clean the drive gears after removing used developer.
5. Dispose of used developer in accordance with local regulations.
6. Never load types of developer and toner into the development unit other than specified for this model. Doing so will cause poor copy quality and toner scattering.
7. Immediately after installing new developer, the TD sensor initial setting procedure should be performed to avoid damage to the copier. Do not perform the TD sensor initial setting with used developer. Do not make any copies before doing the TD sensor initial setting.
8. When using a vacuum cleaner to clean the development unit casing, always ground the casing with your fingers to avoid damaging the toner density sensor with static electricity.
9. When replacing the TD sensor, the developer should be replaced and then the TD sensor initial setting procedure (SP 2-801) should be done.

4.1.8 CLEANING

1. When servicing the cleaning section, be careful not to damage the edge of the cleaning blade.
2. Do not touch the cleaning blade with bare hands.
3. Before disassembling the cleaning section, place a sheet of paper under it to catch any toner falling from it.

4.1.9 FUSING UNIT

1. After installing the fusing thermistor, make sure that it is in contact with the hot roller and that it is movable.
2. Be careful not to damage the edges of the hot roller strippers or their tension springs.
3. Do not touch the fusing lamp and rollers with bare hands.
4. Make sure that the fusing lamp is positioned correctly and that it does not touch the inner surface of the hot roller.

4.1.10 PAPER FEED

1. Do not touch the surface of the pick-up, feed, and separation rollers.
2. To avoid paper misfeeds, the side fences and end fence of the paper tray must be positioned correctly to align with the actual paper size.

4.1.11 USED TONER

1. We recommend checking the amount of used toner at every EM.
2. Dispose of used toner in accordance with local regulations. Never throw toner into an open flame, for toner dust may ignite.

4.2 SERVICE PROGRAM MODE

4.2.1 SERVICE PROGRAM MODE OPERATION

The service program (SP) mode is used to check electrical data, change modes, and adjust values.

Service Program Access Procedure

Entering SP mode

1) Press the following keys in sequence.

NOTE: Hold the c/ه key for more than 3 seconds.
2) A menu of SP modes is displayed on the LCD.

NOTE: 1) The installed applications appear as Copy SP and Printer SP. If the printer application is not installed, its name does not appear.
2) The meaning of the bottom line is as follows.

- "Ver 7.15 uk" is the BICU board software version.

3) Touch the application which you need. Then, the application's SP mode display will appear, as shown.

Exiting SP mode

1) Touch the "Exit" keys to return to the standby mode display.

Accessing Copy Mode from within an SP Mode

1) Touch the "Copy Mode" key.

2) Select the appropriate copy mode and make trial copies.
3) To return to the SP mode, touch the "SP mode" key.

Selecting the Program Number

Program numbers are composed of two or three levels.
There are two ways to select the program number.

Ten-key Pad

Input the required program number.

Touch Panel

1. Touch the 1st level program.

2. Touch the 2nd level program.

NOTE: A "*" mark indicates that there are 3rd level programs.
3. Touch the 3rd level program.

SF Mode (Serviceman)		Copy mode	Prev. Menu	Exit
SP Made Class			W00-60	
1002-1	Tray-1			
10022	Tray-2			
$1002-3$	Tray-3			
$1002-4$	Tray-4			
101025	Duplex Tray			
$10102-6$	By-pass Tray			
$1002-7$	LCT		\$ P	

Inputting a Value or Setting for an SP Mode

1. Select the required program mode as explained on the previous page.
2. Enter the required setting using the ten-key pad, then touch the "Start" key or OK key or 囲 key.

NOTE: 1) If you forget to touch the "Start" key or OK key, the previous value remains.
2) Change between " + " and "-" using the " \bullet " key before entering the required value.
3. Exit SP mode.

4.2.2 SERVICE PROGRAM MODE TABLES

NOTE: 1) In the Function column, comments are in italics.
2) In the Settings column, the default value is in bold letters.
3) An asterisk (*) in the right hand side of the mode number column means that this mode is stored in the NVRAM. If you do a RAM reset, all these SP modes will be reset to their factory settings.

Mode No.(Class 1, 2 \& 3)				Function	Settings
1-007	By-pass Feed Paper Size Display				
				Displays the paper width sensor data for the by-pass feed table. 132 : A3 133 : A4 Lengthwise 134 : A5 Lengthwise 141 : B4 Lengthwise 142 : B5 Lengthwise 160 : DLT 164 : LG 166 : LT Lengthwise 172 : HLT Lengthwise	
1-008	Duplex Fence Position Adjustment				
				Adjusts the position of the fence (side-toside position with reference to paper feed).	$\begin{aligned} & 0 \sim-2 \\ & 0.5 \mathrm{~mm} / \mathrm{step} \\ & -1.0 \mathrm{~mm} \end{aligned}$
1-103	Fusing Idling				
			*	Selects whether fusing idling is done or not. If fusing is incomplete on the 1st and 2nd copies, change the setting to a longer time. This may occur if the room is cold. Refer to "Detailed Section Descriptions Fusing Temperature Control" for more details.	0: 51/2 min. 1: 10 min . 2: 15 min . 3: No idling
$1-104$	Fusing Temperature Control				
			*	Selects the fusing temperature control mode. After changing the setting, turn the main switch off and on.	On/Off control Phase control
1-105	Fusing Temperature Adjustment				
	1	By-pass	*	Adjusts the fusing temperature for paper fed from a by-pass tray.	$\begin{aligned} & 170 \sim 200 \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 185^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
	2	OHP	*	Adjusts the fusing temperature for OHP sheets fed from the by-pass feed unit.	$\begin{aligned} & +10 \sim-10^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 0\left(165^{\circ} \mathrm{C}\right) \end{aligned}$
	3	Thick Paper	*	Adjusts the fusing temperature for thick paper fed from the by-pass feed unit.	$\begin{aligned} & +5 \sim-10^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 0\left(195^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
1-106	Fusing Temperature Display				
				Displays the fusing temperature.	

Mode No.(Class $1,2 \& 3$)				Function	Settings
1-901	CPM Change for Special Paper				
	1	Thick Paper		Selects the copy speed when the paper setting for the by-pass table is thick paper. NA: North America, EU: Europe	0: 25 cpm 1: 35 cpm 2: 45 cpm 3: 55 cpm NA: 3 EU: 2
	2	Tab Stack	*	Selects the copy speed when the paper setting for the 2nd tray is tab stack.	0: 25 cpm 1: 35 cpm 2: 45 cpm 3: 55 cpm NA: 2 EU: 0
1-904	By-pass Tray Paper Size Correction				
	1	Minimum Size		Calibrates the minimum paper width position of the sensor (100 mm).	Start
	2	Maximum Size		Calibrates the maximum paper width position of the sensor (A3).	Start
1-905	Thick Paper Mode - By-pass Table				
			-	Selects the by-pass feed clutch on mode for thick paper mode.	ON: Twice OFF: Once
2-001	Charge Corona Bias Adjustment				
	1	Image Area	*	Adjusts the voltage applied to the grid plate during copying when auto process control is off. Normally, there is no need to adjust this. If there is an ID or TD sensor problem, the machine goes into fixed toner supply mode. After replacing the drum or charge corona wire, change this value to the default.	$\begin{aligned} & -600 \sim-1300 \\ & 10 \mathrm{~V} / \text { step } \\ & -1000 \mathrm{~V} \end{aligned}$
	2	ID Sensor Pattern	*	Adjusts the voltage applied to the grid plate when making the ID sensor pattern. Normally, there is no need to adjust this. If the user wants high density copies, the sensor pattern must be lighter, so this voltage must be a higher negative voltage.	$\begin{aligned} & \hline-600 \sim-1300 \\ & 10 \mathrm{~V} / \text { step } \\ & -650 \mathrm{~V} \end{aligned}$
	3	Total Corona Current	*	Adjusts the current applied to the charge corona wire. Factory use only.	$\begin{aligned} & -900 \sim-1500 \\ & 10 \mu \mathrm{~A} / \text { step } \\ & -1300 \mu \mathrm{~A} \\ & \hline \end{aligned}$
	4	Image Area	*	Adjusts the voltage applied to the grid plate during copying when auto process control is on. This voltage changes every time auto process control starts up (every time the machine is switched on)	$\begin{aligned} & -600 \sim-1300 \\ & 10 \mathrm{~V} / \text { step } \\ & -\mathbf{- 1 0 0 0 ~ V} \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function	Settings
2-001	Charge Corona Bias Adjustment				
	5	OHP Sheet	*	Adjusts the voltage applied to the grid plate when OHP mode is selected. Use this if there is a copy quality problem when making OHPs. Normally there is no need to adjust this. See 2-001-1.	$\begin{aligned} & -600 \sim-1300 \\ & 10 \mathrm{~V} / \text { step } \\ & -700 \mathrm{~V} \end{aligned}$
2-101	Printing Erase Margin				
	1	Leading Edge	*	Adjusts the leading edge erase margin.	$\begin{aligned} & 0.0 \sim 9.0 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & 3.0 \mathrm{~mm} \end{aligned}$
				The specification is $3 \pm 2 \mathrm{~mm}$. See "Replacement and Adjustment - Copy Image Adjustments" for more on SP2-101.	
	2	Trailing Edge	*	Adjusts the trailing edge erase margin.	$\begin{aligned} & 0.0 \sim 9.0 \\ & 0.1 \mathrm{~mm} / \text { step } \\ & 3.0 \mathrm{~mm} \end{aligned}$
				The specification is $3 \pm 2 \mathrm{~mm}$.	
	3	Left	*	Adjusts the left side erase margin.	$\begin{array}{\|l\|} \hline 0.0 \sim 9.0 \\ 0.1 \mathrm{~mm} / \text { step } \\ \mathbf{2 . 0} \mathbf{~ m m} \\ \hline \end{array}$
				The specification is $2 \pm 1.5 \mathrm{~mm}$.	
	4	Right	*	Adjusts the right side erase margin.	$\begin{aligned} & 0.0 \sim 9.0 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & 2.0 \mathrm{~mm} \\ & \hline \end{aligned}$
				The specification is $2+2.5 /-1.5 \mathrm{~mm}$.	
2-103	LD Power Adjustment				
	1	LD1-400dpi	*	Adjusts the power of LD1 for 400 dpi resolution.	$\begin{aligned} & -127 \sim+127 \\ & 1 / \text { step } \\ & 1=1.1 \mu \mathrm{~W} \\ & +0 \end{aligned}$
				Do not change the value.	
	2	LD1-600dpi	*	Adjusts the power of LD1 for 600 dpi resolution.	
				Do not change the value.	
	3	LD2 - 400dpi	*	Adjusts the power of LD2 for 400 dpi resolution.	
				Do not change the value.	
	4	LD2-600dpi	*	Adjusts the power of LD2 for 600 dpi resolution.	
				Do not change the value.	
	5	LD1 Power Adjustment (Start/End)	*	Factory use only. Do not use this SP mode.	Start Stop
	6	LD2 Power Adjustment (Start/End)	*	Factory use only. Do not use this SP mode.	Start Stop
2-109	Laser Beam Pitch Adjustment				
	1	400 dpi	-	Adjusts the laser beam pitch value for 400 dpi resolution.	$\begin{aligned} & 0 \sim 262 \\ & 4 \text { pulses/step } \\ & 144 \end{aligned}$
				After replacing the LD unit or replacing or clearing the NVRAM, use this SP mode and SP2-109-3 to adjust the laser beam pitch. Refer to "Replacement and Adjustment - Laser Beam Pitch Adjustment" for details.	

Mode No. (Class $1,2 \& 3)$ 2				Function	Settings
2-965	Toner Pump Adjustment				
	1	First Toner Waste Adjustment	*	Factory use only	$\begin{aligned} & \hline 0 \sim 100 \\ & 1 \mathrm{~g} / \mathrm{step} \\ & \mathbf{3 g} \end{aligned}$
	2	After First Toner Waste	*	Factory use only	$\begin{aligned} & 0 \sim 100 \\ & 1 \mathrm{~g} / \mathrm{step} \\ & 3 \mathrm{~g} \\ & \hline \end{aligned}$
	3	Pump Clutch On Time	*	Factory use only	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \mathrm{~s} \end{aligned}$
	4	Pump Motor On Time	*	Factory use only	$\begin{aligned} & \hline 0 \sim 20 \\ & 1 \mathrm{~s} / \mathrm{step} \\ & 6 \mathrm{~s} \end{aligned}$
	5	Return to First Toner Waste	*	Factory use only	$\begin{aligned} & 0 \sim 50 \\ & 1 \text { time/step } \\ & 30 \text { times } \end{aligned}$
2-965	Toner Pump Adjustment				
	6	Aggregate of Toner Waste		Factory use only	
2-966	Periodical Auto Process Control				
				When both the following conditions exist, auto process control and charge corona wire cleaning will be done automatically. 1. The main switch was not turned off since 24 hours after the last auto process control was done. 2. A copy job has finished.	OFF: No ON: Yes
2-967	Auto Image Density Adjustment				
				During the auto process control after the main switch is turned on, the toner amount in the development unit is checked and adjusted using the ID sensor.	OFF: No ON: Yes
2-970	Transfer Belt Resistance Value Display				
				XX.XM Unit is Ω Very High $\rightarrow 190 \leftarrow$ High $\rightarrow 90 \leftarrow$ Standard $\rightarrow 25 \leftarrow$ Low $\rightarrow 15 \leftarrow$ Very Low	
2-971	Output Value Measured Between Copies				
	1	Voltage		Displays the measurement condition of value in SP2-970.	
	2	Current			

Mode No.(Class 1, 2 \& 3)				Function	Settings
4-902	SBU Setting				
	7	First-side Bk Adjustment	*	Checks the value of the black level for the first side after adjusting the black level at power-up. This SP mode is for designer use only. Do not use this SP mode.	$\begin{aligned} & 0 \sim 255 \\ & \text { 1/step } \\ & 170 \end{aligned}$
	8	Last-side Bk Adjustment	*	Checks the value of the black level for the last side after adjusting the black level at power-up.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 170 \end{aligned}$
				This SP mode is for designer use only. Do not use this SP mode.	
	15	First-side Gain Range Adjustment	*	Checks the AGC gain range of the white level for the first side after adjusting the white level at power-up.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 80 \end{aligned}$
				This SP mode is for designer use only. Do not use this SP mode.	
	16	Last-side Gain Range Adjustment	*	Checks the AGC gain value of the white level for the last side after adjusting the white level at power-up.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 80 \end{aligned}$
				This SP mode is for designer use only. Do not use this SP mode.	
	19	First-side Gain Adjustment E-ch	*	Checks the AGC gain value of the white level for the EVEN channel of the first side after adjusting the white level at power-up. This SP mode is for designer use only. Do not use this SP mode.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	20	First-side Gain Adjustment O-ch	*	Checks the AGC gain value of the white level for the ODD channel of the first side after adjusting the white level at power-up. This SP mode is for designer use only. Do not use this SP mode.	$0 \sim 255$ 1/step 0
	21	Last-side Gain Adjustment E-ch	*	Checks the AGC gain value of the white level for the EVEN channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only. Do not use this SP mode.	$0 \sim 255$ 1/step 0
	22	Last-side Gain Adjustment O-ch	*	Checks the AGC gain value of the white level for the ODD channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only. Do not use this SP mode.	$0 \sim 255$ 1/step 0
	25	Standard White Level Adjustment	*	Checks the value of the standard white level after adjusting the white level. This SP mode is for factory use only. Do not use this SP mode.	$\begin{aligned} & \hline 0 \sim 255 \\ & 1 / \text { step } \\ & 117 \end{aligned}$
	31	First-side E/O Adjustment (Memory)	*	Checks the difference value of the black level for the First side after adjusting the black level at power-up.	$\begin{aligned} & \hline 0 \sim 255 \\ & 1 / \text { step } \\ & 128 \\ & \hline \end{aligned}$
				This SP mode is for designer use only.	

Mode No.(Class 1, 2 \& 3)				Function	Settings
4-902	SBU Setting				
	62	Last-side Gain Range Adjustment at Factory	*	Checks the AGC gain value of the white level for the ODD channel of the first side after adjusting the white level at power-up. This SP mode is for designer use only.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 80 \end{aligned}$
	65	First-side Gain Adjustment -E ch at Factory	*	Checks the AGC gain value of the white level for the EVEN channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	66	First-side Gain Adjustment-O ch at Factory	*	Checks the AGC gain value of the white level for the ODD channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	67	Last-side Gain Adjustment-E ch at Factory	*	Checks the AGC gain value of the white level for the EVEN channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only.	$0 \sim 255$ 1/step 0
	68	Last-side Gain Adjustment-O ch at Factory	*	Checks the AGC gain value of the white level for the ODD channel of the last side after adjusting the white level at power-up. This SP mode is for designer use only.	$\begin{aligned} & \hline 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	71	Standard White Level Adjustment at Factory	*	Checks the value of the standard white level after adjusting the white level. This SP mode is for factory use only.	$0 \sim 255$ 1/step 117
	75	Overflow Flag		Checks the overflow flag data during the automatic scanner adjustment.	$\begin{aligned} & 0 \sim 1023 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	76	Time-out Flag		Checks the time out flag data during the automatic scanner adjustment.	$\begin{aligned} & 0 \sim 1023 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
				This SP mode is for designer use only.	
	78	SBU Reset Error Flag		Checks the error flag data during the automatic scanner adjustment.	$\begin{aligned} & 0 \sim 15 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
				This SP mode is for designer use only.	
	79	Error Flag		Checks the error flag data during the automatic scanner adjustment. This SP mode is for designer use only.	$\begin{aligned} & 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	80	Gain Adjustment Fast/Last Error Times	*	Counts the errors during the automatic scanner adjustment. This SP mode is for designer use only.	$0 \sim 255$ 1/step 0
	81	Offset Level Read Error Times	*	Counts the errors during the automatic scanner adjustment.	$0 \sim 255$ 1/step 0
				This SP mode is for designer use only.	

Mode No.(Class $1,2 \& 3)$				Function	Settings		
4-902	SBU Setting						
	82	Gain Level Read Error Times	*	Counts the errors during the automatic scanner adjustment This SP mode is for designer use only.			
	83	Offset Level Read Error Times	*	Counts the errors during the automatic scanner adjustment. This SP mode is for designer use only.			
	84	Gain Level Read Error Times	*	Counts the errors during the automatic scanner adjustment. This SP mode is for designer use only.			
	85	Retry to Adjust Error Fail Time	*	Counts the errors during the automatic scanner adjustment. This SP mode is for designer use only.			
	86	Retry to Adjust Success Time Setting	*	Counts the errors during the automatic scanner adjustment. This SP mode is for designer use only.			
	Filter Setting						
4-903	2			Filter Mode Setting	*	This SP mode is designer use only. Do not change the value.	$\begin{aligned} & 0 \sim 3 \\ & 0 \end{aligned}$
	5	Full Size Mode		Selects whether the copy is always in full size mode even if the magnification ratio has been changed. Set to 1 when checking the magnification in the main scan direction. If the magnification is not 100%, something is wrong with the image processing circuits.	0: Normal operation 1: Always full size mode		
	7	Image Shift in Magnification		Adjusts the pixel shift amount in the main scan direction in magnification mode. This SP mode is for designer use only.	$\begin{array}{\|l} \hline 0 \sim 8191 \\ 1 / \text { step } \\ 0 \end{array}$		
	9	Photo Mode Filter Selection	*	Selects the filter used in photo mode	0: MTF Filter 1: Smoothing Filter		

Mode No.(Class 1, $2 \& 3$)				Function	Settings
4-903	Filter Setting				
	22	Filter Strength- 25\% ~ 49\% (Main Scan Direction-Text)		Selects the MTF strength in the main scan direction for $25 \% \sim 49 \%$ reduction for text mode. 0: Weak 6:Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & \hline 0 \sim 6 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
	23	Filter Strength- $25 \% \sim 49 \%$ (Sub Scan Direction-Text)	*	Selects the MTF strength in the sub scan direction for $25 \% \sim 49 \%$ magnification for text mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & \hline 0 \sim 6 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
	24	$\begin{aligned} & \hline \text { Filter Level- } \\ & 50 \% \sim 154 \% \\ & \text { (Main Scan } \\ & \text { Direction-Text) } \end{aligned}$	*	Selects the MTF filter coefficient in the main scan direction for $50 \% \sim 154 \%$ reduction for text mode. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$
	25	Filter Level50\% ~ 154\% (Sub Scan Direction-Text)	*	Selects the MTF filter coefficient in the sub scan direction for $50 \% \sim 154 \%$ reduction for text mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$0 \sim 6$ 1/step 6
	26	Filter Strength50\% ~ 154\% (Main Scan Direction-Text)	*	Selects the MTF strength in the main scan direction for $50 \% \sim 154 \%$ reduction for text mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$0 \sim 6$ 1/step 1
	27	Filter Strength50\% ~ 154\% (Sub Scan Direction-Text)	*	Selects the MTF strength in the sub scan direction for $50 \% \sim 154 \%$ magnification for text mode. 0: Weak 6: Strong. This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
	28	$\begin{aligned} & \hline \text { Filter Level- } \\ & 155 \% \sim 256 \% \\ & \text { (Main Scan } \\ & \text { Direction-Text) } \end{aligned}$	*	Selects the MTF filter coefficient in the main scan direction for $155 \% \sim 256 \%$ reduction for text mode. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$

Mode No.(Class $1,2 \& 3$)				Function	Settings
4-903	Filter Setting				
	36	MTF FilterPhoto Mode	* Selects the MTF filter coefficient for photo mode, if MTF is enabled for this mode with SP4-903-9. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.		$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$
	37	Smoothing Filter-Photo mode	*	Selects the smoothing filter coefficient for photo mode, if smoothing is enabled for this mode with SP4-903-9. 0: Weak 7: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 7 \\ & 1 / \text { step } \\ & \mathbf{4} \end{aligned}$
	38	Filter StrengthPhoto mode	*	Selects the smoothing filter coefficient for photo mode, if MTF is enabled for this mode with SP4-903-9. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & \hline 0 \sim 6 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
	39	Filter Level25\% ~ 49\% (Main Scan DirectionText/Photo)	*	Selects the MTF filter coefficient in the main scan direction for $25 \% \sim 49 \%$ magnification for text areas in text/photo mode. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$
	40	Filter Level25\% ~ 49\% (Sub Scan DirectionText/Photo)	*	Selects the MTF filter coefficient in the sub scan direction for $25 \% \sim 49 \%$ magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & \hline 0 \sim 6 \\ & 1 / \text { step } \end{aligned}$ 3
	41	Filter Strength-25\% ~ 49\% (Main Scan Direction- Text/Photo)	*	Selects the MTF strength in the main scan direction for $25 \% \sim 49 \%$ magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	42	Filter Strength-25\% ~ 49\% (Sub Scan Direction- Text/Photo)	*	Selects the MTF strength in the sub scan direction for $25 \% \sim 49 \%$ magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 0 \end{aligned}$

Mode No. (Class 1, 2 \& 3)				Function	Settings
4-903	Filter Setting				
	43	Filter Level50\% ~ 154\% (Main Scan Direction Text/Photo)	Selects the MTF filter coefficient in the main scan direction for 50% ~ 154% magnification for text areas in text/photo mode. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.		$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$
	44	Filter Level50\% ~ 154\% (Sub Scan DirectionText/Photo)	*	Selects the MTF filter coefficient in the sub scan direction for 50\% ~ 154\% magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 3 \end{aligned}$
	45	Filter Strength-50\% ~ 154\% (Main Scan Direction- Text/Photo)	*	Selects the MTF strength in the main scan direction for 50% ~ 154% magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & \hline 0 \sim 6 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	46	Filter Strength-50\% ~ 154\% (Sub Scan Direction- Text/Photo)	*	Selects the MTF strength in the sub scan direction for $50 \% \sim 154 \%$ magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
	47	Filter Level155\% ~ 256\% (Main Scan DirectionText/Photo)	*	Selects the MTF filter coefficient in the main scan direction for $155 \% \sim 256 \%$ magnification for text areas in text/photo mode. Settings 0 to 6 are MTF filters, and settings 7 to 13 are moiré erase filters. 0: Weak 6: Strong 7: Weak 13: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 13 \\ & 1 / \text { step } \\ & 13 \end{aligned}$
	48	Filter Level155\% ~ 256\% (Sub Scan DirectionText/Photo)	*	Selects the MTF filter coefficient in the sub scan direction for $155 \% \sim 256 \%$ magnification for text areas in text/photo mode. 0: Weak 6: Strong This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 6 \\ & 1 / \text { step } \\ & 3 \end{aligned}$

Mode No.(Class $1,2 \& 3$)				Function	Settings
4-903	Filter Setting				
	64	Independent Dot Erase Generation Copy Mode	*	Selects the independent dot erase level for generation copy mode. A larger number erases more dots. 0 means disabled. Refer to "Detailed Sectional Description - Independent Dot Erase" for details.	$\begin{aligned} & 0 \sim 14 \\ & 1 / \text { step } \\ & 3 \end{aligned}$
	65	Scanner Gamma Thresh Level Text	*	Adjust the threshold level for the background erase function in letter mode. A larger value reduces dirty background. This SP is ignored unless 1 or 2 is selected with SP4-903-70.	$0 \sim 255$ 1/step 0
	66	Scanner Gamma Thresh Level Photo	*	Adjust the threshold level for the background erase function in photo mode. A larger value reduces dirty background. This SP is ignored unless 1 or 2 is selected with SP4-903-71.	
	67	Scanner Gamma Thresh Level Text/Photo	*	Adjust the threshold level for the background erase function in text/photo mode. A larger value reduces dirty background. This SP is ignored unless 1 or 2 is selected with SP4-903-72.	
	68	Scanner Gamma Thresh Level Pale	*	Adjust the threshold level for the background erase function in pale mode. A larger value reduces dirty background. This SP is ignored unless 1 or 2 is selected with SP4-903-73.	
	69	Scanner Gamma Thresh Level Generation	*	Adjust the threshold level for background erase in generation copy mode. A larger value reduces dirty background. This SP is ignored unless 1 or 2 is selected with SP4-903-74.	

Mode No.(Class 1, $2 \& 3$)				Function	Settings
4-903	Filter Setting				
	70	Background Erase Mode Text	* Selects the background erase function setting in text mode. 0 : Not done 1: Weak background erase (the MTF filter is not used if the pixel is below the threshold selected with SP4-903-65.) 2: Strong background erase (the pixel is changed to 0 if it is below the threshold level selected with SP4-903-65.) This SP is ignored unless the user selects 'Service Mode' in UP mode.		$\begin{aligned} & 0 \sim 2 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	71	Background Erase Mode Photo	*	Selects the background erase function setting in photo mode. 0 : Not done 1: Strong background erase (the pixel is changed to 0 if it is below the threshold level selected with SP4-903-66.) This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 1 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	72	Background Erase Mode Text/Photo	*	Selects the background erase function setting in text/photo mode. 0 : Not done 1: Weak background erase (the MTF filter is not used if the pixel is below the threshold selected with SP4-903-67.) 2: Strong background erase (the pixel is changed to 0 if it is below the threshold level selected with SP4-903-67.) This SP is ignored unless the user selects 'Service Mode' in UP mode.	$0 \sim 2$ 1/step 0
	73	Background Erase Mode Pale	S	Selects the background erase function setting in pale mode. 0 : Not done 1: Weak background erase (the MTF filter is not used if the pixel is below the threshold selected with SP4-903-68.) 2: Strong background erase (the pixel is changed to 0 if it is below the threshold level selected with SP4-903-68.) This SP is ignored unless the user selects 'Service Mode' in UP mode.	$0 \sim 2$ 1/step 0
	74	Background Erase ModeGeneration	*	Selects the background erase function setting in generation mode. 0 : Not done 1: Weak background erase (the MTF filter is not used if the pixel is below the threshold selected with SP4-903-69. 2: Strong background erase (the pixel is changed to 0 if it is below the threshold level selected with SP4-903-69. This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 2 \\ & 1 / \text { step } \\ & 0 \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function			Settings
4-903	Filter Setting						
	75	Line Thickness CorrectionGeneration	*	Selects the line thickness setting in generation mode.			$\begin{aligned} & 0 \sim 15 \\ & 1 / \text { step } \\ & 5 \end{aligned}$
				$\begin{array}{r} 0: \\ 1: \\ 2: \\ 3: \\ 4: \\ 5: \\ 6: \\ 7: \\ 8: \\ 9: \\ 10: \\ 11: \\ 12: \\ 13: \\ 14: \\ 15: \\ \hline \end{array}$	Main Scan No Correction No Correction No Correction No Correction Thinner 1 Thinner 1 Thinner 1 Thinner 1 Thinner 2 Thinner 2 Thinner 2 Thinner 2 Thicker Thicker Thicker Thicker	Sub Scan No Correction Thinner 1 Thinner 2 Thicker	
				Line T Thick Thinne Refer	kness: No Correction > e Width Correction	inner 1 > in section 2.	
	76	Line Thickness Correction Threshold (Main Scan Generation)	*	Selec thickn If a hig effect select strong	e threshold to d correction is ap number is sele ess of the line thi with SP4-903-75	rmine if line d for a pixel. d, the ness correction comes	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$
	77	Line Thickness Correction Generation (Sub Scan)	*	Selec thickn a high effectiv select strong	e threshold to d correction is ap number is select ess of the line this with SP4-903-75	rmine if line d for a pixel. If the ness correction comes	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$

Mode No.(Class $1,2 \& 3)$				Function			Settings
4-903	Filter Setting						
	78	Line Thickness Correction Text	*	Selects the line thickness setting in generation mode.			0~15 1/step 5
				$\begin{array}{r} 0: \\ 1: \\ 2: \\ 3: \\ 4: \\ 5: \\ 6: \\ 7: \\ 7: \\ 9: \\ 9: \\ 10: \\ 11: \\ 12: \\ 13: \\ 14: \\ 15: \end{array}$	Main Scan No Correction No Correction No Correction No Correction Thinner 1 Thinner 1 Thinner 1 Thinner 1 Thinner 2 Thinner 2 Thinner 2 Thinner 2 Thicker Thicker Thicker Thicker	Sub Scan No Correction Thinner 1 Thinner 2 Thicker	
				Line Thickness: Thicker > No Correction > Thinner 1 > Thinner 2			
	79	Line Thickness Correction Threshold (Main ScanText)	*	Selects the threshold to determine if line thickness correction is applied for a pixel. If a higher number is selected, the effectiveness of the line thickness correction selected with SP4-903-78 becomes stronger.			$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$
	80	Line Thickness Correction Threshold (Sub ScanText)	*	Selects the threshold to determine if line thickness correction is applied for a pixel. If a higher number is selected, the effectiveness of the line thickness correction selected with SP4-903-78 becomes stronger.			$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function			Settings
4-903	Filter Setting						
	81	Line Thickness Correction Text/Photo Mode	*	Selects the line thickness setting in generation mode.			$\begin{aligned} & 0 \sim 15 \\ & 1 / \text { step } \\ & 5 \end{aligned}$
				$\begin{array}{r} 0: \\ 1: \\ 2: \\ 3: \\ 4: \\ 5: \\ 6: \\ 7: \\ 8: \\ 9: \\ 10: \\ 11: \\ 12: \\ 13: \\ 14: \\ 15: \\ \hline \end{array}$	Main Scan No Correction No Correction No Correction No Correction Thinner 1 Thinner 1 Thinner 1 Thinner 1 Thinner 2 Thinner 2 Thinner 2 Thinner 2 Thicker Thicker Thicker Thicker	Sub Scan No Correction Thinner 1 Thinner 2 Thicker	
				Line T Thick Thinn Refer	kness: No Correction > e Width Correction	inner 1 > 'in section 2.	
	82	Line Thickness Correction Threshold (Main ScanText/Photo)	*	Selec thickn higher of the SP4-9	he threshold to d correction is ap mber is selected thickness corre 81 becomes str	rmine if line d for a pixel. If e effectiveness n selected with er.	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$
	83	Line Thickness Correction Threshold (Sub Scan Text/Photo)	*	Selec thickn higher of the SP4-9	he threshold to d correction is ap mber is selected thickness corre 81 becomes str	rmine if line d for a pixel. If e effectiveness n selected with er.	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \end{aligned}$
	84	Scanner Gamma Selection Text Mode	*	Selec setting mode 0: Sca 1: Sca 2: Sca	e scanner and sed when 'Serv elected. gamma for 'S gamma for ' N gamma for 'S	ter gamma Mode' for Text is used. mal' is used. ' is used.	$\begin{aligned} & 0 \sim 2 \\ & 1 / \text { step } \\ & 1 \end{aligned}$

Mode No. (Class 1, 2 \& 3)				Function	Settings
4-903	Filter Setting				
	85	Scanner Gamma Selection Text/Photo Mode		Selects the scanner and printer gamma settings used when 'Service Mode' for Text/Photo mode is selected. 0 : Scanner gamma for 'Photo Priority' is used. 1: Scanner gamma for 'Normal' is used. 2: Scanner gamma for 'Text Priority' is used.	$\begin{aligned} & 0 \sim 2 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
4-904	IPU Setting -1				
	1	Laser Pulse Positioning in Text and Text/Photo	*	Selects whether or not laser pulse positioning control is used in text and text/photo modes Do not change the value.	$\begin{aligned} & \text { 0: Off } \\ & \text { 1: On } \end{aligned}$
	2	Gradation Processing Selection Photo	S	Selects the gradation processing procedure. 0 : Three-gradation error diffusion 1: Four-gradation error diffusion 2: 8" $\times 8^{\prime \prime}$ dither matrix 3: $6^{\prime \prime} \times 6^{\prime \prime}$ dither matrix 4: 4" $\times 4^{\prime \prime}$ dither matrix A larger dither matrix gives coarser reproduction of halftones. This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 4 \\ & 1 \end{aligned}$
	4	Forced Binary Mode	S	1: Binary processing is done for all image modes.	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$
	6	Smoothing Filter Level in Photo Mode	S	Selects the smoothing filter level in photo mode. 0 : None 1: Weak 5: Strong	$\begin{aligned} & 0 \sim 5 \\ & 2 \end{aligned}$
	7	Texture Erase Filter Level in Text Mode	S	Selects the strength of the filter for erasing texture from the image in text/photo mode. 0 : None 1: Weak 2: Strong	$\begin{aligned} & 0 \sim 2 \\ & 0 \end{aligned}$

Mode No.(Class 1, 2 \& 3)			Function	Settings
4-904	IPU Setting -1			
	20	Thin Line Mode in Laser Writing - Text	Selects thin line mode level in laser writing for text mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$
	22	Thin Line Mode in Laser Writing Text/Photo	Selects thin line mode level in laser writing for text/photo mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$
	23	Thin Line Mode in Laser Writing - Pale	Selects thin line mode level in laser writing for pale mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$

Mode No.(Class $1,2 \& 3)$				Function	Settings
4-909	IPU Setting - 2				
	1	Data Through Setting in IPU (Image Processing)	*	Do not change the value.	$\begin{aligned} & \hline 0 \sim 255 \\ & 1 / \text { step } \\ & 0 \end{aligned}$
	2	Data Through Setting in IPU (I/F-1)	*	Do not change the value.	$0 \sim 255$ 1 /step 0
	3	Data Through Setting in IPU (I/F-2)	*	Do not change the value.	$\begin{aligned} & 0 \sim 15 \\ & 1 \text { /step } \\ & 13 \end{aligned}$
	4	Thin Line Level 2 White	*	Decides the threshold value for a pixel to be white when line width correction type 2 is performed.	$0 \sim 15$ 1 /step 4
				Do not change the value.	
	5	Thin Line Level 2 - Black	*	Decides the threshold value for a pixel to be black when line width correction type 2 is performed.	$\begin{aligned} & 0 \sim 15 \\ & 1 / \text { step } \\ & 12 \end{aligned}$
				Do not change the value.	
	6	Error Diffusion Table	*	Do not change the value.	$\begin{aligned} & 0 \sim 1 \\ & 0 \end{aligned}$
	15	Main Scan Data Conversion		Do not change the value.	$\begin{aligned} & 0 \sim 1 \\ & 0 \end{aligned}$
	16	Image Data Path-Scanner Test		Do not change the value.	$0 \sim 4$ 1 /step 0
	17	Image Data Path-MSU	-	Do not change the value.	$\begin{array}{\|l\|} \hline 0 \sim 3 \\ 1 \text { /step } \\ 3 \end{array}$
	18	Image Data PathApplication	Do not change the value.		$\begin{array}{\|l\|} \hline 0 \sim 4 \\ 1 / \text { step } \\ 3 \\ \hline \end{array}$
	20	Image Data Path-Printer	Do not change the value.		$\begin{aligned} & 0 \sim 4 \\ & 1 \text { /step } \\ & 3 \end{aligned}$
4-910	Data Compression				
	1	Data Compression		Do not change the value.	$\begin{aligned} & \text { 0: On } \\ & \text { 1: Off } \end{aligned}$
	2	Data Compression		Do not change the value.	$\begin{aligned} & \hline 0 \sim 255 \\ & 1 / \text { step } \\ & 8 \end{aligned}$
	3	ABS Core		Do not change the value.	$\begin{aligned} & \text { 0: On } \\ & \text { 1: Off } \end{aligned}$

Service Tables

Mode No.(Class 1, 2 \& 3)				Function	Settings
4-911	HDD				
	1	HDD Media Check		Checks for bad sectors on the hard disk that develop during machine use. This takes 4 minutes. This SP mode should be done when an abnormal image is printed. There is no need to do this at installation as the hard disk firmware already contains bad sector information, and damage is not likely during transportation. Bad sectors detected with this SP mode will be stored in the NVRAM with the bad sector data copied across from the firmware. If the machine detects over 50 bad sectors, SC361 will be generated. At this time, use SP4-911-2.	Start
	2	HDD Formatting		Formats the hard disk. This takes 4 minutes. Do not turn off the main power switch during this process.	
	6	HDD Bad Sector Information Reset		Resets the bad sector information which is stored in the NVRAM. This SP should be used when the hard disk is replaced.	Start
	7	HDD Bad Sector Display	*	Displays the number of bad sectors there are on the hard disk. If the machine detects a total of over 50 bad sectors on the disk, SC361 will be generated. At this time, use SP4-911-2.	Total: 0 Copy: 0 Printer: 0 Copy Server: 0
	8	HDD Model Name Display		Displays the model name of the HDD. If the HDD is not installed or the HDD connector is not connected, SC360 will be displayed. However, the user can make single copies.	

This page intentionally left blank.

Mode No.	Function	Settings
(Class $1,2 \& 3)$		

$$				Function	Settings
5-923	Edge Erase Standard				
				Selects the standard for edge erase. 0 : The margin is erased from the original data. 1: The margin is erased from the data sent to the laser diode. Note that the output resulting from each of the settings will be different when reduction or enlargement is used.	0: Original 1: Paper
5-924	Adjust Margin for each Original				
	1	Adjust margin for each original		Selects whether or not Margin per Original is enabled. No: Images are shifted with a binding margin during image writing. Yes: The margin is applied during scanning. NOTE: After Yes has been selected, the "per original" key is displayed. This key must be pressed to activate the mode.	Range: Yes or No
	2	Per original priority		Selects whether or not Margin per Original is enabled as default. This setting is given priority over SP5-924-01.	Range: On or Off
5-954	Copy Server Password Display				
				Selects whether to display the password when a file with a password is selected on the copy server.	Normal Display password
				If you forget the password, select "1" to check it.	
5-965	All Copy Server File Delete				
				Delete the all copy server files.	Start Cancel
5-990	SMC Print				
	1	All		Prints all the system parameter lists. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	2	SP		Prints the SP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
5-990	SMC Print				
	3	User Program		Prints the UP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	4	Logged Data		Prints the machine status history data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
6-006	DF Registration Adjustment				
	1	Side-to-Side	*	Adjusts the printing side-to-side registration in the ADF mode.	$\begin{aligned} & \hline-3 \sim+3 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & +0.0 \mathrm{~mm} \end{aligned}$
	2	Leading Edge (Thin Original)	*	Adjusts the original stop position.	$\begin{aligned} & \hline-29 \sim+29 \\ & 0.18 \\ & \mathrm{~mm} / \text { step } \\ & +0.0 \mathrm{~mm} \\ & \hline \end{aligned}$
	3	Leading Edge (Duplex-front)	*	Adjusts the original stop position against the original left scale in one-sided original mode.	$\begin{aligned} & \hline-29 \sim+29 \\ & 0.18 \\ & \mathrm{~mm} / \mathrm{step} \\ & +0.0 \mathrm{~mm} \\ & \hline \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function	Settings
6-006	4	Reading Edge (Duplex-rear)	*	Adjusts the original stop position against the original left scale in two-sided original mode.	$\begin{aligned} & -29 \sim+29 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & +\mathbf{0 . 0 \mathrm { mm }} \end{aligned}$
6-007	ADF Input Check				
	1	Group 1		Displays the signals received from sensors and switches of the ADF. See the "Input Check" section for details.	
	2	Group 2		Displays the signals received from sensors and switches of the ADF. See the "Input Check" section for details.	
6-008	ADF Output Check				
				Turns on the electrical components of the ADF individually for test purposes. See the "Output Check" section for details.	
6-009	ADF Free Run (Two-sided original)				
	1			Performs an ADF free run in two-sided original mode. Press " 1 " to start.	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$
				This is a general free run controlled from the copier. For more detailed free run modes, see the 'Test Points/Dip Switches/LEDs' section.	
6-016	Adjust Motor Speed				
				Adjust the speed of the feed-in, transport and feed-out motors. Perform this SP when replacing the Main Board or above motors.	
6-020	ADF Speed Adjustment				
			*	When the customer points out noise form the ADF, use this to adjust the ADF speed to low.	High speed: 70 cpm Low Speed: 55 cpm
6-105	Stapling Position Adjustment				
			${ }^{+}$	Adjusts the stapling position in the main scan direction	$\begin{array}{\|l\|} \hline-3.5 \sim+3.5 \\ 0.5 \mathrm{~mm} / \mathrm{step} \\ \mathbf{+ 0 . 0 \mathrm { mm }} \\ \hline \end{array}$
				A larger value causes the stapling position to shift outward.	
6-113	Punch Hole Adjustment				Rev. 06/2000
	1	2-Holes		Adjusts the punch hole position in the subscan direction for the punch unit with two punch holes.	$\begin{aligned} & -7.5 \sim+7.5 \\ & 0.5 \mathrm{~mm} / \text { step } \\ & 0 \mathrm{~mm} \end{aligned}$
				A larger value shifts the punch holes towards the edge of the paper.	
	2	3-Holes		Adjusts the punch hole position in the subscan direction for the punch unit with three punch holes.	$-7.5 ~+7.5$ $0.5 \mathrm{~mm} / \mathrm{step}$ 0 mm
				A larger value shifts the punch holes towards the edge of the paper.	

This page intentionally left blank.

Mode No. (Class $1,2 \& 3$)				Function	Settings
7-320	Document Server : Scanned Storage				
	1	Total Number of Original Scan	*	Displays the total number of stored originals in the document server.	
7-321	Document Server : Each Size of Original				
	4	A3	*	Displays the total number of stored originals in the document server by size.	
	5	A4	*		
	6	A5	*		
	13	B4	*		
	14	B5	*		
	32	DLT	*		
	36	LG	*		
	38	LT	*		
	44	HLT	*		
	128	Other Size	*		
7-323	Document Server : Each Size of Copies				
	5	A4 Sideways	*	Displays the total number of prints made from the document server by paper size.	
	6	A5 Sideways	*		
	14	B5 Sideways	*		
	38	LT Sideways	*		
	44	HLT Sideways	*		
	128	Other Sizes	*		
	132	A3	*		
	133	A4 Lengthwise	*		
	134	A5 Lengthwise	*		
	141	B4	*		
	142	B5 Lengthwise	*		
	160	DLT	*		
	164	LG	*		
	166	LT Lengthwise	*		
	172	HLT Lengthwise	*		
7-324	Document Server: Print Job				
	1	Duplex	*	Displays the total number of copy jobs made from the document server.	
	2	Electrical Sort	*		
	3	Staple Print Job	*		
	4	Punch Print Job	*		
	5	Sample Copy	*		
	6	First Page Print	*		
7-325	Document Server : Print Job Page Distribution				
	1	1	*	Displays the number of jobs by number of pages, made from the document server.	
	2	2	*		
	3	3-5	*		
	4	6-10	*		
	5	11-	*		

Mode No. (Class 1, 2 \& 3)				Function	Settings
7-326	Document Server : Print Job File Distribution				
	1	1	*	Displays the number of jobs by the number of consecutive files in the job, made from the document server.	
	2	2-5			
	3	6-10	*		
	4	11 -	*		
7-327	Document Server : Print Job Set Distribution				
	1	1 to 1	*	Displays the total number of prints by multiple document quantity, using the document server.	
	2	1 to $2 \sim 5$			
	3	1 to $6 \sim 10$	*		
	4	1 to $11 \sim 20$	*		
	5	1 to $21 \sim 50$	*		
	6	1 to $51 \sim 100$	*		
	7	1 to 100~300	*		
	8	1 to 301 ~	*		
7-328	Document Server : Copy Number of Each Job				
	1	Duplex Copy	*	Displays the total number of prints for each type of job.	
	2	Duplex Original	*		
	6	Punch	*		
	8	Sort	*		
	9	Staple	*		
	12	Duplex			
	16	Interrupt Document Server	*		
	19	Booklet	*		
	20	Magazine	*		
	24	Stamp	*		
	25	Index	*		
	26	Slip Sheet	*		
7-330	Connect Copy Job				
		Connect Copy	*	Displays the total number of jobs as the master machine.	
7-331	Connect Copy: Copy				
	1	Copy Number of Master	*	Display the total number of copies as the master machine.	
	2	Copy Number of Slave	*	Display the total number of copies as the slave machine.	
7-332	Connect Copy : Copy Number by Copy Mode				
	1	Original Mode : Text	*	Display the total number of copies by copy mode as the master machine.	
	2	Original Mode :Text/Photo	*		
	3	Original Mode : Photo	*		
	4	Original Mode : Generation	*		
	5	Original Mode - Pale	*		
	6	Punch	*		

Mode No. (Class 1,2 \& 3)				Function	Settings
7-504	Copy Jam Counter by Jam Location				
	62	Relay Sensor		These are jams when the paper stays at the sensor. (Duplex Transport Sensor 1) (Duplex Transport Sensor 2) (Duplex Transport Sensor 3) (Not Used)	
	63	Registration Sensor	*		
	65	1st Exit Sensor	*		
	66	2nd Exit Sensor	*		
	69	Duplex Entrance Sensor	*		
	70	Duplex Relay Sensor 1	*		
	71	Duplex Relay Sensor 2	*		
	72	Duplex Relay Sensor 3	*		
	73	Duplex Exit Sensor	*		
7-505	Original Jam Counter by Jam Location				
	1	At Power On	*	Displays the total number of original jams by location. (Entrance and Registration Sensor) (Exit and Inverter Sensor)	
	3	ADF Feed-in Sensor	*		
	4	ADF Feed-out Sensor	*		
7-506	Jam Counter by Copy Size				
	5	A4 Sideways	*	Displays the total number of copy jams by paper size.	
		A5 Sideways	*		
	14	B5 Sideways			
	38	LT Sideways			
	44	HLT Sideways	*		
	128	Other Size	*		
	132	A3	*		
	133	A4 Lengthwise			
	134	A5 Lengthwise	*		
	141	B4 Lengthwise			
	142	B5 Lengthwise			
	160	DLT	*		
	164	LG	*		
	166	LT Lengthwise			
	172	HLT Lengthwise	*		
7-507	Jam History				
	1	Copy : Latest	*	Displays the following items for the most recent 10 jams. 1. Last 5 digits of the total counter value 2. Paper size 3. Detected position	
	2	Latest 1 st	*		
	3	Latest 2 nd	*		
	4	Latest 3 rd	*		
	5	Latest 4 th	*		

Mode No. (Class 1, 2 \& 3)				Function	Settings	
7-507	Jam History					
	6	Latest 5 th	*	4. Stuck or not fed		
	7	Latest 6 th				
	8	Latest 7 th	*			
	9	Latest 8 th	*			
	10	Latest 9 th	*			
	11	Original : Latest		Displays the following items for the most recent 10 jams. 1. Last 5 digits of the total counter value 2. Paper size 3. Detected position 4. Stuck or not fed		
	12	Latest 1 st				
	13	Latest 2 nd				
	14	Latest 3 rd				
	15	Latest 4 th				
	16	Latest 5 th				
	17	Latest 6 th	*			
	18	Latest 7 th	*			
	19	Latest 8 th	*			
	20	Latest 9 th	*			
7-617	PM Alarm Counter					
	1	Copy Paper Based		Displays the PM alarm counter		
	2	Original Based	*			
7-618	PM Alarm Counter Clear					
	1	Copy Paper Based Original Based		Reset the PM alarm counter.	Start	
	2			Start		
7-801	ROM Version Display					
	4	LCDC				Displays the ROM versions.
	5	SIB				
	6	HDC				
	7	CSS (P1)				
	8	BANK				
	9	ADF				
	10	FIN/Booklet FIN (stable)				
	11	Print Post (Mailbox)				
	12	Printer				
	13	Booklet FIN (Stitching)				
	14	Stamp				
7-803	PM Counter Display					
7-804	PM Counter Reset					
				Resets the PM counter.	Start	
7-807	SC/Jam Counter Reset					
				Resets the SC and jam counters. Press "Start" to reset.	Start	

Mode No. (Class 1, 2 \& 3)		Function	Settings
7-906	Clear Original Number of Each size		
		Resets all counters of SP7-202.	Start
7-907	Clear Job Number of Each size		
		Resets all counters of SP7-306.	Start
7-908	Document : Clear Original Number		
		Resets all counters of SP7-002-2.	Start
7-920	Document Server: Clear Scanned Storage		
		Resets the counter of SP7-320.	Start
7-921	Document Server : Clear Original Number of Each Size		
		Resets all counters of SP7-321.	Start
7-923	Document Server : Clear Print Number of Each Copy		
		Resets all counters of SP7-323	Start
7-924	Document Server : Clear Print Job Logging		
		Resets all counters of SP7-324	Start
7-925	Document Server : Clear Print Job Page Distribution		
		Resets all counters of SP7-325	Start
7-926	Document Server : Clear Print Job File Distribution		
		Resets all counters of SP7-326	Start
7-927	Document Server : Clear Print Job Set Distribution		
		Resets all counters of SP7-327.	Start
7-990	Display the detail information for SC990		
	001 Filename 002 Line Number 003 Value	Displays the detail information for SC990.	

4.2.3 TEST PATTERN PRINTING (SP2-902)

NOTE: Do not operate the machine until the test pattern is printed out completely. Otherwise, an SC may occur.

1. Access the SP mode which contains the test pattern you need.
2. Touch the "Copy Mode" key on the operation panel to access the copy mode display.
3. Select the paper size.
4. Press the "Start" key to print the test pattern.
5. After checking the test pattern, exit copy mode by touching the "SP Mode" key.
6. Exit the SP mode.

Test Pattern Table (SP2-902-2: Test Pattern Printing - IPU)

\Rightarrow| No. | Test Pattern | No. | Test Pattern |
| :---: | :--- | :---: | :--- |
| 0 | None | 7 | Vertical Strips |
| 1 | Vertical Lines (1-dot) | 8 | Grayscale (Vertical) |
| 2 | Vertical Lines (2-dots) | 9 | Grayscale (Horizontal) |
| 3 | Horizontal Line (1-Dot) | 10 | Cross Pattern |
| 4 | Horizontal Line (2-Dots) | 11 | Argyle Pattern |
| 5 | Alternating Dot Pattern | 12 | Frequency (Horizontal) |
| 6 | Grid Pattern (1-Dot) | 13 | Frequency (Vertical) |

Test Pattern Table (SP2-902-3: Test Pattern Printing - Printing)

\Rightarrow| No. | Test Pattern | No. | Teat Pattern |
| :---: | :--- | :---: | :--- |
| 0 | None | 13 | 16 Grayscales (Vertical) |
| 1 | Vertical Line (1-dot) | 14 | 16 Grayscales (Vert./Hor.) |
| 2 | Horizontal Line (1-dot) | 15 | 16 Grayscales (Vert./Hor Overlay) |
| 3 | Vertical Line (2 dot) | 16 | Hound'sTooth Check (1-Dot, 600dpi) |
| 4 | Horizontal Line (2-dot) | 17 | Hound'sTooth Check (1-Dot, 400dpi) |
| 5 | Grid Pattern (Single-dot) | 18 | Horizontal Line (1-Dot)(Reverse Order
 ofLD1 \& LD2) |
| 6 | Grid Pattern (Double-dot) | 19 | Grid Pattern (1-Dot)(Reverse Order of
 LD1 \& LD2) |
| 7 | Independent Pattern (1-Dot) | 20 | Grid Pattern (2-Dot)(Reverse Order of
 LD1 \& LD2) |
| 8 | Full Dot Pattern | 21 | Independent Pattern (1-Dot)(Reversed
 Order of LD1 \& LD2) |
| 9 | Black Band | 22 | Blank Page |
| 10 | Trimming Area | 23 | Grid Pattern (1-dot) (Overlaying
 Outside Data) |
| 11 | Argyle Pattern | 24 | Trimming Area (Overlaying Outside
 Data) |
| 12 | 16 Grayscales (Horizontal) | | |

4.2.4 INPUT CHECK

Main Machine Input Check (SP5-803)

1. Access SP mode.
2. Select the class 3 SP number which will access the switch or sensor you wish to check.
3. Check the status of the sensor or switch.

NOTE: If you wish to change to another class 3 level, press the "Next" or "Prev." key.
4. The reading ("0" or " 1 ") will be displayed. The meaning of the display is as follows.

Class 3 no.	Bit no.	Description	Reading	
			0	1
1 (Paper Feed 1)	7	Paper Size 1 Switch	On	Off
	6	Paper Size 2 Switch	On	Off
	5	Paper Size 3 Switch	On	Off
	4	Paper Size 4 Switch	On	Off
	3	Paper Size 5 Switch	On	Off
	2	2nd Near End Sensor	Not detected	Near end
	1	1st Tray Set Detection	Set	Not Set
	0	1st Near End Sensor	Not detected	Near end
2(Paper Feed2)	7	Not used		
	6	Not used		
	5	Tray Construction 1	4:0,5:1 Export 4:1,5:1 Japan	
	4	Tray Construction 2		
	3	Not Used		
	2	Not Used		
	1	3rd Tray Set Detection	Set	Not Set
	0	3rd Near End Sensor	Not Detected	Near end
3(Paper Feed3)	7	Left Tandem Tray Set Detection 2 (Connector)	Set	Not set
	6	Side Fence Positioning Sensor	Not Detected	Fence Detected
	5	Right Tray Down Sensor	Not Detected	Detected
	4	Rear Fence HP Sensor	Not Detected	At home Position
	3	Side Fence Close Sensor	Open	Closed
	2	Rear Fence Return Sensor	Not detected	Return position

Class 3 no.	Bit no.	Description	Reading	
			0	1
3 (Paper Feed 3) 3)	1	2nd Paper End Sensor	Not paper end	Paper end
	0	Right Tandem Tray Set Detection 2 (Connector)	Set	Not set
4(Paper Feed4)	7	1st Paper Feed Sensor	Paper detected	No paper
	6	2nd Paper Feed Sensor	Paper detected	No paper
	5	3rd Paper Feed Sensor	Paper detected	No paper
	4	Not used		
	3	Not used		
	2	Not used		
	1	Not used		
	0	Not used		
5(Paper Feed5)	7	1st Lift Sensor	Lifted	No paper
	6	2nd Lift Sensor	Lifted	No paper
	5	3rd Lift Sensor	Lifted	No paper
	4	Not used		
	3	1st Paper End Sensor	Not paper end	Paper end
	2	2nd Paper End Sensor	Not paper end	Paper end
	1	3rd Paper End Sensor	Not paper end	Paper end
	0	Not used		
6(3rd PaperFeed Tray)	7	Not used		
	6	Not used		
	5	Not used		
	4	Not used		
	3	3rd Tray Down Switch	On	Off
	2	3rd Tray Down Sensor	Not detected	Overload
	1	3rd Tray Motor Lock	Normal	Overload
	0	3rd Tray Paper Set	No Paper	Detected
7 (Toner Collection)	7	Not used		
	6	Not used		
	5	Not used		
	4	Not used		
	3	Paper Feed Motor Lock	Overload	Normal
	2	Toner Overflow Switch	Full	Not full
	1	Toner Collection Bottle Set Switch	Set	Not set
	0	Toner Collection Motor Sensor	Pulse	Pulse

Class 3 no.	Bit no.	Description	Reading	
			0	1
8 (I/O Board Dip Switch 101)	7	Dip Switch - 8	On	Off
	6	Dip Switch - 7	On	Off
	5	Dip Switch - 6	On	Off
	4	Dip Switch - 5	On	Off
	3	Dip Switch - 4	On	Off
	2	Dip Switch - 3	On	Off
	1	Dip Switch - 2	On	Off
	0	Dip Switch - 1	On	Off
9(Motor Lock/Transport)	7	Drum Motor Lock	Overload	Normal
	6	By-pass Feed Motor Lock	Overload	Normal
	5	Development Motor Lock	Overload	Normal
	4	Fusing/Duplex Motor Lock	Overload	Normal
	3	LD Unit HP Sensor	Not detected	Detected
	2	1st Exit Sensor	Paper detected	No paper
	1	2nd Exit Sensor	Paper detected	No paper
	0	Tray Paper Limit Sensor	Not full	Full
$\begin{gathered} 10 \\ \text { (Duplex) } \end{gathered}$	7	Duplex Entrance Sensor	Detected	Not detected
	6	Duplex Transport 3 Sensor	Detected	Not detected
	5	Duplex Transport 2 Sensor	Detected	Not detected
	4	Duplex Transport 1 Sensor	Detected	Not detected
	3	Duplex Jogger HP Sensor	Not detected	Detected
	2	Duplex Connection	Connected	Not Connected
	1	Toner Pump Connection	Connected	Not Connected
	0	Guide Plate Position Sensor	In position	Out of position
$\begin{gathered} 11 \\ \text { (LCT1) } \end{gathered}$	7	LCT Motor Lock	Overload	Normal
	6	LCT Tray Down Switch	On	Off
	5	LCT Connection	Connected	Not connected
	4	LCT Cover Open Switch	Closed	Open
	3	LCT Paper End Sensor	Paper end	Not paper end
	2	LCT Down Sensor	Not detected	Detect
	1	LCT Lift Sensor	Layout	Not lifted
	0	LCT Paper Height 1 Sensor	Not detected	Detected
$\begin{gathered} 12 \\ \text { (LCT2) } \end{gathered}$	7	Fusing Fan Motor Lock	Detected	Not detected
	6	Not Used		
	5	Front Door Safety Switch	Closed	Open
	4	Not Used		

Class 3 no.	Bit no.	Description	Reading	
			0	1
$\begin{gathered} 12 \\ \text { (LCT2) } \end{gathered}$	3	LCT Paper Height 2 Sensor	Not detected	Detected
	2	LCT Paper Height 3 Sensor	Not detected	Detected
	1	LCT Near End Sensor	Not detected	Near end
	0	LCT Paper Feed Sensor	Paper detected	Paper end
13 (Registration)	7	LCT Paper Position Sensor	Detected	Not detected
	6	Toner End Sensor	Toner End	Not toner end
	5	Not Used		
	4	Relay Sensor	Paper detected	No paper
	3	By-pass Paper End Sensor	Not paper end	Paper end
	2	Registration Sensor	Paper detected	No paper
	1	Not Used		
	0	Not Used		
14 (Unit Set)	7	Duplex Inverter Sensor	Not detected	Detected
	6	Fusing Exit Sensor	Not detected	Detected
	5	Key Counter Set	Set	Not set
	4	Total Counter Set	Set	Not set
	3	Exhaust Fan Lock	No lock	Lock
	2	Toner Recycling Sensor	Pulse	Pulse
	1	Drum Unit Set	Set	Not set
	0	Fusing Unit Set	Set	Not set

Table 1: 2nd Tray Paper Size Switch Combination

$\text { Class } 3$no.	$\begin{gathered} \hline \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { Bit } \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{Bit} \\ 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 3 \end{gathered}$	Paper Width	
						A/B size version	Inch version
1	0	1	1	1	1	A3	DLT
	0	0	1	1	1	81/4" x 13"	81/2" x 14"
	1	0	0	1	1	A4 lengthwise	LT lengthwise
	0	1	0	0	1	A4 sideways	LT sideways
	0	0	1	0	0	81/2" x 13"	HLT sideways
	0	0	0	1	0	-	8" $\times 101 / 2^{\prime \prime}$
	0	0	0	0	1	A5 sideways	8" $\times 10{ }^{\prime \prime}$
	1	0	0	0	0	8K lengthwise (Taiwan Version only)	8" x 13"
	1	1	0	0	0	16K lengthwise (Taiwan Version only)	10 x 14 "
	1	1	1	0	0	16K sideways (Taiwan Version only)	11 " $\times 15$
	1	1	1	1	0	*	*

ADF Input Check (SP6-007)

Class 3 No.	Bit No.	Description	Reading	
			0	1
1	0	Original Set Sensor	No Original	Original detected
	1	Original Width Sensor 1	No Original	Original detected
	2	Original Width Sensor 2	No Original	Original detected
	3	Original Width Sensor 3	No Original	Original detected
	4	Entrance Sensor	No Original	Original detected
	5	Registration Sensor	No original	Original detected
	6	Exit Sensor	No original	Original detected
	7	Inverter Sensor	No original	Original detected
2	0	DF Position Sensor	Down	Up
	1	APS Start Sensor	Start	Off
	2	Feed Cover Sensor	Close	Open
	3	Exit Cover Sensor	Close	Open
	4	Bottom Plate HP Sensor	At home position	Not home position
	5	Bottom Plate Position Sensor	Detected	Not detected
	6	Pick-up Roller HP Sensor	At home position	Not home position
	7	Not used		

4.2.5 OUTPUT CHECK

NOTE: Motors keep turning in this mode regardless of upper or lower limit sensor signals. To prevent mechanical or electrical damage, do not keep an electrical component on for a long time.

Main Machine Output Check (SP5-804)

1. Access SP mode 5-804.
2. Select the SP number that corresponds to the component you wish to check.
3. Press " 1 ", then press 囲 to check that component.
4. Press " 0 " to interrupt the test.
5. If you wish to check another component, press the "Next" or "Prev." Key.

No.	Description	No.	Description
1	1st Paper Feed Clutch	38	Relay Clutch (LCT)
2	2nd Paper Feed Clutch	39	Registration Motor
3	3rd Paper Feed Clutch	40	Guide Plate Solenoid
4	Not Used	41	Inverter Gate Solenoid
5	By-pass Feed Clutch	42	Not used
6	Paper Feed Clutch (LCT)	43	Duplex Transport Clutch
7, 8	Not used	44	Duplex Feed Clutch
9	1st Pick-up Solenoid	45	Duplex Inverter Gate Solenoid
10	2nd Pick-up Solenoid	46	Reverse Roller Solenoid
11	3rd Pick-up Solenoid	47	Inverter Exit Clutch
12	Not Used	48~ 51	Not used
13	By-pass Pick-up Solenoid	52	Toner Supply Clutch
14	Pick-up Solenoid (LCT)	53	Development Motor
15, 16	Not used	54	Toner Recycling Motor
17	1st Separation Roller Solenoid	55	Not used
18	2nd Separation Roller Solenoid	56	Toner Supply Motor
19	3rd Separation Roller Solenoid	57	Transfer Belt Solenoid
20~23	Not used	$58 \sim 61$	Not used
24	Rear Fence Motor	62	Quenching Lamp
25	LCT Motor (LCT)	63	Charge Corona
26	Paper Feed Motor	64	Charge Corona Grid
27	By-pass Feed Motor	65, 66	Not used
28	Drum Motor	67	Development Bias
29~30	Not used	68	Not used
31	Fusing/Duplex Motor	69	Transfer Belt Voltage
32	1st Vertical Relay Clutch	70	ID Sensor
33	2nd Vertical Relay Clutch	71	SBU Cooling Fan Motor
34	3rd Vertical Relay Clutch	72	Exposure Lamp
35	Not used	73	Optics Cooling Fan Motor
36	Relay Clutch	74	Not used
37	Not used	75	Duplex Fan Motor

No.	Description	No.	Description
76	Exhaust Fan	88	Staple Hammer Motor (Finisher)
77	Drum Cooling Fan	89	Punch Motor (Punch Unit)
78	Fusing Fan	90	Laser Diode
79	Exit Cooling Fan	91	Not used
80	Tray Junction Gate Solenoid (Finisher)	92	Tray Lift Motor (Finisher)
81	Stapler Junction Gate Solenoid (Finisher)	93	Jogger Motor (Finisher)
82	Positioning Roller Solenoid (Finisher)	94	Stapler Motor (Finisher)
83	Not used	95	Stack Feed-out Belt Motor (Finisher)
84	Mechanical Counter	96	Shift Motor (Finisher)
85	Upper Transport Motor (Finisher)	97	Stapler Rotation Motor (Finisher)
86	Lower Transport Motor (Finisher)	$98 \sim 99$	Not used
87	Shift Tray Exit Motor (Finisher)		

ADF Output Check (SP6-008)

No.	Description
1	Feed-in Motor (Forward)
2	Feed-in Motor (Reverse)
3	Transport Motor (Forward)
4	Transport Motor (Reverse)
5	Feed-out Motor
6	Exit Gate Solenoid
7	Inverter Gate Solenoid
8	DF Indicators
9	Pick-up Motor (Forward)
10	Bottom Plate Motor

4.2.6 SYSTEM PARAMETER AND DATA LISTS (SMC LISTS)

1. Access the SP mode corresponding to the list that you wish to print.
1) SP5-990-1 : All system parameter list
2) SP5-990-2 : SP mode data list
3) SP5-990-3 : UP mode data list
4) SP5-990-4 : Machine status history data list
2. Touch the "Copy Mode" key to access the copy mode display.
3. Select the paper size and press the "Start" key to print the list.
4. After printing the list, exit the copy mode display by touching the "SP Mode" key.
5. Exit SP mode.

4.2.7 MEMORY ALL CLEAR (SP5-801)

NOTE: Memory All Clear mode resets all the settings stored in the NVRAM to their default settings except the following:

- Electrical total counter value (SP7-003-1)
- Machine serial number (SP5-811)
- Plug \& Play Brand Name and Production Name Setting (SP5-907)

Among the settings that are reset are the correction data for process control and all the software counters.

Normally, this SP mode should not be used. This procedure is required only after replacing the NVRAM or when the copier malfunctions due to a damaged NVRAM.

NV-RAM is not defective	NV-RAM is defective
1. Print out all SMC data lists (SP 5-990-1).	1. If possible, print out all SMC data lists (SP 5- 990-1).
2. Upload the NVRAM data from the BICU to the flash memory card (SP 5-824).	2. Turn the main power switch off.
	3. Replace the NV-RAM Minus Counter.
3. Turn the main power switch off.	4. Replace the developer because the TD initial data is missing if the NV-RAM is defective.
4. Replace the NV-RAM Minus Counter.	5. Perform memory all clear (SP 5-801).
5. Perform memory all clear (SP 5-801). NOTE 1	6. Turn the main power switch off and on.
6. Turn the main power switch off and on.	7. Calibrate the LCD touch panel.
7. Calibrate the LCD touch panel.	8. Perform the TD initial setting (SP 2-963). Note: Do this step before the machine automatically starts the Auto Process Control (within approximately 2 minutes after the main switch is turned on).
8. Input the machine serial number (SP 5-811).	9. Input the machine serial number (SP 5-811).
9. Download the NVRAM data from the flash memory card to the BICU (SP 5-825). Or, referring to the SMC data lists, re-enter any value which has been changed from its factory setting.	10. Adjust the laser beam pitch (SP 2-109).
	11. Perform the printer and scanner registration adjustments. (See Replacement and Adjustment - Copy Image - Adjustments)
10. Download the stamp data from the flash memory card (SP5-829).	12. Referring to the SMC data lists, re-enter any value which has been changed from its factory setting.
11. Check the copy quality and the paper path	13. Download the stamp data from the flash memory card (SP5-829).
and do any necessary adjustments.	

4.2.8 SOFTWARE RESET

The software can be reset when the machine hangs up. Use the following procedure.

Either
Turn the main power switch off and on.
Or
Hold down the "\#" key and "." key at the same time for over 10 seconds.

4.2.9 SYSTEM SETTING AND COPY SETTING (UP MODE) RESET

System Setting Reset

The system settings in the UP mode can be reset to their defaults using the following procedure.

1. Make sure that the machine is in the copier standby mode.
2. Press the User Tools key.
3. Hold down the "\#" key and touch the "System Setting" key.
4. A confirmation message will be displayed, then press "Yes".

Copy Features Reset

The copy settings in the UP mode can be reset to their defaults using the following procedure.

1. Make sure that the machine is in the copier standby mode.
2. Press the User Tools key.
3. Hold down the "\#" key and touch "Copy Features" key.
4. A confirmation message will be displayed, then press "Yes".

4.3 PROGRAM AND DATA DOWNLOAD

4.3.1 OVERVIEW

In this machine, the program, NVRAM data and stamp data are downloaded using flash memory card as shown in the table.

BICU Software	Flash Card \rightarrow BICU
	BICU \rightarrow Flash Card
NVRAM Data	BICU \rightarrow Flash Card
	Flash Card \rightarrow BICU
Stamp Data	Flash Card \rightarrow BICU

NOTE: The procedure for how to write the source software from a flash memory card writer to a flash memory card is described in the SwapBox FTL manual.

4.3.2 DOWNLOADING SOFTWARE FROM FLASH ROM TO THE BICU

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot.

NOTE: Make sure that the surface printed "A" faces upwards.
4. Turn on the main power switch.

5. Touch "Install". The machine erases the current software, then writes the new software to the BICU. This takes about 3 minutes.
Display during erasing

Flash Card Ltility	
	$\mathrm{Crd} \rightarrow \mathrm{FOM}$ Cand:2097560 FOM:AZ29560 Erasing... \qquad

Display during writing

Flast Cars Litily	
	$\mathrm{Cand} \rightarrow \mathrm{FOM}$ Cand: 22297560 ROW:AZ29756io Writing... xx \qquad ADRS $=0680000 \mathrm{~h}$ RT $=00000 \mathrm{~h}$ WDT=0000h

Display when the download is complete

If downloading failed, an error message appears on the display. At this time, touch the "OK" key to re-try the download.

4.3.3 DOWNLOAD THE BICU SOFTWARE FROM BICU TO FLASH MEMORY CARD

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot.

NOTE: Make sure that the surface printed " A " faces upwards.
4. Turn on the main power switch.

5. Enter SP mode.
6. Select SP5-826.
7. Touch "START". The machine erases the current software, then writes the new software to the flash memory card.
8. Exit SP Mode.
9. Turn off the main switch.
10. Pull out the flash memory card.

4.3.4 DOWNLOAD NVRAM DATA TO THE BICU

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot.
NOTE: Make sure that the surface printed "A" faces upwards.
4. Turn on the main power switch.
5. Enter SP Mode.

6. Open the front door.

NOTE: Do not close the front door until the download finishes.
7. Select SP5-825-***.

001: All data
002: User tools (UP mode) data

NOTE: 1) Data of SP7-003 and SP7-006 are not downloaded.
2) When you select "001", no data is downloaded if the serial number on the BICU is not the same as the one on the flash card.

8. Press "Start".
9. Exit SP Mode.
10. Turn off the main switch.
11. Pull out the flash memory card.

4.3.5 DOWNLOAD NVRAM DATA FROM BICU TO FLASH MEMORY CARD

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot.

NOTE: Make sure that the surface printed "A" faces upwards.
4. Turn on the main power switch while holding down the operation switch.

5. Enter SP Mode.
6. Select SP5-824.
7. Touch the "Start" key.

4.3.6 DOWNLOAD STAMP DATA TO THE BICU

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot

NOTE: Make sure that the surface printed "A" faces upwards.
4. Turn on the main power switch.
5. Enter SP Mode.
6. Select SP5-829.
7. Open the front door.

NOTE: Do not close the front door until the download finishes.
8. Touch the "Start" key.
9. Exit SP Mode.
10. Turn off the main switch.
11. Pull out the flash memory card.

4.4 USER PROGRAM MODE

The user program (UP) mode is accessed by users, and by sales and service staff. UP mode is used to input the copier's default settings.

4.4.1 HOW TO ENTER AND EXIT UP MODE

Press the User Tools button, then select the UP mode program. After finishing the UP mode program, touch "Exit" key to exit UP mode.

4.4.2 UP MODE TABLE

NOTE: The function of each UP mode is explained in the System Setting and Copy Reference sections of the operating instructions.

System Setting Table

Copy Features Table

Tab	Item	Detail
General Features $1 / 3$	Auto Paper Select Priority	
	Auto Paper Select Tray Display	
	Auto Image Density Priority	
	Original Mode Priority	
	Original Mode Display	
	Original Mode Quality Level	Text
		Text/Photo
		Photo
		Pale
		Generation
	Original Image Density Level	Text
		Text/Photo
		Photo
		Pale
		Generation
	Auto Reset Timer	
General Features 2/3	Duplex Mode Priority	
	Copy Orientation in Duplex Mode	
	Original Orientation in Duplex Mode	
	Initial Mode	
	Maximum Copy Quantity	
	Original Beeper	
	Job End Call	
	Time for indicating starts.	
General Features 3/3	Shortcut keys: F1	
	Shortcut keys: F2	
	Shortcut keys: F3	
	Shortcut keys: F4	
	Shortcut keys: F5	
Reproduction Ratio 1/2	Shortcut R/E	
	R/E Priority	
	Enlarge 1	
	Enlarge 2	
	Enlarge 3	
	Enlarge 4	
	Enlarge 5	
	Priority Setting : Enlarge	
$\begin{aligned} & \text { Short Cut } \\ & \text { R/E } \end{aligned}$	RE Priority	

Tab	Item	Detail	
Reproduction Ratio 2/2	Reduce 1		
	Reduce 2		
	Reduce 3		
	Reduce 4		
	Reduce 5		
	Reduce 6		
	Priority Setting : Reduce		
	Shrink \& Center Ratio		
Page	Front Margin : Left/Right		
Format 1/2	Back Margin : Left Right		
	Front Margin : Top/Bottom		
	Back Margin : Top/Bottom		
	$1 \rightarrow 2$ Duplex Auto Margin Adjust		
	Erase Border		
	Combine Original Shadow Erase		
	Erase Center		
	Repeat Separation Line		
Page	Double Copies Separation Line		
	Combine Separation Line		
	Copy Back Cover		
	Cover Page in Combine Mode		
	Designated Slip Sheet Copy in Combine		
	Booklet/Magazine Original Orientation		
	Copy Order in Combine Mode		
Stamp	Background Numbering	Size	
		Density	
		Superimpose	
	Preset Stamp (1/4)	Stamp Priority	
		Stamp Language	
		Stamp Position: Copy	
		Stamp Position: URGENT	
		Stamp Position: PRIORITY	
		Stamp Position: For Your Info.	
		Stamp Position: PRELIMINARY	
	Preset Stamp (2/4)	Stamp Position :For Interval Use only	
		Stamp Position: CONFIDENTIAL	
		Stamp Position: DRAFT	
		Stamp Condition: Size	
		Copy	Density
			Print Page

Tab	Item	Detail	
	Preset Stamp (3/4)	Stamp Condition: URGENT	Size
			Density
			Print Page
		Stamp Condition: PRIORITY	Size
			Density
			Print Page
		Stamp Condition: For Your Info.	Size
			Density
			Print Page
		Stamp Condition: PRELIMINARY	Size
			Density
			Print Page
	Preset Stamp (4/4)	Stamp Condition: For Internal Use	Size
			Density
			Print Page
		Stamp Condition: CONFIDENTIAL	Size
			Density
			Print Page
		Stamp Condition: DRAFT	Size
			Density
			Print Page
		Superimpose	
	User Stamp (1/2)	Program/Delete Stamp	Program
			Delete
		Stamp Position: 1	
		Stamp Position: 2	
		Stamp Position: 3	
		Stamp Position: 4	
		Stamp Condition: 1	
		Stamp Condition: 2	
	User Stamp (2/2)	Stamp Condition: 3	
		Stamp Condition: 4	
	Date Stamp	Format	
		Font	
		Position Priority	
		Size	
		Superimpose	
	Page Numbering (1/2)	Format Priority	
		Font	
		size	
		Duplex Back Page Number Position	
		Page Numbering in Combine Mode	
		Copy on Slip Sheet in Designate Mode	
		Position Priority: P1, P2,	

4.4.3 IMAGE QUALITY SETTING BY UP MODE

'Original Mode Level' in the 'General Features' UP menu is related to the 'MTF Filter Settings' SP mode.

If a setting from the above three columns $[A]$ is selected, the MTF level (coefficient) and MTF strength (SP4-903-20 to 58) are fixed. Any changes to the SP mode settings are not reflected on the copy. To use the settings specified by SP mode, the user must select "Service Mode" [B].

The detailed relationship between the different original modes, the UP modes, and the SP modes are as follows.

Text Mode

Different gamma correction settings are used for "Sharp", "Normal" or "Soft" mode. So, when adjusting the "Service Mode" setting, first select a gamma correction setting for the basic image setting using SP4-903-84.

1. The following tables should be used when 1 (Normal) or 2 (Sharp) is selected in SP4-903-84.

Magnification Ratio: 25 ~ 49\%

MTF Filter Strength	Strong						Weak
UP mode		Sharp	Normal				
Pre-filter Type - Text SP4-903-010	1	1	1	1	1		
Filter Level - Text Main Scan Direction SP4-903-020	13	13	13	13	7		
Filter Strength - Text Main Scan Direction SP4-903-022	3	2	1	0	0		

USER PROGRAM MODE

Magnification Ratio: 50 ~ 154\%

MTF Filter Strength	Strong				
UP mode		Sharp	Normal		Weak
Pre-filter Type - Text SP4-903-011	0	0	0	0	2
Filter Level - Text Main Scan Direction SP4-903-024	13	13	13	13	13
Filter Strength - Text Main Scan Direction SP4-903-026	3	2	1	0	0

Magnification Ratio: 155 ~ 256\%

MTF Filter Strength	Strong				
UP mode		Sharp	Normal		
Pre-filter Type - Text SP4-903-011	0	0	0	0	2
Filter Level - Text SP4-903-028	13	13	13	9	7
Filter Strength - Text Main Scan Direction SP4-903-030	2	1	0	0	0

Magnification Ratio: 257 ~ 400\%

MTF Filter Strength	Strong				
UP mode		Sharp	Normal		
Pre-filter Type - Text SP4-903-011	0	0	0	0	2
Filter Level - Text SP4-903-032	13	13	13	9	7
Filter Strength - Text Main Scan Direction SP4-903-034	2	1	0	0	0

2. The following tables should be used when 0 (Soft) is selected in SP4-903-84.

Magnification Ratio: 25 ~ 49\%

MTF Filter Strength	Strong			Soft	
UP mode			1	1	1
Pre-filter Type - Text SP4-903-010	3	3	3	3	3
Filter Level - Text Main Scan Direction SP4-903-020	6	6	6	6	6
Filter Level - Text Sub Scan Direction SP4-903-021	4	3	2	1	1
Filter Strength - Text Main Scan Direction SP4-903-022	2	2	1	1	0
Filter Strength - Text Sub Scan Direction SP4-903-023					

Magnification Ratio: 50 ~ 154\%

MTF Filter Strength	Strong						Soft		Weak
UP mode			0	0	0				
Pre-filter Type - Text SP4-903-011	3	3	3	3	3				
Filter Level - Text Main Scan Direction SP4-903-024	6	6	6	6	6				
Filter Level - Text Sub Scan Direction SP4-903-025	4	3	2	1	1				
$\|$Filter Strength - Text Main Scan Direction SP4-903-026	2	2	1	1	0				
Filter Strength - Text Sub Scan Direction SP4-903-027									

USER PROGRAM MODE

Magnification Ratio: 155 ~ 256\%

MTF Filter Strength	Strong				Weak
UP mode			Soft		
Filter Level - Text Main Scan Direction SP4-903-028	0	0	0	0	0
Filter Level - Text Sub Scan Direction SP4-903-029	2	2	2	2	2
Filter Strength - Text Main Scan Direction SP4-903-030	5	4	2	2	1
Filter Strength - Text Sub Scan Direction SP4-903-031	5	4	4	2	1

Magnification Ratio: 257 ~ 400\%

MTF Filter Strength	Strong				Weak
UP mode			Soft		
Filter Level - Text Main Scan Direction SP4-903-032	0	0	0	0	0
Filter Level - Text Sub Scan Direction SP4-903-033	2	2	2	2	2
Filter Strength - Text Main Scan Direction SP4-903-034	5	4	2	2	1
Filter Strength - Text Sub Scan Direction SP4-903-035	5	4	4	2	1

Text/Photo Mode

Initially, the same filter settings are used for Sharp, Normal, and Soft in Text/Photo mode. The difference of each image mode is due to the gamma correction setting. The following filter settings should be changed after selecting the gamma correction setting in SP4-903-85.

Magnification Ratio: 25 ~ 49\%

MTF Filter Strength	Strong		Weak		
UP mode			Photo Priority/ Normal/Text Priority		1
Pre-filter Type - Text/Photo SP4-903-013	1	1	1	1	1
Filter Level - Text/Photo Main Scan Direction SP4-903-039	13	13	13	9	7
Filter Strength - Text/Photo Main Scan Direction SP4-903-041	2	1	0	0	0

Magnification Ratio: 50 ~ 154\%

MTF Filter Strength	Strong				
UP mode			Photo Priority/ Normal/Text Priority		
Pre-filter Type - Text/Photo SP4-903-014	0	0	0	2	1
Filter Level - Text/Photo Main Scan Direction SP4-903-43	13	13	13	13	13
Filter Strength - Text/Photo Main Scan Direction SP4-903-045	2	1	0	0	0

Magnification Ratio: 155 ~ 256\%

MTF Filter Strength	Strong				Weak	
UP mode			Normal/Text Priority		Photo Priority	
Filter Level - Text/Photo						
Main Scan Direction SP4-903-047	13	13	13	9	7	
Filter Strength - Text/Photo Main Scan Direction SP4-903-049	2	1	0	0	0	

Magnification Ratio: 257 ~ 400\%

MTF Filter Strength	Strong			Weak	
UP mode			Normal Text Priority		Photo Priority
Filter Level - Text/Photo					
Main Scan Direction SP4-903-051	13	13	13	9	7
Filter Strength - Text/Photo Main Scan Direction SP4-903-053	2	1	0	0	0

Photo Mode

Normally the smoothing filter is used in this mode, whether the user selects "Glossy Photo", "Normal", or "Screen Printed".

When a stronger setting is selected, the reproduction of graduations is improved. However, the image tends to go out of focus.

MTF Filter Strength	Strong								
UP mode		Screened Printed			Normal			Glossy Photo	
Pre-filter Type - Photo Mode SP4-903-012		1	2	1	1	1	7	7	10
Smoothing Filter - Photo Mode SP4-903-037		4	4	2	1	0	1	0	0

If the user selects "Service Mode" to use another smoothing filter setting, SP4-903009 (Filter Type Selection in Photo Mode) should be "1: Smoothing".

If the user selects "Service Mode" to use an MTF filter setting for photo mode, SP4-903-009 (Filter Type Selection in Photo Mode) should be "0: MTF".
The following table should be used to change the MTF filter strength for Photo mode.

MTF Filter Strength	Strong				
UP mode					Weak
Pre-filter Type - Photo Mode SP4-903-012	10	10	7	2	1
MTF Filter - Photo Mode SP4-903-36	13	13	13	13	13
MTF Filter Strength - Photo Mode SP4-903-38	2	1	1	1	0

Pale Mode

MTF Filter Strength	Strong			Neak			
UP mode		Sharp		Normal		Soft	
Pre-filter Type - Pale Mode SP4-903-015	1	1	1	1	1	1	1
Filter Level - Pale Mode SP4-903-055	3	3	3	3	3	3	1
Filter Strength - Pale Mode SP4-903-056	6	5	4	3	2	1	0

Generation Mode

MTF Filter Strength	Strong								Weak
UP mode		Sharp		Normal		Soft			
Pre-filter Type - Generation Mode SP4-903-016	1	1	1	1	1	1	1		
Filter Level - Generation Mode SP4-903-057	13	13	10	13	10	13	7		
Filter Strength - Generation Mode SP4-903-058	3	2	2	1	1	0	0		

4.5 TEST POINTS/DIP SWITCHES/LEDS

4.5.1 DIP SWITCHES

ADF Main Board

DPS100					Description
		2	3	4	
		0	0	0	Normal operating mode
		0	0	1	Motor Test: Transport motor - Forward
		0	1	0	Motor Test: Transport motor - Reverse
		0	1	1	Motor Speed Adjustment (Automatic)
		1	0	0	Original stop position adjustment - Single-sided original mode (No original skew correction)
		1	0	1	Original stop position adjustment - Double sided original mode
		0	0	0	Free Run: Single-sided original mode with skew correction
		0	1	0	Free Run: Single-sided original mode without skew correction
		1	1	0	Free Run: Double-sided original mode
Others					Do not select

"SADF" LED turns on when one of the DIP switches is on.
MCU: All the dip switches should be OFF. Do not change the settings.

4.5.2 TEST POINTS

BICU

Number	Monitored Signal
TP113	GDN
TP123	5 VE
TP136	Not used
TP143	Not used

Paper Feed Board

Number	Monitored Signal
TP101	Ground
TP102	+24 V
TP103	Ground
TP104	+5 V

I/O Board

Number	Monitored Signal
TP104	+12 V
TP154	+5 V
TP155	Ground
TP162	+24 V
TP163	Ground
TP172	-12 V
TP173	+24 VINT

ADF Main Board

No.	Label	Monitored Signal
TP100	TXD	TXD to the copier
TP101	RXD	RXD from the copier
TP102	GND	Ground
TP103	12 V	+12 V
TP104	5 V	+5 V

I/O BOARD (DIP SW101)

No.	Description	Function
1	Should be off.	-
2	Should be off.	-
3	SC codes display.	On: SC codes are not displayed.
4	Should be off.	-
5	Should be off.	-
6	Version 1	6: Off, 7: Off - Japanese version
7	Version 2	6: On, 7: Off - 115 V version 6: Off, 7: On - 220/240 V version
8	Should be off.	-

NOTE: When replacing the I/O board in the field, change the setting of DIP SW6 and 7 for your field.

4.5.3 FUSES

PSU

Number	Description
FU101	Protects the ac input line.
FU102	Protects +24V
FU103	Protects +24V
FU104	Protects +24V
FU105	Protects +24V
FU106	Protects +24V
FU107	Protects +24V

ADF Main Board

Number	Description
FU100	Protects the 38 V line
FU101	Protects the 24 V line

4.5.4 VARIABLE RESISTORS

ADF Main Board

Number	Function
VR100	Adjusts the original stop position for the single-sided original at no skew correction mode.
VR101	Adjusts the original stop position for the double-sided original.

4.5.5 LEDS

BICU

Number	Monitored Signal
LED101	Blinking : Normal Stays on or off : CPU defective
LED103	Turns on when the main power switch on.
LED104	Blinking : Normal Stays on or off : HDD abnormal

Paper Feed Board

Number	Monitored Signal
LED101	Turns on 500ms interval : Normal (software) Turns on 200ms interval : Software error Stays on of off : Paper feed board defective

ADF Main Board O: ON \&

LED100	LED101	LED102	
\bigcirc	-	-	Entrance Sensor Jam
-	\bigcirc	-	Registration Sensor Jam
\bigcirc	\bigcirc	-	Exit Sensor Jam
-	-	\bigcirc	Inverter Sensor Jam
\bigcirc	-	\bigcirc	Jammed paper not removed: Between entrance sensor + registration sensor
\bigcirc	\bigcirc	\bigcirc	Jammed paper not removed: On the exposure glass
\pm	-	-	Feed-in Motor Abnormal
-	2	-	Transport Motor Abnormal
-	-	2	Feed-out Motor Abnormal
2	2	-	Pick-up Motor Abnormal
-	2	2	Bottom Plate Motor Abnormal
\%	\&	*	DF Position (Open)
\&	-	\&	APS Sensor ON
\%	-	-	Normal

$\Rightarrow 4.6$ SPECIAL TOOLS AND LUBRICANTS

4.6.1 SPECIAL TOOLS

Part Number	Description	Q'ty
A2309352	Flash Memory Card - 4MB	1
A2309351	Case - Flash Memory Card	1
A0069104	Scanner Positioning Pin (4 pcs/set)	1
54209516	Test Chart - OS-A3 (10 pcs/Set)	1
A0299387	Digital Multimeter - FLUKE 87	1

4.6.2 LUBRICANTS

Part Number	Description	Q'ty
A0289300	Grease Barrierta JFE 5 5/2	1
52039502	Silicone Grease G-501	1
G0049668	Grease: KS660: SHIN ETSU	1

4.7 FIRMWARE HISTORY

4.7.1 A292/A293 FIRMWARE MODIFICATION HISTORY

A292/A293 BICU FIRMWARE MODIFICATION HISTORY			
DESCRIPTION OF MODIFICATION	FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
Initial Production	A2937553 B	Initial Production	3.0
Note: 1) The LCDC ROM A2935203C is required for BICU firmware version 3.1 (A2937564, A2937565 and A2937566). 2) Version 3.1 requires the printer controller. 1. Language The following items have been changed from English to the language selected: 1) Stamp Setting Note: For Portuguese and Polish, the Stamp setting is still displayed in English. The correction for this will be included in the next software update. 2) Language Priority button 2. A3/DLT Double Count corrected for Copy counter and Printer counter When making A3/DLT copies, the Copy and Printer Counters do not count up by 2, even if A3/DLT Double Count has been set. Note: The Total Counter correctly counts up by 2 . 3. Key counter in connect copy mode. When the key counter is removed from the machine during a copy job in connect copy mode, both copiers will stop and display "paper jam". 4. Slip-Sheet Mode It is possible to select "Copy" or "Blank" from the operation panel in Slip-Sheet Mode.	A2937553 C	Not Available	3.1

8. 8K/16K Paper Size (China/Taiwan)
8K/16K paper size can be fed from Trays
2 and 3 by selecting 3:CH in SP5131
"Paper Size Type Selection".
Note: The factory default for SP5131 is
3:CH in models for China and Taiwan.

A292/A293 BICU FIRMWARE MODIFICATION HISTORY

A292/A293 BICU FIRMWARE MODIFICATION HISTORY						
DESCRIPTION OF MODIFICATION				FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
Corrections / Updates: 1. New Copy Feature and SP Mode (SP5971) Added 1) New Copy Feature: Enhance Density Mode This feature has been added to ensure that image density does not drop while making multiple copies of originals with a high percent of solid black areas. To set effective original density and number of copies for multi-copy mode, use SP5971 (see below). To add the Enhance Density Key to the display panel and to control the level, perform the following procedure: (1) Press the User Tools/Counter key. (2) Press the Copy/Document Server Features Key. (3) Open General Features, screen $3 / 3$. (4) Select one of the Shortcut Keys from F1-F5. (5) Register the Enhance Density Key. (6) Open General Features, screen $1 / 3$. (7) Select the setting for 2) New SP Mode: SP5971 (Enhance Copy Setting): The following settings apply to Enhance Density Mode:				A2937553 E	Not Available	3.5.1
Mode No.5971	Enhance Copy Setting Function \quad Setting					
	2	Effective Original Density		Selects the original image ratio at which the mode is activated (calc. from setting).		$\begin{aligned} & 1 \sim 60 \% \\ & 1 \% \text { step } \\ & 4 \% \end{aligned}$
	3	Effective Multiple Copy	Selects the sheet number at which mode is activated with multi-copy jobs (calc. from setting).			1 ~ 50sheets 1 sheet step 3 sheets

A292/A293 BICU FIRMWARE MODIFICATION HISTORY			
DESCRIPTION OF MODIFICATION	FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
3. Fusing Unit Fan Motor Off-Timing Change To ensure that the hot air around the toner bottle is properly removed, the fusing unit fan motor will be kept on whenever the 24 V is being supplied. Therefore, it will turn off only when the main switch or operation switch is turned off or when the machine is shut down by the AutoOff function. 4. Word Correction Some display language words and phrases have been corrected or improved.			
Corrections / Updates: 1. New SP Mode (SP5970) for EB-70 (Printer controller) The following setting applies when the EB-70 printer controller is installed.	A2937553 F	Not Availbale	3.6
Function			Setting
Printer Installed			
	Selects whethe controller is inst	EB-70 printer d or not.	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$
2. Some Part of Image Missing in Tab Stock when Printing from Document Server <Symptom> When files in the Document Server are printed onto Tab Stock, the image is not rotated even though tab stock can be set sideways only. This is because the documents are saved lengthwise only in the Document Server. <Modification> The error has been corrected.			Continue ...

\Rightarrow| A292/A293 BICU FIRMWARE MODIFICATION HISTORY | | | |
| :--- | :---: | :---: | :---: |
| | DESCRIPTION OF MODIFICATION | FIRMWARE
 LEVEL | SERIAL
 NUMBER | | FIRMWARE |
| :---: |
| VERSION |$|$| 3.Malfunction with Printer Dot Edge
 Parameter Setting when Printing from
 Document Server
 <Symptom>
 When edge smoothing is off, the line
 thickness is not changed when the
 printer dot edge parameter setting
 (SP2114) is changed.
 <Modification>
 The error has been corrected. | | |
| :--- | :--- | :--- |

PREVENTIVE MAINTENANCE

5. PREVENTIVE MAINTENANCE SCHEDULE

5.1 PM TABLE

NOTE: The amounts mentioned as the PM interval indicate the number of prints, unless stated otherwise.
Symbol key: C: Clean, R: Replace, L: Lubricate, I: Inspect

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{4 5 0} \\ K \end{gathered}$	Expected Life K	NOTE
SCANNER/OPTICS						
1st, 2nd, 3rd Mirror		C	C	C		Optics cloth
Reflectors		C	C	C		Optics cloth
White Reference Plate		I	I	I		Water
Scanner Guide Rails		C	C	C		Dry cloth
Exposure Glass	C	C	C	C		Dry cloth or alcohol
Toner Shield Glass		C	C	C		Optics cloth
Optics Dust Filter		I	R	1		Blower brush
AROUND THE DRUM						
Charge Corona Wire		C	C	C	300	Dry Cloth
Charge Corona Casing		C	C	C		Damp cloth
Corona Wire Cleaner		C	C	C	300	
Drum Potential Sensor		C	C	C		Blower brush
Charge Corona Grid		C	C	C	300	Blower brush
ID Sensor		C	C	C		Blower brush; initialize with SP3-001-2 after cleaning.
Quenching Lamp		C	C	C		Dry cloth
Pick-off Pawls		C	C	C		Dry cloth Replace if necessary.
Cleaning Blade					300	
Cleaning Brush					300	
Cleaning Brush Seal			C			Dry cloth
Cleaning Side Seals		1	1	1		Dry cloth
Cleaning Entrance Seal		C	C	C		Dry cloth Replace if necessary
DEVELOPMENT UNIT						
Developer			R			
Side Seals		I	I	1		Dry cloth or blower brush
Development Filter		R	R	R		
Entrance Seal		C	C	C		Dry cloth or blower brush
Air Filter - Large/ Small		R	R	R		
Drive Gears		C	C	C		Blower brush
Toner Bottle Holder		C	C	C		Dry cloth or vacuum cleaner
Toner Hopper Entrance		C	C	C		Dry cloth
Development Roller Shaft		C	C	C		Dry cloth or blower brush

	EM	$\begin{gathered} \hline 150 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} 300 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ \mathrm{~K} \end{gathered}$	Expected Life K	NOTE
PAPER FEED						
Registration Rollers		C	C	C		Water or alcohol
Relay Rollers		C	C	C		Water or alcohol
Paper Dust Remover		C	C	C		Dry cloth
Registration Sensor		C	C	C		Blower brush
Relay Sensor		C	C	C		Blower brush
Paper Feed Rollers Pick-Up Rollers Separation Rollers		C	C	C	300	Replace pick-up, feed and separation roller as a set. Check the counter value for each paper tray station (SP7-204). If the value has reached 300 K , replace the rollers. After replacing the rollers, reset the counter (SP7-816).
Paper Feed Guide Plate		C	C	C		Water or alcohol
Vertical Transport Rollers		C	C	C		Water or alcohol
Paper Feed Sensor		C	C	C		Blower brush
TRANSFER BELT UNIT						
Transfer Belt		C	C	C	450	Dry cloth
Cleaning Roller Cleaning Blade				C	450	
Transfer Entrance Guide Plate		C	C	C		Dry cloth
Belt Drive/Guide/ Bias Roller/Cleaning Roller		C	C	C		Alcohol
Transfer Exit Guide Plate		C	C	C		Dry cloth
FUSING/PAPER EXIT						
Hot Roller		1	1	1	200	
Hot Roller Bearings		1	1	1	600	
Pressure Roller		,	1	1	450	Replace as a set.
Pressure Roller Bearings		1	1	1	450	
Fusing Thermistor	I	1	1	1		Replace if necessary.
Hot Roller Strippers	C	C	C	C	300	Water or alcohol
Oil Supply Roller Bushings	I	1	1	1		Replace if necessary.
Pressure Roller Cleaning Roller and Bushings		R	R	R		Replace as a set.
Oil Supply Roller		R	R	R		
Oil Supply Cleaning Roller		R	R	R		
Fusing Entrance and Exit Guide Plates		C	C	C		Clean with water or alcohol
Transport/Exit Rollers			C			Water
Exit Anti-static Brush			1			

	EM	$\begin{gathered} 150 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline 450 \\ K \end{gathered}$	Expected Life K	NOTE
DUPLEX						
Entrance Sensor		C	C	C		Blower brush
Reverse Roller		C	C	C		Water or alcohol
Separation Rollers		C	C	C		
Duplex Roller		C	C	C		
Feed Rollers		C	C	C		
Entrance Anti-static Brush		1	I	1		
Reverse Junction Gate		C	C	C		Dry cloth
OTHERS						
Ozone Filter: PCU			R			
Ozone Filter: Duct			R			
Filter: Vacuum		R	R	R		Blower brush
Used Toner Tank	1	I	I	I		Replace if necessary (about 1,000k copies).

	EM		$\mathbf{8 0 K}$	160K	240K	NOTE
ADF (the PM interval is for the number of originals that have been fed)						
Transport Belt	C	R	R	R	Belt cleaner	
Feed Belt	C	R	R	R	Belt cleaner	
Separation Roller	C	R	R	R	Dry or damp cloth	
Pick-up Roller	C	R	R	R	Dry or damp cloth	
Sensors	C	C	C	C	Belt brush	
Drive Gears		L	L	L	Grease G501	

	EM	$\begin{gathered} \hline \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ K \end{gathered}$	Expected Life K	NOTE
LCT						
Paper Feed Roller		C	C	C	300	Check the counter value for the LCT (SP7-204-5). If the value has reached 300 K , replace the rollers. After replacing the rollers, reset the counter (SP7-816-5).
Pick-up Roller		C	C	C	300	
Separation Roller		C	C	C	300	
Bottom Plate Pad		C	C	C		Dry or damp cloth
Paper Feed Clutch					1,200	
Relay Clutch					1,200	
Pick-up Solenoid					2,400	

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} 450 \\ K \end{gathered}$	Expected Life K	NOTE
3,000-SHEET FINISHER (50-SHEET STAPLER): (B312)						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	1	1	1	1	2,400	
Discharge Brush	C	C	C	C		Clean with a dry cloth.
Sensors	C	C	C	C		Blower brush
Jogger Fences	1	I	1	1		Replace if necessary.
Punch Waste Hopper	1	1	1	1		Empty the hopper.

	EM	$\begin{gathered} 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ K \end{gathered}$	Expected Life K	NOTE
3,000-SHEET FINISHER (100-SHEET STAPLER): (B302)						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	1	1	1	1	600	Check the counter value for the total copies by copy mode for staple (SP7-304-9). If the value has reached 600 K , replace the brush roller.
Discharge Brush	C	C	C	C		Clean with a dry cloth.
Sensors	C	C	C	C		Blower brush
Jogger Fences	1	1	1	1		Replace if necessary.
Punch Waste Hopper	1	1	1	1		Empty the hopper.

	EM	150 \mathbf{K}	$\mathbf{3 0 0}$ \mathbf{K}	$\mathbf{4 5 0}$ \mathbf{K}	Expected Life K	NOTE
FINISHER: (A763)	C	C	C	C		Clean with water or alcohol.
Rollers	C	I	I	I		
Brush Roller	C	C	C	C		Clean with a dry cloth.
Discharge Brush	C	C	C	C		Blower brush
Sensors	I	I	I	I		Replace if necessary.
Jogger Fences						

$\Rightarrow 5.2$ PM COUNTER

Each PM part has a counter which counts up at the appropriate time. (For example, the counter for the hot roller counts up every copy, and the counter for a feed roller counts up when paper is fed from the corresponding tray.) These counters should be used as references for part replacement timing.

5.2.1 PM COUNTER ACCESS PROCEDURE

1) Press the following keys in sequence.

$$
\mathrm{C} / \otimes \rightarrow \square \mathbf{1} \rightarrow 0 \rightarrow \square \rightarrow \square
$$

Hold the C key for more than 3 seconds
The SP mode menu is displayed.

2) Press [PM Counter] on the display.

3) The following menu appears on the display.

SP Mode (Parts replacement)	Prev. Menu	Exit
Select Item		
Al PM parts list	Counterist print out	
Parts list for PM yield indicator	cSS Calling Seting	
Parts exceedingtarget yilid		
Clear all PM settings		

1. All PM Parts List

Displays all the counters for PM parts.
On this screen, the current counter and the target yield of each PM part can be checked.

Additionally, the PM yield indicator setting can be changed. To change the setting press the [Yes/No] key in the "PM yield" column. When "Parts list for PM yield" is selected in the parts replacement menu, only the parts with [Yes] in the "PM yield" are listed.

SP Mode (Parts replacement)				Prev. Menu		Exit
All PM parts list						
No	Description	PM yield	Current	Target		
001	Developer	Yes	0000236	0000K	Clear	
002	Oil Supply \& Cleaning Web	Yes	0000236	0300K	Clear	
003	Web Cleaning Roller	Yes	0000236	0300K	Clear	
004	Hot Roller	Yes	0000236	0450K	Clear	
005	Pressure Riller	Yes	0000236	0450K	Clear	
006	Pressure Roller Cleaning Roller	Yes	0000236	0300K	Clear	
007	Hot Roller Strippers	Yes	0000236	0300k	Clear	
008	Development Filter	Yes	0000236	0300K	Clear	
009	Toner Hopper Filter - Center	Yes	0000236	0300k	Clear	
010	Toner Hopper Filter - Front	Yes	0000236	0300K	Clear	
011	Feed Roller - Tray 1	Yes	0000228	0300K	Clear	
012	Pick-up Roller - Tray 1	Yes	0000228	0300K	Clear	
013	Separation Roller - Tray 1	Yes	0000228	0300k	Clear	
014	Feed Roller - Tray 2	Yes	0000000	0300k	Clear	01/03
015	Pick-up Riller - Tray 2	Yes	0000000	0300k	Clear	
016	Separation Roller - Tray 2	Yes	0000000	0300k	Clear	Previous page
017	Feed Roller - Tray 3	Yes	0000000	0300k	Clear	
018	Pick-up Roller - Tray 3	Yes	0000000	0300k	Clear	Next page

To clear a counter, press [Clear] on the display. The following appears.

Then press [Yes] to clear the counter.

If one of the keys in the "No" column is pressed, the following appears on the display.

On this screen, the records of the last three part replacements are displayed. When 'Clear current counter' is pressed, the current counter is cleared, the current counter is overwritten to "Latest 1", the Latest 1 counter is overwritten to "Latest 2", and the Latest 2 counter is overwritten to "Latest 3 ".

Additionally, the target yield can be changed on this screen. To change the target yield setting, do the following:

1) Press [Change target yield] on the screen.
2) Input the target yield using the ten-key pad.
3) Press the \# key.

2. Parts List for PM Yield Indicator

SP Mode (Parts replacement)					Prev. Menu	Exit
Parts list for PM yield indicator						
No	Description	Exceed	Current	Target		
001	Developer		0000236	0000k	Clear	
002	Oil Supply \& Cleaning Web		0000236	0300k	Clear	
003	Web Cleaning Roller		0000236	0300k	Clear	
004	Hot Roller		0000236	0450k	Clear	
005	Pressure Roller		0000236	0450k	Clear	
006	Pressure Roller Cleaning Roller		0000236	0300k	Clear	
007	Hot Roller Strippers		0000236	0300k	Clear	
008	Development Filter		0000236	0300k	Clear	
009	Toner Hopper Filter - Center		0000236	0300k	Clear	
010	Toner Hopper Filter - Front		0000236	0300k	Clear	
011	Feed Roller - Tray 1		0000228	0300k	Clear	
012	Pick-up Roller - Tray 1		0000228	0300k	Clear	
013	Separation Roller - Tray 1		0000228	0300k	Clear	
014	Feed Roller - Tray 2		0000000	0300k	Clear	01/01
015	Pick-up Roller - Tray 2		0000000	0300k	Clear	
016	Separation Roller - Tray 2		0000000	0300K	Clear	Prexious page
017	Feed Roller - Tray 3		0000000	0300k	Clear	
018	Pick-up Roller - Tray 3		0000000	0300k	Clear	xtpage

On this screen, only the parts selected in the "All PM parts list" screen are displayed. Normally, the PM parts counters should be checked on this screen.
If the current counter exceeds the target yield, there is a * mark in the "Exceed" column.

Each counter can also be cleared on this screen. To clear all counters on this screen at once, see 'Counter Clear for Parts Exceeding Target Yield' on the next page.

3. Parts Exceeding Target Yield

Only the parts whose counters are exceeding the target yield are displayed. If none of the PM counters is exceeding the target yield, this item cannot be selected from the parts replacement menu.

4. Counter Clear for Parts Exceeding Target Yield

Clears all the counters which are exceeding the target yield. When this item is selected, the following appears on the display.

Press [Yes] to clear the counters.

5. Clear All PM Settings

Clears all the PM counters and returns all the settings (PM parts list and target yield) to the defaults. When this item is selected, the following appears.

Press [Yes] to clear the settings.

6. Counter List Print Out

Prints a list of all the PM part counters. When this item is selected, the following appears on the display.

Press [Print] to print out the counter list.

7. CSS Calling Setting (RSS Function)

This function is for Japanese machines only.

REPLACEMENT AND ADJUSTMENT

6. REPLACEMENT AND ADJUSTMENT

\triangle CAUTION
Turn off the main power switch and unplug the machine before attempting any of the procedures in this section.

6.1 EXTERIOR

6.1.1 FILTERS

Ozone Filter: Duct

1. Remove the duct $[A]$ (1screw).
2. Replace the ozone fuller $[B]$.

Filter Vacuum

1. Remove the louver [C] (1 hook).
2. Replace the vacuum filter [D].

6.2 DOCUMENT FEEDER

6.2.1 COVER REMOVAL

Front Cover Removal

1. Remove the front cover [A] (2 screws).

Rear Cover Removal

2. Remove the rear cover $[B]$ (2 screws).

Left Cover Removal

1. Remove the front cover.
2. Remove the grounding wire (1 screw).
3. Remove the left cover [C] (1 screw, 1 connector).

Upper Exit Cover Removal

1. Remove the front cover.
2. Remove the upper exit cover [D] (1 screw).

Original Tray Removal

1. Remove the front and rear covers.
2. Remove the original tray $[A]$ (4 screws).

Upper Cover Removal

1. Remove the front and rear covers
2. Remove the original tray.
3. Remove the upper cover [B] (2 screws).

Bottom Plate Removal

1. Remove the front and rear covers.
2. Remove the original tray.
3. Remove the bottom plate [C] (1 snap ring, 1 connector).

6.2.2 FEED UNIT REMOVAL AND SEPARATION ROLLER REPLACEMENT

1. Open the left cover.
2. Remove the clip $[\mathrm{A}]$.
3. Remove the feed unit [B].
(Pull the feed unit to the front, release the shaft at the rear, and release the front bushing.)
4. Remove the separation roller cover [C].
5. Remove the snap ring [D].
6. Remove the torque limiter [E] and separation roller [F].

6.2.3 FEED BELT REPLACEMENT

[E]

1. Remove the feed unit.
2. Remove the pick-up roller unit [A].
3. Remove the feed belt holder $[B]$.

NOTE: The springs [C] come off the feed belt cover easily.
4. Replace the feed belt [D].

NOTE: When reinstalling the pick-up roller unit, make sure that levers [E] and [F] on the front and rear original guides are resting on the pick-up roller unit cover.

6.2.4 PICK-UP ROLLER REPLACEMENT

1. Open the left cover.
2. Remove the two snap rings $[A]$.
3. Remove the two bushings $[B]$.
4. Replace the pick-up roller [C].

NOTE: When reinstalling the pick-up roller, make sure that the one-way clutch [D] is not at the gear side.

6.2.5 SENSOR REPLACEMENT

Entrance and Registration Sensors

Entrance Sensor

1. Remove the left cover.
2. Remove the guide plate [A] (5 screws).
3. Replace the entrance sensor $[B]$ (1 connector).

Registration Sensor

1. Release the transport belt unit [C].
2. Remove the sensor bracket [D] (1 screw).
3. Replace the registration sensor [E] (1 connector, 1 screw).

Width Sensor

[B]

1. Remove the feed unit.
2. Remove the front cover.
3. Remove the stopper screw [A].
4. Remove the guide plate $[B]$ (2 screws).
5. Release the front end of the upper transport roller [C] (1 bushing, 1 E-ring).
6. Remove the sensor unit [D] (1 screw).
7. Replace the width sensor.

Exit Sensor and Inverter Sensor

Exit Sensor

1. Remove the front and rear covers.
2. Remove the exit guide unit [A] (4 screws).
3. Replace the exit sensor [B] (1 connector).

NOTE: When reinstalling the exit guide unit, make sure that the guide plate [C] on the exit unit is over the exit gate [D].

Inverter Sensor

1. Remove the front and rear covers.
2. Remove the right lower cover [E] (4 screws).
3. Remove the guide plate [F] (3 screws).
4. Replace the inverter sensor [G] (1 connector).

6.2.6 TRANSPORT BELT REPLACEMENT

1. Remove the front cover.
2. Remove the lower two screws $[A]$ securing the transport belt assembly $[B]$.
3. Remove the upper four screws [C] securing the transport belt assembly.
4. Bend up the transport belt assembly extension.
5. Pull off the transport belt [D] and replace it.

NOTE: 1) When releasing the transport belt assembly, make sure to remove the two lower screws first.
2) When installing the transport belt, make sure that the belt runs under the belt guide spacers [E].
3) When securing the transport belt assembly with the six screws, make sure to secure the four upper screws first.

6.3 SCANNER UNIT

6.3.1 EXPOSURE GLASS

1. Open the ADF.
2. Remove the left scale $[A]$ (3 screws).
3. Remove the 2 screws $[B]$ holding the rear scale.
4. Slide the rear scale $[C]$ in the direction of the arrow, then remove it.
5. Remove the exposure glass [D].

NOTE: When reinstalling the exposure glass, make sure that the mark [D] is positioned at the rear left corner, as shown.

6.3.2 LENS BLOCK

1. Remove the exposure glass. (See Exposure Glass.)
2. Remove the lens cover [A] (11 screws).
3. Replace the lens block assembly [B] (2 screws, 3 connectors).
4. Do the scanner and printer copy adjustments. (See Replacement and Adjustment - Copy Image Adjustments.)

NOTE: When putting back the lens cover, take care not to pinch the operation panel cable.

6.3.3 ORIGINAL SIZE SENSORS

1. Remove the exposure glass. (See Exposure Glass.)
2. Remove the original width sensor [A] (1 screw, 1 connector).
3. Remove the lens cover [B] (11 screws).
4. Remove the original length sensors [C] (1 screw and 1 connector each).

6.3.4 EXPOSURE LAMP

1. Remove the exposure glass. (See Exposure Glass.)
2. Slide the 1 st scanner $[A]$ to the cutout $[B]$ in the rear scanner frame.
3. Remove the lamp cover [C] (2 screws).
4. Remove the exposure lamp [D] (1 screw, 2 connectors).

NOTE: Do not touch the glass surface of the exposure lamp with fingers.

6.3.5 SCANNER MOTOR / MCU

Scanner Motor

1. Remove the scanner rear cover. (See Covers - Rear.)
2. Remove the exhaust fan (2 screw, 1 connector and 1 snap fit).
3. Remove the scanner motor [A] with the bracket (3 screws, 2 connectors, 1 spring).
4. Do the scanner and printer copy adjustments. (See Replacement and Adjustment - Copy Image Adjustments.)

MCU

1. Do steps 1 and 2 of the scanner motor removal.
2. Replace the MCU [B] (4 screws and 3 connectors).

6.3.6 SCANNER WIRES

1. Remove the ADF.
2. Remove the following parts:

- Exposure glass [A] (See Exposure Glass.)
- Operation panel under cover [B] (See Scanner H.P Sensor.)
- Scanner rear cover [C] (2 screws)
- Original exit tray [D] (3 screws)
- Upper right cover [E] (4 screws).

3. Remove the left upper stay $[A]$ (5 screws).
4. Remove the right upper stay $[B]$ (5 screws).
5. Remove the shutter inner cover (see Development Unit) and swing out the toner bottle holder [C].
6. Remove the front frame [D] (6 screws).

7. Remove the ARDF support brackets [A] (4 screws each).
8. Remove the scanner upper frame [B] (4 screws).

Rear Scanner Drive Wire

9. Remove the scanner motor and the scanner motor drive board. (See Scanner Motor and Scanner Motor Drive Board.)
10. Remove the drive pulley [A] (1 Allen screw), bearing $[B]$, and the bearing holder bracket [C] (1 screw).
11. Remove the scanner rear frame [D] (5 screws).
12. Remove the rear scanner wire bracket [no illustration] (1 screw).
13. Remove the cable guide [F] (1 screw).
14. Remove the tension spring [G].
15. Loosen the screw $[\mathrm{H}]$ securing the wire tension bracket $[I]$, and remove the rear scanner wire [J].
16. Remove the pulley $[K]$.

Front Scanner Drive Wire

17. Remove the tension spring [A].
18. Loosen the screw $[B]$ securing the wire tension bracket [C], and remove the front scanner wire [D].
19. Remove the pulley [E] (1 screw).

Reinstallation

20. While making sure of the direction, place the bead on the middle of the wire in the pulley hole. Then wind the wire (ball side) [D] clockwise 6 times, and the other side (ring side) 2 times as shown (1). Secure the pulley with tape to keep this condition.
21. Place the pulley on the scanner drive shaft.
22. Secure the pulley with the Allen screw in the position where the Allen screw hole faces up.
23. Wind the end of the new wire with the ball as shown (2), (3), and (4).
24. Wind the end of the new wire with the ring as shown (5), (6), and (7).
25. Install the tension spring on the tension bracket [E], and slightly tighten the tension bracket.

26. Install the 1st scanner and adjust the position with the positioning tools (P/N A0069104) [A].
27. Secure the 1st scanner with the scanner wire bracket $[B]$ (1 screw).
28. Fully tighten the tension bracket.
29. Remove the positioning tools. After sliding the scanner to the right and left several times, set the positioning tools to check the scanner wire bracket and tension bracket again.
30. Reassemble the scanner and do the scanner and printer copy adjustments (see Replacement and Adjustment - Copy Image Adjustments).

6.4 LASER UNIT

$\boxed{\text { WURARNING }}$
Turn off the main power switch and unplug the machine before attempting any of the procedures in this section. Laser beams can seriously damage your eyes.

6.4.1 CAUTION DECAL LOCATIONS

There are three caution decals in the laser section as shown below.

6.4.2 LD UNIT REPLACEMENT

\triangle WARNING
 Turn off the main power switch and unplug the machine before attempting this procedure. Laser beams can seriously damage your eyes.

1. Remove the exposure glass. (See Exposure Glass Removal.)
$\Rightarrow 2$. Remove the LD cover [A] (6 screws).
2. Replace the LD unit [B] (2 screws and 6 connectors).

NOTE: When disconnecting the cables, hold the LD unit.
4. When reinstalling, make sure that the flat cable [C] is mounted above the LD unit, and that the rotation of the unit is not interrupted.
$\Rightarrow 5$. Do SP 2-962 (process control initialization).
NOTE: Be sure that the cable does not block LD unit rotation after replacing the LD unit. If the LD unit cannot rotate smoothly to change the resolution, SC329 (LD unit home position error) may occur.

6.4.3 LASER BEAM PITCH ADJUSTMENT

There are two laser beam pitch adjustment procedures: one for 400 dpi , and one for 600 dpi. These adjustments use the following SP modes.

- SP2-109-1: Laser Beam Pitch Adjustment - 400 dpi
- SP2-109-2: Laser Beam Pitch Adjustment - 600 dpi
- SP2-109-3: Laser Beam Pitch Initial Setting - 400 dpi
- SP2-109-4: Laser Beam Pitch Initial Setting - 600 dpi
- SP2-902-3, no.17: Hound's Tooth Check (1-dot) - Cross Stitch - 400 dpi
- SP2-902-3, no.16: Hound's Tooth Check (1-dot) - Cross Stitch - 600 dpi

1. Perform SP2-109-8 (Beam Pitch Data Reset).
2. Input the value for 400 dpi that is printed on the LD unit into SP2-109-1. Use the value printed after "P" on the new LD unit as shown below.

NOTE: Do not use values printed after a "V".
3. Press the "Enter" key.
4. Perform SP2-109-3.
5. Print the 400-dpi test pattern onto A3 (11"x17") paper using SP2-903-3 no. 17 (cross stitch). (See Service Tables - Test Pattern Printing).
6. Write the value of SP2-109-1 on the test pattern which was input at step 2.
7. Change the value of SP2-109-1 and print another test pattern, repeating steps 2 to 5 . Print about 5 patterns with different values for SP2-109-1 (e.g. "48", "96", "192", "240").
8. Check this test pattern. If the laser beam pitch is not correct, the image looks like a black vertical stripe pattern.
NOTE: If the laser beam pitch is correct, the vertical stripe is not so noticeable. If the value is not correct, the vertical stripe pattern is darker.
9. Adjust the laser beam pitch position until the thin lines are of uniform thickness (no striping effect should appear on the printout), doing steps 2, 3, and 4. (In step 2, input a value which is estimated to be correct, then do steps 3 and 4, then if necessary go back to step 2 and try another value.)
10. After adjusting the laser beam pitch for 400 dpi, adjust the laser beam pitch for 600 dpi, using the same procedure as for 400 dpi (use the SP modes for 600 dpi).

Adjustment not complete

- Feed Direction

Adjustment complete

\Rightarrow 6.4.4 POLYGON MIRROR MOTOR REPLACEMENT

1. Turn off the main power switch and unplug the machine.
2. Remove the exposure glass. (See Exposure Glass Removal.)
3. Remove the lens cover. (See Lens Block Assembly Replacement.)
4. Remove the lens block assembly. (See Lens Block Assembly Replacement.)
5. Remove the polygon mirror motor cover [A] (2 screws).
6. Disconnect the LD unit flat cable [B].
7. Replace the polygon mirror motor [C] (3 screws and 2 connectors.)

NOTE: When reinstalling, make sure that the polygon mirror opening faces the right. Also, do not pull on the LD flat cable.
8. Do the scanner and printer copy adjustments. (See Replacement and Adjustment - Copy Image Adjustments.)

6.5 DRUM UNIT

6.5.1 DRUM POTENTIAL SENSOR REPLACEMENT

1. Take out the drum unit. (Refer to Drum Unit Removal.)
2. Disconnect the connector [A].

NOTE: Before removing the drum potential sensor, put a few sheets of paper between the sensor and the drum to protect the drum surface.
3. Remove the drum potential sensor $[B]$ and the grounding plate $[C]$ (2 screws).
4. Replace the drum potential sensor $[B]$.

$@$ CAUTION
After replacing the drum potential sensor, perform the process control data initial setting (SP mode No. 2-962).

6.5.2 DRUM MOTOR REPLACEMENT

1. Turn off the main switch.
2. Remove the rear cover and the fly wheel. (Refer to Development Motor Replacement.)
3. Loosen the tension brackets $[A]$ (2 screws).
4. Remove the timing belts $[B]$ from the drum motor's pulleys.
5. Remove the support plate [C].
6. Replace the drum motor unit [D] (3 screws, 1 connector).

NOTE: When re-installing the drum motor unit, re-install the support plate before attaching the timing belt and the tension bracket.

6.5.3 TONER OUTPUT AND RECYCLING PUMP UNIT REPLACEMENT

NOTE: Before starting the procedure, remove the drum unit and the transfer belt unit to prevent toner from dropping into the machine.

1. Turn off the main switch.
2. Remove the rear cover and fly wheel. (Refer to Development Motor Replacement.)
3. Remove the DRB board assembly [A] (2 screws).
4. Lower the I/O Board (4 screws).
5. Remove the spring $[\mathrm{B}]$.
6. Remove the toner recycling clutch bracket [C] (3 screws, 1 connector)

NOTE: When reinstalling the bracket [C], put the pin on the stopper [D] into the cutout in the clutch.
7. Remove the timing belt [E] from the drum motor's pulley.
8. Remove the bushing [F].

NOTE: Be careful not to drop the bushing.
9. Remove the by-pass feed motor. (Refer to By-pass Feed Motor/Clutch Replacement.)

10. Release the toner recycling tube [A] from the pump unit.

NOTE: When turning the end of the tube downwards, prevent the toner in it from dropping into the machine.
11. Release the air tube [B].
12. Remove the toner output and recycling pump unit [C] (2 screws, 1 pin connectors).
NOTE: The lower part of the pin (push lock) drops easily.

6.6 DEVELOPMENT AND TONER SUPPLY

6.6.1 DEVELOPMENT AND AIR DUST FILTER REPLACEMENT

1. Take out the development unit. (Refer to Development Unit Removal.)
2. Remove the toner hopper [A] (two screws).
3. Replace the development filter [B].
4. Remove the front air dust filter cover [C] (1 hook).
5. Replace the front air dust filter [D].
6. Remove the central air dust filter cover [E].
7. Replace the central air dust filter [F].

6.6.2 DEVELOPER REPLACEMENT

1. Take out the development unit. (Refer to Development Unit Removal.)
2. Place the development unit on a sheet of paper [A].
3. Remove the two screws $[B]$ that hold the toner hopper [C].
4. Remove the toner hopper from the development unit.
5. Turn over the development unit then turn the paddle roller knob [D] to empty the remaining developer onto the sheet. (The one-way clutch in the knob [D] allows the paddle roller to be turned counterclockwise only.)
NOTE: Dispose of used developer in accordance with local regulations.
Make sure that no developer remains on the development rollers or in the development unit.

6. Clean the side seals $[A]$ and entrance seal $[B]$.

NOTE: Cover the sleeve rollers with a sheet of paper [C] to prevent the used developer from being attracted to the sleeve rollers.
7. Pour in one pack of developer [D] evenly across the width of the development unit, while turning the knob [E].
8. Re-install the toner hopper, then re-assemble the machine.

NOTE: 1) Be sure to connect the connectors after installing the development unit in the machine.
2) Tilt the toner hopper so that there is toner near the toner end sensor.
9. Turn on the main switch, then perform developer initial setting (SP mode No. 2801).

NOTE: 1) Enter the SP mode before the machine automatically starts the auto process control. If you could not enter the SP mode before this starts, do the developer initial setting after the print key turns green. Do not turn off the main switch until the developer initial setting has finished.
2) Do not make any copies with the new developer before completing the developer initial setting, otherwise toner density control will be abnormal.
3) When the developer initial setting did not complete correctly, you cannot exit the SP mode by pressing the "Quit" key. If this problem occurs, turn the main switch off and on, then perform the initial setting again. If the result is the same, see "SC341 or 342" in the troubleshooting section.

6.6.3 TONER END SENSOR REPLACEMENT

1. Take out the toner hopper. (Refer to Developer Replacement.)
2. Replace the toner end sensor $[A]$.

6.6.4 DEVELOPMENT MOTOR REPLACEMENT

1. Turn off the main switch.
2. Remove the rear covers. (Refer to Exterior Cover Removal.)
3. Remove the harness-guide bracket $[A]$ (1 screw).
4. Remove the fly wheel $[B]$ (3 screws).
5. Remove the drum cooling fan [C].
6. Replace the development motor unit [D] (3 screws, 1 connector, and 1 hook).

6.7 TRANSFER BELT UNIT

6.7.1 TRANSFER BELT UNIT REMOVAL/INSTALLATION

- Removal -

1. Turn off the main switch.
2. Remove the transfer belt unit prop $[A]$ (3 screws).
3. Disconnect the connector $[\mathrm{B}]$.
4. While turning the lever [C] counterclockwise, take out the transfer belt unit.

NOTE: 1) Do not touch the transfer belt with bare hands.
2) Take care not to scratch the drum with the transfer belt unit. Be careful when installing the transfer belt unit.

- Installation -

1. While turning the lever [C] counterclockwise, install the transfer belt unit.

NOTE: 1) Insert the gear [D] into the opening [E] in the rear frame.
2) Place the slot $[F]$ in the transfer belt unit on the rail.

2. Attach the transfer belt unit prop (3 screws).

NOTE: To attach the transfer belt unit prop easily, set the following in order: lower pins [A], drive roller shaft [B], upper pins [C].
3. After installation, check the following points:

1) The transfer belt unit must move up and down smoothly.
2) Part [D] of the transfer belt unit must be behind the drum stay.
3) Part [D] of the transfer belt unit must be set in the indent $[E]$ in the drum unit casing.

PAPER FEED

6.8 PAPER FEED

6.8.1 PAPER TRAY REMOVAL

Tandem Tray Removal

1. Open the front cover.
2. Draw out the tandem feed tray $[A]$ fully to separate the right tandem tray $[B]$ from the left one.
3. Remove the left tandem tray [C] (5 screws).

[E]
4. Remove the right tandem tray [A] (2 screws).

NOTE: 1) When re-installing the right tandem tray, make sure that the wheels [B] ride on the slide rail [C].
2) When re-installing the right tandem tray, make sure that the tandem tray stopper [D] is set behind the stopper [E] on the copier frame.

6.8.2 REAR FENCE RETURN SENSOR REPLACEMENT

1. Turn off the main switch.
2. Draw out the tandem feed tray.
3. Remove the rear bottom plate $[A]$ (1 screw).
4. Replace the return sensor $[B]$ (1 connector).

6.8.3 REAR FENCE HP SENSOR REPLACEMENT

1. Turn off the main switch.
2. Draw out the tandem feed tray.
3. Remove the rear bottom plate [A] (1 screw).
4. Remove the back fence transport gear [B] (1 screw).
5. Move the back fence [C] to the right.
6. Remove the rear HP sensor [D] (1 connector).

PAPER FEED

6.8.4 BOTTOM PAPER SENSOR REPLACEMENT

1. Turn off the main switch.
2. Remove the right tandem tray. (Refer to Paper Tray Removal.)
3. Remove the inner cover [A] (2 screws).
4. Remove the side fences $[B]$ (1 screw each).
5. Remove the bottom plate [C] (4 screws).
6. Disconnect the connector [D].
7. Replace the bottom paper sensor [E] (1 screw).

6.8.5 BOTTOM PLATE LIFT WIRE REPLACEMENT

NOTE: Before replacing the rear bottom plate lift wire, remove the front bottom plate lift wire. It is necessary to remove the shaft for replacing the rear bottom plate lift wire.

[B]

1. Remove the right tandem tray. (Refer to Paper Tray Removal.)
2. Remove the inner cover [A] (2 screws).
3. Slightly lift the front bottom plate and unhook the wire stoppers [B].
4. Remove the wire covers [C] (1 E-ring each).
5. Remove the bracket [D] (1 screw, 1 E-ring, 1 bushing).
6. Remove the gear [E].
7. Replace the bottom plate lift wire [F].

NOTE: When re-installing the bottom plate lift wire:

1) Set the positioning pin $[A]$ in the hole $[B]$ and set the projection $[C]$ in the hole [D].
2) Position the wire as shown $[E]$.
3) Do not cross the wires.

6.8.6 TANDEM LCT PAPER SIZE CHANGE

NOTE: At the factory, this tray is set up for A4 or LT sideways. Only A4 or LT sideways paper can be used for tandem feed.

1. Open the front cover.
2. Completely pull out the tandem feed tray $[A]$ to separate right tandem tray $[B]$ from the left tandem tray.
3. Remove the right tandem inner cover [C] (2 screws).
4. Re-position the side fences [D] (1 screw each).

A4: Outer slot position
LT: Inner slot position
5. Re-install the right tandem inner cover [C].

6. Remove the tray cover $[A]$ (2 screws).
7. Remove the DC motor cover $[B]$ (4 screws).
8. Remove the rear side fence [C] (4 screws) and re-position the rear cover [D] (2 screws).
9. Re-position the side fences [C] [E] (4 screws).

A4: Outer slot position
LT: Inner slot position
10. Re-install the DC motor cover and the tray cover.

11. Remove the rear bottom plate [A] (1 screw).
12. Re-position the return position sensor bracket [B] (1 screw). To use the paper tray for A4 size, set the screw on the left hole as shown. (For LT size, the screw should be placed on the right.)
13. Reinstall the rear bottom plate.
14. Enter System Setting in User Tools, and select the paper size that you just set the fences up for.

6.8.7 BY-PASS PAPER SIZE BOARD REPLACEMENT

1. Turn off the main switch.
2. Open the by-pass table and remove the feed unit cover. (Refer to Right Cover Removal.)
3. While pushing the hook [A] with a flat-head screwdriver as shown, remove the table assembly [B] (2 screws, 1 connector [C]).
4. Remove the by-pass paper size board [D] (2 screws).

5. Re-install the by-pass paper size sensor, then reassemble the by-pass feed table.
NOTE: When installing the table assembly, route the wires [A] correctly as shown.
The paper guides $[B]$ must be in the lower position as shown.
6. Perform the by-pass tray paper size correction (SP1-904) as follows.
1) Press the 1904-1 key and place the side fence [C] at the minimum paper size position (width $=100 \mathrm{~mm}$). Then press the Start key on the touch panel.
2) Press the 1904-2 key and place the side fence [C] at the maximum paper size position (width = A3). Then press the Start key on the touch panel.

6.8.8 PAPER FEED CLUTCH/RELAY CLUTCH REMOVAL

1. Turn off the main switch, then open the right front door and remove the pushlock [A].
2. Remove the toner collection bottle $[B]$.

NOTE: If the LCT is installed, remove it from the copier.
3. Remove the lower right cover. (Refer to Lower Right Cover Removal.)
4. Remove the vertical transport guide [C].

NOTE: When reinstalling the guide, rest it on the upper and lower pins [D].

5. While holding the shaft $[A]$ with an Allen key, remove the screw $[B]$, then remove the knob [C].
6. Pull out all paper trays, then remove the paper tray unit inner cover [D] (2 screws).
7. Hold the inner vertical transport guide [E] and pull out it (3 screws, 1 connector).
NOTE: When re-installing the inner vertical transport guide, make sure to set the pins [F] of the inner vertical guide into the holes [G] in the main frame.

8. Fully draw out the paper tray.
9. Disconnect the connectors [A].
10. Grasp the tray feed unit [B] and pull it out (2 screws).

NOTE: Before removing the 1st paper feed unit, remove the inner vertical transport guide. Otherwise the 1st paper feed unit may be damaged.
11. Remove the bracket [C] (1 screw).
12. Remove the paper feed clutch [D] (1 hook, 1 connector).
13. Remove the relay clutch [E] (1 connector).

NOTE: When re-installing the clutches, put the stopper [F] of the clutch on the correct hook on the bracket.

6.8.9 BY-PASS FEED MOTOR/CLUTCH REMOVAL

1. Turn off the main switch.
2. Remove the upper rear cover. (Refer to Upper Rear Cover Removal.)
3. Remove the bracket of the CSS board and DRB board (2 screws).
4. Remove the by-pass feed motor [A] (2 screws, 1 connector).
5. Remove the by-pass feed clutch $[B]$ (1 connector, 1 E-ring).

NOTE: When re-installing the by-pass feed clutch, set the clutch pin [C] in the cutout [D] of the stopper.

PAPER FEED

6.8.10 REGISTRATION MOTOR REMOVAL

1. Turn off the main switch.
2. Remove the upper rear cover. (Refer to Cover Removal.)
3. Remove the bracket [A] (2 screws).
4. Remove the fly wheel $[B]$ (3 screws).
5. Remove the bracket [C] with the motor (3 screws, 1 connector).
6. Remove the registration motor [D] (3 screws, 1 timing belt, and 1 spring).

6.8.11 PAPER TRAY UNIT REMOVAL

To facilitate transportation, the upper part of the copier (copier main frame) [A] and the lower part of the copier (paper tray unit) [B] can be separated as follows:

1. Turn off the main switch.
2. Remove the document feeder (2 screws, 1 connector)
3. Remove the front cover [C]. (Refer to Front Cover Removal.)
4. Remove the rear covers [D].
5. Remove the four screws [E].
6. Remove the air tube [F].
7. Disconnect the thirteen connectors [G] (2 screws).
8. Remove the copier main frame [A] from the paper tray unit [B].

NOTE: When re-installing the copier main frame on the paper tray unit, do not pinch the cable between the copier main frame and the paper feed unit.

6.9 FUSING UNIT

6.9.1 FUSING UNIT REMOVAL

1. Turn off the main switch.
2. Open the front door.
3. Remove the stopper [A] (1 screw).
4. While releasing the lever $[B]$, pull out the fusing unit as shown.

NOTE: Hold the bottom of the fusing unit as shown.

6.9.2 FUSING THERMISTOR AND FUSING THERMOFUSE REPLACEMENT

Fusing Thermistor Replacement

1. Remove the fusing unit. (Refer to Fusing Unit Removal.)
2. Remove the knob [A] (1 screw).
3. Remove the two screws that hold the fusing front cover [B].
4. Pull the lever [C], then lower the cover $[B]$ to unhook the fusing unit.
5. Remove the fusing unit upper cover [D] (1 screw).
6. Replace the thermistor [E] (1 screw, 1 connector).

NOTE: When re-assembling the fusing unit, secure the harness in the clamps correctly. Apply a little silicone oil to the point where the thermistor contacts the hot roller.

Fusing Thermofuse Replacement

1. Remove the fusing unit upper cover [D]. (Refer to Fusing Thermistor Replacement.)
2. Disconnect the connector [F].
3. Remove the terminal bracket [G] (2 screws).
4. Disconnect the three connectors $[\mathrm{H}]$.
5. Replace the fusing thermofuse [I] (1 screw).

NOTE: When re-assembling the fusing unit, secure the harness in the clamps correctly.

6.9.3 FUSING LAMP REPLACEMENT

1. Remove the fusing unit. (Refer to Fusing Unit Removal.)
2. Disconnect the connector $[A]$.
3. Remove the terminal bracket $[B]$ (2 screws).
4. Disconnect the front connectors [C] and the rear connectors [D].
5. Remove the front fusing lamp holder [E] (1 screw) and the rear fusing lamp holder [F] (1 screw).
6. Replace the fusing lamps [G].

NOTE: At the rear terminal, make sure to connect the connectors [H] (Blue: 120V Machine, Green: 230V Machine) and white connector (from the thermofuse) [I] in the correct positions on the terminal.

6.9.4 HOT ROLLER REPLACEMENT

1. Remove the fusing lamps. (Refer to Fusing Lamp Replacement.)
2. Lower the fusing exit assembly $[A]$.
3. Remove the upper stay $[B]$ (4 screws).
4. Lower the lever [C] and remove the oil supply unit [D].

5. Lower the pressure spring holders $[A]$ at both sides using a screwdriver $[B]$ as a lever.
6. Remove the front and rear C-rings [C], gear [D], isolating bushings [E], and bearings [F].
NOTE: When installing a new hot roller:
1) Lubricate the inner and outer surfaces of the isolating bushings [E] with BARRIERTA L55/2 grease.
2) Lubricate the fusing drive gears and their shafts with G501grease.
3) Peel off 3 cm (1 inch) from both ends of the protective sheet, and install the new hot roller.
Before applying fusing pressure, remove the rest of the protective sheet.

6.9.5 OIL SUPPLY/CLEANING ROLLER REPLACEMENT

1. Pull out the fusing unit.
2. While lowering the lever [A], remove the oil supply unit $[B]$.
3. Remove the springs [C].
4. Remove the bushings [D].
5. Remove the oil supply roller [E], and the cleaning roller [F].
6. Install the new cleaning roller and oil supply roller. Then reassemble the unit.

NOTE: The lot number [G] of the oil supply roller should be at the front side of the machine.

6.9.6 PRESSURE ROLLER CLEANING ROLLER REPLACEMENT

1. Pull out the fusing unit.
2. Remove the bottom plate $[A]$ (1 screw).
3. Remove the cleaning roller unit $[B]$ (2 screws).
4. Remove the brackets [C] (1 screw each).
5. Remove the bushings [D].
6. Replace the cleaning roller [E].
7. Reassemble the unit.

6.9.7 MAGNET POSITION ADJUSTMENT

NOTE: This is to ensure that the strippers contact the hot roller.

1. Remove the fusing unit. (Refer to Fusing Unit Removal.)
2. Remove the fusing upper cover (1 screw). (Refer to Fusing Thermistor Replacement.)
3. Loosen the 2 screws [A].
4. Tighten the 2 screws $[A]$ while pushing the exit cover $[B]$ in the arrow direction.

NOTE: Do not push the exit cover too firmly because the magnetic power may weaken.
5. Check that the exit cover closes easily by opening and closing it several times.

6.10 PAPER EXIT/DUPLEX UNIT

6.10.1 1ST AND 2ND EXIT SENSOR

1. Open the front door.
2. Pull out the duplex unit.
3. Remove the left cover (see Exterior).
4. Remove the left inner cover $[A]$ (2 screws).
5. Remove the paper exit unit $[B]$ (4 screws, 1 connector).
6. Remove the 1st exit sensor [C] (1 connector).
7. Remove the 2nd exit sensor [D] (1 connector).

6.10.2 JOGGER MOTOR

1. Open the front door.
2. Pull out the duplex unit.
3. Remove the duplex front cover [A] (3 screws).
4. Remove the jogger motor [B] (2 screws, 1 connector).

6.10.3 DUPLEX ENTRANCE SENSOR

1. Open the front door.
2. Pull out the duplex unit.
3. Remove the sensor bracket [A] (2 screws).
4. Remove the duplex entrance sensor $[B]$ (1 connector).

6.10.4 DUPLEX TRANSPORT/DUPLEX FEED CLUTCHES

[B]

1. Open the front door.
2. Pull out the duplex unit.
3. Remove the two pulleys [A] (1 snap ring each).
4. Remove the duplex unit $[B]$.
5. Remove the duplex transport clutch [C] (1 E-ring).
6. Remove the duplex feed clutch [D] (1 E-ring).

6.10.5 DUPLEX TRANSPORT SENSOR 1

1. Open the front door.
2. Pull out the duplex unit.
3. Remove the screw [A].
4. Open the inverter roller unit [B] (pull the jam removal lever E4).
5. Remove the guide [C] (2 screws).
6. Remove duplex transport sensor 1 [D] (1 connector).

6.10.6 DUPLEX TRANSPORT SENSORS 2 \& 3

1. Open the front door.
2. Pull out and remove the duplex unit (see Duplex Transport/Duplex Feed Clutch Removal).
3. Remove the duplex front cover (see Jogger Motor Removal).
4. Remove the cover bracket [A] (2 screws).
5. Remove the center bracket $[B]$ (4 screws, 2 connectors).
6. Remove the jogger fences [C] (1 screw each).
7. Remove the upper duplex cover [D] (4 screws, 1 connector).
8. Remove duplex transport sensor 2 [E] (1 connector).
9. Remove the duplex transport sensor bracket [F] (1 screw).
10. Remove duplex transport sensor 3 [G] (1 connector).

PAPER EXIT/DUPLEX UNIT

6.10.7 INVERTER EXIT CLUTCH

1. Remove the duplex unit.
2. Remove the inverter exit clutch [A] (1 connector).

6.10.8 DUPLEX INVERTER SENSOR

1. Open the front door and pull out the duplex unit.
2. Open the "E4" part [A].
3. Remove the paper guide plate (2 screws, 1 shoulder screw).
4. Remove the duplex inverter sensor $[B]$ (1 bracket, 1 screw, 1 connector).

6.11 BOARDS AND OTHER ITEMS

6.11.1 BICU BOARD

1. Remove the lens block assembly. (Refer to Lens Block Removal.)
2. Remove the original exit tray [A] (3 screws).
3. Remove the upper right cover [B] (4 screws).
4. Remove the right stay $[C]$ (6 screws).
5. Remove the BICU board [D] (7 screws, all connectors).
6. Remove the NV-RAM from the old BICU board and install it on the new board.

6.11.2 I/O BOARD

1. Turn off the main switch.
2. Remove the upper rear cover (Refer to Upper Rear Cover Removal.)
3. Disconnect all connectors from the I/O Board [A].
4. Remove the I/O board [A] (6 screws).

NOTE: If the screws [B] of the I/O board bracket are removed, the I/O board can be swung out.

6.11.3 PSU

1. Turn off the main switch.
2. Remove the upper and lower rear cover. (Refer to Upper and Lower Rear Cover Removal.)
3. Remove the harness clamps $[A]$ (2 screws).
4. Remove the PSU $[B]$ (6 screws, all connectors).

6.11.4 PAPER FEED CONTROL BOARD (PFC)

1. Turn off the main switch.

2. Remove the lower rear cover. (Refer to Lower Rear Cover Removal.)
3. Remove the Paper Feed Control Board [C] (3 screws, all connectors).

6.12 COPY IMAGE ADJUSTMENTS: PRINTING/SCANNING

NOTE: 1) You need to perform these adjustment(s) after replacing any of the following parts:

- Scanner Wires
- Lens Block
- Scanner Motor
- Polygon Mirror Motor
- Paper Side Fences
- Memory All Clear

2) For more details about accessing SP modes, refer to section 4.

6.12.1 PRINTING

NOTE: 1) Make sure the paper is installed correctly in each paper tray before you start these adjustments.
2) Use the Trimming Area Pattern (SP2-902-3, No. 10) to print the test pattern for the following procedures.
3) Set SP 2-902-3 to 0 again after completing these printing adjustments.

Registration - Leading Edge

1. Check the leading edge registration using the Trimming Area Pattern, and adjust it using SP1-001 if necessary. The specification is: $3 \pm 2 \mathrm{~mm}$.

Registration - Side-to-Side

Do the parallel image adjustment after the side-to-side registration adjustment.

Using SP Mode

1. Check the side-to-side registration for each paper feed station using the Trimming Area Pattern, and adjust them using the following SP modes if necessary.

	SP mode	Specification
Tray 1	SP1-002-1	$2 \pm 1.5 \mathrm{~mm}$
Tray 2	SP1-002-2	
Tray 3	SP1-002-3	
Duplex Tray	SP1-002-5	
By-pass Tray	SP1-002-6	
LCT	SP1-002-7	

A: Leading Edge Registration
B: Side-to-side Registration

Mechanical Adjustment

NOTE: This adjustment is especially necessary if the punched hole position varies between trays.

Tray 1

1. Loosen the screws [A].
2. Reposition the tray and tighten the screws [A].

Tray 2

1. Loosen the screw [A].
2. Reposition the positioning plate $[B]$ and tighten the screw $[A]$.

Tray 3

1. Loosen the 6 screws [A].
2. Reposition the side fences $[B]$ and support plate $[C]$.
3. Tighten the 6 screws.

By-pass Tray

1. Loosen the screw [A].
2. Reposition the tray $[B]$ and tighten the screw $[A]$.

Blank Margin

NOTE: If the leading edge/side-to-side registration can not be adjusted within the specifications, adjust the leading/left side edge blank margin.

1. Check the trailing edge and right side edge blank margins using the Trimming Area Pattern, and adjust them using the following SP modes if necessary.

	SP mode	Specification
Trailing edge	SP2-101-2	More than 1.0 mm
Right edge	SP2-101-4	More than 0.5 mm
Leading edge	SP2-101-1	$3 \pm 2 \mathrm{~mm}$
Left edge	SP2-101-3	$2 \pm 1.5 \mathrm{~mm}$

A: Trailing Edge Blank Margin
B: Right Edge Blank Margin
C: Leading Edge Blank Margin
D: Left Edge Blank Margin

6.12.2 PARALLELOGRAM IMAGE ADJUSTMENT

Do the following procedure if a parallelogram type image is printed while using a trimming area pattern to adjust the printing registration or the printing margin.

NOTE: 1) The following procedure should be done after adjusting the side-to-side registration for each paper tray.
2) This adjustment is only effective for a parallelogram image caused by the printer. It should not be applied if the skew is caused by the scanner.

1. Check whether a parallelogram image appears as shown on the next page when printing a trimming area pattern (SP2-902-3, No. 10). If it appears, do the following.
2. Remove the exposure glass (see Replacement and Adjustment - Exposure Glass Removal).
3. Remove the three caps $[A]$.
4. Make a note of the position of the laser unit using the scale through the hole [B].
5. Loosen the three screws [C] that hold the laser unit.

[B]

6. Adjust the laser unit position using a flat screwdriver [A] as shown.

If the right side of the trimming area pattern is down by about 1 mm as shown [B], the laser unit should be rotated about one tick mark in the direction of the black arrow as shown [C]. If the opposite side is down, adjust in the opposite direction.
NOTE: The laser unit rotates around the point [D].
7. Tighten the three screws to secure the laser unit.
8. Replace the caps and exposure glass.
9. Print the trimming area pattern to check the image. If it is still skewed, repeat steps 2 to 8.

6.12.3 SCANNING

NOTE: 1) Before doing the following scanner adjustments, check the printing registration/side-to-side adjustment and the blank margin adjustment.
2) Use an OS-A3 test chart to perform the following adjustments.

Registration: Platen Mode

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the leading edge and side-to-side registration, and adjust them using the following SP modes if necessary.

	SP mode
Leading Edge	SP4-010
Side-to-side	SP4-011

A: Leading Edge Registration
B: Side-to-side Registration

Magnification

NOTE: Use an OS-A3 test chart to perform the following
 adjustment.

Scanner Sub Scan Magnification

A: Sub Scan Magnification

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the magnification ratio, and adjust it using the following SP mode if necessary. The specification is $\pm 1 \%$.

	SP mode
Scanner Sub Scan Magnification	SP4-008

\Rightarrow 6.12.4 ADF IMAGE ADJUSTMENT

Registration

A: Leading Edge Registration
B: Side-to-side Registration

NOTE: Make a temporary test chart as shown above left using A3/DLT paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the registration, and adjust using the following SP modes if necessary.

	SP mode
Side-to-side Registration	SP6-006-1
Leading Edge Registration (Thin original mode)	SP6-006-2
Leading Edge Registration (Single- sided/Duplex: front)	SP6-006-3
Leading Edge Registration (Duplex: rear)	SP6-006-4

6.13 TOUCH SCREEN CALIBRATION

After doing a memory all clear or when the touch panel detection mechanism is not working properly, calibrate the touch screen as follows.

1. Press the following keys in sequence to enter touch screen calibration mode.

\triangle CAUTION

Do not execute any of the other items in the self diagnostic menu.
2. The "Self Diagnostics Menu" screen will appear. Press the \# key to select the "Touch Screen Adj." Mode.

3. The "Touch Screen Adj." calibration screen will appear. Touch the upper left corner then the lower right corner of the panel using a pointed (but not sharp!) tool.
4. Touch a few spots on the LCD touch panel, and confirm that the marker (a small circle) appears on the screen at exactly the same location as where it is touched. If it does not, touch "Cancel" on the adjustment screen. Then repeat the calibration procedure.
5. Touch "Ok" on the adjustment screen.
6. Touch "[q] Exit" and "Execute" to exit the self diagnostics menu.

TROUBLESHOOTING

7. TROUBLESHOOTING

7.1 SERVICE CALL CONDITIONS

7.1.1 SUMMARY

There are 4 levels of service call conditions.

Level	Definition	Reset Procedure
A	To prevent the machine from being damaged, the SC can only be reset by a service representative (see the note below). The copier cannot be operated at all.	Enter SP mode, then turn the main power switch off and on.
B	The SC can be reset by turning the main power switch off and on if the SC was caused by incorrect sensor detection.	Turn the operation switch or main power switch off and on. A level B' SC can only be reset by turning the main power switch off and on.
C	The copier can be operated as usual except for the unit related to the service call.	Turn the operation switch off and on.
D	The SC history is updated. The machine can be operated as usual.	The SC will not be displayed. All that happens is that the SC history is updated.

NOTE: 1) If the problem concerns electrical circuit boards, first disconnect then reconnect the connectors before replacing the PCBs.
2) If the problem concerns a motor lock, first check the mechanical load before replacing motors or sensors.
3) When a Level A or B SC occurs while in an SP mode, the display does not indicate the SC number. If this occurs, check the SC number after leaving the SP mode. This does not apply to Level B' codes.

7.1.2 SC CODE DESCRIPTIONS

SC101: Exposure lamp error

- Definition - [B]

The standard white level was not detected properly when scanning the white plate.

- Possible cause -
- Exposure lamp defective
- Lamp regulator defective
- Exposure lamp connector defective
- Dirty standard white plate
- Dirty scanner mirror or scanner mirror out of position
- SBU board defective
- SBU connector defective
- Lens block out of position

SC120: Scanner home position error 1

-Definition- [B]
The scanner home position sensor does not detect the on condition during initialization or copying.

- Possible causes -
- Scanner home position sensor defective
- Scanner motor defective
- Scanner motor drive board defective
- Scanner home position sensor connector defective
- Scanner drive motor connector defective

SC121: Scanner home position error 2

-Definition- [B]
The scanner home position sensor does not detect the off condition during initialization or copying.

- Possible causes -
- Scanner home position sensor defective
- Scanner drive motor defective
- Scanner motor drive board defective
- Scanner home position sensor connector defective
- Scanner drive motor connector defective

SC124: Scanner motor encoder signal error

-Definition- [B]
No encoder signal from the scanner motor
-Possible cause-

- Scanner motor connector defective
- Scanner motor defective
- MCU defective
- Scanner wire, timing belt, pulley out of position
- PSU defective

SC125: Scanner motor speed error 1

-Definition- [D]
The scanner stops before the scanner HP sensor is on when returning.
The scanner speed when the scanner HP sensor turns on is slower than the specified speed.
-Possible cause-

- Scanner motor defective
- MCU defective
- Too much load on scanner drive

SC126: Scanner motor speed error 2

-Definition- [B]
The scanner overruns the scanner HP sensor by more than 10 mm when returning.
-Possible cause-

- Scanner motor defective
- MCU defective
- Too small load on scanner drive

SC127: Scanner motor encoder rotating direction error

-Definition- [B]

The scanner moves in the opposite direction from the instructed direction when initializing.
-Possible cause-

- Scanner motor defective
- MCU defective

SC128: Scanner motor start error

-Definition- [D]
The scanner motor speed does not reach the target speed until starting to read the original.
-Possible cause-

- Scanner motor defective
- MCU defective
- PSU defective
- Too much load on scanner drive

SC129: Scanner motor speed control error

-Definition- [D]
The scanner speed is out of standard during scanning.
-Possible cause-

- Scanner motor defective
- PSU defective
- MCU defective
- Scanner drive defective

SC130: SBU error

-Definition- [B]
When the main switch is turned on, the BICU cannot receive the correct signal from the SBU.
-Possible cause-

- SBU defective
- BICU defective
- Cable between SBU and BICU defective

SC300: Charge corona output error 1

-Definition- [B]
The feedback voltage from the charge corona unit is too high.

- Possible causes -
- Charge P.P. defective
- Poor charge corona unit connection

SC301: Charge corona output error 2

-Definition- [B]
The control PWM for the charge corona unit is too high.

- Possible causes -
- Charge P.P. defective
- Poor charge corona unit connection

SC302: Charge corona output error 3

-Definition- [B]
The control PWM for the charge grid is too high.

- Possible causes -
- Charge P.P. defective
- Poor charge corona unit connection

SC303: Charge corona output error 4

-Definition- [B]
The feedback voltage from the charge grid is too high.

- Possible causes -
- Charge P.P. defective
- Poor charge corona unit connection

SC305: Charge corona wire cleaner error 1

-Definition- [B]
The charge corona wire cleaner does not return to its home position.

- Possible causes -
- Charge corona wire cleaner motor defective
- Charge P.P. defective
- IOB defective

SERVICE CALL CONDITIONS

SC306: Charge corona wire cleaner error 2

-Definition- [B]
The charge corona wire cleaner motor connector is not connected.

- Possible causes -
- The charge corona wire cleaner motor connector is not connected.

SC310: Potential sensor error 1

Definition- [D]
When calibrating the drum potential sensor at the process control initial setting, the drum potential sensor output voltage is out of specification.

- Possible causes -
- Potential sensor defective
- Poor connection between the potential sensor and the I/O board (IOB)
- IOB defective
- Poor connection between the drum unit and the I/O board (IOB)
- Development power pack defective

SC311: Potential sensor error 2

Definition- [D]
When calibrating the drum potential sensor at the process control initial setting, the rate of change of drum potential sensor output with voltage on the drum is out of specification.

- Possible causes -
- Potential sensor defective
- Poor connection between the potential sensor and the I/O board (IOB)
- IOB defective
- Poor connection between the drum unit and the I/O board (IOB)
- Development power pack defective

SC312: Potential sensor error 4

Definition- [D]
When adjusting the drum potential (VD) at the process control initial setting, the drum potential sensor detects that V_{D} is more than V_{G} (grid voltage).

- Possible causes -
- Potential sensor defective
- Poor connection between the potential sensor and the I/O board (IOB)
- IOB defective
- Poor connection between the drum unit and the I/O board (IOB)
- Development power pack defective
- Dirty or worn charge corona wire

SC314: Potential sensor error 5

Definition- [D]
When adjusting the drum potential $\left(\mathrm{VH}_{\mathrm{H}}\right)$ for LD power adjustment during the process control initial setting, the first time the V_{H} pattern is made, the drum potential sensor detects that V н is more than 500 V .

- Possible causes -
- Potential sensor defective
- Poor connection between the potential sensor and the I/O board (IOB)
- IOB defective
- Poor connection between the drum unit and the I/O board (IOB)
- LD unit defective

SC321: No laser writing signal (F-GATE) error 1

- Definition- [B]

The laser writing signal (F-GATE) does not go to LOW for more than 15 seconds after the copy paper reaches the registration sensor.

- Possible causes -
- BICU board defective
- Poor connection of the printer controller
- Printer controller defective

SERVICE CALL CONDITIONS

SC322: 1st laser synchronization error

-Definition- [B']
The 1st laser synchronization signal cannot be detected by the main scan synchronization detector board even if the laser diodes are activated.

- Possible causes -
- Poor connection between the laser synchronization detector board and the LD unit
- Laser synchronization detector board out of position
- Laser synchronization detector board defective
- LD unit defective

SC323: LD drive current over

-Definition- [B']
The LD drive board applies more than 110 mA to the LD.

- Possible causes -
- LD unit defective (not enough power, due to aging)
- Poor connection between the LD unit and the BICU board
- BICU defective

SC326: 2nd laser synchronization error

-Definition- [B]

The 2nd laser synchronization signal cannot be detected by the main scan synchronization detector board even if the laser diodes are activated.

- Possible causes -
- Poor connection between the laser synchronization detector board and the LD unit
- Laser synchronization detector board out of position
- Laser synchronization detector board defective
- LD unit defective

SC327: LD unit home position error 1

-Definition- [B']
The LD unit home position sensor does not detect an on condition when the LD unit moves to its home position.

- Possible causes -
- LD unit home position sensor defective
- LD positioning motor defective

LD unit movement blocked because of incorrect connector routing

SC328: LD unit home position error 2

-Definition- [B']
The LD unit home position sensor does not detect an off condition when the LD unit moves from its home position.

- Possible causes -
- LD unit home position sensor defective
- LD positioning motor defective
- LD unit movement blocked because of incorrect connector routing

SC329: LD unit home position error 3

-Definition- [B]
When the LD unit moves to switch the laser beam pitch (except for initial movement at adjustment), the LD unit HP sensor turns on before the movement reaches the adjusted value.

-Possible cause-

- When the main switch is on: SP2-109-3 or SP2-109-4 is not done after SP5801 is performed.
- While printing: The LD unit does not move so well because of an unexpected failure, such as the cable being pinched somewhere.
- LD unit defective

SC330: LD unit no initial setting

-Definition- [B]
The main switch is on or a printing/copying job starts without doing SP2-109-3 or SP2-109-4 after SP5-801 is performed.
-Possible cause-

- SP2-109-3 or SP2-109-4 is not done after SP5-801 is performed.

SERVICE CALL CONDITIONS

SC331: LD unit home position error 4

-Definition- [B]
When the LD unit moves to switch the laser beam pitch, the LD unit HP sensor does not turn on, even when the expected time for reaching the home position comes, according to the data for the present position stored in NVRAM.
-Possible cause-

- The LD unit does not move so well because of an unexpected failure, such as the cable being pinched somewhere.
- LD unit defective
- HP sensor defective
- NVRAM defective

SC332: LD unit present position error

-Definition- [B]
When the LD unit moves to switch the laser beam pitch, the data for the present position stored in NVRAM is out of the adjustment range.
-Possible cause-

- The LD unit does not move so well because of an unexpected failure, such as the cable being pinched somewhere.
- LD unit defective
- HP sensor defective
- NVRAM defective

SC335: Polygonal mirror motor error 1

-Definition- [B]
The XSCRDY signal does not become low within 20 seconds after the polygonal mirror motor turns on or the polygon motor speed is changed.
-Possible cause-

- Poor cable connection to the polygonal mirror motor driver.
- Polygonal mirror motor (driver) defective
- BICU defective

SC336: Polygonal mirror motor error 2

-Definition- [B]

The XSCRDY signal does not become high within 20 seconds after the polygonal mirror motor turns off.
-Possible cause-

- Poor cable connection to the polygonal mirror motor driver.
- Polygonal mirror motor (driver) defective
- BICU defective

SC337: Polygonal mirror motor error 3

-Definition- [B]
The XSCRDY signal becomes high while the polygonal mirror motor turns on, even though there was no demand for either turning off the motor or changing the motor speed.
-Possible cause-

- Poor cable connection to the polygonal mirror motor driver.
- Polygonal mirror motor (driver) defective
- BICU defective

SC338: Polygonal mirror motor error 1

-Definition- [B]
The XSCRDY signal does not become stable within 20 seconds after the polygonal mirror motor turns on or off or the polygon motor speed is changed.
-Possible cause-

- Poor cable connection to the polygonal mirror motor driver.
- Polygonal mirror motor (driver) defective
- BICU defective

SERVICE CALL CONDITIONS

SC340: TD sensor output error

-Definition- [C]
The TD sensor output voltage (Vt), which is measured during each copying process, is one of the following 10 times consecutively.

1) $\mathrm{Vt}=0.5$ volts or lower
2) $\mathrm{Vt}=4.0$ volts or higher
-Possible cause-

- TD sensor defective
- Poor connection between the TD sensor and the I/O board.
- I/O board defective

In this error condition, the toner supply is controlled using pixel count and Vsp/Vsg.

SC341: TD sensor adjustment error 1

-Definition- [B]
During the TD sensor auto adjustment, the TD sensor output voltage (Vt) is 2.5 volts or higher even though the control voltage is set to the minimum value (PWM = 0)

Note: When this error occurs, the indication of SP2-906-1 is 0.00 V .
-Possible cause-

- TD sensor defective
- Poor connection between the TD sensor and the I/O board.
- I/O board defective

Note: In this error condition, the toner supply is controlled using pixel count and Vsp/Vsg.

SC342: TD sensor adjustment error 2

-Definition- [B]
During the TD sensor auto adjustment, the TD sensor output voltage (Vt) does not come in the target range ($2.5 \pm 0.1 \mathrm{~V}$) within 20 seconds.

Note: When this error occurs, the indication of SP2-906-1 is 0.00 V .
-Possible cause-

- TD sensor defective
- Poor connection between the TD sensor and the I/O board.
- I/O board defective

Note: In this error condition, the toner supply is controlled using pixel count and Vsp/Vsg.

SC345: Development bias leak

-Definition- [B]
A development bias leak signal is detected.

- Possible causes -
- Poor connection between the development bias terminal and the development P.P.
- Development P.P. defective

SC350: ID sensor error 1

-Definition- [D]
One of the following ID sensor output voltages was detected twice consecutively when checking the ID sensor pattern.

1) $\mathrm{Vsp} \geq 2.5 \mathrm{~V}$
2) $\mathrm{Vsp}=0 \mathrm{~V}$

- Possible causes -
- ID sensor defective
- ID sensor connector defective
- Poor ID sensor connector connection
- I/O board (IOB) defective
- Charge or development power pack defective
- Dirty ID sensor
- Defect at ID sensor pattern writing area of the drum

SERVICE CALL CONDITIONS

SC351: ID sensor error 2

-Definition- [D]
One of the following ID sensor output voltages was detected twice consecutively when checking the ID sensor pattern.

1) $\mathrm{Vsg}<2.5 \mathrm{~V}$
2) $\mathrm{Vsg}=0 \mathrm{~V}$
3) The ID sensor output voltage is 5.0 V and the PWM signal input to the ID sensor is 0 when checking the ID sensor pattern

- Possible causes -
- ID sensor defective
- ID sensor connector defective
- Poor ID sensor connector connection
- I/O board (IOB) defective
- Charge or development power pack defective
- Dirty ID sensor
- Defect at the ID sensor pattern writing area of the drum

SC352: ID sensor error 3

-Definition- [D]
For 2 s during the ID sensor pattern check, the ID sensor pattern edge voltage is not 2.5 V .

- Possible causes -
- ID sensor defective
- ID sensor connector defective
- Poor ID sensor connector connection
- I/O board (IOB) defective
- Charge or development power pack defective
- Dirty ID sensor
- Defect at the ID sensor pattern writing area of the drum

SC353: ID sensor error 4

-Definition- [D]
One of the following ID sensor output voltages is detected at ID sensor initialization.

1) $\mathrm{Vsg}<4.0 \mathrm{~V}$ when the maximum PWM input (255) is applied to the ID sensor.
2) $\mathrm{Vsg} \geq 4.0 \mathrm{~V}$ when the minimum PWM input (0) is applied to the ID sensor.

- Possible causes -
- ID sensor defective
- ID sensor connector defective
- Poor ID sensor connector connection
- I/O board (IOB) defective
- Charge or development power pack defective
- Dirty ID sensor
- Defect at the ID sensor pattern writing area of the drum

SC354: ID sensor error 5

-Definition- [D]
Vsg falls out of the adjustment target ($4.0 \pm 0.2 \mathrm{~V}$) during Vsg checking.

- Possible causes -
- ID sensor defective
- ID sensor connector defective
- Poor ID sensor connector connection
- I/O board (IOB) defective
- Charge or development power pack defective
- Dirty ID sensor
- Defect at the ID sensor pattern writing area of the drum

SC360: Hard disk detection error 1

-Definition- [B]
When the main switch turns on, the machine does not detect the connection signal from the HDD.

-Possible cause-

- Poor connection between the HDD and BICU
- Poor connection on the dc power connector to the HDD
- HDD defective
- BICU defective

SERVICE CALL CONDITIONS

SC362: Hard disk detection error 2

-Definition- [B]
When the power switch on the operation panel turns on, the machine does not detect the connection signal from the HDD.
-Possible cause-

- Poor connection between the HDD and BICU
- Poor connection on the dc power connector to the HDD
- HDD defective
- BICU defective

SC364: Hard disk drive error

-Definition- [B]
The image data stored in the HDD cannot be output properly.

- Possible causes -
- When this SC occurs only once, this problem will be solved after turning the main power switch off and on.
- When this SC occurs while performing SP4-911-1 (HDD media check), it can be cured by doing SP4-911-2 (HDD formatting).
- HDD defective

SC366: Hard disk bad sector maximum

-Definition - [B]
The number of bad sectors on the HDD is over the maximum number.
-Possible Cause-

- HDD defective
- NVRAM defective

SC367: Hard disk (HDD:R) bad sector maximum

-Definition - [B]
The number of bad sectors on the HDD is over the maximum number.
-Possible Cause-

- HDD defective
- NVRAM defective

SC370: IMAC (image compression IC) input FIFO error
-Definition- [B]
An input FIFO error occurs while inputting image processing in the ASIC (IMACB), which handles image compression and image data transmission.
-Possible cause-

- BICU defective

SC372: IMAC (image compression IC) output FIFO error

-Definition- [B]
An output FIFO error occurs while outputting image processing in the ASIC (IMACB), which handles image compression and image data transmission.
-Possible cause-

- BICU defective

SC374: IMAC (image compression IC) modes setting error

-Definition- [B]
A mode setting error occurs by changing settings during image processing in the ASIC (IMACB), which handles image compression and image data transmission.
-Possible cause-

- BICU defective

SC376: Data transmission error

-Definition-
A data transmission error occurred at the ASIC which controls data transmission and compression during connecting mode.
-Possible cause-

- Defective connection board
- Defective or disconnected interface cable
- Defective SBICU

SC380: Data transmission time out (video input)

-Definition- [B]
Data input to the IC which controls data transfer and compression is not completed within 20 seconds.
-Possible cause-

- BICU defective
- SBU defective
- Printer controller defective

SC382: Data transmission time out (video output)

-Definition- [B]
Data output from the IC which controls the data transfer and compression is not completed within 20 seconds.
-Possible cause-

- BICU defective
- LD board defective

SC384: Data transmission time out (connect copy)

-Definition-
Data transmission to the memory does not finish properly within 20 seconds after the start of data transmission.

-Possible cause-

- Defective connection board
- Defective or disconnected interface cable
- Defective SBICU

SC386: Data transmission time out (Hard disk write)

-Definition- [B]
Data input to the IC which controls the data transfer and compression is not completed with in 20 seconds.
-Possible cause-

- BICU defective
- SBU defective
- Printer controller defective

SC390: CRC error

-Definition-
Electrical noise causes sent data and received data to differ. A CRC check can detect this error.

-Possible cause-

- Defective connection board
- Defective or disconnected interface cable

SC391: Image storage address error

-Definition-
The SBICU receives an image data output request signal for data that is not stored in memory.
-Possible causes-

- SBICU defective

SC400: Transfer roller leak error

-Definition- [B]
A transfer roller current leak signal is detected.

- Possible causes -
- Transfer P.P. defective
- Poor connection between the transfer current terminal and the transfer P.P.

SC401: Transfer roller open error

-Definition- [B]
The transfer roller current feedback signal is not detected.

- Possible causes -
- Transfer P.P. defective
- Poor connection between the transfer current terminal and the transfer P.P.

SC430: Quenching lamp error

-Definition- [D]
When finishing the process control initial setting, the drum potential which is detected by the drum potential sensor is out of the normal range.

- Possible causes -
- Quenching lamp defective
- Poor connection between quenching lamp and charge power pack

SERVICE CALL CONDITIONS

SC440: Main motor lock

-Definition- [B]
The main motor lock signal remains low for 2 seconds while the main motor is on.

- Possible causes -
- Too much load on the drive mechanism
- Main motor defective

SC441: Development motor lock

-Definition- [B]
The development motor lock signal remains low for 2 seconds while the development motor is on.

- Possible causes -
- Too much load on the drive mechanism
- Development motor defective

SC493: Exhaust fan motor lock

-Definition- [B]
The exhaust fan motor lock signal remains high for 5 seconds while the exhaust fan motor is on.
-Possible cause-

- Exhaust fan motor defective
- Too much load on the fan

SC494: Fusing exhaust fan motor lock

-Definition- [B]
The fusing exhaust fan motor lock signal remains high for 5 seconds while the fusing exhaust fan motor is on.

-Possible cause-

- Exhaust fan motor defective
- Too much load on the fan

SC495: Toner recycling unit error

-Definition- [B]

The toner recycling sensor output signal does not change within 500 ms after the main motor turns on.

- Possible causes -
- Too much load on the drive mechanism
- Toner end sensor detective
- Poor connection on the sensor connector

SC496: Toner collection bottle error

-Definition- [B]
The toner collection bottle set switch remains off when the front door is closed.

- Possible causes -
- No toner collection bottle
- Poor connection on the switch connector

SC497: Toner recycling motor error

-Definition- [B]
The toner recycling motor connector set signal remains off for 1 second.

- Possible causes -
- Toner recycling motor defective
- Poor connection on the motor connector

SC501: 1st tray lift malfunction

-Definition- [D]

- The lift sensor is activated before the pick-up solenoid is activated when the tray is pushed in.
- The lift sensor is not activated within 10 seconds after the tray lift motor starts lifting the bottom plate.
- The lift sensor remains activated for 1.5 seconds after the tray lift motor starts lowering the bottom plate.
- The tray down sensor is not activated within 10 seconds after the tray lift motor starts lowering the bottom plate because of a paper end condition.
-Possible cause-
- Tray lift motor defective or poor connection
- Lift sensor defective or poor connection
- Tray down sensor defective or poor connection
- Pick-up solenoid defective or poor connection

SERVICE CALL CONDITIONS

SC502: 2nd tray lift malfunction

SC503: 3rd tray lift malfunction

-Definition- [D]

- The lift sensor is activated before the pick-up solenoid is activated when the tray is pushed in.
- The lift sensor is not activated within 10 seconds after the tray lift motor starts lifting the bottom plate.
- The lift sensor remains activated for 1.5 seconds after the tray lift motor starts lowering the bottom plate.
-Possible cause-
- Tray lift motor defective or poor connection
- Lift sensor defective or poor connection
- Pick-up solenoid defective or poor connection

SC505: LCT tray malfunction (optional LCT)

-Definition- [D]

- The lift sensor is not activated within 60 seconds after the tray lift motor starts lifting the bottom plate.
- The tray down sensor is not activated within 60 seconds after the tray lift motor starts lowering the bottom plate.
- The lift sensor and tray down sensor are activated at the same time.
- The lift sensor is not activated even when the pick-up roller is still lifted up by the top of paper.
-Possible cause-
- Tray lift motor defective or poor connection
- Lift sensor defective or poor connection
- Pick-up solenoid defective or poor connection
- Paper end sensor defective

SC510: Paper feed motor locks

-Definition- [D]

- The lock signal from the paper feed motor is detected for $3,000 \mathrm{~ms}$ during rotation.
- Poor connection is checked once when the main switch is on.
-Possible cause-
- Paper feed motor defective or poor connection
- Too much load on the drive mechanism
- Lower front door safety switch defective
- Lower front door safety switch bracket deformation

SC511: LCT motor lock (optional LCT)

-Definition- [D]

- The lock signal from the LCT transport motor is detected for 50 ms during rotation. (The detection period does not include 300 ms of the starting up.)
- Poor connection is checked once when the main switch is on.
-Possible cause-
- LCT transport motor defective or poor connection
- Too much load on the drive mechanism

SC515: Tandem rear fence motor error

-Definition- [D]

- When the tray is pushed in, the rear fence return sensor and the rear fence HP sensor are already on.
- The rear fence return sensor is not on within 10 seconds after the rear fence motor starts.
- The rear fence HP sensor is not on within 10 seconds after the rear fence starts moving to the home position.
-Possible cause-
- Rear fence motor defective or poor connection
- Too much load on the drive mechanism
<Note> The other trays are still available to use.

SC516: Tandem side fence motor error

Japanese version only

SC520: Duplex jogger motor error 1

-Definition- [C]
When the jogger fence moves to the home position, the jogger HP sensor does not turn on even if the jogger fence motor has moved the jogger fence 153.5 mm .

- Possible causes -
- Jogger fence motor defective or poor connection
- Too much load on the drive mechanism

SERVICE CALL CONDITIONS

SC521: Duplex jogger motor error 2

-Definition- [C]
When the jogger fence moves from the home position, the jogger fence HP sensor does not turn off even if the jogger motor has moved the jogger fence 153.5 mm .

- Possible causes -
- Jogger fence motor defective or poor connection
- Too much load on the drive mechanism

SC530: By-pass feed motor lock

-Definition- [C]

A by-pass feed motor lock signal is detected for more than 2 seconds during rotation.

- Possible causes -
- By-pass feed motor defective or poor connection
- Too much load on the drive mechanism

SC531: Fusing/duplex motor lock

-Definition- [C]
A fusing/duplex motor lock signal is detected for more than 2 seconds during rotation.

- Possible causes -
- Fusing/duplex motor defective or poor connection
- Too much load on the drive mechanism

SC541: Fusing thermistor open

-Definition- [A]
The fusing temperature detected by the thermistor is below $7^{\circ} \mathrm{C}$ for 35 seconds.

- Possible causes -
- Fusing thermistor defective or out of position
- Poor thermistor terminal connection

SC542: Fusing temperature warming-up error

-Definition- [A]
The fusing temperature does not reach the fusing standby temperature within 5 minutes after the main power switch is turned on.

- Possible causes -
- Fusing thermistor defective or out of position
- Fusing lamp open
- Fusing thermofuse open
- BICU defective
- Power supply board defective
- Poor fusing unit connection

SC543: Fusing overheat error 1 (software)

-Definition- [A]
A fusing temperature of over $230^{\circ} \mathrm{C}$ is detected for 5 seconds by the fusing thermistor.

- Possible causes -
- Fusing thermistor defective
- BICU defective
- I/O board (IOB) defective

SC544: Fusing overheat error 1 (hardware)

-Definition- [A]
The BICU detects an overheat error even if the protection in the software does not work.

-Possible cause-

- Fusing thermistor defective
- BICU defective
- I/O board defective

SERVICE CALL CONDITIONS

SC545: Fusing overheat error 2

-Definition- [A]
The fusing lamp stays on at full power for 45 seconds while in the stand-by condition after warming-up is completed.

- Possible causes -
- Fusing thermistor out of position

SC546: Fusing ready temperature malfunction

-Definition- [A]

- A change in the fusing temperature by $20^{\circ} \mathrm{C}$ or more compared with the temperature of 1 second ago occurs 2 times consecutively.
- A change in the fusing temperature by $20^{\circ} \mathrm{C}$ or more compared with the temperature of 1 second ago occurs 3 times consecutively for 1 minute.
-Possible cause-
- Poor connection on the thermistor
- Poor connection on the fusing unit connector

SC547: Zero cross signal malfunction

-Definition- [B]

- When the main switch is on, the frequency measured by the number of zero cross signals for 500 ms is larger than 66 Hz or smaller than 45 Hz .
- It is measured 3 times consecutively for 500 ms that the interval between a zero cross signal and the next one is 7.5 ms or shorter.
-Possible cause-
- Power supply unit defective
- Noise on the ac power line

SC590: Toner collection motor error

-Definition- [B]
The toner collection motor sensor output does not change for 3 seconds while the toner collection motor is on.

- Possible causes -
- Toner collection motor defective
- Too much load on the drive mechanism
- Poor toner collection motor connector connection
- IOB defective
- Toner collection motor sensor defective

SC601: Communication error between BICU and MCU

-Definition- [B']
The BICU cannot communicate with the MCU board properly.

- Possible causes -
- Poor connection between the BICU and MCU
- MCU defective
- BICU defective

SC602: Communication error between BICU and HDD controller

-Definition- [B]
The BICU cannot communicate with the HDD controller properly.

- Possible causes -
- Poor connection between the BICU board and HDD control board
- BICU board defective

SC620: Communication error between BICU and ADF 1

-Definition- [B]
The TXD and RXD signals between BICU and ADF main board do not stabilize.

- Possible causes -
- Poor connection between the BICU board and ADF main board
- Noise on interface cable

SC621: Communication error between BICU and ADF 2

-Definition- [B]
The TXD and RXD signals between BICU and ADF main board do not stabilize.

- Possible causes -
- Poor connection between the BICU board and ADF main board
- ADF main board defective
- BICU board defective

SC622: Communication error between BICU and ADF 3
-Definition- [B]
Software error after abnormal user operation.

- Possible causes -
- Software error

SC625: Communication error between BICU and finisher 1

-Definition- [B]
The acknowledge signal does not come back from the finisher or mailbox to the BICU board 3 times consecutively.
-Possible cause-

- Finisher or mailbox main board defective
- BICU board defective
- Poor connection between BICU board and finisher or mailbox main board
- Noise on the interface cable

SC626: Communication error between BICU and finisher 2

-Definition- [B]
The BICU board receives a low signal even when the communication line is connected between the BICU board and the finisher or mailbox.
-Possible cause-

- Finisher or mailbox main board defective
- BICU board defective
- Poor connection between BICU board and finisher or mailbox main board
- Noise on the interface cable

SC630: CSS (RSS) communication error between line adapter and CSS center Japan only

SC635: Communication error between BICU and paper feed board 1

-Definition- [B]
The acknowledge signal does not come back from the paper feed board to the BICU board 3 times consecutively.
-Possible cause-

- Paper feed board defective
- BICU board defective
- Poor connection between BICU board and paper feed board
- Noise on the interface cable

SC636: Communication error between BICU and paper feed board 2

-Definition- [B]
The BICU board receives a low signal even when the communication line is connected between the BICU board and the paper feed board.
-Possible cause-

- Paper feed board defective
- BICU board defective
- Poor connection between BICU board and paper feed board
- Noise on the interface cable

SC700: ADF original pick-up malfunction 1

-Definition- [B]
The pick-up roller H.P sensor signal does not change after the pick-up motor has turned on.

- Possible causes -
- Pick-up roller H.P sensor defective
- Pick-up motor defective
- Timing belt out of position
- ADF main board defective

SC701: ADF original pick-up malfunction 2

-Definition- [B']
The pick-up roller HP sensor is not activated even after the pick-up motor turns on.
-Possible cause-

- Pick-up roller HP sensor defective
- Pick-up motor defective
- ADF main board defective

SC702: ADF feed-in motor lock

-Definition- [B']

1) The encoder signal cannot be detected within a specific time when the feedin motor is on.
2) The pulse signal from the length sensor is not detected within a specific time when the feed-in motor is on.
-Possible cause-

- Feed-in motor defective
- Length sensor defective
- Cable for length sensor or feed-in motor defective
- Main board defective

SC703: ADF transport motor lock

-Definition- [B']
The encoder signal cannot be detected within a specific time when the transport motor is on.
-Possible cause-

- Transport motor defective
- Cable for transport motor defective
- Main board defective

SC704: ADF feed-out motor lock

-Definition- [B']
The encoder signal cannot be detected within a specific time when the feed-out motor is on.
-Possible cause-

- Feed-out motor defective
- Cable for feed-out motor defective
- Main board defective

SC705: ADF bottom plate motor error

-Definition- [B']

1) The bottom plate position sensor does not turn on when the bottom plate motor lifts the bottom plate.
2) The bottom plate HP sensor does not turn on when the bottom plate motor lowers the bottom plate.
-Possible cause-

- Bottom plate position sensor defective
- Bottom plate HP sensor defective
- Bottom plate motor defective
- Main board defective

SC720: Finisher transport motor error

-Definition- [B]
The encoder pulse of the transport motor does not change state (high/low) within a certain period of time.

-Possible cause-

- Finisher transport motor defective or poor connection
- Finisher main board defective
- Too much load on drive mechanism

SC722: Finisher jogger motor error

-Definition- [B]

1) The finisher jogger H.P sensor remains de-activated for more than a certain time when returning to home position.
2) The finisher jogger H.P sensor remains activated for more than a certain time when moving away from home position.

- Possible causes -
- Jogger H.P sensor defective
- Jogger motor defective

SC724: Finisher staple hammer motor error
-Definition- [B]
Stapling does not finish within a certain time after the staple hammer motor turned on.

- Possible causes -
- Staple hammer motor defective
- Staple jam

SERVICE CALL CONDITIONS

SC725: Finisher stack feed-out motor error

- Definition - [B]

The stack feed-out belt H.P sensor does not activate within a certain time after the stack feed-out motor turned on.

- Possible causes -
- Stack feed-out H.P sensor defective
- Stack feed-out motor defective

SC726: Finisher shift/lift motor error

- Definition - [B]

1) Tray shift does not finish within a certain time after the shift motor turned on.
2) The stack height sensor does not activate within a certain time after the shift tray lift motor turned on.

- Possible causes -
- Shift motor defective
- Shift tray lift motor defective

SC727: Finisher stapler rotation motor error

- Definition - [B]

1) Stapler rotation does not finish within a certain time after the stapler rotation motor turned on.
2) The stapler does not return to its home position within a certain time after stapling finished.

- Possible causes -
- Stapler rotation motor defective
- Poor stapler rotation motor connection

SC729: Finisher punch motor error

- Definition - [B]

The punch H.P sensor does not activate within a certain time after the punch motor turned on.

- Possible causes -
- Punch motor defective
- Punch H.P sensor defective
- Poor punch motor connection

SC730: Finisher stapler position motor error

- Definition - [B]

1) The stapler H.P. sensor stays on for longer than normal when the stapler motor turns on to return the stapler to its home position.
2) The stapler H.P sensor does not turn on within a certain time after the stapler motor turned on to move the stapler away from home position.

- Possible causes -
- Stapler motor defective
- Stapler H.P sensor defective
- Poor stapler motor connection

SC731: Finisher paper exit guide plate motor lock

-Definition- [B']
The exit plate HP sensor does not turn on within 800 ms when the exit plate returns to its home position.
-Possible cause-

- Exit plate motor defective
- Too much load to exit plate motor
- Exit plate motor connector defective
- Exit plate HP sensor defective
- Main board defective

SC735: Finisher pre-stack motor error

-Definition- [B]
It occurs 2 times consecutively that the pre-stack HP sensor is not activated within 400 pulses after the pre-stack motor starts.
-Possible cause-

- Pre-stack HP sensor defective or poor connection
- Pre-stack motor defective
- Finisher main board defective
- Too much load on the drive mechanism

SC736: Finisher paper exit guide plate motor error

-Definition- [B]
It occurs 2 times consecutively that the paper exit guide plate HP sensor is not activated within 750 ms after the paper exit guide plate motor starts.
-Possible cause-

- Paper exit guide plate sensor defective or poor connection
- Paper exit guide plate motor defective
- Finisher main board defective
- Too much load on the drive mechanism

SC737: Finisher staple waste full

-Definition- [A]
The box for staple waste becomes full.
-Possible cause-

- Box is full of staple waste
- Staple waste sensor defective

SC738: Finisher shift tray lift motor error

-Definition- [B]
It occurs 2 times consecutively that;

1) The stack height sensor is not activated within 50 seconds after the motor starts lifting the tray.
2) The stack height sensor is still activated 5 seconds after the motor starts lowering the tray.
-Possible cause-

- Stack height sensor defective or poor connection
- Shift tray lift motor defective
- Finisher main board defective
- Too much load on the drive mechanism
\Rightarrow SC740: 1,000-sheet finisher error in finisher area
- Definition - [B]

Note: When this SC is displayed, check SP7-902 (SC detail). The first 2 digits indicate the type of error.

Example: $740 \underline{0100000000000000}$

01: Shutter movement error

1) The shutter position switch does not turn on within 1 s after the transport motor starts to turn in reverse.
2) The shutter sensor does not deactivate within 1 s after the transport motor starts to turn in reverse.
3) The shutter position switch is off when the shift tray safety switch is off.

- Possible causes -
- Transport motor defective
- Shutter position switch defective
- Shift tray safety switch defective

02: Exit motor error

1) After the exit motor turns on, the exit motor sensor does not send the proper signal to the finisher board.
2) The exit motor sensor does not send the clock signal to the finisher board for certain period while the exit motor is on.

- Possible causes -
- Exit motor defective
- Exit motor sensor defective

03: Upper exit plate movement error

1) The upper exit guide 2 switch does not turn on within 1 s after the guide plate motor turns on.
2) The upper exit guide sensor does not activate within 1s after the guide plate motor turns on.
3) The upper exit guide 2 switch does not turn on when the shift tray safety switch is off.

- Possible causes -
- Guide plate motor defective
- Upper exit guide 2 switch defective
- Upper exit guide sensor defective
- Shift tray safety switch defective

04: Jogger motor error

1) After the jogger motor turns on to move the jogger fence from its home position, the jogger HP sensor does not deactivate within 2s.
2) After the jogger motor turns on to return the jogger fence to its home position, the jogger HP sensor does not activate within 2s.

- Possible causes -
- Jogger motor defective
- Jogger HP sensor defective

05: Stapler motor error

1) After the stapler motor turns on to move the stapler unit from its home position, the stapler unit HP sensor does not deactivate within 4s.
2) After the stapler motor turns on to return the stapler unit to its home position, the stapler unit HP sensor does not activate within 4 s .

- Possible causes -
- Stapler motor defective
- Stapler unit HP sensor defective

06: Staple hammer motor error

1) The staple hammer HP sensor does not deactivate within 0.5 s after the staple hammer motor turns on.
2) The staple hammer HP sensor does not activate within 0.5 s after the staple hammer motor turns on.

- Possible causes -
- Staple hammer motor defective
- Staple hammer HP sensor defective

07: Tray lift motor error

1) The tray lift motor does not stop within 15 s after being turned on.
2) The shift tray HP sensor does not activate within 15 s after the tray lift motor turns on.
3) The shift tray upper limit switch turns on while the shift tray is being raised.
4) Lift motor sensors $1 \& 2$ do not send the clock signals to the finisher board every 200 ms while the tray lift motor is on.

- Possible causes -
- Tray lift motor defective
- Lift motor sensor 1 defective
- Lift motor sensor 2 defective
- Shift tray HP sensor defective
- Shift tray upper limit switch defective

08: Shift tray height sensor error

1) Abnormal communication data between finisher board and shift tray height sensor.
2) No communication between finisher board and shift tray height sensor for a certain period.
3) The finisher board detects a connection error with the connector for the shift tray height sensor.
4) Adjustment error during shift tray height sensor adjustment.

- Possible causes -
- Shift tray height sensor defective
- Finisher board defective

09: Back-up RAM error

The check sum is abnormal when the main switch is turned on.

- Possible causes -
- Finisher board defective

OA: Communication error

Communication error between finisher board and booklet unit board.

- Possible causes -
- Finisher board defective
- Booklet unit board defective
- Poor connection of the interface harness

\Longrightarrow SC741: 1,000-sheet finisher error in saddle stitching area

- Definition - [B]

Note: When this SC is displayed, check SP7-902 (SC detail). The first 2 digits indicate the type of error.
Example: $741 \underline{0100000000000000}$

01: Positioning plate motor error

1) After the positioning plate motor turns on to move the positioning plate from its home position, the positioning plate HP sensor does not deactivate within 1.25 s.
2) After the positioning plate motor turns on to return the positioning plate to its home position, the positioning plate HP sensor does activate within 1 s .

- Possible causes -
- Positioning plate motor defective
- Positioning plate HP sensor defective

02: Folder roller motor error

1) The folder roller motor sensor doesn't send the clock pulse to the booklet unit board within a certain period after the folder roller motor turns on.

- Possible causes -
- Folder roller motor defective
- Folder roller motor sensor defective

03: Shutter guide motor error

1) After the shutter guide motor turns on to move the shutter guide from its home position, the shutter guide HP sensor does not deactivate within 0.4 s .
2) After the shutter guide motor turns on to return the shutter guide to its home position, the shutter guide HP sensor does not activate within 1 s .

- Possible causes -
- Shutter guide motor defective
- Shutter guide HP sensor defective

04: Booklet jogger motor error

1) After the booklet jogger motor turns on to move the booklet jogger plate from its home position, the booklet jogger HP sensor does not deactivate within 0.5 s .
2) After the booklet jogger motor turns on to return the booklet jogger plate to its home position, the booklet jogger HP sensor does not activate within 1 s .

- Possible causes -
- Booklet jogger motor defective
- Booklet jogger HP sensor defective

05: Stapler motor error

1) The front staple hammer HP switch does not turn off within 0.5 s after the front stapler motor turns on.
2) The front staple hammer HP switch does not turn on within 0.5 s after the front stapler motor turns on during jam recovery.
3) The rear staple hammer HP switch does not turn off within 0.5 s after the rear stapler motor turns on.
4) The rear staple hammer HP switch does not turn on within 0.5 s after the rear stapler motor turns on during jam recovery.

- Possible causes -
- Front stapler motor defective
- Front staple hammer HP switch defective
- Rear stapler motor defective
- Rear staple hammer HP switch defective

06: Folder plate motor error

1) After the folder plate motor turns on to return the folder plate to its home position, the folder plate HP sensor does not activate within 0.3 s .
2) After the folder plate motor turns on to move the folder plate from its home position, the folder plate HP sensor does not deactivate within 0.3 s .
3) After the folder plate motor turns on to return the folder plate to its home position, the folder plate return sensor does not deactivate within 0.3 s .
4) The folder plate return sensor does not activate within 0.3 s after the HP sensor deactivates.
5) The pulse count from the folder plate motor sensor is lower than the target minimum.

- Possible causes -
- Folder plate motor defective
- Folder plate HP sensor defective
- Folder plate return sensor defective
- Folder plate motor sensor defective

07: Connector error

1) The connector of the shutter guide HP sensor is not connected.
2) The connector of the folder plate HP sensor is not connected.
3) The connector of the folder plate return sensor is not connected.

- Possible causes -
- Poor connection or no connection of the shutter guide HP sensor connector
- Poor connection or no connection of the folder plate HP sensor connector
- Poor connection or no connection of the folder plate return sensor connector

08: Switch error

1) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the booklet entrance guide safety switch does not turn on within 1 s after a copy job or warm-up idling begins.
2) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the lower door safety switch does not turn on within 1 s after a copy job or warm-up idling begins.
3) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the booklet exit cover safety switch does not turn on within 1s after a copy job or warm-up idling begins.

- Possible causes -
- Booklet entrance guide safety switch defective
- Lower door safety switch defective
- Booklet exit cover safety switch defective

SC900: Electrical total counter error

-Definition- [A]

The total counter contains something that is not a number.

- Possible causes -
- NVRAM defective

SC901: Mechanical total counter error

-Definition- [B]
The mechanical counter is not connected.

-Possible cause-

- Mechanical total counter defective
- Mechanical total counter connector not connected

SC951: F-gate signal error 2

-Definition- [B']
When the IPU has already received the F-gate signal (laser writing start trigger signal), the IPU receives another F-gate signal.

- Possible causes -
- SBICU defective

SC953: Scanner image setting error

-Definition- [B']
The settings that are required for image processing using the scanner are not sent from the IPU.

- Possible causes -
- Software defective

SC954: Printer image setting error

-Definition- [B']
The settings that are required for image processing using the printer controller are not sent from the IPU.

- Possible causes -
- Software defective

SC955: Memory setting error

-Definition- [B']
The settings that are required for image processing using the memory are not sent from the IPU.

- Possible causes -
- Software defective

SC956: Scanner setting ID error

-Definition- [B]
The ID that is sent from the IPU for scanner parameter setting is different from expected.
-Possible cause-

- Software error

SC957: Scanner return ID error

-Definition- [B]
The ID that is sent from the IPU for the scanner return signal is different from expected.
-Possible cause-

- Software error

\Rightarrow

SC958: Scanner ready ID error

-Definition- [B]
The ID that is sent from the IPU for the scanner ready signal is different from expected.
-Possible cause-

- Software error

SC959: Printer setting ID error

-Definition- [B]
The ID that is sent from the IPU for the printer setting signal is different from expected.
-Possible cause-

- Software error

SC960: Printer return ID error

-Definition- [B]
The ID that is sent from the IPU for the printer return signal is different from expected.

-Possible cause-

- Software error

SC961: Printer ready ID error

-Definition- [B']
The ID that is sent from the printer controller in the printer controller printing ready condition is incorrect.

- Possible causes -
- Software defective

SC962: Memory setting ID error

-Definition- [B’]
The ID that is sent from the memory when the IPU sent the memory ready signal is incorrect.

- Possible causes -
- Software defective

\Rightarrow
 SC963: Memory finishing ID error

-Definition- [B']
The ID that is sent from the memory when the IPU sent the memory finish signal is incorrect.

- Possible causes -
- Software defective

SC964: Printer ready error

-Definition- [B’]
The print ready signal is not generated for more than 17 seconds after the IPU received the print start signal.

- Possible causes -
- Software defective

SC970: Scanner ready error

-Definition- [B’]
The MCU does not send the ready signal for 10 seconds after the scanning start command is sent to the MCU.
-Possible cause-

- Communication error between BICU and MCU
- MCU software defective
- Buffer is full

SC980: HDD access error

-Definition- [B]
Incorrect parameter is sent from the BICU to the HDD controller.

- Possible causes -
- Software defective
- BICU defective

SC982: HDD construction error

-Definition- [B']
A HDD that does not have the correct specifications has been installed.

- Possible causes -
- Insufficient memory
- Incorrect hard disk type

SC984: HDD response error

-Definition- [B’]
The HDD controller does not generate any response when the BICU sends a read/write signal to the HDD controller.

- Possible causes -
- Software defective
- HDD defective or poor connection

SC990: Software performance error

-Definition- [B’]
The software performs an unexpected function.

- Possible causes -
- Software defective

NOTE: When this SC occurs, the file name, address, and data will be stored in the NVRAM. This data can be checked by entering SP mode then pressing " 0 ".

Note the above data and the situation in which this SC occurs. Then report the data and conditions to your technical control center.

$\Rightarrow 7.2$ ELECTRICAL COMPONENT DEFECTS

7.2.1 SENSORS

Component (Symbol)	Connector No.	Condition	Symptom
Scanner Home Position (S1)	CN555-2 (MCU)	Stays On	SC121 is displayed.
		Stays Off	SC120 is displayed.
Original Width (S2)	$\begin{gathered} \hline \text { CN555-6, } 7, \\ 8 \\ \text { (MCU) } \end{gathered}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
$\begin{gathered} \text { Original } \\ \text { Length-1 (S3) } \end{gathered}$	$\begin{aligned} & \hline \text { CN555-11 } \\ & (M C U) \end{aligned}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
$\begin{gathered} \text { Original } \\ \text { Length-2 (S4) } \end{gathered}$	$\begin{aligned} & \hline \text { CN555-14 } \\ & \text { (MCU) } \end{aligned}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
LD Unit Home Position (S5)	$\begin{gathered} \hline \text { CN202-8 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	SC328 is displayed when the laser beam pitch is changed.
		Stays Off	SC327 is displayed when the laser beam pitch is changed.
Drum Potential Sensor (S6)	$\begin{gathered} \text { CN206-A12 } \\ (\mathrm{IOB}) \end{gathered}$	Open	The machine quits auto process control
		Shorted	and enters fixed toner supply mode.
Toner Density (TD) (S7)	$\begin{gathered} \text { CN211-B9 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Stays On	SC340 is displayed.
		Stays Off	SC340 is displayed.
$\begin{aligned} & \text { Image Density } \\ & \text { (ID) (S8) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CN206-B11 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Open	SC352 is displayed after copying.
		Shorted	SC350 is displayed after copying.
Toner End (S9)	$\begin{gathered} \text { CN211-B5 } \\ \text { (IOB) } \end{gathered}$	Open	"Toner End" is displayed even if there is enough toner in the toner hopper.
		Shorted	"Toner End" is not displayed even if there is no toner in the toner hopper.
Toner Collection Motor (S10)	CN270-7 (PFB)	Stays On	SC495 is displayed.
		Stays Off	SC495 is displayed.
$\begin{gathered} \text { Toner } \\ \text { Recycling (S11) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CN207-B2 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	SC495 is displayed.
		Stays Off	SC495 is displayed.
$\begin{aligned} & \text { 1st Paper Feed } \\ & \text { (S12) } \end{aligned}$	$\begin{gathered} \text { CN271-2 } \\ (\mathrm{PFB}) \end{gathered}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.

Component (Symbol)	Connector No.	Condition			
2nd Paper					
Feed (S13)					CN273-A2
:---:					
(PFB)	\quad Stays On	"Paper Jam" is displayed even if there			
:---					
is no paper.					

Component (Symbol)	Connector No.	Condition	Symptom
Rear Fence Return (S26)	$\begin{gathered} \text { CN266-9 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 is displayed.
		Stays Off	SC515 is displayed.
Front Side Fence Open (S27)	$\begin{gathered} \hline \text { CN265-A3 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 may display.
		Stays Off	SC515 may display.
Front Side Fence Close (S28)	CN265-A6 (PFB)	Stays On	SC515 may display.
		Stays Off	SC515 may display.
$\begin{aligned} & \text { Rear Side } \\ & \text { Fence Open } \\ & \text { (S29) } \end{aligned}$	$\begin{aligned} & \text { CN265-A9 } \\ & \text { (PFB) } \end{aligned}$	Stays On	SC515 may display.
		Stays Off	SC515 may display
Rear Side Fence Close (S30)	$\begin{gathered} \hline \text { CN265-A12 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 may display
		Stays Off	SC515 may display
Right TrayDown (S31)	$\begin{aligned} & \text { CN265-B3 } \\ & \text { (PFB) } \end{aligned}$	Stays On	The bottom plate is not lowered when paper on the left tray shift to the right tray, and paper is set in the improper position. When the main switch turn on, no paper is indicated on the display even if there is paper on the right tray.
		Stays Off	The bottom plate lift lower locks at the lowest position.
$\begin{aligned} & \text { Right Tray } \\ & \text { Paper (S32) } \end{aligned}$	$\begin{aligned} & \text { CN265-B9 } \\ & (\mathrm{PFB}) \end{aligned}$	Stays On	The bottom plate rises and falls even if there is no paper.
		Stays Off	The bottom plate close not rise even if there is paper on the tray.
Left Tandem Tray Paper (S33)	$\begin{aligned} & \hline \text { CN266-11 } \\ & \text { (PFB) } \end{aligned}$	Stays On	The rear fence moves back and forth continuously.
		Stays Off	The paper on the left tray is not moved to the right tray. No paper is indicated event if there is paper on the left tray.
$\begin{gathered} \text { Duplex } \\ \text { Entrance (S34) } \end{gathered}$	$\begin{gathered} \text { CN208-B14 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Duplex Inverter (S35)	$\begin{aligned} & \text { CN208-B17 } \\ & (\text { IOB }) \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Duplex Transport 1 (S36)	CN208-B5 (IOB)	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
DuplexTransport 2(S37)	$\begin{aligned} & \text { CN208-B8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.

Component (Symbol)	Connector No.	Condition	Symptom
DuplexTransport 3(S38)	$\begin{aligned} & \text { CN208-B11 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
$\begin{gathered} \text { Duplex Jogger } \\ \text { HP (S39) } \end{gathered}$	$\begin{gathered} \text { CN208-B2 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Stays On	SC521 is displayed.
		Stays Off	SC520 is displayed.
Relay (S40)	$\begin{aligned} & \text { CN211-A8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Registration (S41)	$\begin{aligned} & \text { CN211-A1 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Guide Plate Position (S42)	$\begin{gathered} \hline \text { CN209-6 } \\ \text { (IOB) } \end{gathered}$	Stays On	A paper jam will occur when the guide plate is opened.
		Stays Off	"Guide Plate Close" is displayed after the front door is closed even if the guide plate is closed.
Fusing Exit (S43)	$\begin{aligned} & \text { CN207-B8 } \\ & (\mathrm{IOB}) \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
1st Exit (S44)	$\begin{aligned} & \text { CN204-B2 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
2nd Exit (S45)	$\begin{aligned} & \hline \text { CN204-B5 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
Tray Paper Limit (S46) (Option)	$\begin{aligned} & \hline \text { CN204-B8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	Paper jams may occur.
		Stays Off	"Paper Full on Exit Tray" is displayed.

7.2.2 SWITCHES

Component (Symbol)	Connector No.	Condition	Symptom
Main Power (SW1)	$\begin{aligned} & \text { CN101-1, } 2 \\ & \text { CN111-1, } 2 \end{aligned}$	Open	The machine does not turn on.
		Shorted	The machine does not turn off.
Front Door Safety (SW3,5)	$\begin{gathered} \text { CN403-1, } 3 \\ (\text { LDU }) \end{gathered}$	Open	SC322 is displayed.
		Shorted	
$\begin{gathered} \text { Front Door } \\ \text { Safety (SW4) } \end{gathered}$	$\begin{gathered} \hline \text { CN152-3, 6, } \\ 7 \text { (CNB) } \end{gathered}$	Stays On	"Close the Door" is displayed even if the front cover is closed. SC440, 441, or 531 is displayed.
		Stays Off	"Close the Door" is not displayed even if the front cover is opened.
Lower Front Door Safety (SW6)	$\begin{aligned} & \text { CN268-1 } \\ & \text { (PFB) } \end{aligned}$	Open	SC506 is displayed.
		Shorted	
Toner Collection Bottle Set (SW7)	$\begin{aligned} & \text { CN268-10 } \\ & \text { (PFB) } \\ & \text { CN270-10 } \end{aligned}$	Open	SC 496 is displayed.
		Shorted	No caution is displayed on the operation panel even if the toner collection bottle is set incorrectly.
Toner Overflow (SW8)	$\begin{aligned} & \hline \text { CN270-12 } \\ & \text { (PFB) } \end{aligned}$	Open	"Full Used Toner Bottle" is displayed even if the toner collection bottle is not full.
		Shorted	"Full Used Toner Bottle" is not displayed even if the toner collection bottle is full.
$\begin{gathered} \hline \text { Paper Size } \\ \text { (SW9) } \end{gathered}$	$\begin{gathered} \text { CN262- } \\ 8,9,10,11,1 \\ 2 \\ \text { (PFB) } \end{gathered}$	Open Shorted	The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made.

\Rightarrow 7.3 BLOWN FUSE CONDITIONS

Fuse	Rating		Symptom when turning on the main power switch
	$\mathbf{1 1 5 V}$	$\mathbf{2 1 0} \sim \mathbf{2 3 0 V}$	
Power Supply Board			
FU101	$12 \mathrm{~A} / 250 \mathrm{~V}$	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	No response
FU102	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	Nothing is displayed on LCD.
FU103	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC101 is displayed.
FU104	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	The ADF does not work.
FU105	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC520 is displayed.
FU106	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC530 is displayed after the start key is pressed.
FU107	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC542 is displayed.

3,000-SHEET FINISHER B302

1. OVERALL MACHINE INFORMATION
 1.1 SPECIFICATIONS

The punch unit is an option for this machine.

Paper Size:

Paper Weight:

Paper Capacity:

No punch mode Shift Tray: A3 to A5/DLT to HLT Upper Tray: A3 to A5, A6 lengthwise, B6 lengthwise/ DLT to HLT
Punch mode 2 holes: A3 to A5/DLT to HLT 3 holes: A3, B4, A4 sideways, B5 sideways DLT, LT sideways 4 holes (Europe): A3 to A5

DLT to LT, HLT sideways 4 holes (North Europe): A3 to B5, A5 sideways DLT to LT, HLT sideways
Staple Mode A3 to B5/DLT to LT

No punch mode
No staple mode: $52 \mathrm{~g} / \mathrm{m}^{2} \sim 216 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 42 \mathrm{lb}$
Staple mode: $\quad 64 \mathrm{~g} / \mathrm{m}^{2} \sim 80 \mathrm{~g} / \mathrm{m}^{2}, 17 \sim 21 \mathrm{lb}$
Punch mode
2 holes: $52 \mathrm{~g} / \mathrm{m}^{2} \sim 163 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 42 \mathrm{lb}$
3 holes: $52 \mathrm{~g} / \mathrm{m}^{2} \sim 163 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 42 \mathrm{lb}$ 4 holes: $52 \mathrm{~g} / \mathrm{m}^{2} \sim 128 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 34 \mathrm{lb}$
Shift tray/no staple mode ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

	Punch mode	No punch mode
B5 sideways A4 sideways LT sideways	2,500 sheets	3,000 sheets
Other sizes	1,500 sheets	1,500 sheets

Shift tray/staple mode/punch mode ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

	Pages/set	Sets
B5 sideways	2 to 9	150
A4 sideways	10 to 80	200 to 30
LT sideways	2 to 9	100
Other sizes	10 to 40	150 to 30

Shift tray/staple mode/no punch mode ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

	Pages/set	Sets
B5 sideways	2 to 9	150
A4 sideways LT sideways	10 to 100	200 to 30
Other sizes	2 to 9	150
	10 to 50	150 to 30

Upper tray ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

	Punch mode	No punch mode
A4/LT or smaller	400 sheets	500 sheets
Larger than A4/LT	200 sheets	250 sheets

Stapler Capacity (pages/set, $80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$ paper):

	Punch mode	No punch mode
B5 sideways A4 sideways LT sideways	80 sheets	100 sheets
Other sizes	40 sheets	50 sheets

Staple Position:
4 positions
1-staple: 3 positions (Front, Rear, Rear-Oblique)
2-staple: 1 position

Staple Replenishment: Cartridge (5,000 staples)
Power Source:
24 Vdc (from copier)
Power Consumption:
120 W
Weight:
60 kg
Size (W x D x H):
$800 \mathrm{~mm} \times 730 \mathrm{~mm} \times 980 \mathrm{~mm}$

1.2 MECHANICAL COMPONENT LAYOUT

1. Upper Tray
2. Middle Transport Rollers
3. Upper Tray Exit Roller
4. Upper Transport Rollers
5. Tray Junction Gate
6. Stapler Junction Gate
7. Entrance Rollers
8. Punch Unit
9. Pre-stack Junction Gate
10. Punch Waste Hopper
11. Pre-stack Tray
12. Stack Plate
13. Staple Waste Hopper
14. Stapler
15. Alignment Brush Roller
16. Positioning Roller
17. Stack Feed-out Belt
18. Shift Tray Drive Belt
19. Lower Transport Rollers
20. Shift Tray
21. Shift Tray Exit Roller

1.3 ELECTRICAL COMPONENT DESCRIPTION

Symbol	Name	Function
Motors		
M1	Upper Transport	Drives the entrance rollers, the middle and upper transport rollers, and upper tray exit roller.
M2	Lower Transport	Drives the lower transport rollers, the alignment brush roller, and the positioning roller.
M3	Jogger	Moves the jogger fence.
M4	Stack Plate	Drives the stack plate.
M5	Stapler	Moves the staple unit from side to side.
M6	Stapler Rotation	Rotates the stapler 45 degrees.
M7	Staple Hammer	Drives the staple hammer.
M8	Stack Feed-out	Drives the stack feed-out belt.
M9	Exit Guide	Opens and closes the upper exit guide.
M10	Shift Tray Exit	Drives the exit roller for the shift tray.
M11	Shift	Moves the shift tray from side to side.
M12	Shift Tray Lift	Moves the shift tray up or down.
M13	Punch	Drives the punch shaft and roller.
Sensors		
S1	Entrance	Detects the copy paper entering the finisher and checks for misfeeds.
S2	Pre-stack Tray Paper	Determines when to turn off the pre-stack paper stopper solenoid.
S3	Stapler Tray Entrance	Detects the copy paper entering the stapler tray and checks for misfeeds.
S4	Jogger Fence HP	Detects the home position of the jogger fence.
S5	Stapler Tray Paper	Detects the copy paper in the stapler tray.
S6	Stack Plate HP	Detects the home position of the stack plate.
S7	Stapler HP	Detects the home position of the staple unit for side-to-side movement.
S8	Stapler Rotation HP	Detects the home position of the stapler unit for 45degree rotation.
S9	Staple Hammer HP	Detects the home position of the staple hammer.
S10	Cartridge Set	Detects the staple cartridge in the stapler.
S11	Staple End	Detects the staples in the cartridge.
S12	Staple Waste Hopper	Detects when the staple waste hopper is full.
S13	Stack Feed-out Belt HP	Detects the home position of the stack feed-out belt.
S14	Exit Guide Open	Detects whether the guide plate is opened or not.
S15	Shift Tray Exit	Checks for misfeeds at the shift tray.
S16	Stack Height 1	Detects when the top of the copy paper stack in the shift tray is at the correct position.
S17	Stack Height 2	Detects when the top of the copy paper stack in the shift tray has become too high.
S18	Upper Tray Exit	Checks for misfeeds at the upper tray.

ELECTRICAL COMPONENT DESCRIPTION

Symbol	Name	Function
S19	Upper Tray Paper Limit	Detects when the paper stack height in the upper tray is at its upper limit.
S20	Shift Tray Half-turn	Detects the return position for side-to-side movement of the shift tray.
S21	Shift Tray Lower Limit 1	Detects when the shift tray is nearly at its lower limit.
S22	Shift Tray Lower Limit 2	Detects when the shift tray is at its lower limit.
S23	Punch Waste Hopper	Detects when the punch waste hopper is full and detects when the punch tray is set.
S24	Punch HP	Detects the home position of the punch shaft and roller.
S25	Stapler Return	Detects the on timing of the stapler return solenoid.
Switches		
SW1	Front Door Safety	Cuts the dc power when the front door is opened.
SW2	Shift Tray Upper Limit	Cuts the power to the shift tray lift motor when the shift tray position is at its upper limit.
Solenoids		
SOL1	Stapler Junction Gate	Drives the stapler junction gate.
SOL2	Tray Junction Gate	Drives the tray junction gate.
SOL3	Pre-stack Junction Gate	Drives the pre-stack junction gate.
SOL4	Pre-stack Paper Stopper	Drives the pre-stack paper stopper.
SOL5	Positioning Roller	Moves the positioning roller against the stapling tray.
SOL6	Stapler Return	Returns the stapler to its guide from the user operation position.
PCBs		
PCB1	Main	Controls the finisher and communicates with the copier.
PCB2	Punch	Passes signals between the punch unit and the finisher main board.

DRIVE LAYOUT

1.4 DRIVE LAYOUT

1. Upper Transport Roller 2
2. Upper Tray Exit Roller
3. Lower Transport Roller 2
4. Shift Tray Lift Motor
5. Shift Tray Exit Motor
6. Shift Tray Exit Roller
7. Shift Tray
8. Shift Motor
9. Staple Tray Exit Roller
10. Positioning Roller
11. Lower Transport Roller 3
12. Lower Transport Motor
13. Lower Transport Rollers 2
14. Lower Transport Roller 1
15. Transport Roller 1
16. Entrance Roller 2
17. Entrance Roller 1
18. Upper Transport Roller 1
19. Upper Transport Motor
20. Stack Feed-out Motor
21. Jogger Motor
22. Jogger Fence
23. Stack Plate Motor
24. Stapler Motor
25. Stack Feed-out Belt
26. Stapler Rotation Motor

2. DETAILED DESCRIPTIONS

2.1 TRAY AND STAPLER JUNCTION GATE

- Upper Tray Mode -

Depending on the finishing mode, the copies are directed up, straight through, or down by the combination of the tray junction gate [A] and stapler junction gate [B]. These gates are controlled by the tray junction gate solenoid [C] and stapler junction gate solenoid [D].

Upper Tray Mode

The stapler tray junction gate solenoid remains off and the tray junction gate solenoid turns on. The copies go up to the upper tray.

Sort/Stack Mode

The tray junction gate solenoid and the stapler junction gate solenoid remain off. The copies are sent to the shift tray directly.

Staple Mode

The stapler junction gate solenoid turns on. The copies go downwards to the jogger unit.

2.2 PAPER PRE-STACKING

This mechanism improves productivity in staple mode. It is only used when copying on A4, LT, or B5 (all sideways).
During stapling, the copier has to wait. This mechanism reduces the wait by holding the first two sheets of a job while the previous job is still being stapled. It only works during the second and subsequent sets of a multi-set copy job.
The pre-stack junction gate solenoid [A] turns on about 230 ms after the 1st sheet of paper turns on the entrance sensor, and this directs the sheet to the pre-stack tray $[B]$. (This sheet cannot be fed to the stapler yet, because the first set is still being stapled.) The pre-stack paper stopper solenoid [C] turns on about 680 ms after the 1st sheet turns on the entrance sensor. The pre-stack paper stopper [D] then stops the paper.
The pre-stack junction gate solenoid turns off 450 ms after the trailing edge of the 1st sheet passes through the entrance sensor, and the 2nd sheet is sent to the paper guide [E]. The pre-stack paper stopper is released about 50 ms after the 2nd sheet turns on the pre-stack stopper sensor [F], and the two sheets of copy paper are sent to the stapler tray. All sheets after the 2nd sheet go to the stapler tray via the paper guide [E].

2.3 JOGGER UNIT PAPER POSITIONING

In staple mode, each sheet of copy paper is vertically and horizontally aligned when it arrives in the jogger unit.

Vertical Paper Alignment

Approximately 60 ms after the trailing edge of the copy passes the staple tray entrance sensor $[A]$, the positioning roller solenoid $[B]$ is energized to push the positioning roller [C] into contact with the paper. The positioning roller and alignment brush roller [D] rotate to push the paper back and align the trailing edge of the paper against the stack stopper [E].

Horizontal Paper Alignment

When the print key is pressed, the jogger motor [F] turns on and the jogger fences [G] move to the waiting position, which is approximately 7 mm wider on both sides than the selected paper.

When the trailing edge of the paper passes the staple unit entrance sensor, the jogger motor turns on for approximately $32 \mathrm{~ms}(4.7 \mathrm{~mm})$ to move the jogger fences approximately 5 mm towards the paper. After a short time, the jogger motor turns on again approximately $18 \mathrm{~ms}(3.0 \mathrm{~mm})$ for the horizontal paper alignment then goes back to the waiting position.

Paper Stack Correction

After the paper is aligned in the stapler tray, the stack plate motor turns $[\mathrm{H}]$ on for short time to correct the paper stack and the stack plate [I] push the paper against the staple tray.

When the next copy paper turns on the stapler tray entrance sensor, the stack plate motor turns on gain to return to its home position. The home position is detected by stack plate HP sensor [J].

2.4 STAPLER UNIT MOVEMENT

Side-to-Side

The stapler motor $[A]$ moves the stapler $[B]$ from side to side. After the start key is pressed, the stapler moves from its home position to the stapling position.
If two-staple-position mode is selected, the stapler moves to the front stapling position first, then moves to the rear stapling position. However, for the next copy set, it staples in the reverse order (at the rear side first then at the front side).
After the job is completed, the stapler moves back to its home position. This is detected by the stapler HP sensor [C].

Rotation (1)

In the oblique staple position mode, the stapler rotation motor $[\mathrm{A}]$ rotates the stapler units [B] 45° to counterclockwise after it moves to the stapling position.

Rotation (2)

When the staple end condition arises, the stapler motor moves the stapler to the front and the stapler rotation motor rotates the stapler unit to clockwise to remove the staple cartridge [C]. This allows the user to add new staples.
Once the staples have been installed, and the front door closed, the stapler unit returns to its home position. As the stapler unit is returning to the home position, the stapler return sensor [D] is activated, the return solenoid [E] turns on and it assists the guide roller [F] to return to its guide (this guide directs the stapler during rotation).

2.5 STAPLER

[A]

[G]

When the aligned copies are brought to the stapling position by the positioning roller and jogger fences, the staple hammer motor $[A]$ starts stapling.
During stapling, the stapler trims off the excess length [B] of the staples by lowering the cutter [C]. This excess length depends on the number of copies in the set; there will be very little for a stack containing 100 sheets. The staple waste drops into the tray [D] in the stapler. When the stapler unit returns to its home position, the tray hits the shaft [E] and the tray opens. The staple waste drops into the staple waste hopper $[\mathrm{F}]$. When the staple waste hopper is full, the actuator on its base activates the staple waste hopper sensor [G]. An SC is displayed.

The stapler has a staple end sensor $[A]$, cartridge set sensor $[B]$ and staple hammer HP sensor [C].

When a staple end or no cartridge condition is detected, a message is displayed advising the operator to install a staple cartridge. If this condition is detected during a copy job, the indication will appear, and the copy job will stop.
The staple cartridge has a clinch area [D], in which jammed staples are left. Operators can remove the jammed staples from this area.
When the operator lifts the release lever [E], the clinch area is released from the cartridge by pushing the holders [F]. The jammed staples can be removed.
The staple sheet can be feed manually by sliding the knob [G].

2.6 FEED-OUT

After the copies have been stapled, the stack feed-out motor [A] starts. The pawl $[B]$ on the stack feed-out belt [C] transports the set of stapled copies up and feeds it to the shift tray exit roller [D]. When stapling starts, the exit guide motor [E] opens the upper exit guide [F], which includes the upper shift tray exit roller [G], in order to feed out the leading edge of the copy set smoothly. The exit guide motor turns on again a certain time after stapling is complete, and the upper exit guide plate is lowered. Then the shift tray exit roller takes over the stack feed-out.

The on-off timing of the exit guide motor is detected by the exit guide open sensor [H].

The stack-feed-out motor turns off when the pawl actuates the stack feed-out belt home position sensor [I].

2.7 SHIFT TRAY UP/DOWN MOVEMENT

The shift tray lift motor $[A]$ controls the vertical position of the shift tray $[B]$ through gears and timing belts [C]. When the main switch is turned on, the tray is initialized at the upper position. The tray is moved up until stack height sensor 1 [D] is deactuated.

In sort/stack mode, if stack height sensor $2[E]$ is actuated for 2 seconds, the shift tray lift motor lowers the shift tray for 20 ms .
In staple mode, when the pawl on the stack feed-out belt reaches the upper position of the staple unit, the shift tray lift motor lowers the shift tray for 400 ms and stops for 200 ms . Then, it lifts the shift tray until stack height sensor 1 is deactuated by the feeler [F]. This means the tray lowers earlier in staple mode, to prevent the next copy suddenly exceeding the space currently available on the tray.

For both modes, the shift tray will rise until stack height sensor 1 is de-actuated when the user takes the stack of paper from the shift tray.

This machine has two shift tray lower limit sensors 1 [G], 2 [H]. Shift tray lower limit sensor 1 detects the near lower limit and sensor 2 detects the lower limit. When the actuator [I] enters sensor 1, a message will be displayed and copying will continue. When the actuator enters sensor 2 , a message will be displayed and copying will stop.
The shift tray upper limit switch [J] prevents the drive gear from being damaged if stack height sensor 1 fails. When the shift tray pushes up the shift tray positioning roller $[\mathrm{K}]$, the switch will cut the power to the shift tray lift motor.

2.8 SHIFT TRAY SIDE-TO-SIDE MOVEMENT

In sort/stack mode, the shift tray [A] moves from side to side to separate the sets of copies.

The horizontal position of the shift tray is controlled by the shift motor [B] and shift gear disk [C]. After one set of copies is made and delivered to the shift tray, the shift motor turns on, driving the shift gear disk and the shaft [D]. The end fence [E] is positioned by the shaft, creating the side-to-side movement.
When the shift gear disk has rotated 180 degrees (when the shift tray is fully shifted across), the cut-out in the shift gear disk turns on the shift tray half-turn sensor [F] and the shift motor stops. The next set of copies is then delivered. The motor turns on, repeating the same process and moving the tray back to the previous position.

2.9 PUNCH UNIT DRIVE

The punch unit makes 2 or 3 holes (depending on the type of punch unit) at the trailing edge of the paper.

The punch unit is driven by the punch motor [A]. The punch motor turns on 78 ms after the trailing edge of the paper passes through the entrance sensor $[B]$, and makes the punch holes.
The home position is detected by the punch HP sensor [C]. When the cut-out in the punch shaft gear disk [D] enters the punch HP sensor, the punch motor stops.
The punch position is adjusted as follows:

- Right to left: SP mode
- Front to rear: Spacers

2.10 PUNCH WASTE COLLECTION

The punch waste is collected in the punch waste hopper [A], which is under the punch unit.
When the punch waste covers the hole $[B]$ in the hopper, the punch waste hopper sensor [C] turns on and a message will be displayed after the copy job finishes.

The punch waste hopper sensor also works as the hopper set sensor. If the punch waste hopper is not set, the sensor stays away from the hole in the hopper holder [D] and a message is displayed. This message is the same as for the hopper full condition.

2.11 JAM CONDITIONS

1. The entrance sensor does not turn on when the copier has fed paper 426 mm after the copier exit sensor turned off.
2. The entrance sensor does not turn off when the upper transport motor has fed paper 1.5 times the paper's length after it turned on.
3. The upper tray exit sensor does not turn on when the upper transport motor has fed paper 574 mm after the entrance sensor turned on.
4. The upper tray exit sensor does not turn off when the upper transport motor has fed paper 1.5 times the paper's length after it turned on.
5. In sort/stack mode, the shift tray exit sensor does not turn on when the upper transport motor has fed paper 783 mm after the entrance sensor turned on.
6. In sort/stack mode, the shift tray exit sensor does not turn off when the upper transport motor has fed paper 1.5 times the paper's length after it turned on.
7. In staple mode, the stapler tray entrance sensor does not turn on when the upper and lower transport motor have fed paper 835 mm after the entrance sensor turned on.
8. In staple mode, the stapler tray entrance sensor does not turn off when the upper transport motor has fed paper 1.5 times the paper's length after it turned on.
9. In staple mode, the stapler tray paper sensor does not turn off within 250 pulses of the stack feed-out motor after it started.
10. In staple mode, the shift tray exit sensor does not turn off within $1,260 \mathrm{~ms}$ after the stack feed-out motor started.

3. SERVICE TABLES

3.1 DIP SWITCHES

DPS100				
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
Description				
	0	0	0	Default
1	0	0	0	Free run: A4 sideways, staple mode
0	1	0	0	Free run: staple and tray shift

NOTE: Do not use any other settings.

3.2 TEST POINTS

No.	Label		Monitored Signal
TP100	(5V)	+5 V	
TP101	(GND)	Ground	
TP102	(RXD)	RXD	
TP103	(TXD)	TXD	

3.3 FUSES

No.	Function
FU100	Protects 24 V.

4. REPLACEMENT AND ADJUSTMENT

4.1 COVER REPLACEMENT

Front Door

1. Remove one screw and loosen the other screw of the upper hinge for the front door [A].
2. Remove the front door $[B]$.

Left Inner Cover

1. Remove the front door.
2. Remove the left inner cover [C] (1 screw).

Inner Cover

1. Remove the three screws and unhook the pawls.
2. Remove the inner cover [D].

Table

1. Slide the table $[A]$ to the right and remove it (2 screws).

Upper Tray

1. Click the release lever $[B]$.
2. Remove the upper tray [C].

Left Upper Cover

1. Remove the left upper cover [D].

Left Lower Cover

1. Remove the left lower cover [E].

Upper Cover

1. Remove the table.
2. Remove two stepped screws [F].
3. Remove the left upper cover.
4. Slide across the right cover [G] and remove it (2 screws).

Rear Cover

1. Remove the rear cover $[\mathrm{H}]$ (2 screws).

Shift Tray

1. Remove the left upper cover.
2. Rotate the shift tray lift gear [A] manually to lower the shift tray $[B]$
3. Remove the shift tray (4 screws).

Front Shift Tray Cover

1. Remove the front shift tray cover [C] (1 screw).

Rear Shift Tray Cover

1. Remove the rear shift tray cover [D] (1 screw).

4.2 POSITIONING ROLLER REPLACEMENT

1. Open the front door.
2. Remove the snap ring [A].
3. Release the rubber belt [B].
4. Replace the positioning roller [C].

4.3 ALIGNMENT BRUSH ROLLER REPLACEMENT

1. Open the front door and pull out the staple unit.
2. Remove the rear cover.
3. Remove the screw $[A]$ and a tension spring $[B]$ for the tension bracket [C], and release the tension of the timing belt.
4. Remove the pulley [D] and ball bearing [E] (1 E-ring each).
5. Remove screw $[F]$ of the inner cover [G].
6. Open the guide $[\mathrm{H}]$ and a part of the inner cover, and remove the alignment brush roller assembly [I] (1 E-ring).
7. Replace the alignment brush roller (1 E-ring, 1 ball bearing).

4.4 SENSOR REPLACEMENT

4.4.1 STACK HEIGHT 1, 2 AND EXIT GUIDE OPEN SENSOR

1. Remove the upper cover.

Stack Height Sensors 1 and 2

2. Remove the sensor feeler $[A]$ (1 screw).
3. Remove the sensor bracket [B] (1 screw).
4. Replace the stack height sensor 1 [C] or 2 [D] (1 connector each).

Exit Guide Open Sensor

2. Remove the sensor bracket [E] (1 screw).
3. Replace the exit guide open sensor [F] (1 connector).

4.4.2 UPPER TRAY PAPER LIMIT AND EXIT SENSOR

1. Remove the upper cover.

Upper Tray Paper Limit Sensor

2. Remove the sensor cover [A] (2 screws).
3. Remove the sensor bracket [B] (1 screw).
4. Replace the upper tray paper limit sensor [C] (1 connector).

Upper Tray Exit Sensor

2. Remove the sensor bracket [D] (1 screw).
3. Replace the upper tray exit sensor [E] (1 connector).

4.4.3 SHIFT TRAY EXIT SENSOR

1. Remove the upper cover.
2. Open the front door.
3. Remove the inner cover.
4. Release two springs $[A]$ of the upper exit guide $[B]$.
5. Release the link [C] from the cam and remove the upper exit guide (1 plastic clip, 1 connector).
6. Remove the guide stay [D] (2 screws).
7. Replace the shift tray exit sensor [E] (1 screw, 1 connector).

4.4.4 ENTRANCE AND STAPLER TRAY ENTRANCE SENSORS

Entrance Sensor

1. Remove the finisher from the copier.
2. Remove the sensor bracket [A] (1 screw).
3. Replace the entrance sensor [B] (1 screw, 1 connector).

Stapler Tray Entrance Sensor

1. Open the front door.
2. Remove the sensor bracket [C] (1 screw).
3. Replace the stapler tray entrance sensor [D] (1 screw, 1 connector).

4.4.5 PRE-STACK STOPPER SENSOR

1. Remove the rear cover.
2. Remove two plastic clips from the guide [A].
3. Open the front door.
4. Remove the left vertical transport guide $[B]$.
5. Remove the middle vertical transport guide [C] (1 connector).
6. Replace the pre-stack paper sensor [D] (1 connector).

4.4.6 STAPLE WASTE HOPPER SENSOR

1. Open the front door and pull out the stapler unit.
2. Remove the staple waste hopper [A] (1 plastic clip).
3. Remove the hopper holder [B] (2 E-rings).
4. Replace the staple waste hopper sensor [C] (1 connector).

4.4.7 STAPLER ROTATION HP AND STAPLER RETURN SENSORS

1. Remove the stapler unit.
2. Remove the stapler bracket [A] (4 screws, 2 springs).

Stapler Rotation HP Sensor

3. Replace the stapler rotation HP sensor $[B]$ (1 connector).

Stapler Return Sensor

3. Replace the stapler return sensor [C] (1 connector).

4.5 STAPLER REMOVAL

1. Open the front door and pull out the staple tray.
2. Remove the stapler unit harness cover $[A]$.
3. Remove the stapler $[B]$ (1 screw, 2 connectors).

4.6 PUNCH POSITION ADJUSTMENT

Right to Left

This position is adjusted by SP modes.

Front to Rear

The optional punch units have the following 3 spacers as accessories.
1 mm thickness: 2 pcs
2 mm thickness: 1 pc
The punch position can be adjusted by up to 4 mm by combinations of the 3 spacers.

3,000-SHEET FINISHER B312

1. OVERALL MACHINE INFORMATION
 1.1 SPECIFICATIONS

Paper Size:

Tray	Modes	Sizes
Upper tray		A3 to A6 lengthwise, DLT to HLT
Shift tray	Sort/stack mode	A3 to A5, DLT to LT
	No sort/stack mode	A3 to A6 lengthwise, DLT to LT
		A3 to B5, DLT to LT

Paper Weight:

Tray	Weight
Shift tray	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $157 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 42 lb
Upper tray	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $157 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 42 lb
Staple tray	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb

Paper Capacity (in case of $80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

Tray	Modes	Paper size	Punch mode	No punch mode
		A4-S, LT-S	2,500 sheets	3,000 sheets
		A5	100 sheets	100 sheets
	Others	1,500 sheets	1,500 sheets	
Upper tray		A4/LT or smaller	200 sheets	250 sheets
		Larger than A4/LT	50 sheets	50 sheets
	One size	A4/LT or smaller	40 sheets	50 sheets
		25 sheets	30 sheets	
	Mixed sizes	A3 and A4-S DLT and LT-S	25 sheets	30 sheets

(-S: Sideways)

Tray	Modes	Paper size	Sheets/ set	Sets	Total capacity
Shift tray	Staple No punch One size	A4-S	2 to 9	150	300 to 1,350
		LT-S	10 to 50	300 to 60	3,000
		A4, B5-S	2 to 9	150	300 to 1,350
		LT	10 to 50	150 to 30	1,500
		A3, B4	2 to 9	100	200 to 900
		DLT, LG	10 to 30	150 to 50	1,500
	Staple Punch One size	A4-S	2 to 9	150	300 to 1,350
		LT-S	10 to 40	250 to 63	2,500
		A4, B5-S	2 to 9	150	300 to 1,350
		LT	10 to 40	150 to 37	1,500
		A3, B4	2 to 9	100	200 to 900
		DLT, LG	10 to 25	150 to 60	1,500
	Staple No punch Mixed sizes	A3 and A4-S B4 and B5-S	2 to 30	50	100 to 1,500
	Staple Punch Mixed sizes	A3 and A4-S B4 and B5-S	2 to 25	50	100 to 1,250

(-S: Sideways)
Punch Unit (option):
Type

Version	Holes	Distance between holes	Diameter
American	2	2.76 inches	0.31 inches
	3	4.25 inches	0.31 inches
European	2	80 mm	6.5 mm
	4	$80-80-80 \mathrm{~mm}$	6.5 mm
Nordic	4	$21-70-21 \mathrm{~mm}$	6.5 mm

Paper Size

Type	Sizes
American 2	A3 to A5, DLT to LT
American 3	A3, B4, A4-S, B5-S, DLT, LT-S
European 2	A3 to A5, DLT to LT
European 4	A3, A4-S, DLT, LT-S
Nordic 4	A3 to A5, DLT to LT

(-S: Sideways)

SPECIFICATIONS

Paper Weight

Type	Weight
American 2	
American 3	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $163 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 42 lb
European 2	
European 4	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $128 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 34 lb
Nordic 4	

Staple Position:	4 positions 1 staple: 3 positions (Front, Rear and Rear-Oblique) 2 staples: 1 position
Staple Replenishment:	Cartridge (5,000 staples)
Power Source:	24 Vdc (from copier)
Power Consumption:	48 W (without Punch unit) 60 W (with Punch unit)
Dimensions (W x D x H):	$625 \times 545 \times 960 \mathrm{~mm}, 24.61 \times 21.46 \times 37.80$ inches
Weight:	45 kg (without Punch unit) 47.4 kg (with Punch unit)

ELECTRICAL COMPONENT LAYOUT

1.2 ELECTRICAL COMPONENT LAYOUT

1. Shift Tray Lift Motor
2. Shift Tray Exit Motor
3. Tray Junction Gate Solenoid
4. Upper Transport Motor
5. Stapler Junction Gate Solenoid
6. Pre-stack Junction Gate Solenoid
7. Pre-stack Motor
8. Main Board
9. Positioning Roller Solenoid
10. Lower Transport Motor
11. Shift Tray Lower Limit 1 Sensor
12. Shift Tray Lower Limit 2 Sensor
13. Upper Tray Paper Limit Sensor
14. Upper Tray Exit Sensor
15. Shift Tray Exit Plate HP Sensor
16. Shift Tray Exit Plate Motor
17. Shift Tray Upper Limit Switch
18. Punch Board
19. Punch Motor
20. Punch HP Sensor
21. Hopper Sensor
22. Entrance Sensor
23. Front Door Safety Switch
24. Stapler Tray Entrance Sensor
25. Shift Motor
26. Shift Tray Half-turn Sensor
27. Shift Tray Exit Sensor
28. Stack Height 2 Sensor
29. Stack Height 1 Sensor
30. Stack Feed-out Motor
31. Jogger Motor
32. Jogger Fence HP Sensor
33. Stack Feed-out Belt HP Sensor
34. Stapler Tray Paper Sensor
35. Stapler Motor
36. Stapler Rotation Motor
37. Stapler Rotation HP Sensor
38. Stapler HP Sensor
39. Staple End Switch
40. Cartridge Set Switch
41. Staple Hammer HP Sensor
42. Staple Hammer Motor

1.3 ELECTRICAL COMPONENT DESCRIPTION

Symbol	Name	Function	Index No.
Motors			
M1	Upper Transport	Drives the entrance rollers, the middle and upper transport rollers, and upper tray exit roller.	4
M2	Lower Transport	Drives the lower transport rollers, the alignment brush roller, and the positioning roller.	9
M3	Jogger	Moves the jogger fence.	31
M4	Stapler	Moves the staple unit from side to side.	35
M5	Stapler Rotation	Rotates the stapler 45 degrees.	36
M6	Staple Hammer	Drives the staple hammer.	42
M7	Stack Feed-out	Drives the stack feed-out belt.	30
M8	Shift Tray Exit	Drives the exit roller for the shift tray.	2
M9	Shift	Moves the shift tray from side to side.	25
M10	Shift Tray Lift	Moves the shift tray up or down.	1
M11	Punch	Drives the punch shaft and roller.	19
M12	Pre-stack	Drives the pre-stack roller.	7
M13	Shift Tray Exit Plate	Moves the exit plate up or down.	16
Sensors			
S1	Entrance	Detects the copy paper entering the finisher and checks for misfeeds.	22
S2	Stapler Tray Entrance	Detects the copy paper entering the staple tray and checks for misfeeds.	24
S3	Jogger Fence HP	Detects the home position of the jogger fence.	32
S4	Stapler Tray Paper	Detects the copy paper in the staple tray.	34
S5	Stapler HP	Detects the home position of the staple unit for side-to-side movement.	38
S6	Stapler Rotation HP	Detects the home position of the stapler unit for 45-degree rotation.	37
S7	Staple Hammer HP	Detects the home position of the staple hammer.	41
S8	Stack Feed-out Belt HP	Detects the home position of the stack feedout belt.	33
S9	Shift Tray Exit	Checks for misfeeds at the shift tray.	27
S10	Stack Height 1	Detects when the top of the copy paper stack in the shift tray is at the correct position.	29
S11	Stack Height 2	Detects when the top of the copy paper stack in the shift tray has become too high.	28
S12	Upper Tray Exit	Checks for misfeeds at the upper tray.	14
S13	Upper Tray Paper Limit	Detects when the paper stack height in the upper tray is at its upper limit.	13

Symbol	Name	Function	Index No.
S14	Shift Tray Half-turn	Detects the return position for side-to-side movement of the shift tray.	26
S15	Shift Tray Lower Limit 1	Detects when the shift tray is nearly at its lower limit.	11
S16	Shift Tray Lower Limit 2	Detects when the shift tray is at its lower limit.	12
S17	Hopper	Detects when the punch waste hopper is full and detects when the punch tray is set.	21
S18	Punch HP	Detects the home position of the punch shaft and roller.	20
S19	Shift Tray Exit Plate HP	Detects the home position of the exit plate.	15
Switches			
SW1	Front Door Safety	Cuts the dc power when the front door is opened.	23
SW2	Shift Tray Upper Limit	Cuts the power to the shift tray lift motor when the shift tray position is at its upper limit.	17
SW3	Staple End	Detects the staples in the cartridge.	39
SW4	Cartridge Set	Detects the staple cartridge in the stapler.	40
Solenoids			
SOL1	Tray Junction Gate	Drives the tray junction gate.	3
SOL2	Stapler Junction Gate	Drives the stapler junction gate.	5
SOL3	Positioning Roller	Moves the positioning roller against the stapling tray.	10
SOL4	Pre-stack Junction Gate	Drives the pre-stack junction gate.	6
PCBs			
PCB1	Main	Controls the finisher and communicates with the copier.	8
PCB2	Punch	Passes signals between the punch unit and the finisher main board.	18

1.4 MECHANICAL COMPONENT LAYOUT

1. Upper Tray
2. Upper Tray Exit Roller
3. Upper Transport Roller
4. Tray Junction Gate
5. 1st Entrance Roller
6. Punch Unit
7. 2nd Entrance Roller
8. Punch Waste Hopper
9. Stapler Junction Gate
10. Lower Transport Rollers
11. Alignment Brush Roller
12. Stapler
13. Positioning Roller
14. Pre-stack Roller
15. Stack Feed-out Belt
16. Pre-stack Junction Gate
17. Middle Transport Roller
18. Shift Tray Exit Roller 19. Shift Tray

1.5 DRIVE LAYOUT

1. Shift Tray Exit Plate Motor
2. Shift Tray Exit Plate
3. Shift Tray Exit Roller
4. Shift Motor
5. Shift Tray
6. Alignment Brush Roller
7. Positioning Roller
8. Lower Transport Rollers 2 and 3
9. Lower Transport Motor
10. Middle Transport Roller
11. Lower Transport Roller 1
12. Shift Tray Exit Motor
13. 2nd Entrance Roller
14. 1st Entrance Roller
15. Upper Transport Roller
16. Upper Transport Motor
17. Upper Tray Exit Roller
18. Shift Tray Lift Motor
19. Stack Feed-out Motor
20. Jogger Motor
21. Jogger Fence
22. Stack Feed-out Belt
23. Stapler Motor
24. Stapler Rotation Motor

2. DETAILED DESCRIPTIONS

2.1 TRAY AND STAPLER JUNCTION GATE MECHANISM

- Upper tray mode -

- Sort/stack mode -

Depending on the finishing mode, the copies are directed up, straight through, or down by the combination of the tray junction gate $[A]$ and stapler junction gate $[B]$. These gates are controlled by the tray junction gate solenoid [C] and stapler junction gate solenoid [D].

Upper tray mode

The tray junction gate solenoid turns on. The copies go up to the upper tray.

Sort/stack mode

The tray junction gate solenoid and the stapler junction gate solenoid remain off. The copies are sent to the shift tray directly.

Staple mode

The tray junction gate solenoid remains off and the stapler junction gate solenoid turns on. The copies go downwards to the jogger unit.

2.2 PRE-STACK MECHANISM

This mechanism improves productivity in staple mode.
During stapling, the copier has to wait. This mechanism reduces the wait by holding the first two sheets of a job while the previous job is still being stapled. It only works during the second and subsequent sets of a multi-set copy job.
The pre-stack junction gate solenoid $[A]$ turns on shortly after the 1st sheet of paper enters the finisher. This opens the junction gate [B], and directs the sheet to the pre-stack path [C]. (This sheet cannot be fed to the stapler yet, because the first set is still being stapled.)

When the sheet has passed the pre-stack roller [D], the pre-stack motor turns off to stop the sheet until the second copy comes in.

The pre-stack junction gate solenoid turns off again shortly after the trailing edge of the 1st sheet enters the finisher, and the 2 nd sheet is sent to the main paper path [E].
Then the pre-stack motor turns on again to feed the first copy that is stopped in the pre-stack path [C], and the first and second copies are delivered together to the staple tray.
All sheets after the 2nd sheet go to the stapler tray via the main paper path [E].

2.3 JOGGER UNIT PAPER POSITIONING MECHANISM

In staple mode, each sheet of copy paper is vertically and horizontally aligned when it arrives in the jogger unit.

Vertical Paper Alignment

After the trailing edge of the copy passes the stapler tray entrance sensor [A], the positioning roller solenoid $[\mathrm{B}]$ is energized for 280 ms to push the positioning roller [C] into contact with the paper. The positioning roller and alignment brush roller [D] rotate to push the paper back and align the trailing edge of the paper against the stack stopper [E].

Horizontal Paper Alignment

When the print key is pressed, the jogger motor [F] turns on and the jogger fences [G] move to the waiting position, which is 7 mm wider on both sides than the selected paper.

When the trailing edge of the paper passes the staple unit entrance sensor, the jogger motor turns on for approximately 70 ms to move the jogger fences 5 mm towards the paper. After a short time, the jogger motor turns on again approximately for 60 ms for the horizontal paper alignment then goes back to the waiting position.

2.4 STAPLER UNIT MOVEMENT MECHANISM

Side-to-side:

The stapler motor [A] moves the stapler [B] from side to side. After the start key is pressed, the stapler moves from its home position to the stapling position.
If two-staple-position mode is selected, the stapler moves to the front stapling position first, then moves to the rear stapling position. However, for the next copy set, it staples in the reverse order (at the rear side first then at the front side).
After the job is completed, the stapler moves back to its home position. This is detected by the stapler HP sensor [C].

Rotation:

In the oblique staple position mode, the stapler rotation motor [D] rotates the stapler 45° after it moves to the stapling position.

2.5 STAPLER

The staple hammer $[A]$ is driven by the staple hammer motor $[B]$ via gears $[C]$, two cams [D], and two links [E].
When the aligned copies are brought to the stapling position by the positioning roller, alignment brush roller and jogger fences, the staple hammer motor starts. When the cams complete one rotation, the staple hammer home position sensor [F] turns on, detecting the end of the stapling operation. The staple hammer motor then stops.
There are two sensors in the stapler. One is the staple end switch [G] for detecting staple end conditions (it detects when there is only one sheet of staples left in the cartridge). The other is the cartridge set switch $[\mathrm{H}]$ for detecting whether a staple cartridge is installed.

When a staple end or no cartridge condition is detected, a message is displayed advising the operator to install a staple cartridge. If this condition is detected during a copy job, the indication will appear, but the copy job will not stop.

The staple cartridge has a clinch area [I], in which jammed staples are left. Operators can remove the jammed staples from this area.

2.6 FEED-OUT MECHANISM

After a set of copies has been stapled, the stack feed-out motor [A] starts rotating to drive the stack feed-out belt [B]. The pawl [C] on the belt lifts the stapled copies up and transports it to the shift tray exit rollers [D].

The shift tray exit plate $[E]$ is opened until the leading edge of the stapled copies has passed the shift tray exit rollers by a certain distance. Then the shift tray exit plate is closed and the stapled copies are fed out to the shift tray [F].

The shift tray exit plate is opened and closed by the shift tray exit plate motor [G] through a cam [H].

The stack feed-out motor stops for 300 ms until the exit rollers have completely fed out the stapled copies to the shift tray. This is to prevent the copies from being pushed out too far on the tray.
Then, the motor turns on again and stops when the pawl actuates the stack feedout belt home position sensor [I].
There are two pawls on the belt so that the productivity for a smaller number of copies for a stapled set can be kept high.

2.7 SHIFT TRAY UP/DOWN MECHANISM

The shift tray lift motor $[A]$ controls the vertical position of the shift tray $[B]$ through gears and timing belts [C]. When the main switch is turned on, the tray is initialized at the upper position. The tray is moved up until stack height sensor 1 [D] is deactuated.

During copying, the actuator feeler [E] gradually rises as the copy stack grows, and the actuator gradually moves towards stack height sensor 2 [F].

In sort/stack mode, if stack height sensor 2 is actuated for 3 seconds, the shift tray lift motor lowers the shift tray for 15 ms .

In staple mode, when the stack feed-out motor starts, the tray is moved down until stack height sensor 1 is actuated and then moved up until stack height sensor 1 is de-actuated. This corrects the current tray position. Then, the tray is moved down again until stack height sensor 1 is actuated to make space for the coming set of copies and then moved up until stack height sensor 1 is de-actuated. This means the tray lowers earlier in staple mode, to prevent the next copy suddenly exceeding the space currently available on the tray.
For both modes, the shift tray will rise until stack height sensor 1 is de-actuated when the user takes the stack of paper from the shift tray.
This machine has two shift tray lower limit sensors 1 [G], 2 [H]. Shift tray lower limit sensor 1 detects the near lower limit and sensor 2 detects the lower limit. When the actuator [l] enters sensor 1, a message will be displayed and copying will continue. When the actuator enters sensor 2, a message will be displayed and copying will stop.

The shift tray upper limit switch [J] prevents the drive gear from being damaged if stack height sensor 1 fails. When the shift tray pushes up the shift tray positioning roller $[\mathrm{K}]$, the switch will cut the power to the shift tray lift motor.

2.8 SHIFT TRAY SIDE-TO-SIDE MECHANISM

In sort/stack mode, the shift tray [A] moves from side to side to separate the sets of copies.

The horizontal position of the shift tray is controlled by the shift motor [B] and shift gear disk [C]. After one set of copies is made and delivered to the shift tray, the shift motor turns on, driving the shift gear disk and the shaft [D]. The end fence [E] is positioned by the shaft, creating the side-to-side movement.
When the shift gear disk has rotated 180 degrees (when the shift tray is fully shifted across), the cut-out in the shift gear disk turns on the shift tray half-turn sensor [F] and the shift motor stops. The next set of copies is then delivered. The motor turns on, repeating the same process and moving the tray back to the previous position.

2.9 PUNCH UNIT DRIVE MECHANISM

The punch unit makes 2 or 3 holes (depending on the type of punch unit) at the trailing edge of the paper.
The punch unit is driven by the punch motor [A]. The punch motor turns on 78 ms after the trailing edge of the paper passes through the entrance sensor $[B]$, and makes the punch holes.
The home position is detected by the punch HP sensor [C]. When the cut-out on the punch shaft gear disk [D] enters the punch HP sensor, the punch motor stops.
The punch position is adjusted as follows:
Right to left: SP mode
Front to rear: Spacers

2.10 PUNCH WASTE COLLECTION MECHANISM

The punch waste is collected in the punch waste hopper [A], which is under the punch unit.

When the punch waste covers the hole [B] in the hopper, the hopper sensor [C] turns on and a message will be displayed after the copy job finishes.
The hopper sensor also works as the hopper set sensor. If the punch waste hopper is not set, the hopper sensor moves away from the hole in the hopper holder [D] and a message is displayed. This message is the same as for the hopper full condition.

2.11 JAM CONDITIONS

1. The entrance sensor does not turn on within 2.0 s after the copier exit sensor turns off.
2. The entrance sensor does not turn off within 850 ms after it turns on.
3. The upper tray exit sensor does not turn on within $1,050 \mathrm{~ms}$ after the entrance sensor turns on.
4. The upper tray exit sensor does not turn off within 850 ms after it turns on.
5. In sort/stack mode, the shift tray exit sensor does not turn on within $1,345 \mathrm{~ms}$ after the entrance sensor turns on.
6. In sort/stack mode, the shift tray exit sensor does not turn off within 850 ms after it turns on.
7. In staple mode, the stapler tray entrance sensor does not turn on within 2,405 ms after the entrance sensor turns on.
8. In staple mode, the stapler tray entrance sensor does not turn off within 850 ms after it turns on.
9. In staple mode, the stapler tray paper sensor does not turn off within 466 pulses of the stack feed-out motor after it starts.
10. In staple mode, the shift tray exit sensor does not turn off within $1,260 \mathrm{~ms}$ after the stack feed-out motor starts.

3. SERVICE TABLES

3.1 DIP SWITCHES

DPS101				
Description				
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
1	0	0	0	Default
1	1	1	0	Free run: one staple (rear-oblique)

NOTE: Do not use any other settings.

3.2 TEST POINTS

No.	Label	Monitored Signal
TP101	(GND)	Ground
TP102	5V	$5 V$
TP103	TXAO	TXD
TP104	RXD	RXD

3.3 FUSES

No.	Function	
FU101	Protects 24 V.	

4. REPLACEMENT AND ADJUSTMENT

4.1 COVER REPLACEMENT

Rear Cover

1. Remove the rear cover [A] (3 screws).

Upper Left Cover

1. Remove the upper left cover [B] (2 screws).

Upper Cover

1. Remove the upper left cover.
2. Remove the upper cover [C] (2 screws).

Front Door

1. Remove the upper left cover.
2. Remove the upper cover.
3. Remove the upper bracket [D] (1 screw).
4. Remove the front door [E].

Left Front Cover

1. Remove the rear cover.
2. Remove the upper cover.
3. Remove the front door.
4. Remove the left front cover [F] (2 screws).

[G]

Shift Tray

1. Remove the rear cover [A].
2. While holding the shift tray $[B]$, move the gear [C] to release the engagement.
3. Lower the shift tray.
4. Remove the shift tray (4 screws).

Lower Left Cover

1. Remove the shift tray.
2. Remove the upper left cover [D].

3. Remove the upper cover [E].
4. Remove the front door [F].
5. Remove the left front cover [G].
6. Remove the lower left cover [H] (4 screws).

Right Cover

1. Remove the right cover [I] (2 screws).

Front Shift Tray Cover

1. Remove the front shift tray cover [J] (1 screw).

Rear Shift Tray Cover

1. Remove the rear shift tray cover $[K]$ (1 screw).

4.2 POSITIONING ROLLER REPLACEMENT

1. Open the front door.
2. Remove the snap ring $[A]$.
3. Release the rubber belt [B].
4. Replace the positioning roller [C].

4.3 ALIGNMENT BRUSH ROLLER REPLACEMENT

1. Open the front door and pull out the jogger unit.
2. Remove the rear cover.
3. Remove the main board [A] (6 screws, all connectors).
4. Remove a screw [B] and a tension spring [C] for the tension bracket [D], and release the tension of the timing belt.
5. Remove the front side E-ring [E] and bushing [F].
6. Remove the alignment brush roller assembly.
7. Remove the timing pulley [G] (1 E-ring).
8. Replace the alignment brush roller [H] (1 spacer, 1 bushing).

4.4 SENSOR REPLACEMNT

4.4.1 STACK HEIGHT SENSOR 1 AND 2

1. Remove the upper left cover.
2. Remove the upper cover.
3. Remove the sensor feeler $[A]$ (1 screw, 1 connector).
4. Remove the sensor bracket [B] (1 screw).
5. Replace the stack height sensor 1 [C] or 2 [D].

4.4.2 UPPER TRAY PAPER LIMIT AND EXIT SENSOR

1. Remove the upper left cover.
2. Remove the upper cover.

Upper Tray Paper Limit Sensor

3. Remove the sensor bracket [A] (1 screw).
4. Replace the upper tray paper limit sensor [B] (1 connector).

Upper Tray Exit Sensor

3. Remove the sensor bracket [C] (1 screw).
4. Replace the upper tray exit sensor [D] (1 connector).

4.4.3 SHIFT TRAY EXIT SENSOR

1. Remove the rear cover.
2. Remove the upper left cover.
3. Remove the upper cover.
4. Open the front door, unhook the joint $[A]$ and remove the upper exit guide $[B]$ (1 plastic clip, 1 connector).
5. Remove the guide stay [C] (2 screws).
6. Remove the discharge brush [D] (2 screws).
7. Replace the shift tray exit sensor [E] (1 screw, 1 connector).

4.4.4 ENTRANCE AND STAPLER TRAY ENTRANCE SENSOR

1. Remove the finisher from the copier.

Entrance Sensor

2. Remove the sensor bracket [A] (1 screw).
3. Replace the entrance sensor [B] (1 screw, 1 connector).

Stapler Tray Entrance Sensor

2. Remove the sensor bracket [C] (1 screw).
3. Replace the stapler tray entrance sensor [D] (1 screw, 1 connector).

4.4.5 STAPLER ROTATION HP SENSOR

1. Remove the stapler unit.
2. Remove the screw $[A]$ and rotate the stapler bracket $[B]$.
3. Remove the sensor bracket [C] (1 screw).
4. Replace the stapler rotation HP sensor [D] (1 connector).

4.5 STAPLER REMOVAL

1. Open the front door and pull out the jogger unit.
2. Move the stapler to the front.
3. Remove the stapler [A] (1 screw, 1 connector).

4.6 PUNCH POSITION ADJUSTMENT

Right to left

This position is adjusted by SP modes.

Front to rear

The optional punch units have the following 3 spacers as accessories.
1 mm thickness: 2 pcs
2 mm thickness: 1 pc
The punch position can be adjusted by up to 4 mm by combinations of the 3 spacers.

BOOKLET FINISHER A763

1. OVERALL MACHINE INFORMATION

1.1 SPECIFICATIONS

Paper Size:

Tray	Modes	Sizes		
Proof tray	A3 to A5, DLT to HLT			
Shift tray	No staple mode	A3 to A5, DLT to HLT		
	Staple Mode	Top or bottom		
	A3 to B5 lengthwise, DLT to HLT			
	A3, A4 sideways, B5 sideways, DLT to HLT sideways			
Booklet tray		A3 to B5, DLT to LT		

Paper Weight:

Tray	Weight
Stack mode	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $163 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 42 lb
Staple mode	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb
Saddle stitch mode	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb
	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $128 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 34 lb (Cover sheet only)

Paper Capacity ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

Tray	Modes	Paper size	Capacity
Proof tray		A4-S, LT-S or shorter	150 sheets
		A4-L, LT-L or longer	75 sheets
Shift tray	No staple	A4-S, LT-S or shorter	147mm stack height or 1000 sheets (*)
		A4-L, LT-L or longer	74 mm stack height or 500 sheet (${ }^{*}$)
	Staple	A4-S, LT-S or shorter	110 mm stack height or 30 sets or 750 sheets (*)
		A4-L, LT-L or longer	74 mm stack height or 30 sets or 500 sheets(*)
Staple tray	One size Mixed sizes	1-5 sheets	25 sets
		6-10 sheets	15 sets
		11-15 sheets	10 sets

(-L": Lengthwise ,-S: Sideways)
Staple Capacity ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

Modes	Paper size	Total capacity
Staple	A4-S, LT-S or shorter	$2-50$ sheets
	A4-L, LT-L or longer	$2-30$ sheets
Saddle stitch		$2-15$ sheets

(-L": Lengthwise, -S: Sideways)

* The machine will inform the operator that the tray is full when any of the conditions are met (whichever occurs first).

SPECIFICATIONS

Staple Position:	Staple mode: 3 positions 1 staple: 2 positions (Front, Rear) 2 staples: 1 position
	Saddle stitch mode: 1 position Cartridge Staple: 5000 staples Saddle stitch: 2000 staples
Staple Replenishment:	
Power Source:	24 Vdc (from copier)
Power Consumption:	60 W
Dimensions	
(W x D x H):	$800 \times 728 \times 980 \mathrm{~mm}, 31.5 \times 28.7 \times 38.6$ inches
Weight:	45 kg

1.2 ELECTRICAL COMPONENT DESCRIPTION

Symbol	Name	Function							
Motors									
M1	Entrance	Drives the entrance roller.							
M2	Transport Roller	Drives the 1st and 2nd transport rollers.							
M3	Buffer Roller	Drives the buffer roller and the proof tray exit roller.							
M4	Jogger	Moves the jogger fence.							
M5	Stapler	Moves the stapler unit.							
M6	Staple Hammer	Drives the staple hammer in the stapler unit.							
M7	Guide Plate	Moves the upper exit guide plate up and down.							
M8	Exit Motor	Drives the exit roller.							
M9	Tray Lift	Moves the shift tray up and down.							
M10	Booklet Transport	Drives the relay roller and the positioning roller.							
M11	Positioning Plate	Moves the positioning plate up and down.							
M12	Shutter Guide	Moves the shutter guide up and down.							
M13	Booklet Jogger	Drives the jogger fences.							
M14	Front Stapler	Drives the staple hammer in the front stapler.							
M15	Rear Stapler	Drives the staple hammer in the rear stapler.							
M16	Folder Roller	Drives the folder rollers.							
M17	Folder Plate	Moves the folder plate.							
Sensors		Entrance							Detects copy paper entering the finisher and
:---									
detects misfeeds.									

Symbol	Name	Function
S18	Proof Tray Exit	Checks for misfeeds at the proof tray.
S19	Proof Tray Limit	Detects when the paper stack height in the proof tray is at its upper limit.
S20	Finisher Set	Detects whether the finisher is installed into the copier or not.
S21	Shutter	Detects whether the shutter is closed or not.
S22	Trailing Edge 1	Detects the relay roller release timing.
S23	Trailing Edge 2	Detects the relay roller release timing.
S24	Trailing Edge 3	Detects the relay roller release timing.
S25	Booklet Entrance	Check for paper misfeeds.
S26	Positioning Plate Paper	Detects copy paper in the positioning plate.
S27	Positioning Plate HP	Detects the home position of the positioning plate.
S28	Positioning Roller	Detects whether the positioning roller is released or not.
S29	Booklet Jogger HP	Detects the home position of the jogger fences in the booklet unit.
S30	Front Staple End	Detects staples in the cartridge of the front stapler.
S31	Rear Staple End	Detects staples in the cartridge of the rear stapler.
S32	Stapler Unit Set	Detects whether the stapler unit is installed or not.
S33	Shutter Guide HP	Detects the home position of the shutter guide.
S34	Folder Plate HP	Detects the home position of the folder plate.
S35	Folder Plate Return	Detects the return position of the folder plate.
S36	Folder Plate Motor	Generates pulses to check the folder motor and its position.
S37	Folder Roller Position	Detects the position of the folder roller.
S38	Folder Roller HP	Detects the home position of the folder roller.
S39	Folder Roller Motor	Generates pulses to check the folder roller motor and its position.
S40	Booklet Exit	Checks for misfeeds at the booklet tray.
S41	Booklet Tray Paper	Detects copy paper in the booklet tray.
S42	Booklet Entrance Guide	Detects whether the booklet entrance guide is opened or not.
S43	Lower Door	Detects whether the lower door is opened or not.
S44	Booklet Exit Cover	Detects whether the booklet exit cover is opened or not.
Switches		
SW1	Upper Cover Safety	Cuts the +24 V for the motor.
SW2	Shift Tray Safety	Cuts the +24 V for the motor.
SW3	Shutter Position	Cuts the +24 V for the motor.
SW4	Upper Exit Guide 1	Cuts the +24 V for the motor.
SW5	Upper Exit Guide 2	Cuts the +24 V for the motor.
SW6	Shift Tray Upper Limit	Cuts the +24 V for the lift motor.

Symbol	Name	Function
SW7	Cartridge Set	Detects the staple cartridge in the stapler.
SW8	Staple End	Detects the staples in the cartridge.
SW9	Thermo	Detects the lift motor temperature.
SW10	Lower Door Safety	Cuts the +24 V for the motor.
SW11	Booklet Entrance Guide Safety	Cuts the +24 V for the motor.
SW12	Booklet Exit Safety	Cuts the +24 V for the motor.
SW13	Front Staple Hammer HP	Detects the home position of the staple hammer in the front stapler unit
SW14	Rear Staple Hammer HP	Detects the home position of the staple hammer in the rear stapler unit
Solenoids		
SOL1	Booklet Gate	Drives the booklet gate.
SOL2	Buffer Roller Entrance Gate	Drives the buffer roller entrance gate.
SOL3	Proof Tray Gate	Drives the proof tray gate.
SOL4	Buffer Roller Exit Gate	Drives the buffer roller exit gate.
SOL5	Transport Belt	Moves the transport belt to the stopper.
SOL6	Paddle	Releases the paddle stopper.
SOL7	Front Guide Release	Releases the front guide plate.
SOL8	1st Booklet Unit Gate	Drives the 1st booklet unit gate.
SOL3	2nd Booklet Unit Gate	Drives the 2nd booklet unit gate.
SOL4	Relay Roller	Releases the relay roller.
PCBs		
PCB1	Finisher	Controls the upper unit.
PCB2	Lift Motor Sensor	Generates pulses to check the lift motor, to control lift motor position, and to detect the motion direction of the shift tray.
PCB3	Booklet Unit	Controls the booklet unit.
PCB4	Trailing Edge Sensor	Detects the relay roller release timing.
Others		
HR1	Stapler Interface	Interfaces the stapler and the finisher board.

1.3 MECHANICAL COMPONENT LAYOUT

1. Shift Tray
2. Shutter
3. Lower Exit Roller
4. Upper Exit Guide
5. 2nd Transport Roller
6. Proof Tray
7. Buffer Roller Exit Gate
8. Buffer Roller
9. Proof Tray Gate
10. Buffer Roller Entrance Gate
11. Booklet Gate
12. 1st Transport Roller
13. Stapler Unit
14. Transport Belt

15. Booklet Unit Entrance Roller
16. 1st Booklet Unit Gate
17. 2nd Booklet Unit Gate
18. Anvil
19. Folder Plate
20. Positioning Plate
21. Shutter Guide
22. Booklet Tray
23. Exit Guide
24. Positioning Roller
25. Folder Roller
26. Relay Roller
27. Booklet Stapler Unit

2. DETAILED DESCRIPTIONS

2.1 JUNCTION GATE MECHANISM

2.1.1 SHIFT TRAY MODE

A4ILT sideways or shorter

The booklet gate $[A]$ and buffer roller entrance gate $[B]$ are closed and the copy paper goes directly to the shift tray [C].

Longer than A4 sideways

The booklet gate, proof tray gate [D], and buffer roller exit gate [E] are closed, and the buffer roller entrance gate is opened. The copy paper passes over the buffer roller [F]. This paper path creates a distance between copies.

2.1.2 PROOF TRAY MODE

The booklet gate $[A]$ is closed. The buffer roller entrance gate $[B]$ and proof tray gate $[C]$ are open. The copy paper goes to the proof tray [D].

2.1.3 BOOKLET STITCH MODE

The booklet gate is opened and the copy paper goes to the booklet unit.

2.2 PRE-STACK MECHANISM

This mechanism improves productivity in staple mode and shift mode.
During stapling, the copier has to wait. This mechanism reduces the wait by holding the first two sheets of a job while the previous job is still being stapled. It only works during the second and subsequent sets of a multi-set copy job.

The buffer roller entrance gate $[A]$ and buffer roller exit gate $[B]$ are opened. Then, the 1st sheet of paper goes around the buffer roller [C].

When the 2nd copy [D] comes to the buffer roller, the buffer roller exit gate is closed. The two sheets of paper go to the shift tray [E] or staple tray [F].

2.3 PAPER SHIFT MECHANISM

[A]

[A]

In sort and stack mode, only the 1st sheet of copy paper from the 2nd set is shifted to the front to separate each set of copies.
When the copy paper comes into the staple tray $[A]$, the upper exit guide $[B]$ (which contains the upper exit roller) opens. The paper switches back to the stopper [C]. Then the front guide release solenoid [D] turns on and the front guide [E] is released, the shift motor moves jogger fence [F] to the front, and the copy paper shifts to the front by 30 mm .

After copy paper has been shifted, the upper exit guide closes and the lower exit roller [G] turns in the opposite direction to feed out the copy paper.

2.4 PAPER POSITIONING MECHANISM

[F]

When the trailing edge of the 1st copy paper passes the 2nd transport roller [A], the lower exit roller [B] stops and turns in reverse. At the same time, the upper guide plate motor turns on and opens the upper exit guide [C]. The copy paper is sent to the stopper [D] by the lower exit roller and feed belt [E], and it is aligned by the jogger motor.
The feed belt solenoid [F] turns on to move the feed belt to the stopper. This function prevents excessive buckling of the paper between belt and stopper.
The paddles [G] send the paper to the stopper starting from the 2nd copy paper. When the trailing edge of the 2nd copy paper passes the 2nd transport roller, the paddle solenoid $[\mathrm{H}]$ turns on and the drive from the transport roller transmits to the paddle shaft.

2.5 STAPLER UNIT MOVEMENT MECHANISM

2.5.1 DRIVE

The stapler motor [A] drives the stapler unit drive gear [B] via a timing belt. The stapler unit guide has a rack gear [C]. The stapler unit moves along the rack gear via the stapler unit [D] drive gear.

2.5.2 MOVEMENT

Front and Rear Stapling

When the print key is pressed, the stapler unit moves to the center. The stapler unit moves to the front (or rear) stapling position when the copy paper comes into the finisher and stays until the copy job finishes. It returns to home position when the job is finished.

Two-position Stapling

When the print key is pressed, the stapler unit moves to the center. The stapler unit moves to the rear stapling position first and moves to the front stapling position when stapling. Then it goes back to the center until the copy job finishes. It returns to home position when the job is finished.

2.6 STAPLER

[F]

The staple hammer motor [A] drives the cam [B] via 2 gears [C, D] and the guide roller on the staple hammer moves on the cam [D]. When the guide roller moves to the highest position on the cam, the copy paper is stapled.
The stapler unit contains the cartridge set switch [E], staple end switch [F] and staple position sensor [G].
The staple position sensor detects whether the staple sheet has come to the staple unit or not.

2.7 SHIFT TRAY MECHANISM

The guide gear $[A]$ on which the shift tray is mounted is driven by the lift motor $[B]$ via gear [C].

The finisher board detects the direction of the motor rotation and motor position using the lift motor sensors 1 [D] and 2 [E].

The lift motor contains a thermoswitch [F]. When it detects $73.5^{\circ} \mathrm{C}$, the finisher board stops the lift motor until its temperature reaches approximately $40^{\circ} \mathrm{C}$.

The shutter position switch [G] cuts the lift motor power for safety when the upper exit guide plate opens.
The shift tray height sensor $[\mathrm{H}]$ detects the distance between the sensor and the top of the copy paper on the shift tray.

2.8 BOOKLET UNIT GATE MECHANISM

There are two junction gates $[A]$ and three paper sensors $[B]$ at the entrance area of the booklet unit.

Depending on paper size, the appropriate gate solenoid(s) [C] are energized to close the gate(s) in order to transport paper to the positioning plate [D] through a suitable paper path.

This is done for the following reasons:

- To detect the trailing edge of paper with the correct sensor.
- To prevent the leading edge of the next sheet from hitting the trailing edge of the previous sheets on the positioning plate.

The following tables show the relation between paper sizes and solenoids/sensors:

	A3, 11" $\mathbf{x 1 7 "}$	B4, 11" $\mathbf{x 1 4 "}$	A4, 81/2" $\times 11 "$
1st Solenoid (Gate)	OFF (Opened)	ON (Closed)	ON (Closed)
2nd Solenoid (Gate)	OFF (Opened)	OFF (Opened)	ON (Closed)

	A3, 11" $\mathbf{x ~ 1 7 " ~}$	B4, 11" \times 14"	A4, 81/2" \times 11"
Trailing Edge Sensor 1	ON	ON	ON
Trailing Edge Sensor 2	OFF	ON	ON
Trailing Edge Sensor 3	OFF	OFF	ON

2.9 RELAY ROLLER AND POSITIONING PLATE MECHANISM

When the first sheet of paper comes to the booklet unit, the booklet transport motor turns on to drive the relay roller [A]. The two relay rollers are out of contact with each other before the paper comes. When the leading edge of the paper passes trailing edge sensor 1 , the relay roller solenoid is energized to make the two relay rollers contact each other to transport the paper to the positioning plate $[B]$. When the trailing edge of the paper comes to the trailing edge sensor that the paper passes last, the relay roller solenoid is de-energized. This solenoid on/off cycle is done for each sheet of paper.

Before paper comes, the positioning plate moves up from the home position to a position that is suitable for the selected paper size in order that the middle of the paper just comes to the stapling position.

The positioning plate motor drives the positioning plate using pulse counts.
Only when the first sheet of paper reaches the positioning plate, the positioning plate sensor [C] detects the paper.

2.10 POSITIONING ROLLER MECHANISM

The booklet transport motor also drives the positioning roller [A] to vertically align paper against the positioning plate $[B]$.

The positioning roller is not round but elliptical in shape so that it moves away from the paper while the paper is being horizontally aligned.
The positioning roller sensor [C] detects the actuator [D] on the roller shaft to determine the rotation of the positioning roller. When the sensor is de-actuated, the roller is away from the paper and the jogger fences [E] start moving.

2.11 BOOKLET UNIT JOGGER MOVEMENT MECHANISM

When the start key is pressed, the booklet jogger motor turns on to move the jogger fences [A] to the waiting positions that are 10 mm from each of the paper side edges.

Each time a sheet of paper reaches the positioning plate [B], the jogger fences move toward the paper to align the paper once. The fences move back a short distance and move forward again the paper to align for the second time. Then, the fences go back to the waiting position.
When the last sheet is aligned, the fences stay at the aligning positions during stapling.

2.12 BOOKLET STAPLER UNIT

There are two staplers whose positions are fixed.
When the jogger fences finish aligning the last sheet, the jogger fences stay at the aligning positions and stapling starts. The two staplers do not operate at the same time, the rear stapler operates first, then the front one. This is for the following reasons:

- To prevent paper from becoming waved in the area between the two stapled positions.
- To minimize necessary electric power.

The staple hammer HP switch in each stapler detects a stapling cycle and the staple end sensor detects the presence of staples in the cartridge.
The stapler unit, including the two staplers, can be pulled out to enable staple cartridge replacement or jam removal. The stapler unit set sensor detects when the stapler unit is back in the right position.

2.13 PAPER FOLDER MECHANISM

The positioning plate moves down from the stapling position to a position such that the middle of the paper just comes to the folding position. It depends on the paper size.

At the same time, the shutter guide motor moves the shutter guide, which is covering the folder rollers to prevent paper arriving at the positioning plate from being caught by the rollers, down to the home position.
Shortly after that, the folder plate motor and the folder roller motor start rotating. The folder plate $[A]$ moves to push the middle of the stapled sheets of paper toward the folder rollers $[B]$ until the folder plate return sensor [C] is de-actuated. Then, the folder plate comes back to the home position.
After that, the folder rollers and booklet exit roller feed the paper to the booklet tray.

PAPER FOLDER MECHANISM

In the case of 10 sheets or more of A4 or $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper, folding is done twice for 20 mm of the leading edge to fold the paper more firmly.

When the leading edge of the folded paper passes 20 mm from the folder rollers, the folder roller motor reverses to feed the paper back 20 mm . During this action, the folder plate stays at the return position. (Figure A763D561)
Then, the folder roller motor rotates forward again to feed the set of papers out and the folder plate goes back to the home position. (Figure A763D562)

3. INSTALLATION

3.1 ACCESSORY CHECK

Check the quantity and condition of the accessories in the box against the following list.
Description Q'ty

1. Upper Tray 1
2. Shift Tray 1
3. Tapping Screw -M4 x 6 1
4. Rail Ass'y 1
5. Joint Bracket. 1
6. Tapping Screw - M4 x 16 2
7. Rail Bracket 1
8. Tapping Screw - M4 x 6 1
9. Harness Cover 1
10. Sensor Feeder 1

3.2 INSTALLATION PROCEDURE

\triangle CAUTION
 Keep the power cord unplugged when starting the following procedure.

1. Unpack the finisher and remove the tapes and shipping retainers.

2. Open the front under door and pull out the staple unit $[A]$.
3. Remove the stapler unit lock plate $[B]$ (1 screw).
4. Push in the stapler unit and shut the front lower door.
5. Remove the right lower cover [C] (4 screws).
6. Remove the front pressure release bracket [D] (1 screw).
7. Remove the rear pressure release bracket [E] (1 screw).

8. Set the hooks $[A]$ of the shift tray $[B]$ in the notches in the shift tray bracket, and secure the tray with two $\mathrm{M} 4 \times 6$ screws.
9. Connect the shift tray sensor harness [C].
10. Install the harness cover [D] (2 hooks).

11. Install the upper tray [A] (2 pins).
12. Attach the sensor feeler $[B]$ (2 pins).
13. Install the joint bracket [F] on the left side of the copier (4 screws).
14. Attach the rail [C] to the rail bracket [D] as shown.
15. Install the rail bracket $[E]$ on the left lower cover of the copier (2 screws).

16. Secure the rail $[B]$ to the booklet finisher with 1 M 4 screw.
17. Align the finisher on the joint bracket and lock the 2 hooks [C] of the finisher on the joint bracket.
18. Connect the finisher cable [D] to the copier.
19. Plug in the power cord and turn the main switch on, and perform stapler initial setting as follows.
1) Enter User Program mode.
2) Press System Settings.
3) Press Basic Page 2.
4) Press Staple Initialization.
5) Press the OK key.

4. REPLACEMENT AND ADJUSTMENT

4.1 REMOVAL

4.1.1 UPPER DOOR

1. Open the upper door $[A]$.
2. Remove the lower hinge $[B]$ (1 screw).
3. Push up the upper door and remove it.

4.1.2 UPPER REAR COVER

1. Hold up the proof tray and open the top cover [A].
2. Unhook the upper rear cover $[B]$ and remove it (3 screws).

4.1.3 LOWER REAR COVER

1. Remove the lower rear cover [C] (4 screws).

4.1.4 TOP COVER

1. Hold up the upper tray $[A]$ and open the top cover $[B]$.
2. Push the hooks [C] of the top cover and remove it.

4.1.5 UPPER INNER COVER

1. Open the upper door.
2. Remove the upper inner cover [A] (1 screw).

4.1.6 SHIFT TRAY UNIT

1. Remove the upper and lower rear covers.
2. Disconnect the connector $[A]$ and remove the grounding wire $[B]$ (1 screw).
3. Unhook the two stoppers [C] and remove them.
4. Remove the slide guide [D] by pulling it up.
5. Remove the shift tray unit [E] by pulling it up.

NOTE: When reinstalling the shift tray unit, release the clutch gear [F] of the tray lift motor by carefully inserting a screwdriver.

4.1.7 UPPER SHIFT GUIDE

1. Remove the slide guide and shift the shift tray unit down by releasing the clutch gear of the tray lift motor (see Shift Tray Unit Removal).
2. Remove the upper shift guide [A] (6 screws ($5 \times \mathrm{M} 4,1 \times \mathrm{M} 3$)).

4.1.8 LOWER SHIFT GUIDE

1. Remove the shift tray unit.
2. Remove the lower shift guide $[A]$ (2 connectors, 6 screws ($3 \times \mathrm{M} 4,3 \times \mathrm{M} 3)$).

4.1.9 EXIT UNIT

1. Remove the shift tray unit, and the upper and lower shift guides.
2. Disconnect the connector $[A]$ and remove the screw $[B]$ that secures the transport belt unit [C].
3. Disconnect the 4 connectors [D].
4. Hold up the exit unit [E] and remove it with the transport belt unit (3 screws, 1 clamp).
NOTE: When installing the exit unit, make sure to position the exit unit guide plate (black) [F] over the transport guide plate [G].

4.1.10 BUFFER ROLLER UNIT

[E]

1. Remove the upper rear cover and the top cover.
2. Disconnect the connector $[A]$.
3. Remove the upper shift guide [B] (6 screws) and the guide holder [C] (2 screws).
4. Unhook the shafts [D], and remove the buffer roller unit [E] (2 clamps).

4.1.11 STAPLER

1. Open the upper front door.
2. Slide the stapler $[A]$ towards the front.
3. Remove the stapler (1 screw, 1 connector [B]).
4. Remove the cover [C] from the stapler (2 screws).

4.1.12 FINISHER BOARD

1. Remove the upper rear cover.
2. Remove the finisher board [A] (4 screws, 19 connectors). NOTE: Do the following adjustments after replacing the board:

- Shift tray height
- Jogger fence position
- Stapling position

4.1.13 BOOKLET UNIT

1. Remove the following items.

- Upper and lower rear covers.
- Shift tray unit.
- Lower shift guide.

2. Remove the lower right cover [A] (4 screws).
3. Remove the folder roller knob [B] (1 stepped screw).
4. Remove the lower inner cover [C] and lower door [D] (5 screws).

5. Remove the grounding wire $[A]$ (1 screw) and upper booklet exit guide $[B]$ (2 screws).
6. Open the lower booklet exit guide [C] and remove it (1 L-pin [D], 2 connectors [E]).
7. Remove the right front and right rear covers $[F, G]$ (2 screws each).
8. Disconnect the two connectors $[\mathrm{H}]$.
9. Remove the two joints [I] and then pull out the booklet unit [J] from the right side (3 screws).

4.1.14 FOLDER ROLLERS

1. Remove the booklet unit
2. Remove the drive unit [A] (4 connectors [B], 3 screws [C]).
3. Remove the front and rear tension springs [D].

4. Remove the gears $[A]$ and ball bearings $[B]$ (4 C-rings).
5. Remove the front and rear tighteners [C] (1 stepped screw each).

6. Remove the jogger plates $[A]$ (1 screw each).
7. Slide the folder rollers $[B]$ to the front and remove them.

4.1.15 FOLDER PLATE

Removal

1. Remove the following items

- Lower right cover (see "Booklet Unit Removal")
- Folder roller knob (see "Booklet Unit Removal")
- Lower door and lower inner cover (see "Booklet Unit Removal")
- Booklet board

2. Release the harness [A] from the clamps.
3. Insert two positioning screws $[B]$ in the holes provided in the folder table [C].
4. Tighten the screws until the ends touch the securing plate [D] for the folder plate.
5. Remove the folder plate [E] and the securing plate (3 screws).

Reinstalling

[B]

[A, B]

1. Line up the two small holes $[\mathrm{A}]$ in the folder plate with the two small protrusions on the bottom of the securing plate [B]. Then, push the two protrusions through the holes.
Note: Be sure that the three screw holes are also lined up.
2. Temporarily fix the two plates together by attaching two strips of electrical tape
[C] along the line where they meet (see the illustration).
NOTE: 1) Be sure to fold the two strips back toward you so that they can easily be removed.
2) Be careful not to attach the tape too close to the three screw holes.
3. Reattach the two plates $[\mathrm{A}, \mathrm{B}]$ to the folder table [D] (3 screws).

NOTE: Tighten these three screws while holding the securing plate against the two positioning screws [E] that were installed in step 3 of the "Removal" procedure.
4. Remove the two strips of tape.

4.1.16 BOOKLET STAPLER UNIT

Removal

[C]

1. Remove the lower door and inner cover (see "Booklet Unit Removal").
2. Remove the guide roller $[A]$ and shaft $[B]$ (1 E-ring).
3. Pull out the booklet stapler unit [C].

REMOVAL

[B]

Adjustment

1. Remove the booklet stapler cover [A] (3 screws).
2. Remove the three paper guides $[B]$ (1 screw each).
3. Loosen the two screws on each of the anvils [C].

[A]

[C]
4. Insert the anvil positioning plate $[A]$ into the staple slot of the stapler [B]. NOTE: The anvil positioning plate is stored in the booklet stapler cover [C].
5. Rotate the gear to move down the stapler. Then align the anvil positioning plate and the anvil [D]. Then secure the anvils (2 screws each).

4.1.17 BOOKLET BOARD

1. Remove the lower right cover [A] (4 screws).
2. Remove the booklet board [B] (4 screws, 14 connectors).

NOTE: After replacing the board, adjust the booklet stapling position.

4.1.18 POSITIONING PLATE UNIT

1. Remove the booklet board (4 screws, 14 connectors).
2. Slide the paper positioning unit [C] to the right and remove it (2 screws, 2 connectors [D]).

4.1.19 1ST AND 2ND BOOKLET UNIT GATES

[B]

[E]

1. Remove the upper and lower rear covers.
2. Release the two tension springs $[A]$ of the booklet entrance guide $[B]$.
3. Remove the booklet unit gate solenoids [C] (1 screw and 1 spring each).
4. Pull out the link of the solenoid [D].
5. Remove the booklet unit gates $[E]$.

4.2 ADJUSTMENT

4.2.1 SHIFT TRAY HEIGHT

Dip Switch 3

After replacing the finisher board or shift tray height sensor, always do this adjustment.

1. Remove the upper rear cover.
2. Turn on dip switches $3-1$ and -4 on the finisher board.
3. Put blank paper (A4/81/2" $\times 11^{\prime \prime}$) on the shift tray.
4. Press switch 1 (SW1) on the finisher board.

The finisher automatically adjusts the shift tray height when switch 1 is pressed.

- After performing the adjustment, the shift tray will return to home position.
- During the adjustment, LED 1 flashes. After performing the adjustment, LED 1 turns on and remains on.
- If the automatic adjustment fails, the finisher stops and LED 1 turns off.

5. Turn off dip switches 3-1 and -4, then turn off the copier main switch.

4.2.2 JOGGER FENCE POSITION

After replacing the finisher board or if a paper alignment fault occurs, do this adjustment.
Doing this adjustment once will affect all paper sizes.

1. Remove the upper rear cover.
2. Turn on dip switch 3-1 on the finisher board.
3. Press the following switch on the finisher board.

Using A4: Switch 1 (SW1)
Using 81/2" x 11": Switch 2 (SW2)

- After pressing the switch, the upper exit unit will open and the jogger fences will move to the A4 or $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ position.

4. Place 10 sheets of $A 4 / 81 / 2^{\prime \prime} \times 11$ " paper between the jogger fences and push them until they touch the shutters.
5. Adjust the jogger fence position by pressing switch 1 or 2.

- Switch 1: Move to the front ($0.35 \mathrm{~mm} / \mathrm{press}$)
- Switch 2: Move to the rear ($0.35 \mathrm{~mm} /$ press)

6. Press switches 1 and 2 simultaneously to store the adjustment data.

- After pressing the switches, the upper exit unit will close.

7. Turn off dip switch $3-1$, then turn off the copier main switch.

4.2.3 STAPLING POSITOIN

Dip Switch 3

After replacing the finisher board, do this adjustment. Doing this adjustment once will affect all paper sizes and all stapling positions.

1. Remove the upper rear cover.
2. Turn on dip switches $3-1$ and -2 on the finisher board.
3. Press the following switch on the finisher board.

Using A4: Switch 1 (SW1)
Using 81/2" x 11": Switch 2 (SW2)

- After pressing the switch, the upper exit unit will open and the transport belt will rotate.

4. Within five seconds after pressing the switch, place one sheet of $A 4 / 81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper between the jogger fences and push it until it touches the shutter. When the staple tray paper sensor detects the paper, the stapler will staple (rear, 1 point).
5. Take out the stapled paper manually and check the staple position.

Staple position: Good \rightarrow Turn off dip switches 3-1 and -2 to end the procedure.
Staple position: No good \rightarrow Change the staple position by doing the following steps.
6. Adjust the staple position by pressing switch 1 or 2 .

Switch 1: Move the front ($0.3 \mathrm{~mm} /$ press)
Switch 2: Move to the rear ($0.3 \mathrm{~mm} / \mathrm{press}$)
7. Press switches 1 and 2 simultaneously to store the adjustment data. After pressing the switches, check the staple position again.
8. Turn off dip switches 3-1 and -2, then turn off the copier main switch.

4.2.4 BOOKLET STAPLING POSITION

Dip Switch 1

After replacing the booklet board, dip switches $1-6,-7,-8$ on the new board must be set up the same way as on the old board.

1. Remove the lower right cover (see "Booklet Unit Removal") and lower rear cover.
2. Turn on dip switches 1-1 and -2 on the booklet board.
3. Tape the actuators of the booklet entrance guide sensor (S42) and the booklet entrance guide safety switch (SW11), so that S42 and SW11 remain actuated.
4. Press switch 2 (SW2) on the booklet board.

- After pressing the switch, the booklet transport motor (M10) will start to rotate.

5. Put a mark on the trailing edge of some $\mathrm{A} 3 / 11^{\prime \prime} \times 17$ " paper (two sheets).

6. Open the booklet entrance guide [A], then slide in the two sheets of paper [B] until their leading edges touch the positioning plate.
7. Press switch 2 on the booklet board.

- The booklet finisher makes a booklet automatically.

Dip switch $1-6,-7,-8$ setting			Adjustment ($0.25 \mathrm{~mm} /$ step)
-6	-7	-8	
OFF	ON	ON	+3
OFF	ON	OFF	+2
OFF	OFF	ON	+1
OFF	OFF	OFF	0
ON	OFF	ON	-1
ON	ON	OFF	-2
ON	ON	ON	-3
ON	OFF	OFF	Do not use

8. Measure the distance (L) between the stapling position and the folder position.
9. Adjust the stapling position with dip switches $1-6,-7,-8$. Inputting a lower value than the current setting moves the stapling position towards the leading edge. Adjusting by 1 step moves the stapling position 0.25 mm.

Example 1:

To move the stapling position 1 mm towards the leading edge.
If dip switch 1 is currently set to +2 , set the dip switch to reflect -2 (this moves the stapling position 4 steps towards the leading edge).

Example 2:

To move the stapling position 0.75 mm away from the leading edge. If dip switch 1 is currently set to -1 , set the dip switch to reflect +2 (this moves the stapling position 3 steps away from the leading edge).
10. Turn off dip switched 1-1 and -2 , then turn off the copier main switch.

COPIER CONNECTION KIT B322

1. SPECIFICATIONS

Copy Speed:	Max:140 cpm (A4 / 8 ½ " x 11" sideways)
	(Two 70 cpm machines)
	(One 70 cpm machine and one 55 cpm machine)
	Max: 110 cpm (A4 / $8112 \mathrm{l} \times 11 \mathrm{l}$ (sideways)
	(Two 55 cpm machines)
Copy Number Input:	1 to 999

2. DETAILED DESCRIPTIONS

2.1 OVERVIEW

This kit connects two A292 copiers, two A293 copiers or A292 and A293 copier. If the user wishes to have two copiers work on one copy job, the user starts the job on one copier. The copy job will also be made on the other copier.
The copier on which the user pressed the "Connect" key on the display is known as the "Master Unit" and the other copier is the "Sub Unit".
Features for the job can only be selected on the master unit.
There is no restriction on the two connected copiers and their configurations (70 cpm copier or 55 cpm copier, with finisher or without finisher etc). However, with some combinations, the available functions are limited.
NOTE: The printer function cannot use the copy connect mode.

2.2 BASIC OPERATION

After pressing the start key, all originals are read and stored on the HDD. At the same time, the data is sent to the slave unit and stored on its HDD.

After reading all originals, the master and slave units will begin printing. The CPU separates the job for both units. So, they finish at about same time.
The way that the copies are fed out depend on the copy mode, as follows.

2.2.1 NO SORT AND NO STAPLE MODE

$=$ Master Unit $=$
Exit from the copy of the 1st original, face down.
= Slave Unit =
Exit from the copy of the last original, face up.
Example:
Number of originals: 6, 1 -sided to 1 -sided copy mode, Number of copies: 3

Master Unit		Slave Unit	
FFVFV	3rd original - 3rd copy	AXAAE	4th original - 1st copy
FVFVF	3rd original - 2nd copy	AAAAA	4th original - 2nd copy
FVFVF	3rd original - 1st copy	AAAAA	h original - 3rd copy
$\nabla \nabla \nabla \nabla \nabla$	2nd original - 3rd copy	AAAAA	th original - 1st copy
FVFVF	2nd original - 2nd copy	AXAAA	th original - 2nd copy
FVFVF	original - 1st copy	AAAAA	h original - 3rd copy
$\nabla \nabla \nabla \nabla \nabla$	- 3rd copy	AAAAE	h original - 1st copy
FVFVF	original - 2nd copy	AXAAA	h original - 2nd copy
FVFVF	1st original - 1st copy	AAAAE	h original - 3rd copy

Face down, \mathbf{A} : Face up
NOTE: The output quantity on the master and slave units depends on the paper feed tray position, image rotation, and copy speed. If more than two copies are made from an original, sometimes one of the copies (for example, copies of the 4th original) will print on different units (in the above example, the 1st copy of the 4th original may be made on the master instead of the slave).

2.2.2 SORT, STAPLE MODE

The copies exit face down for both units.

Example:

Number of originals: 3, 1-sided to 1-sided copy mode, Number of sets: 6

3rd set - 3rd copy

Slave Unit	
FVFVF	6th set - 3rd copy
FVFVF	6th set - 2nd copy
大VFVF	6th set - 1st copy
VFVFV	5th set - 3rd copy
FVFVF	5th set - 2nd copy
$\nabla \nabla \nabla \nabla \nabla$	5th set - 1st copy
FVFVF	4th set - 3rd copy
FVFVF	4th set - 2nd copy
VFVFV	4th set - 1st copy

Face down

NOTE: The output quantity (sets) made by the master and slave units depends on the paper feed tray position, image rotation, and copy speed. A set of copies will not be divided between the two machines. For example, if paper runs out on one machine, the other machine will continue to work on other sets of copies, but will not complete any unfinished sets for the machine that ran out of paper.

2.2.3 OPERATION IN IRREGULAR CONDITIONS

Paper end during copying

When a machine enters the paper end condition, it stops and "add paper" is displayed. The other machine continues to make copies. The rest of the copy job is transferred to the other machine.

If paper is replenished before the end of the job, the machine will automatically start. If the machine was part of the way through a set of copies, it will finish that set first. Then, if there are any sets still remaining, they will be re-allocated to both machines.

Copy tray full

When copy tray is full, the machine stops and "paper is full" is displayed. If this occurs on the sub unit, it is displayed on the master unit also. The other machine continues with the rest of the job.

If the copies are removed from the copy tray before the end of the job, the machine will automatically start. If the machine was part of the way through a set of copies, it will finish that set first. Then, if there are any sets still remaining, they will be reallocated to both machines.

Paper jam

When a paper jam occurs, the following indicators are displayed.

1) "Paper jam" is displayed on the master unit.
2) The machine having the jam condition is indicated on the master unit.
3) The jam position is displayed on the machine which has the paper jam.

When a machine has a paper jam, it stops and the above indicators are displayed. The other machine continues with the rest of the job.
If the jam is removed before the end of the job, the machine will automatically start. If the machine was part of the way through a set of copies, it will finish that set first. Then, if there are any sets still remaining, they will be re-allocated to both machines.

LG KIT B375

1. LG KIT (B375)

1.1 ACCESSORY CHECK

Check the quantity and condition of the accessories in the box against the following list:
Description Q'ty

1. LG Tray Frame 1
2. LG Tray Cover 1
3. LG Bottom Plate 1
4. Securing Plate 2
5. Philips Pan Head Screw - M4 x 6 6
6. Tapping Bind Screw - M4 x 6 4

1.2 INSTALLATION PROCEDURE

1. Open the LCT cover $[A]$ and while covering the paper position sensor $[B]$ and paper near end sensor [C] with your hand, press the tray down switch [D] to lower the tray bottom plate to its lowest position.
2. Turn off the copier main switch.
3. Remove the LCT cover (1 screw).
4. Remove the LCT right cover [E] (2 screws).
5. Remove the LCT right stay [F] (4 screws).

6. Attach the securing plates $[A]$ to the LCT paper tray $[B]$ (2 screws each).
7. Mount the LG paper tray to the securing plates [C] (2 screws each).
8. Remove the side fence [D] of the LG tray frame [E] (1 screw).
9. Insert the positioning pin [F] to the LCT and secure the LG tray frame (2 screws).

10. Remove the front and rear side fences from the LCT [A] (1 screw each).
11. Position the LCT and LG tray side fences $[A, B]$ to $L G$ paper size and secure them (1 screw each).
12. Install the LCT right cover [C] and LG tray cover [D] (3 screws).
13. Turn on the copier main switch and input the LG paper size with SP5-019.
14. Turn off the copier main switch. After perform the LCT initialization, turn off the copier main switch and remove the LCT right cover.
15. Reposition the down sensor [E] from original position to LG size paper positioning $[F]$ which is 82 cm higher than original position (1 screw).
NOTE: The down sensor repositioning procedure should be done after reposition the side fences.

TECHNICAL SERVICE BULLETINS

RTCOEM TECHNICAL SERVICE BULLETIN

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:
The revised areas have been highlighted by an arrow \Rightarrow.

- 2-36
- 2-50
- 2-79
- 2-80
- 4-79
- 5-2 and 5-4

> Updated Information (Drum Unit)
> Updated Information (Development Mechanism)
> Updated Information (Duplex Tray Feed Mechanism)
> Updated Information (Basic Duplex Feed Operation)
> Updated Information (Download NVRAM Data to the BICU)
> Updated Information (PM Table)

2.5 DRUM UNIT

2.5.1 PROCESS CONTROL

Overview

The drum potential will gradually change because of the following factors.

- Dirty charge corona casing and grid plate
- Changes in drum sensitivity

To maintain good copy quality, the machine does the following just after the main switch has been turned on (if the fusing temperature is less than $100^{\circ} \mathrm{C}$ and SP3901 is on).

1) Potential Sensor Calibration
2) VSG Adjustment
3) $V G($ Grid Voltage) Adjustment
4) LD Power Adjustment
5) VREF Update
6) Density Adjustment

This process is known as 'Process Control Initial Setting'. The rest of this section will describe these steps in more detail.
Processes 1, 3, and 4 in the above list compensate for changes in drum potential. Processes 2 and 5 are for toner density control; see the "Development and Toner Supply" section for more details.

2.6.2 DEVELOPMENT MECHANISM

The paddle roller [A] picks up developer and transports it to the upper development roller [B]. Internal permanent magnets in the development rollers attract the developer to the development roller sleeve. The upper development roller carries the developer past the doctor blade [C]. The doctor blade trims the developer to the desired thickness and creates backspill to the cross mixing mechanism.
In this machine, black areas of the latent image are at a low negative charge (about -120 V) and white areas are at a high negative charge (about -900 V).
\Rightarrow The development roller is given a negative bias (-550 V) to attract negatively charged toner to the black areas of the latent image on the drum.

The development rollers continue to turn, carrying the developer to the drum [D]. When the developer brush contacts the drum surface, the low-negatively charged areas of the drum surface attract and hold the negatively charged toner. In this way, the latent image is developed.

2.10.4 BASIC DUPLEX FEED OPERATION

\Rightarrow Longer than A4 / Letter lengthwise (8.5 x 11 L)

The duplex unit can process two sheets of copy paper
Example: 8 pages. The number $[A]$ in the illustration shows the order of pages. The number $[\mathrm{B}]$ in the illustration shows the order of sheets of copy paper (if shaded, this indicates the second side).

1. The first 2 sheets are fed and printed.
1) 1st sheet printed (1st page)
2) 2nd sheet printed (3rd page)

2. The first 2 sheets go into the duplex unit

Mode No.(Class 1, $2 \Rightarrow 3$)				Function	Settings
5-923	Edge Erase Standard				
				Selects the standard for edge erase. 0 : The margin is erased from the original data. 1: The margin is erased from the data sent to the laser diode. Note that the output resulting from each of the settings will be different when reduction or enlargement is used.	0: Original 1: Paper
5-924	Adjust Margin for each Original				
	1	Adjust margin for each original		Selects whether or not Margin per Original is enabled. No: Images are shifted with a binding margin during image writing. Yes: The margin is applied during scanning. NOTE: After Yes has been selected, the "per original" key is displayed.	$\begin{aligned} & \text { Range: Yes } \\ & \text { or No } \end{aligned}$
		Per original priority		Selects whether or not Margin per Original is enabled as default. This setting is given priority over SP5-924-01.	Range: On or Off
5-954	Copy Server Password Display				
				Selects whether to display the password when a file with a password is selected on the copy server.	Normal Display password
5-965	All Copy Server File Delete				
				Delete the all copy server files.	Start Cancel
5-990	SMC Print				
	1	All		Prints all the system parameter lists. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	2	SP		Prints the SP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
5-990	SMC Print				
	3	User Program		Prints the UP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	4	Logged Data		Prints the machine status history data list See the "System Parameter and Data Lists" section for how to print the lists.	Start
6-006	DF Registration Adjustment				
	1	Side-to-Side	*	Adjusts the printing side-to-side registration in the ADF mode.	$\begin{aligned} & \hline-3 \sim+3 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & +0.0 \mathrm{~mm} \end{aligned}$
	2	Leading Edge (Thin Original)	*	Adjusts the original stop position.	$\begin{array}{\|l\|} \hline-29 \sim+29 \\ 0.18 \\ \mathrm{~mm} / \mathrm{step} \\ +\mathbf{0 . 0 ~ m m} \\ \hline \end{array}$
	3	Leading Edge (Duplex-front)	*	Adjusts the original stop position against the original left scale in one-sided original mode.	$\begin{array}{\|l} \hline-29 \sim+29 \\ 0.18 \\ \mathrm{~mm} / \mathrm{step} \\ +\mathbf{0 . 0 ~ m m} \\ \hline \hline \end{array}$

	EM	$\begin{gathered} \hline 150 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} 300 \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ \mathrm{~K} \end{gathered}$	Expected Life K	NOTE
PAPER FEED						
Registration Rollers		C	C	C		Water or alcohol
Relay Rollers		C	C	C		Water or alcohol
Paper Dust Remover		C	C	C		Dry cloth
Registration Sensor		C	C	C		Blower brush
Relay Sensor		C	C	C		Blower brush
Paper Feed Rollers Pick-Up Rollers Separation Rollers		C	C	C	300	Replace pick-up, feed and separation roller as a set. Check the counter value for each paper tray station (SP7-204). If the value has reached 300 K , replace the rollers. After replacing the rollers, reset the counter (SP7-816).
Paper Feed Guide Plate		C	C	C		Water or alcohol
Vertical Transport Rollers		C	C	C		Water or alcohol
Paper Feed Sensor		C	C	C		Blower brush
TRANSFER BELT UNIT						
Transfer Belt		C	C	C	450	Dry cloth
Cleaning Roller Cleaning Blade				C	450	
Transfer Entrance Guide Plate		C	C	C		Dry cloth
Belt Drive/Guide/ Bias Roller/Cleaning Roller		C	C	C		Alcohol
Transfer Exit Guide Plate		C	C	C		Dry cloth
FUSING/PAPER EXIT						
Hot Roller		1	1	1	200	
Hot Roller Bearings		1	1	1	600	
Pressure Roller		,	1	1	450	Replace as a set.
Pressure Roller Bearings		1	1	1	450	
Fusing Thermistor	I	1	1	1		Replace if necessary.
Hot Roller Strippers	C	C	C	C	300	Water or alcohol
Oil Supply Roller Bushings	I	1	1	1		Replace if necessary.
Pressure Roller Cleaning Roller and Bushings		R	R	R		Replace as a set.
Oil Supply Roller		R	R	R		
Oil Supply Cleaning Roller		R	R	R		
Fusing Entrance and Exit Guide Plates		C	C	C		Clean with water or alcohol
Transport/Exit Rollers			C			Water
Exit Anti-static Brush			1			

	EM	$\begin{gathered} \hline 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} 450 \\ K \end{gathered}$	Expected Life K	NOTE
3,000-SHEET FINISHER (50-SHEET STAPLER): (B312)						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	1	1	1	1	2,400	
Discharge Brush	C	C	C	C		Clean with a dry cloth.
Sensors	C	C	C	C		Blower brush
Jogger Fences	1	I	1	1		Replace if necessary.
Punch Waste Hopper	1	1	1	1		Empty the hopper.

	EM	$\begin{gathered} 150 \\ K \end{gathered}$	$\begin{gathered} \hline 300 \\ K \end{gathered}$	$\begin{gathered} \hline \hline 450 \\ K \end{gathered}$	Expected Life K	NOTE
3,000-SHEET FINISHER (100-SHEET STAPLER): (B302)						
Rollers	C	C	C	C		Clean with water or alcohol.
Brush Roller	1	1	1	1	600	Check the counter value for the total copies by copy mode for staple (SP7-304-9). If the value has reached 600 K , replace the brush roller.
Discharge Brush	C	C	C	C		Clean with a dry cloth.
Sensors	C	C	C	C		Blower brush
Jogger Fences	1	1	1	1		Replace if necessary.
Punch Waste Hopper	1	1	1	1		Empty the hopper.

	EM	150 \mathbf{K}	$\mathbf{3 0 0}$ \mathbf{K}	$\mathbf{4 5 0}$ \mathbf{K}	Expected Life K	NOTE
FINISHER: (A763)	C	C	C	C		Clean with water or alcohol.
Rollers	C	I	I	I		
Brush Roller	C	C	C	C		Clean with a dry cloth.
Discharge Brush	C	C	C	C		Blower brush
Sensors	I	I	I	I		Replace if necessary.
Jogger Fences						

RTCOEM TECHNICAL SERVICE BULLETIN

BULLETIN NUMBER: A292/A293-002
07/13/2000

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

NOTE: The following updates to the SP Mode Table require ROM ver 2.94.
PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-18 through 21
- 4-47 through 53B
- 4-65

Updated Information (SP Tables)
Updated Information (SP Tables)
Updated Information (SP Tables)

Mode No. (Class $1,2 \& 3)$ 2				Function	Settings
2-965	Toner Pump Adjustment				
	1	First Toner Waste Adjustment	*	Factory use only	$\begin{aligned} & \hline 0 \sim 100 \\ & 1 \mathrm{~g} / \mathrm{step} \\ & \mathbf{3 g} \end{aligned}$
	2	After First Toner Waste	*	Factory use only	$\begin{aligned} & 0 \sim 100 \\ & 1 \mathrm{~g} / \mathrm{step} \\ & 3 \mathrm{~g} \\ & \hline \end{aligned}$
	3	Pump Clutch On Time	*	Factory use only	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 2 \mathrm{~s} \end{aligned}$
	4	Pump Motor On Time	*	Factory use only	$\begin{aligned} & \hline 0 \sim 20 \\ & 1 \mathrm{~s} / \mathrm{step} \\ & 6 \mathrm{~s} \end{aligned}$
	5	Return to First Toner Waste	*	Factory use only	$\begin{aligned} & 0 \sim 50 \\ & 1 \text { time/step } \\ & 30 \text { times } \end{aligned}$
2-965	Toner Pump Adjustment				
	6	Aggregate of Toner Waste		Factory use only	
2-966	Periodical Auto Process Control				
				When both the following conditions exist, auto process control and charge corona wire cleaning will be done automatically. 1. The main switch was not turned off since 24 hours after the last auto process control was done. 2. A copy job has finished.	OFF: No ON: Yes
2-967	Auto Image Density Adjustment				
				During the auto process control after the main switch is turned on, the toner amount in the development unit is checked and adjusted using the ID sensor.	OFF: No ON: Yes
2-970	Transfer Belt Resistance Value Display				
				XX.XM Unit is Ω Very High $\rightarrow 190 \leftarrow$ High $\rightarrow 90 \leftarrow$ Standard $\rightarrow 25 \leftarrow$ Low $\rightarrow 15 \leftarrow$ Very Low	
2-971	Output Value Measured Between Copies				
	1	Voltage		Displays the measurement condition of value in SP2-970.	
	2	Current			

$$				Function	Settings
5-923	Edge Erase Standard				
				Selects the standard for edge erase. 0 : The margin is erased from the original data. 1: The margin is erased from the data sent to the laser diode. Note that the output resulting from each of the settings will be different when reduction or enlargement is used.	0: Original 1: Paper
5-924	Adjust Margin for each Original				
	1	Adjust margin for each original		Selects whether or not Margin per Original is enabled. No: Images are shifted with a binding margin during image writing. Yes: The margin is applied during scanning. NOTE: After Yes has been selected, the "per original" key is displayed. This key must be pressed to activate the mode.	Range: Yes or No
	2	Per original priority		Selects whether or not Margin per Original is enabled as default. This setting is given priority over SP5-924-01.	Range: On or Off
5-954	Copy Server Password Display				
				Selects whether to display the password when a file with a password is selected on the copy server.	Normal Display password
				If you forget the password, select "1" to check it.	
5-965	All Copy Server File Delete				
				Delete the all copy server files.	Start Cancel
5-990	SMC Print				
	1	All		Prints all the system parameter lists. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	2	SP		Prints the SP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
5-990	SMC Print				
	3	User Program		Prints the UP mode data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
	4	Logged Data		Prints the machine status history data list. See the "System Parameter and Data Lists" section for how to print the lists.	Start
6-006	DF Registration Adjustment				
	1	Side-to-Side	*	Adjusts the printing side-to-side registration in the ADF mode.	$\begin{aligned} & \hline-3 \sim+3 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & +0.0 \mathrm{~mm} \end{aligned}$
	2	Leading Edge (Thin Original)	*	Adjusts the original stop position.	$\begin{aligned} & \hline-29 \sim+29 \\ & 0.18 \\ & \mathrm{~mm} / \text { step } \\ & +0.0 \mathrm{~mm} \\ & \hline \end{aligned}$
	3	Leading Edge (Duplex-front)	*	Adjusts the original stop position against the original left scale in one-sided original mode.	$\begin{aligned} & \hline-29 \sim+29 \\ & 0.18 \\ & \mathrm{~mm} / \mathrm{step} \\ & +0.0 \mathrm{~mm} \\ & \hline \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function	Settings
6-006	4	Reading Edge (Duplex-rear)	*	Adjusts the original stop position against the original left scale in two-sided original mode.	$\begin{aligned} & -29 \sim+29 \\ & 0.1 \mathrm{~mm} / \mathrm{step} \\ & +\mathbf{0 . 0 \mathrm { mm }} \end{aligned}$
6-007	ADF Input Check				
	1	Group 1		Displays the signals received from sensors and switches of the ADF. See the "Input Check" section for details.	
	2	Group 2		Displays the signals received from sensors and switches of the ADF. See the "Input Check" section for details.	
6-008	ADF Output Check				
				Turns on the electrical components of the ADF individually for test purposes. See the "Output Check" section for details.	
6-009	ADF Free Run (Two-sided original)				
	1			Performs an ADF free run in two-sided original mode. Press " 1 " to start.	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$
				This is a general free run controlled from the copier. For more detailed free run modes, see the 'Test Points/Dip Switches/LEDs' section.	
6-016	Adjust Motor Speed				
				Adjust the speed of the feed-in, transport and feed-out motors. Perform this SP when replacing the Main Board or above motors.	
6-020	ADF Speed Adjustment				
			*	When the customer points out noise form the ADF, use this to adjust the ADF speed to low.	High speed: 70 cpm Low Speed: 55 cpm
6-105	Stapling Position Adjustment				
			${ }^{+}$	Adjusts the stapling position in the main scan direction	$\begin{array}{\|l\|} \hline-3.5 \sim+3.5 \\ 0.5 \mathrm{~mm} / \mathrm{step} \\ \mathbf{+ 0 . 0 \mathrm { mm }} \\ \hline \end{array}$
				A larger value causes the stapling position to shift outward.	
6-113	Punch Hole Adjustment				Rev. 06/2000
	1	2-Holes		Adjusts the punch hole position in the subscan direction for the punch unit with two punch holes.	$\begin{aligned} & -7.5 \sim+7.5 \\ & 0.5 \mathrm{~mm} / \text { step } \\ & 0 \mathrm{~mm} \end{aligned}$
				A larger value shifts the punch holes towards the edge of the paper.	
	2	3-Holes		Adjusts the punch hole position in the subscan direction for the punch unit with three punch holes.	$-7.5 ~+7.5$ $0.5 \mathrm{~mm} / \mathrm{step}$ 0 mm
				A larger value shifts the punch holes towards the edge of the paper.	

This page intentionally left blank.

Mode No. (Class $1,2 \& 3$)		Function	Settings
7-906	Clear Original Number of Each size		
		Resets all counters of SP7-202.	Start
7-907	Clear Job Number of Each size		
		Resets all counters of SP7-306.	Start
7-908	Document : Clear Original Number		
		Resets all counters of SP7-002-2.	Start
7-920	Document Server : Clear Scanned Storage		
		Resets the counter of SP7-320.	Start
7-921	Document Server : Clear Original Number of Each Size		
		Resets all counters of SP7-321.	Start
7-923	Document Server : Clear Print Number of Each Copy		
		Resets all counters of SP7-323	Start
7-924	Document Server : Clear Print Job Logging		
		Resets all counters of SP7-324	Start
7-925	Document Server : Clear Print Job Page Distribution		
		Resets all counters of SP7-325	Start
7-926	Document Server : Clear Print Job File Distribution		
		Resets all counters of SP7-326	Start
7-927	Document Server : Clear Print Job Set Distribution		
		Resets all counters of SP7-327.	Start
7-928	Document Server: Clear Copy Number of Each Job		
		Resets all counters of SP7-328	Start
7-990	Display the detail information for SC990		
	$\begin{array}{ll}001 & \text { Filename } \\ 002 & \text { Line Number }\end{array}$ 003 Value	Displays the detail information for SC990.	

BULLETIN NUMBER: A292/A293-003

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: LOW IMAGE DENSITY

SYMPTOM:

Low image density on copies for units with low copy volume (20K to 30 K after installation).

CAUSE:

The Fusing Fan Motor stops when the low power timer is met (60 secs). The copier enters Energy Saver Mode and because the Fusing Lamp remains on to maintain the Hot Roller temperature, the temperature of the areas surrounding the unit also rises. The resulting heat can damage the toner that is stored in the bottle above the fusing unit causing some of the toner's ingredients to separate. The altered toner is then sent to the Development Unit and is mixed in with the developer causing developer chargeability to drop. This results in low image density. The heat damage is especially susceptible on low copy volume machines because the toner remains in the bottle for an extended periods of time.

SOLUTION:

The BICU Firmware has altered the off-timing of the Fusing Fan Motor. The off-timing has been delayed so the Fusing Fan will have time to remove the hot air around the Toner Bottle.

- On newly installed machines, upgrade the BICU Firmware to version 3.5.1 (Level "E") during installation.
- On field machines that do not exhibit a low image density symptom, upgrade the BICU Firmware to version 3.5.1 (Level "E") during the next visit.
- On field machines that exhibit a low image density symptom perform the following procedure:

1. Upgrade the BICU Firmware to version 3.5.1 (Level "E").
2. Replace the developer.
3. Replace the Toner Bottle.
4. Clean the toner from the Toner Hopper.

The BICU Firmware revision E (file name A292REVE.EXE) can be downloaded through the Ricoh Technical Services FTP Site http://tsc.ricohcorp.com.

NOTE: Refer to Facts Line Bulletin \# FLOO2 for more information about the FTP Internet Web Site.

RECOM TECHNICAL SERVICE BULLETIN

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- viii
- 2-17
- $4-46$
- 4-66
- $4-79$
- 6-24, 24A, 24B and 25
- 6-73
- 7-18

Updated Information (Table of Contents)
Updated Information (SBU)
Updated Information (SP Mode)
Updated Information (Test pattern Printing)
Updated Information (Download NVRAM Data to the BICU)
New and Updated Information (Laser Unit)
Updated Information (Touch Screen Calibration)
Updated Information (Service Codes)
6.11 BOARDS AND OTHER ITEMS 6-67
6.11.1 BICU BOARD 6-67
6.11.2 I/O BOARD 6-68
6.11.3 PSU 6-69
6.11.4 PAPER FEED CONTROL BOARD (PFC) 6-69
6.12 COPY IMAGE ADJUSTMENTS: PRINTING/SCANNING 6-70
6.12.1 PRINTING 6-70
Registration - Leading Edge 6-70
Registration - Side-to-Side 6-70
Tray 1 6-71
Tray 2 6-71
Tray 3 6-72
By-pass Tray 6-72
6.13 TOUCH SCREEN CALIBRATION 6-73
TROUBLESHOOTING
7. TROUBLESHOOTING 7-1
7.1 SERVICE CALL CONDITIONS 7-1
7.1.1 SUMMARY 7-1
7.1.2 SC CODE DESCRIPTIONS 7-2
7.2 ELECTRICAL COMPONENT DEFECTS 7-40
7.2.1 SENSORS 7-40
7.2.2 SWITCHES 7-44
7.3 BLOWN FUSE CONDITIONS 7-45
3,000-SHEET FINISHER B302

1. OVERALL MACHINE INFORMATION 8-1
1.1 SPECIFICATIONS 8-1
1.2 MECHANICAL COMPONENT LAYOUT 8-3
1.3 ELECTRICAL COMPONENT DESCRIPTION 8-4
1.4 DRIVE LAYOUT 8-6
2. DETAILED DESCRIPTIONS 8-7
2.1 TRAY AND STAPLER JUNCTION GATE 8-7
Upper Tray Mode 8-7
Sort/Stack Mode 8-7
Staple Mode 8-7
2.2 PAPER PRE-STACKING 8-8
2.3 JOGGER UNIT PAPER POSITIONING 8-9
Vertical Paper Alignment 8-9
Horizontal Paper Alignment 8-9
Paper Stack Correction 8-9

2.3.2 SBU

The CCD converts the light reflected from the original into an analog signal. The CCD line has 7,500 pixels and the resolution is $600 \mathrm{dpi}(23.6$ lines $/ \mathrm{mm}$).
The CCD has four output lines: OS1, OS2, OS3, and OS4. OS1 and OS2 are for the first half of the scan line (Non-operation side), and OS3 and OS4 are for the last half of the scan line (Operation side). There are two analog processing ICs; one handles the first half line (OS 1 and OS2) and the other handles the last half line (OS3 and OS4). The analog processing IC performs the following operations:

1) Combines the odd and even signals into one line signal.
2) Adjust the black reference level of each CCD output channel.
3) Amplifies the analog signal from the CCD.

After the above processing, the analog signals are converted to 8 -bit signals by the A/D converter. This gives a value for each pixel on scale of 256 grades. Then, the two 8-bit signals are sent to the BICU board through the LVDS (Low Voltage Differential Signaling). The LVDS is a noise-resistant interface.

Mode No. (Class 1, 2 \& 3)				Function	Settings
4-912	Text/Photo Separation Setting				
	17	Half Tone Separation Level	* Selects the dot screen detection level. 0. Setting of SP4-921-008~015 1. Letter priority - strong 2. Letter priority - weak 3. Standard 4. Photo priority - weak 5. Photo priority - strong Do not use ' 0 '; this is for factory use only.		$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 3 \end{aligned}$
	18	Effective Magnification Ratio		Selects the maximum magnification that can be used with dot screen detection.	$\begin{aligned} & 100 \sim 400 \\ & 1 / \text { step } \\ & 109 \end{aligned}$
5-009	Language Selection				
5-019	Tray Paper Size Selection				
	5	LCT	+	Selects the paper size in the optional LCT.	$\begin{aligned} & \text { A4 } \\ & \text { LT } \\ & \text { B5 } \end{aligned}$
5-024	mm/inch Display Selection				
			*	Selects what unit is used.	$\begin{aligned} & \text { 0: mm } \\ & \text { 1: inch } \end{aligned}$
				After selecting the unit, turn the main power switch off and on.	
5-104	A3/DLT Double Count				
				Specifies whether the counter is doubled for A3/11"x17" paper. If "1" is selected, the total counter and the current user code counter count up twice when $A 3 / 11$ "x17" paper is used.	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$
5-106	ID Shift Level				
	6	ADS Level Selection		Selects the image density level that is used in ADS mode.	$\begin{aligned} & 1 \sim 7 \\ & 1 \text { notch /step } \\ & 4 \end{aligned}$
5-112	Non-standard Paper Selection				
				Selects whether a non-standard paper size can be input for tray 2 (universal tray) or not. If "1" is selected, the customer will be able to input a non-standard paper size using a UP mode.	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$
5-113	Optional Counter Type				
				Select the option counter type. 0. None 1. Key card (Japan only) 2. Key card (Count down type) 3. Pre-paid card 4. Coin lock 5. Key card (Japan only)	$\begin{aligned} & 0 \sim 5 \\ & 1 / \text { step } \\ & 0 \end{aligned}$

4.2.3 TEST PATTERN PRINTING (SP2-902)

NOTE: Do not operate the machine until the test pattern is printed out completely. Otherwise, an SC may occur.

1. Access the SP mode which contains the test pattern you need.
2. Touch the "Copy Mode" key on the operation panel to access the copy mode display.
3. Select the paper size.
4. Press the "Start" key to print the test pattern.
5. After checking the test pattern, exit copy mode by touching the "SP Mode" key.
6. Exit the SP mode.

Test Pattern Table (SP2-902-2: Test Pattern Printing - IPU)

\Rightarrow| No. | Test Pattern | No. | Test Pattern |
| :---: | :--- | :---: | :--- |
| 0 | None | 7 | Vertical Strips |
| 1 | Vertical Lines (1-dot) | 8 | Grayscale (Vertical) |
| 2 | Vertical Lines (2-dots) | 9 | Grayscale (Horizontal) |
| 3 | Horizontal Line (1-Dot) | 10 | Cross Pattern |
| 4 | Horizontal Line (2-Dots) | 11 | Argyle Pattern |
| 5 | Alternating Dot Pattern | 12 | Frequency (Horizontal) |
| 6 | Grid Pattern (1-Dot) | 13 | Frequency (Vertical) |

Test Pattern Table (SP2-902-3: Test Pattern Printing - Printing)

\Rightarrow| No. | Test Pattern | No. | Teat Pattern |
| :---: | :--- | :---: | :--- |
| 0 | None | 13 | 16 Grayscales (Vertical) |
| 1 | Vertical Line (1-dot) | 14 | 16 Grayscales (Vert./Hor.) |
| 2 | Horizontal Line (1-dot) | 15 | 16 Grayscales (Vert./Hor Overlay) |
| 3 | Vertical Line (2 dot) | 16 | Hound'sTooth Check (1-Dot, 600dpi) |
| 4 | Horizontal Line (2-dot) | 17 | Hound'sTooth Check (1-Dot, 400dpi) |
| 5 | Grid Pattern (Single-dot) | 18 | Horizontal Line (1-Dot)(Reverse Order
 ofLD1 \& LD2) |
| 6 | Grid Pattern (Double-dot) | 19 | Grid Pattern (1-Dot)(Reverse Order of
 LD1 \& LD2) |
| 7 | Independent Pattern (1-Dot) | 20 | Grid Pattern (2-Dot)(Reverse Order of
 LD1 \& LD2) |
| 8 | Full Dot Pattern | 21 | Independent Pattern (1-Dot)(Reversed
 Order of LD1 \& LD2) |
| 9 | Black Band | 22 | Blank Page |
| 10 | Trimming Area | 23 | Grid Pattern (1-dot) (Overlaying
 Outside Data) |
| 11 | Argyle Pattern | 24 | Trimming Area (Overlaying Outside
 Data) |
| 12 | 16 Grayscales (Horizontal) | | |

4.3.4 DOWNLOAD NVRAM DATA TO THE BICU

1. Turn off the main power switch.
2. Remove the flash memory card cover [A].
3. Plug the flash memory card $[B]$ into the card slot.
NOTE: Make sure that the surface printed "A" faces upwards.
4. Turn on the main power switch.
5. Enter SP Mode.

6. Open the front door.

NOTE: Do not close the front door until the download finishes.
7. Select SP5-825-***.

001: All data
002: User tools (UP mode) data

NOTE: 1) Data of SP7-003 and SP7-006 are not downloaded.
2) When you select "001", no data is downloaded if the serial number on the BICU is not the same as the one on the flash card.

8. Press "Start".
9. Exit SP Mode.
10. Turn off the main switch.
11. Pull out the flash memory card.

6.4.2 LD UNIT REPLACEMENT

\triangle WARNING
 Turn off the main power switch and unplug the machine before attempting this procedure. Laser beams can seriously damage your eyes.

1. Remove the exposure glass. (See Exposure Glass Removal.)
$\Rightarrow 2$. Remove the LD cover [A] (6 screws).
2. Replace the LD unit [B] (2 screws and 6 connectors).

NOTE: When disconnecting the cables, hold the LD unit.
4. When reinstalling, make sure that the flat cable [C] is mounted above the LD unit, and that the rotation of the unit is not interrupted.
$\Rightarrow 5$. Do SP 2-962 (process control initialization).
NOTE: Be sure that the cable does not block LD unit rotation after replacing the LD unit. If the LD unit cannot rotate smoothly to change the resolution, SC329 (LD unit home position error) may occur.

6.4.3 LASER BEAM PITCH ADJUSTMENT

There are two laser beam pitch adjustment procedures: one for 400 dpi , and one for 600 dpi. These adjustments use the following SP modes.

- SP2-109-1: Laser Beam Pitch Adjustment - 400 dpi
- SP2-109-2: Laser Beam Pitch Adjustment - 600 dpi
- SP2-109-3: Laser Beam Pitch Initial Setting - 400 dpi
- SP2-109-4: Laser Beam Pitch Initial Setting - 600 dpi
- SP2-902-3, no.17: Hound's Tooth Check (1-dot) - Cross Stitch - 400 dpi
- SP2-902-3, no.16: Hound's Tooth Check (1-dot) - Cross Stitch - 600 dpi

1. Perform SP2-109-8 (Beam Pitch Data Reset).
2. Input the value for 400 dpi that is printed on the LD unit into SP2-109-1. Use the value printed after "P" on the new LD unit as shown below.

NOTE: Do not use values printed after a "V".
3. Press the "Enter" key.
4. Perform SP2-109-3.
5. Print the 400-dpi test pattern onto A3 (11"x17") paper using SP2-903-3 no. 17 (cross stitch). (See Service Tables - Test Pattern Printing).
6. Write the value of SP2-109-1 on the test pattern which was input at step 2.
7. Change the value of SP2-109-1 and print another test pattern, repeating steps 2 to 5 . Print about 5 patterns with different values for SP2-109-1 (e.g. "48", "96", "192", "240").
8. Check this test pattern. If the laser beam pitch is not correct, the image looks like a black vertical stripe pattern.
NOTE: If the laser beam pitch is correct, the vertical stripe is not so noticeable. If the value is not correct, the vertical stripe pattern is darker.
9. Adjust the laser beam pitch position until the thin lines are of uniform thickness (no striping effect should appear on the printout), doing steps 2, 3, and 4. (In step 2, input a value which is estimated to be correct, then do steps 3 and 4, then if necessary go back to step 2 and try another value.)
10. After adjusting the laser beam pitch for 400 dpi, adjust the laser beam pitch for 600 dpi, using the same procedure as for 400 dpi (use the SP modes for 600 dpi).

Adjustment not complete

- Feed Direction

Adjustment complete

\Rightarrow 6.4.4 POLYGON MIRROR MOTOR REPLACEMENT

1. Turn off the main power switch and unplug the machine.
2. Remove the exposure glass. (See Exposure Glass Removal.)
3. Remove the lens cover. (See Lens Block Assembly Replacement.)
4. Remove the lens block assembly. (See Lens Block Assembly Replacement.)
5. Remove the polygon mirror motor cover [A] (2 screws).
6. Disconnect the LD unit flat cable [B].
7. Replace the polygon mirror motor [C] (3 screws and 2 connectors.)

NOTE: When reinstalling, make sure that the polygon mirror opening faces the right. Also, do not pull on the LD flat cable.
8. Do the scanner and printer copy adjustments. (See Replacement and Adjustment - Copy Image Adjustments.)

6.13 TOUCH SCREEN CALIBRATION

After doing a memory all clear or when the touch panel detection mechanism is not working properly, calibrate the touch screen as follows.

1. Press the following keys in sequence to enter touch screen calibration mode.

\triangle CAUTION

Do not execute any of the other items in the self diagnostic menu.
2. The "Self Diagnostics Menu" screen will appear.

Press the \# key to select the "Touch Screen Adj." Mode.

3. The "Touch Screen Adj." calibration screen will appear. Touch the upper left corner then the lower right corner of the panel using a pointed (but not sharp!) tool.
4. Touch a few spots on the LCD touch panel, and confirm that the marker (a small circle) appears on the screen at exactly the same location as where it is touched. If it does not, touch "Cancel" on the adjustment screen. Then repeat the calibration procedure.
5. Touch "Ok" on the adjustment screen.
6. Touch "[q] Exit" and "Execute" to exit the self diagnostics menu.

SC380: Data transmission time out (video input)

-Definition- [B]
Data input to the IC which controls data transfer and compression is not completed within 20 seconds.
-Possible cause-

- BICU defective
- SBU defective
- Printer controller defective

SC382: Data transmission time out (video output)

-Definition- [B]
Data output from the IC which controls the data transfer and compression is not completed within 20 seconds.
-Possible cause-

- BICU defective
- LD board defective

SC384: Data transmission time out (connect copy)

-Definition-
Data transmission to the memory does not finish properly within 20 seconds after the start of data transmission.

-Possible cause-

- Defective connection board
- Defective or disconnected interface cable
- Defective SBICU

SC386: Data transmission time out (Hard disk write)

-Definition- [B]
Data input to the IC which controls the data transfer and compression is not completed with in 20 seconds.
-Possible cause-

- BICU defective
- SBU defective
- Printer controller defective

SUBJECT：PARTS CATALOG UPDATES

GENERAL：

The following parts updates are being issued for all A292／A293 Parts Catalogs．
－UPDATE 1：Bracket－I／O Board－To ensure proper grounding，a grounding plate has been added to the I／O Board Bracket．Please update your Parts Catalog with the following information．

UNITS AFFECTED：

A292／A293 Serial Number cut－ins were not available at time of publication．

Tech Service Bulletin No. A292/A293-005
Page 2 of 4

- UPDATE 2: Cleaning Roller Gears - To improve uneven density in half tone areas, the number of teeth on the Cleaning Roller Gears have been changed. The Gears must be replaced as a set. Please update your Parts Catalog with the following information.

Transfer Section 1 - Page 92
Transfer Section 2 - Page 94

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AB014104	AB014175	Cleaning Roller Gear - 50Z	1	3/S	93	8
AB014093	AB014176	Cleaning Roller Gear - 37Z	1	3/S	95	31

UNITS AFFECTED:

A292/A293 Serial Number cut-ins were not available at time of publication.

- UPDATE 3: DC Solenoid Ass'y - To prevent "dog ears" when using Legal paper, the Bracket for the DC Solenoid has been modified. Please update your Parts Catalog with the following information.

Inverter \& Duplex Unit 4 - Page 108

	REFERENCE								
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM			
A2934781	A2934782	DC Solenoid Ass'y	1	1	109	3			

UNITS AFFECTED:

A292/A293 Serial Number cut-ins were not available at time of publication.

Tech Service Bulletin No. A292/A293-005
Page 4 of 4

- UPDATE 4: Duplex Roller - To prevent the edges of the copy from being dirty when making a duplex copy, the material of the Duplex Roller has been changed. Please update your Parts Catalog with the following information.

Inverter \& Duplex Unit 5 - Page 110

UNITS AFFECTED:

A292/A293 Serial Number cut-ins were not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

BULLETIN NUMBER: A292/A293 - 005 REISSUE \star
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Bracket - I/O Board - To ensure proper grounding, a grounding plate has been added to the I/O Board Bracket. Please update your Parts Catalog with the following information.

		,			REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2935850	A2935845	Bracket - I/O Board	1	1	129	15

UNITS AFFECTED:

\star All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Bracket I/O Board installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4705300449
Gestetner 3370	H 4805300002
Ricoh AFICIO 551	H 4705300389
Ricoh AFICIO 700	H 4805200624
Savin 2055DP	H 4705300449
Savin 2070DP	H 4805300002

Continued...

Tech Service Bulletin No. A292/A293 - 005 REISSUE \star Page 2 of 4

- UPDATE 2: Cleaning Roller Gears - To improve uneven density in half tone areas, the number of teeth on the Cleaning Roller Gears have been changed. The Gears must be replaced as a set. Please update your Parts Catalog with the following information.

Transfer Section 1 - Page 92
Transfer Section 2 - Page 94

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AB014104	AB014175	Cleaning Roller Gear - 50Z	1	3/S	93	8
AB014093	AB014176	Cleaning Roller Gear - 37Z	1	3/S	95	31

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Cleaning Roller Gears installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4705500301
Gestetner 3370	H 4805500001
Ricoh AFICIO 551	H 4705400515
Ricoh AFICIO 700	H 4805500001
Savin 2055DP	H 4705500301
Savin 2070DP	H 4805500001

Tech Service Bulletin No. A292/A293 - 005 REISSUE \star

Page 3 of 4

- UPDATE 3: DC Solenoid Ass'y - To prevent "dog ears" when using Legal paper, the Bracket for the DC Solenoid has been modified. Please update your Parts Catalog with the following information.

Inverter \& Duplex Unit 4 - Page 108

		REFERENCE				
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2934781	A2934782	DC Solenoid Ass'y	109	3		

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style DC Solenoid Assembly installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H4705300393
Gestetner 3370	H4805300002
Ricoh Aficio 551	H4705300001
Ricoh Aficio 700	H4805200623
Savin 2055DP	H4705300393
Savin 2070DP	H4805300002

Tech Service Bulletin No. A292/A293 - 005 REISSUE \star
Page 4 of 4

- UPDATE 4: Duplex Roller - To prevent the edges of the copy from being dirty when making a duplex copy, the material of the Duplex Roller has been changed. Please update your Parts Catalog with the following information.

Inverter \& Duplex Unit 5 - Page 110

REFERENCE

OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AF020498	AF020533	Duplex Roller	1	1	111	10

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Duplex Roller installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4705200160
Gestetner 3370	H 4805200255
Ricoh AFICIO 551	H 4705300001
Ricoh AFICIO 700	H 4805200578
Savin 2055DP	H 4705200160
Savin 2070DP	H 4805200255

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 3-38
- 6-73 through 78

Updated Information (Copy Connector Kit Installation)
Updated Information (Copy Image Adjustments)

12. Install the other copy connector kit in the other machine.
13. Connect the two machines with the cable $[A]$ and secure it with clamps $[B]$ (1 screw each).
14. Check the operation.
\Rightarrow NOTE: To enable the Connect Copy Feature:

1. Select User Tools.
2. Select Copy/Document Server Features
3. Select Count Manager
4. Set Connect Copy Master to YES.

Blank Margin

NOTE: If the leading edge/side-to-side registration can not be adjusted within the specifications, adjust the leading/left side edge blank margin.

1. Check the trailing edge and right side edge blank margins using the Trimming Area Pattern, and adjust them using the following SP modes if necessary.

	SP mode	Specification
Trailing edge	SP2-101-2	More than 1.0 mm
Right edge	SP2-101-4	More than 0.5 mm
Leading edge	SP2-101-1	$3 \pm 2 \mathrm{~mm}$
Left edge	SP2-101-3	$2 \pm 1.5 \mathrm{~mm}$

A: Trailing Edge Blank Margin
B: Right Edge Blank Margin
C: Leading Edge Blank Margin
D: Left Edge Blank Margin

6.12.2 PARALLELOGRAM IMAGE ADJUSTMENT

Do the following procedure if a parallelogram type image is printed while using a trimming area pattern to adjust the printing registration or the printing margin.

NOTE: 1) The following procedure should be done after adjusting the side-to-side registration for each paper tray.
2) This adjustment is only effective for a parallelogram image caused by the printer. It should not be applied if the skew is caused by the scanner.

1. Check whether a parallelogram image appears as shown on the next page when printing a trimming area pattern (SP2-902-3, No. 10). If it appears, do the following.
2. Remove the exposure glass (see Replacement and Adjustment - Exposure Glass Removal).
3. Remove the three caps $[A]$.
4. Make a note of the position of the laser unit using the scale through the hole [B].
5. Loosen the three screws [C] that hold the laser unit.

[B]

6. Adjust the laser unit position using a flat screwdriver [A] as shown.

If the right side of the trimming area pattern is down by about 1 mm as shown [B], the laser unit should be rotated about one tick mark in the direction of the black arrow as shown [C]. If the opposite side is down, adjust in the opposite direction.
NOTE: The laser unit rotates around the point [D].
7. Tighten the three screws to secure the laser unit.
8. Replace the caps and exposure glass.
9. Print the trimming area pattern to check the image. If it is still skewed, repeat steps 2 to 8.

6.12.3 SCANNING

NOTE: 1) Before doing the following scanner adjustments, check the printing registration/side-to-side adjustment and the blank margin adjustment.
2) Use an OS-A3 test chart to perform the following adjustments.

Registration: Platen Mode

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the leading edge and side-to-side registration, and adjust them using the following SP modes if necessary.

	SP mode
Leading Edge	SP4-010
Side-to-side	SP4-011

A: Leading Edge Registration
B: Side-to-side Registration

Magnification

NOTE: Use an OS-A3 test chart to perform the following
 adjustment.

Scanner Sub Scan Magnification

A: Sub Scan Magnification

1. Place the test chart on the exposure glass and make a copy from one of the feed stations.
2. Check the magnification ratio, and adjust it using the following SP mode if necessary. The specification is $\pm 1 \%$.

	SP mode
Scanner Sub Scan Magnification	SP4-008

\Rightarrow 6.12.4 ADF IMAGE ADJUSTMENT

Registration

A: Leading Edge Registration
B: Side-to-side Registration

NOTE: Make a temporary test chart as shown above left using A3/DLT paper.

1. Place the temporary test chart on the ADF and make a copy from one of the feed stations.
2. Check the registration, and adjust using the following SP modes if necessary.

	SP mode
Side-to-side Registration	SP6-006-1
Leading Edge Registration (Thin original mode)	SP6-006-2
Leading Edge Registration (Single- sided/Duplex: front)	SP6-006-3
Leading Edge Registration (Duplex: rear)	SP6-006-4

6.13 TOUCH SCREEN CALIBRATION

After doing a memory all clear or when the touch panel detection mechanism is not working properly, calibrate the touch screen as follows.

1. Press the following keys in sequence to enter touch screen calibration mode.

\triangle CAUTION

Do not execute any of the other items in the self diagnostic menu.
2. The "Self Diagnostics Menu" screen will appear. Press the \# key to select the "Touch Screen Adj." Mode.

3. The "Touch Screen Adj." calibration screen will appear. Touch the upper left corner then the lower right corner of the panel using a pointed (but not sharp!) tool.
4. Touch a few spots on the LCD touch panel, and confirm that the marker (a small circle) appears on the screen at exactly the same location as where it is touched. If it does not, touch "Cancel" on the adjustment screen. Then repeat the calibration procedure.
5. Touch "Ok" on the adjustment screen.
6. Touch "[q] Exit" and "Execute" to exit the self diagnostics menu.

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-96 and 97

Updated Information (Test Points/Dip Switches/LEDs)

4.5.4 VARIABLE RESISTORS

ADF Main Board

Number	Function
VR100	Adjusts the original stop position for the single-sided original at no skew correction mode.
VR101	Adjusts the original stop position for the double-sided original.

4.5.5 LEDS

BICU

Number	Monitored Signal
LED101	Blinking : Normal Stays on or off : CPU defective
LED103	Turns on when the main power switch on.
LED104	Blinking : Normal Stays on or off : HDD abnormal

Paper Feed Board

Number	Monitored Signal
LED101	Turns on 500ms interval : Normal (software) Turns on 200ms interval : Software error Stays on of off : Paper feed board defective

ADF Main Board O: ON \&

LED100	LED101	LED102	
\bigcirc	-	-	Entrance Sensor Jam
-	\bigcirc	-	Registration Sensor Jam
\bigcirc	\bigcirc	-	Exit Sensor Jam
-	-	\bigcirc	Inverter Sensor Jam
\bigcirc	-	\bigcirc	Jammed paper not removed: Between entrance sensor + registration sensor
\bigcirc	\bigcirc	\bigcirc	Jammed paper not removed: On the exposure glass
\pm	-	-	Feed-in Motor Abnormal
-	2	-	Transport Motor Abnormal
-	-	2	Feed-out Motor Abnormal
2	2	-	Pick-up Motor Abnormal
-	2	2	Bottom Plate Motor Abnormal
\%	\&	*	DF Position (Open)
\&	-	\&	APS Sensor ON
\%	-	-	Normal

$\Rightarrow 4.6$ SPECIAL TOOLS AND LUBRICANTS

4.6.1 SPECIAL TOOLS

Part Number	Description	Q'ty
A2309352	Flash Memory Card - 4MB	1
A2309351	Case - Flash Memory Card	1
A0069104	Scanner Positioning Pin (4 pcs/set)	1
54209516	Test Chart - OS-A3 (10 pcs/Set)	1
A0299387	Digital Multimeter - FLUKE 87	1

4.6.2 LUBRICANTS

Part Number	Description	Q'ty
A0289300	Grease Barrierta JFE 5 5/2	1
52039502	Silicone Grease G-501	1
G0049668	Grease: KS660: SHIN ETSU	1

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:
The revised areas have been highlighted by an arrow \Rightarrow.

- vi and viii
- 4-98 through 100
- 7-34 through 51

Updated Information (Table of Contents)
New Information (Firmware History)
Updated Information (Service Call Conditions)
6.11 BOARDS AND OTHER ITEMS 6-67
6.11.1 BICU BOARD 6-67
6.11.2 I/O BOARD 6-68
6.11.3 PSU 6-69
6.11.4 PAPER FEED CONTROL BOARD (PFC) 6-69
6.12 COPY IMAGE ADJUSTMENTS: PRINTING/SCANNING 6-70
6.12.1 PRINTING 6-70
Registration - Leading Edge 6-70
Registration - Side-to-Side 6-70
Tray 1 6-71
Tray 2 6-71
Tray 3 6-72
By-pass Tray 6-72
6.13 TOUCH SCREEN CALIBRATION 6-73
TROUBLESHOOTING
7. TROUBLESHOOTING 7-1
7.1 SERVICE CALL CONDITIONS 7-1
7.1.1 SUMMARY 7-1
7.1.2 SC CODE DESCRIPTIONS 7-2
7.2 ELECTRICAL COMPONENT DEFECTS 7-40
7.2.1 SENSORS 7-40
7.2.2 SWITCHES 7-44
7.3 BLOWN FUSE CONDITIONS 7-45
3,000-SHEET FINISHER B302

1. OVERALL MACHINE INFORMATION 8-1
1.1 SPECIFICATIONS 8-1
1.2 MECHANICAL COMPONENT LAYOUT 8-3
1.3 ELECTRICAL COMPONENT DESCRIPTION 8-4
1.4 DRIVE LAYOUT 8-6
2. DETAILED DESCRIPTIONS 8-7
2.1 TRAY AND STAPLER JUNCTION GATE 8-7
Upper Tray Mode 8-7
Sort/Stack Mode 8-7
Staple Mode 8-7
2.2 PAPER PRE-STACKING 8-8
2.3 JOGGER UNIT PAPER POSITIONING 8-9
Vertical Paper Alignment 8-9
Horizontal Paper Alignment 8-9
Paper Stack Correction 8-9

4.7 FIRMWARE HISTORY

4.7.1 A292/A293 FIRMWARE MODIFICATION HISTORY

A292/A293 BICU FIRMWARE MODIFICATION HISTORY			
DESCRIPTION OF MODIFICATION	FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
Initial Production	A2937553 B	Initial Production	3.0
Note: 1) The LCDC ROM A2935203C is required for BICU firmware version 3.1 (A2937564, A2937565 and A2937566). 2) Version 3.1 requires the printer controller. 1. Language The following items have been changed from English to the language selected: 1) Stamp Setting Note: For Portuguese and Polish, the Stamp setting is still displayed in English. The correction for this will be included in the next software update. 2) Language Priority button 2. A3/DLT Double Count corrected for Copy counter and Printer counter When making A3/DLT copies, the Copy and Printer Counters do not count up by 2, even if A3/DLT Double Count has been set. Note: The Total Counter correctly counts up by 2 . 3. Key counter in connect copy mode. When the key counter is removed from the machine during a copy job in connect copy mode, both copiers will stop and display "paper jam". 4. Slip-Sheet Mode It is possible to select "Copy" or "Blank" from the operation panel in Slip-Sheet Mode.	A2937553 C	Not Available	3.1

8. 8K/16K Paper Size (China/Taiwan)
8K/16K paper size can be fed from Trays
2 and 3 by selecting 3:CH in SP5131
"Paper Size Type Selection".
Note: The factory default for SP5131 is
3:CH in models for China and Taiwan.

SC736: Finisher paper exit guide plate motor error

-Definition- [B]
It occurs 2 times consecutively that the paper exit guide plate HP sensor is not activated within 750 ms after the paper exit guide plate motor starts.
-Possible cause-

- Paper exit guide plate sensor defective or poor connection
- Paper exit guide plate motor defective
- Finisher main board defective
- Too much load on the drive mechanism

SC737: Finisher staple waste full

-Definition- [A]
The box for staple waste becomes full.
-Possible cause-

- Box is full of staple waste
- Staple waste sensor defective

SC738: Finisher shift tray lift motor error

-Definition- [B]
It occurs 2 times consecutively that;

1) The stack height sensor is not activated within 50 seconds after the motor starts lifting the tray.
2) The stack height sensor is still activated 5 seconds after the motor starts lowering the tray.
-Possible cause-

- Stack height sensor defective or poor connection
- Shift tray lift motor defective
- Finisher main board defective
- Too much load on the drive mechanism
\Rightarrow SC740: 1,000-sheet finisher error in finisher area
- Definition - [B]

Note: When this SC is displayed, check SP7-902 (SC detail). The first 2 digits indicate the type of error.

Example: $740 \underline{0100000000000000}$

01: Shutter movement error

1) The shutter position switch does not turn on within 1 s after the transport motor starts to turn in reverse.
2) The shutter sensor does not deactivate within 1 s after the transport motor starts to turn in reverse.
3) The shutter position switch is off when the shift tray safety switch is off.

- Possible causes -
- Transport motor defective
- Shutter position switch defective
- Shift tray safety switch defective

02: Exit motor error

1) After the exit motor turns on, the exit motor sensor does not send the proper signal to the finisher board.
2) The exit motor sensor does not send the clock signal to the finisher board for certain period while the exit motor is on.

- Possible causes -
- Exit motor defective
- Exit motor sensor defective

03: Upper exit plate movement error

1) The upper exit guide 2 switch does not turn on within 1 s after the guide plate motor turns on.
2) The upper exit guide sensor does not activate within 1s after the guide plate motor turns on.
3) The upper exit guide 2 switch does not turn on when the shift tray safety switch is off.

- Possible causes -
- Guide plate motor defective
- Upper exit guide 2 switch defective
- Upper exit guide sensor defective
- Shift tray safety switch defective

04: Jogger motor error

1) After the jogger motor turns on to move the jogger fence from its home position, the jogger HP sensor does not deactivate within 2s.
2) After the jogger motor turns on to return the jogger fence to its home position, the jogger HP sensor does not activate within 2s.

- Possible causes -
- Jogger motor defective
- Jogger HP sensor defective

05: Stapler motor error

1) After the stapler motor turns on to move the stapler unit from its home position, the stapler unit HP sensor does not deactivate within 4s.
2) After the stapler motor turns on to return the stapler unit to its home position, the stapler unit HP sensor does not activate within 4 s .

- Possible causes -
- Stapler motor defective
- Stapler unit HP sensor defective

06: Staple hammer motor error

1) The staple hammer HP sensor does not deactivate within 0.5 s after the staple hammer motor turns on.
2) The staple hammer HP sensor does not activate within 0.5 s after the staple hammer motor turns on.

- Possible causes -
- Staple hammer motor defective
- Staple hammer HP sensor defective

07: Tray lift motor error

1) The tray lift motor does not stop within 15 s after being turned on.
2) The shift tray HP sensor does not activate within 15 s after the tray lift motor turns on.
3) The shift tray upper limit switch turns on while the shift tray is being raised.
4) Lift motor sensors $1 \& 2$ do not send the clock signals to the finisher board every 200 ms while the tray lift motor is on.

- Possible causes -
- Tray lift motor defective
- Lift motor sensor 1 defective
- Lift motor sensor 2 defective
- Shift tray HP sensor defective
- Shift tray upper limit switch defective

08: Shift tray height sensor error

1) Abnormal communication data between finisher board and shift tray height sensor.
2) No communication between finisher board and shift tray height sensor for a certain period.
3) The finisher board detects a connection error with the connector for the shift tray height sensor.
4) Adjustment error during shift tray height sensor adjustment.

- Possible causes -
- Shift tray height sensor defective
- Finisher board defective

09: Back-up RAM error

The check sum is abnormal when the main switch is turned on.

- Possible causes -
- Finisher board defective

OA: Communication error

Communication error between finisher board and booklet unit board.

- Possible causes -
- Finisher board defective
- Booklet unit board defective
- Poor connection of the interface harness

\Longrightarrow SC741: 1,000-sheet finisher error in saddle stitching area

- Definition - [B]

Note: When this SC is displayed, check SP7-902 (SC detail). The first 2 digits indicate the type of error.
Example: $741 \underline{0100000000000000}$

01: Positioning plate motor error

1) After the positioning plate motor turns on to move the positioning plate from its home position, the positioning plate HP sensor does not deactivate within 1.25 s.
2) After the positioning plate motor turns on to return the positioning plate to its home position, the positioning plate HP sensor does activate within 1 s .

- Possible causes -
- Positioning plate motor defective
- Positioning plate HP sensor defective

02: Folder roller motor error

1) The folder roller motor sensor doesn't send the clock pulse to the booklet unit board within a certain period after the folder roller motor turns on.

- Possible causes -
- Folder roller motor defective
- Folder roller motor sensor defective

03: Shutter guide motor error

1) After the shutter guide motor turns on to move the shutter guide from its home position, the shutter guide HP sensor does not deactivate within 0.4 s .
2) After the shutter guide motor turns on to return the shutter guide to its home position, the shutter guide HP sensor does not activate within 1 s .

- Possible causes -
- Shutter guide motor defective
- Shutter guide HP sensor defective

04: Booklet jogger motor error

1) After the booklet jogger motor turns on to move the booklet jogger plate from its home position, the booklet jogger HP sensor does not deactivate within 0.5 s .
2) After the booklet jogger motor turns on to return the booklet jogger plate to its home position, the booklet jogger HP sensor does not activate within 1 s .

- Possible causes -
- Booklet jogger motor defective
- Booklet jogger HP sensor defective

05: Stapler motor error

1) The front staple hammer HP switch does not turn off within 0.5 s after the front stapler motor turns on.
2) The front staple hammer HP switch does not turn on within 0.5 s after the front stapler motor turns on during jam recovery.
3) The rear staple hammer HP switch does not turn off within 0.5 s after the rear stapler motor turns on.
4) The rear staple hammer HP switch does not turn on within 0.5 s after the rear stapler motor turns on during jam recovery.

- Possible causes -
- Front stapler motor defective
- Front staple hammer HP switch defective
- Rear stapler motor defective
- Rear staple hammer HP switch defective

06: Folder plate motor error

1) After the folder plate motor turns on to return the folder plate to its home position, the folder plate HP sensor does not activate within 0.3 s .
2) After the folder plate motor turns on to move the folder plate from its home position, the folder plate HP sensor does not deactivate within 0.3 s .
3) After the folder plate motor turns on to return the folder plate to its home position, the folder plate return sensor does not deactivate within 0.3 s .
4) The folder plate return sensor does not activate within 0.3 s after the HP sensor deactivates.
5) The pulse count from the folder plate motor sensor is lower than the target minimum.

- Possible causes -
- Folder plate motor defective
- Folder plate HP sensor defective
- Folder plate return sensor defective
- Folder plate motor sensor defective

07: Connector error

1) The connector of the shutter guide HP sensor is not connected.
2) The connector of the folder plate HP sensor is not connected.
3) The connector of the folder plate return sensor is not connected.

- Possible causes -
- Poor connection or no connection of the shutter guide HP sensor connector
- Poor connection or no connection of the folder plate HP sensor connector
- Poor connection or no connection of the folder plate return sensor connector

08: Switch error

1) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the booklet entrance guide safety switch does not turn on within 1 s after a copy job or warm-up idling begins.
2) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the lower door safety switch does not turn on within 1 s after a copy job or warm-up idling begins.
3) When the booklet entrance guide sensor, lower door sensor and booklet exit cover sensor are all activated (doors closed), the booklet exit cover safety switch does not turn on within 1s after a copy job or warm-up idling begins.

- Possible causes -
- Booklet entrance guide safety switch defective
- Lower door safety switch defective
- Booklet exit cover safety switch defective

SC900: Electrical total counter error

-Definition- [A]

The total counter contains something that is not a number.

- Possible causes -
- NVRAM defective

SC901: Mechanical total counter error

-Definition- [B]
The mechanical counter is not connected.

-Possible cause-

- Mechanical total counter defective
- Mechanical total counter connector not connected

SC951: F-gate signal error 2

-Definition- [B']
When the IPU has already received the F-gate signal (laser writing start trigger signal), the IPU receives another F-gate signal.

- Possible causes -
- SBICU defective

SC953: Scanner image setting error

-Definition- [B']
The settings that are required for image processing using the scanner are not sent from the IPU.

- Possible causes -
- Software defective

SC954: Printer image setting error

-Definition- [B']
The settings that are required for image processing using the printer controller are not sent from the IPU.

- Possible causes -
- Software defective

SC955: Memory setting error

-Definition- [B']
The settings that are required for image processing using the memory are not sent from the IPU.

- Possible causes -
- Software defective

SC956: Scanner setting ID error

-Definition- [B]
The ID that is sent from the IPU for scanner parameter setting is different from expected.
-Possible cause-

- Software error

SC957: Scanner return ID error

-Definition- [B]
The ID that is sent from the IPU for the scanner return signal is different from expected.
-Possible cause-

- Software error

\Rightarrow

SC958: Scanner ready ID error

-Definition- [B]
The ID that is sent from the IPU for the scanner ready signal is different from expected.
-Possible cause-

- Software error

SC959: Printer setting ID error

-Definition- [B]
The ID that is sent from the IPU for the printer setting signal is different from expected.
-Possible cause-

- Software error

SC960: Printer return ID error

-Definition- [B]
The ID that is sent from the IPU for the printer return signal is different from expected.

-Possible cause-

- Software error

SC961: Printer ready ID error

-Definition- [B']
The ID that is sent from the printer controller in the printer controller printing ready condition is incorrect.

- Possible causes -
- Software defective

SC962: Memory setting ID error

-Definition- [B’]
The ID that is sent from the memory when the IPU sent the memory ready signal is incorrect.

- Possible causes -
- Software defective

\Rightarrow
 SC963: Memory finishing ID error

-Definition- [B']
The ID that is sent from the memory when the IPU sent the memory finish signal is incorrect.

- Possible causes -
- Software defective

SC964: Printer ready error

-Definition- [B’]
The print ready signal is not generated for more than 17 seconds after the IPU received the print start signal.

- Possible causes -
- Software defective

SC970: Scanner ready error

-Definition- [B’]
The MCU does not send the ready signal for 10 seconds after the scanning start command is sent to the MCU.
-Possible cause-

- Communication error between BICU and MCU
- MCU software defective
- Buffer is full

SC980: HDD access error

-Definition- [B]
Incorrect parameter is sent from the BICU to the HDD controller.

- Possible causes -
- Software defective
- BICU defective

SC982: HDD construction error

-Definition- [B']
A HDD that does not have the correct specifications has been installed.

- Possible causes -
- Insufficient memory
- Incorrect hard disk type

SC984: HDD response error

-Definition- [B’]
The HDD controller does not generate any response when the BICU sends a read/write signal to the HDD controller.

- Possible causes -
- Software defective
- HDD defective or poor connection

SC990: Software performance error

-Definition- [B’]
The software performs an unexpected function.

- Possible causes -
- Software defective

NOTE: When this SC occurs, the file name, address, and data will be stored in the NVRAM. This data can be checked by entering SP mode then pressing " 0 ".

Note the above data and the situation in which this SC occurs. Then report the data and conditions to your technical control center.

$\Rightarrow 7.2$ ELECTRICAL COMPONENT DEFECTS

7.2.1 SENSORS

Component (Symbol)	Connector No.	Condition	Symptom
Scanner Home Position (S1)	CN555-2 (MCU)	Stays On	SC121 is displayed.
		Stays Off	SC120 is displayed.
Original Width (S2)	$\begin{gathered} \hline \text { CN555-6, } 7, \\ 8 \\ \text { (MCU) } \end{gathered}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
$\begin{gathered} \text { Original } \\ \text { Length-1 (S3) } \end{gathered}$	$\begin{aligned} & \hline \text { CN555-11 } \\ & (M C U) \end{aligned}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
$\begin{gathered} \text { Original } \\ \text { Length-2 (S4) } \end{gathered}$	$\begin{aligned} & \hline \text { CN555-14 } \\ & \text { (MCU) } \end{aligned}$	Stays On	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
		Stays Off	The CPU cannot detect the original size properly. APS and ARE do not function correctly.
LD Unit Home Position (S5)	$\begin{gathered} \hline \text { CN202-8 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	SC328 is displayed when the laser beam pitch is changed.
		Stays Off	SC327 is displayed when the laser beam pitch is changed.
Drum Potential Sensor (S6)	$\begin{gathered} \text { CN206-A12 } \\ (\mathrm{IOB}) \end{gathered}$	Open	The machine quits auto process control
		Shorted	and enters fixed toner supply mode.
Toner Density (TD) (S7)	$\begin{gathered} \text { CN211-B9 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Stays On	SC340 is displayed.
		Stays Off	SC340 is displayed.
$\begin{aligned} & \text { Image Density } \\ & \text { (ID) (S8) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CN206-B11 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Open	SC352 is displayed after copying.
		Shorted	SC350 is displayed after copying.
Toner End (S9)	$\begin{gathered} \text { CN211-B5 } \\ \text { (IOB) } \end{gathered}$	Open	"Toner End" is displayed even if there is enough toner in the toner hopper.
		Shorted	"Toner End" is not displayed even if there is no toner in the toner hopper.
Toner Collection Motor (S10)	CN270-7 (PFB)	Stays On	SC495 is displayed.
		Stays Off	SC495 is displayed.
$\begin{gathered} \text { Toner } \\ \text { Recycling (S11) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CN207-B2 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	SC495 is displayed.
		Stays Off	SC495 is displayed.
$\begin{aligned} & \text { 1st Paper Feed } \\ & \text { (S12) } \end{aligned}$	$\begin{gathered} \text { CN271-2 } \\ (\mathrm{PFB}) \end{gathered}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.

Component (Symbol)	Connector No.	Condition			
2nd Paper					
Feed (S13)					CN273-A2
:---:					
(PFB)	\quad Stays On	"Paper Jam" is displayed even if there			
:---					
is no paper.					

Component (Symbol)	Connector No.	Condition	Symptom
Rear Fence Return (S26)	$\begin{gathered} \text { CN266-9 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 is displayed.
		Stays Off	SC515 is displayed.
Front Side Fence Open (S27)	$\begin{gathered} \hline \text { CN265-A3 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 may display.
		Stays Off	SC515 may display.
Front Side Fence Close (S28)	CN265-A6 (PFB)	Stays On	SC515 may display.
		Stays Off	SC515 may display.
$\begin{aligned} & \text { Rear Side } \\ & \text { Fence Open } \\ & \text { (S29) } \end{aligned}$	$\begin{aligned} & \text { CN265-A9 } \\ & \text { (PFB) } \end{aligned}$	Stays On	SC515 may display.
		Stays Off	SC515 may display
Rear Side Fence Close (S30)	$\begin{gathered} \hline \text { CN265-A12 } \\ \text { (PFB) } \end{gathered}$	Stays On	SC515 may display
		Stays Off	SC515 may display
Right TrayDown (S31)	$\begin{aligned} & \text { CN265-B3 } \\ & \text { (PFB) } \end{aligned}$	Stays On	The bottom plate is not lowered when paper on the left tray shift to the right tray, and paper is set in the improper position. When the main switch turn on, no paper is indicated on the display even if there is paper on the right tray.
		Stays Off	The bottom plate lift lower locks at the lowest position.
$\begin{aligned} & \text { Right Tray } \\ & \text { Paper (S32) } \end{aligned}$	$\begin{aligned} & \text { CN265-B9 } \\ & (\mathrm{PFB}) \end{aligned}$	Stays On	The bottom plate rises and falls even if there is no paper.
		Stays Off	The bottom plate close not rise even if there is paper on the tray.
Left Tandem Tray Paper (S33)	$\begin{aligned} & \hline \text { CN266-11 } \\ & \text { (PFB) } \end{aligned}$	Stays On	The rear fence moves back and forth continuously.
		Stays Off	The paper on the left tray is not moved to the right tray. No paper is indicated event if there is paper on the left tray.
$\begin{gathered} \text { Duplex } \\ \text { Entrance (S34) } \end{gathered}$	$\begin{gathered} \text { CN208-B14 } \\ (\mathrm{IOB}) \end{gathered}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Duplex Inverter (S35)	$\begin{aligned} & \text { CN208-B17 } \\ & (\text { IOB }) \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Duplex Transport 1 (S36)	CN208-B5 (IOB)	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
DuplexTransport 2(S37)	$\begin{aligned} & \text { CN208-B8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.

Component (Symbol)	Connector No.	Condition	Symptom
DuplexTransport 3(S38)	$\begin{aligned} & \text { CN208-B11 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
$\begin{gathered} \text { Duplex Jogger } \\ \text { HP (S39) } \end{gathered}$	$\begin{gathered} \text { CN208-B2 } \\ \text { (IOB) } \\ \hline \end{gathered}$	Stays On	SC521 is displayed.
		Stays Off	SC520 is displayed.
Relay (S40)	$\begin{aligned} & \text { CN211-A8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Registration (S41)	$\begin{aligned} & \text { CN211-A1 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
Guide Plate Position (S42)	$\begin{gathered} \hline \text { CN209-6 } \\ \text { (IOB) } \end{gathered}$	Stays On	A paper jam will occur when the guide plate is opened.
		Stays Off	"Guide Plate Close" is displayed after the front door is closed even if the guide plate is closed.
Fusing Exit (S43)	$\begin{aligned} & \text { CN207-B8 } \\ & (\mathrm{IOB}) \end{aligned}$	Stays On	"Paper Jam" is displayed even if there is no paper.
		Stays Off	"Paper Jam" is displayed whenever a copy is made.
1st Exit (S44)	$\begin{aligned} & \text { CN204-B2 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
2nd Exit (S45)	$\begin{aligned} & \hline \text { CN204-B5 } \\ & \text { (IOB) } \end{aligned}$	Stays On	"Paper Jam" is displayed whenever a copy is made.
		Stays Off	"Paper Jam" is displayed even if there is no paper.
Tray Paper Limit (S46) (Option)	$\begin{aligned} & \hline \text { CN204-B8 } \\ & \text { (IOB) } \end{aligned}$	Stays On	Paper jams may occur.
		Stays Off	"Paper Full on Exit Tray" is displayed.

7.2.2 SWITCHES

Component (Symbol)	Connector No.	Condition	Symptom
Main Power (SW1)	$\begin{aligned} & \text { CN101-1, } 2 \\ & \text { CN111-1, } 2 \end{aligned}$	Open	The machine does not turn on.
		Shorted	The machine does not turn off.
Front Door Safety (SW3,5)	$\begin{gathered} \text { CN403-1, } 3 \\ (\text { LDU }) \end{gathered}$	Open	SC322 is displayed.
		Shorted	
$\begin{gathered} \text { Front Door } \\ \text { Safety (SW4) } \end{gathered}$	$\begin{gathered} \hline \text { CN152-3, 6, } \\ 7 \text { (CNB) } \end{gathered}$	Stays On	"Close the Door" is displayed even if the front cover is closed. SC440, 441, or 531 is displayed.
		Stays Off	"Close the Door" is not displayed even if the front cover is opened.
Lower Front Door Safety (SW6)	$\begin{aligned} & \text { CN268-1 } \\ & \text { (PFB) } \end{aligned}$	Open	SC506 is displayed.
		Shorted	
Toner Collection Bottle Set (SW7)	$\begin{aligned} & \text { CN268-10 } \\ & \text { (PFB) } \\ & \text { CN270-10 } \end{aligned}$	Open	SC 496 is displayed.
		Shorted	No caution is displayed on the operation panel even if the toner collection bottle is set incorrectly.
Toner Overflow (SW8)	$\begin{aligned} & \hline \text { CN270-12 } \\ & \text { (PFB) } \end{aligned}$	Open	"Full Used Toner Bottle" is displayed even if the toner collection bottle is not full.
		Shorted	"Full Used Toner Bottle" is not displayed even if the toner collection bottle is full.
$\begin{gathered} \hline \text { Paper Size } \\ \text { (SW9) } \end{gathered}$	$\begin{gathered} \text { CN262- } \\ 8,9,10,11,1 \\ 2 \\ \text { (PFB) } \end{gathered}$	Open Shorted	The CPU cannot detect the proper paper size, and misfeeds may occur when a copy is made.

\Rightarrow 7.3 BLOWN FUSE CONDITIONS

Fuse	Rating		Symptom when turning on the main power switch
	$\mathbf{1 1 5 V}$	$\mathbf{2 1 0} \sim \mathbf{2 3 0 V}$	
Power Supply Board			
FU101	$12 \mathrm{~A} / 250 \mathrm{~V}$	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	No response
FU102	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	Nothing is displayed on LCD.
FU103	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC101 is displayed.
FU104	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	The ADF does not work.
FU105	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC520 is displayed.
FU106	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC530 is displayed after the start key is pressed.
FU107	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	$6.3 \mathrm{~A} / 125 \mathrm{~V}$	SC542 is displayed.

BULLETIN NUMBER: A292/A293-009
09/20/2000
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Tapping Screws - Correct the illustration as shown below. Please update your parts catalogs with the following information.

OLD PART NO.	NEW PART NO.	REFERENCE						
04340080	04340082 W	Tapping Screw $-\mathrm{M} 4 \times 8$	QTY	PAGERIPTION	ITEM			
--	$04503008 B$	Tapping Screw $-\mathrm{M} 3 \times 8$	-	15	103			

Continued...

Tech Service Bulletin No. A292/A293-009
Page 2 of 3

- UPDATE 2: Philips Pan Head Screw - M3x6 - Please update your parts catalogs with the following information.

				REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	PAGE	ITEM
03530060B		Philips Pan Head Screw - M3x6	-	33	103
	03530030B	Philips Truss Head Screw - M3x3	-		

- UPDATE 3: Cushion - 0.5 - Please update your parts catalogs with the following information.

	REFERENCE				
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	PAGE	ITEM
$54421924-2$	Exposure Glass Cushion	2	41	16	

- UPDATE 4: Exposure Glass Cushion - Please update your parts catalogs with the following information.

		REFERENCE		
PART NUMBER	DESCRIPTION	QTY	PAGE	ITEM
54421924	Exposure Glass Cushion	2	65	16^{*}

* Denotes new item number.

Tech Service Bulletin No. A292/A293-009

Page 3 of 3

- UPDATE 5: Cleaning Entrance Seal - $3 \times 345 \times 2$ - Please update your parts catalogs with the following information.

		REFERENCE		
PART NUMBER	DESCRIPTION	QTY	PAGE	ITEM
AA153088	Cleaning Entrance Seal $-3 \times 345 \times 2$	1	91	26^{*}

* Denotes new item number.
- UPDATE 6:

Tapping Bind Screw - M4x12 \& Clamp-. Items 114 and 115 were omitted from the parts listing. Please update your parts catalogs with the following information

		REFERENCE		
PART NUMBER	DESCRIPTION	QTY	PAGE	ITEM
11050199	Clamp	-	127	114
$04140120 B$	Tapping Bind Screw - M4x12	-	127	115

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: NV-RAM Minus Counter - The NV-RAM Minus Counter (P/N

A2939099) $($ Counter $=9990000)$ has been registered as a service part in place of IC-SRAM M48Z128Y-85PM (P/N 14075050). The table for the BICU Board has been changed as shown in the tables below.
Please update your parts catalog with the following information.
BICU BOARD (A292/A293)

SYMBOL	
NO.	INDEX NO.
IC111	142
IC112	140
IC113	126
IC114	132
IC115	133
IC116	117
IC117	132
IC118	127
IC119	139
IC120	145

SYMBOL NO.	INDEX NO.
IC111	142
IC112	140
IC113	126
IC114	132
IC115	133
IC116	$\mathbf{2 2 4}=>$
(Socket)	$\mathbf{1 1 7}$
IC117	132
IC118	127
IC119	139
IC120	145

REFERENCE

OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
14075050	-	IC-SRAM M48Z128Y-85PM	$1 \rightarrow 0$	-	159	224
-	A2939099	NV-RAM Minus Counter	1	1	157	5^{*}

[^3]Tech Service Bulletin No. A292/A293-010
Page 2 of 3

- UPDATE 2: 1st Scanner Unit- Due to a request from the vendor, the Scanner Frame and the Front and Rear Side Plates for the 1st Scanner are no longer available. If any of these parts should fail, replace the 1st Scanner Unit Assembly (P/N A2931731). Please update your parts catalog with the following information.

				REFERENCE				
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	PAGE	ITEM			
A2931732	-	1st Scanner Frame	$1 \rightarrow 0$	45	21			
A2931733	-	Front Side Plate - 1st Scanner	$1 \rightarrow 0$	45	16			
A2931734	-	Rear Side Plate - 1st Scanner	$1 \rightarrow 0$	45	19			
-	A2931731	1st Scanner Unit Assembly	1	45	26^{*}			

* Denotes new item number.
- UPDATE 3: Hexagon Headless Set Screw - M4x4 - The parts illustration incorrectly identified the Set Screw for the Flange Fly Wheel as item 103. Please correct the illustration and update your parts catalog with the following information.

		REFERENCE	
PART NUMBER	DESCRIPTION	QTY	PAGE
ITEM			
$05740040 E$	Hexagon Headless Set Screw - M4x4	n	121

* Denotes new item number.

Continued...

Tech Service Bulletin No. A292/A293-010

Page 3 of 3

- UPDATE 4: Compression Spring- To ensure that the Transfer Belt releases from the Drum, the Compression Spring has been removed. Please update your parts catalog with the following information.

REFERENCE	
PAGE	ITEM
95	22

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the Compression Spring removed during production.

MODEL NAME	SERIAL NUMBER
Gestetner	H4705100281
Gestetner	H4805100181
Ricoh	H4705000001
Ricoh	H 4805000001
Savin	H 4705100281
Savin	H 4805100181

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-101 through 103

Updated Information (Firmware History)

A292/A293 BICU FIRMWARE MODIFICATION HISTORY

A292/A293 BICU FIRMWARE MODIFICATION HISTORY						
DESCRIPTION OF MODIFICATION				FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
Corrections / Updates: 1. New Copy Feature and SP Mode (SP5971) Added 1) New Copy Feature: Enhance Density Mode This feature has been added to ensure that image density does not drop while making multiple copies of originals with a high percent of solid black areas. To set effective original density and number of copies for multi-copy mode, use SP5971 (see below). To add the Enhance Density Key to the display panel and to control the level, perform the following procedure: (1) Press the User Tools/Counter key. (2) Press the Copy/Document Server Features Key. (3) Open General Features, screen $3 / 3$. (4) Select one of the Shortcut Keys from F1-F5. (5) Register the Enhance Density Key. (6) Open General Features, screen $1 / 3$. (7) Select the setting for 2) New SP Mode: SP5971 (Enhance Copy Setting): The following settings apply to Enhance Density Mode:				A2937553 E	Not Available	3.5.1
Mode No.5971	Enhance Copy Setting Function \quad Setting					
	2	Effective Original Density		Selects the original image ratio at which the mode is activated (calc. from setting).		$\begin{aligned} & 1 \sim 60 \% \\ & 1 \% \text { step } \\ & 4 \% \end{aligned}$
	3	Effective Multiple Copy	Selects the sheet number at which mode is activated with multi-copy jobs (calc. from setting).			1 ~ 50sheets 1 sheet step 3 sheets

A292/A293 BICU FIRMWARE MODIFICATION HISTORY			
DESCRIPTION OF MODIFICATION	FIRMWARE LEVEL	SERIAL NUMBER	FIRMWARE VERSION
3. Fusing Unit Fan Motor Off-Timing Change To ensure that the hot air around the toner bottle is properly removed, the fusing unit fan motor will be kept on whenever the 24 V is being supplied. Therefore, it will turn off only when the main switch or operation switch is turned off or when the machine is shut down by the AutoOff function. 4. Word Correction Some display language words and phrases have been corrected or improved.			
Corrections / Updates: 1. New SP Mode (SP5970) for EB-70 (Printer controller) The following setting applies when the EB-70 printer controller is installed.	A2937553 F	Not Availbale	3.6
Function			Setting
Printer Installed			
	Selects whethe controller is inst	EB-70 printer d or not.	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$
2. Some Part of Image Missing in Tab Stock when Printing from Document Server <Symptom> When files in the Document Server are printed onto Tab Stock, the image is not rotated even though tab stock can be set sideways only. This is because the documents are saved lengthwise only in the Document Server. <Modification> The error has been corrected.			Continue ...

\Rightarrow| A292/A293 BICU FIRMWARE MODIFICATION HISTORY | | | |
| :--- | :---: | :---: | :---: |
| | DESCRIPTION OF MODIFICATION | FIRMWARE
 LEVEL | SERIAL
 NUMBER | | FIRMWARE |
| :---: |
| VERSION |$|$| 3.Malfunction with Printer Dot Edge
 Parameter Setting when Printing from
 Document Server
 <Symptom>
 When edge smoothing is off, the line
 thickness is not changed when the
 printer dot edge parameter setting
 (SP2114) is changed.
 <Modification>
 The error has been corrected. | | |
| :--- | :--- | :--- |

BULLETIN NUMBER: A292/A293 - 012

10/11/2000

APPLICABLE MODEL:
 GESTETNER - 3355/3370
 RICOH - AFICIO 551/700
 SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual page listed below must be replaced with the page supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-74

Updated Information (NVRAM - Ram Replacement)

4.2.7 MEMORY ALL CLEAR (SP5-801)

NOTE: Memory All Clear mode resets all the settings stored in the NVRAM to their default settings except the following:

- Electrical total counter value (SP7-003-1)
- Machine serial number (SP5-811)
- Plug \& Play Brand Name and Production Name Setting (SP5-907)

Among the settings that are reset are the correction data for process control and all the software counters.

Normally, this SP mode should not be used. This procedure is required only after replacing the NVRAM or when the copier malfunctions due to a damaged NVRAM.

NV-RAM is not defective	NV-RAM is defective
1. Print out all SMC data lists (SP 5-990-1).	1. If possible, print out all SMC data lists (SP 5- 990-1).
2. Upload the NVRAM data from the BICU to the flash memory card (SP 5-824).	2. Turn the main power switch off.
	3. Replace the NV-RAM Minus Counter.
3. Turn the main power switch off.	4. Replace the developer because the TD initial data is missing if the NV-RAM is defective.
4. Replace the NV-RAM Minus Counter.	5. Perform memory all clear (SP 5-801).
5. Perform memory all clear (SP 5-801). NOTE 1	6. Turn the main power switch off and on.
6. Turn the main power switch off and on.	7. Calibrate the LCD touch panel.
7. Calibrate the LCD touch panel.	8. Perform the TD initial setting (SP 2-963). Note: Do this step before the machine automatically starts the Auto Process Control (within approximately 2 minutes after the main switch is turned on).
8. Input the machine serial number (SP 5-811).	9. Input the machine serial number (SP 5-811).
9. Download the NVRAM data from the flash memory card to the BICU (SP 5-825). Or, referring to the SMC data lists, re-enter any value which has been changed from its factory setting.	10. Adjust the laser beam pitch (SP 2-109).
	11. Perform the printer and scanner registration adjustments. (See Replacement and Adjustment - Copy Image - Adjustments)
10. Download the stamp data from the flash memory card (SP5-829).	12. Referring to the SMC data lists, re-enter any value which has been changed from its factory setting.
11. Check the copy quality and the paper path	13. Download the stamp data from the flash memory card (SP5-829).
and do any necessary adjustments.	

BULLETIN NUMBER: A292/A293-013

10/18/2000

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: APPLICATION BOARD

GENERAL:

The part number for the Application Board was incorrect in the Parts Catalog. The following part correction is being issued for all A292/A293 Parts Catalogs.

				REFERENCE	
INCORRECT	CORRECT	DESCRIPTION	QTY	PAGE	ITEM
PART NO.	PART NO.	A2931463	Application Board	1	19
A2291463	A293	22			

RTEDM TECHNICAL SERVICE BULLETIN

BULLETIN NUMBER: A292/A293 - 014
10/30/2000

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 3-27
- 4-61
- 10-1

Updated Information (Punch Unit Installation)
Updated Information (Service Program Mode)
Updated Information (A763 Specifications)

Installation
8. Install the sensor bracket [A] (1 short stepped screw, 1 spring).
9. Connect the cables $[B]$.

NOTE: 1) The cable binders [C] must not be between the cable clamps [D].
2) The cable binder [E] must be positioned to the left of the cable clamp.
10. When a three-punch-hole-unit is installed: Change switch 1 of DIP SW 100 on the punch drive board to ON.
11. Slide the hopper [F] into the finisher.
12. Reassemble the finisher and attach it to the copier. Then check the punch unit operation.

1. OVERALL MACHINE INFORMATION

1.1 SPECIFICATIONS

Paper Size:

Tray	Modes	Sizes		
Proof tray	A3 to A5, DLT to HLT			
Shift tray	No staple mode	A3 to A5, DLT to HLT		
	Staple Mode	Top or bottom		
	A3 to B5 lengthwise, DLT to HLT			
	A3, A4 sideways, B5 sideways, DLT to HLT sideways			
Booklet tray		A3 to B5, DLT to LT		

Paper Weight:

Tray	Weight
Stack mode	$52 \mathrm{~g} / \mathrm{m}^{2}$ to $163 \mathrm{~g} / \mathrm{m}^{2}, 14$ to 42 lb
Staple mode	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb
Saddle stitch mode	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $80 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 21 lb
	$64 \mathrm{~g} / \mathrm{m}^{2}$ to $128 \mathrm{~g} / \mathrm{m}^{2}, 17$ to 34 lb (Cover sheet only)

Paper Capacity ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

Tray	Modes	Paper size	Capacity
Proof tray		A4-S, LT-S or shorter	150 sheets
		A4-L, LT-L or longer	75 sheets
Shift tray	No staple	A4-S, LT-S or shorter	147mm stack height or 1000 sheets (*)
		A4-L, LT-L or longer	74 mm stack height or 500 sheet (${ }^{*}$)
	Staple	A4-S, LT-S or shorter	110 mm stack height or 30 sets or 750 sheets (*)
		A4-L, LT-L or longer	74 mm stack height or 30 sets or 500 sheets(*)
Staple tray	One size Mixed sizes	1-5 sheets	25 sets
		6-10 sheets	15 sets
		11-15 sheets	10 sets

(-L": Lengthwise ,-S: Sideways)
Staple Capacity ($80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}$):

Modes	Paper size	Total capacity
Staple	A4-S, LT-S or shorter	$2-50$ sheets
	A4-L, LT-L or longer	$2-30$ sheets
Saddle stitch		$2-15$ sheets

(-L": Lengthwise, -S: Sideways)

* The machine will inform the operator that the tray is full when any of the conditions are met (whichever occurs first).

BULLETIN NUMBER: A292/A293-015
11/06/2000
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: ADF MAIN CONTROL BOARD

GENERAL:

The following changes have been made to the ADF Main Control Board:

1. If the Motor locks, a surge of current flows through the Motor Driver Circuit on the ADF Main Control Board, which may cause damage to the circuit. The current capacitance of the circuit has been increased to protect the circuit in the event of a surge.
2. During the production process, it was found that some ADF Main Control Boards had a relatively narrow adjustment range for the Transport Drive Motor speed. In some cases, the Motors could not reach the target adjustment speed. The defective boards were not installed in the ADF Units. Therefore, the same symptom will not occur on production machines released from the factory. To ensure the proper functionality of the ADF Main Control Board, IC \#NJM4151 on the ADF Main Control Board has been modified as follows:

Tech Service Bulletin No. A292/A293-015
Page 2 of 2
The following parts updates are being issued for all A292/A293 Parts Catalogs.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
B3015500	B3015510	ADF Main Control Board	1	1	37	22

UNITS AFFECTED:

A292/A293 Serial Number cut-ins were not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

BULLETIN NUMBER: A292/A293 - 015 REISSUE \star APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

11/17/2000

SUBJECT: ADF MAIN CONTROL BOARD

GENERAL:

The following changes have been made to the ADF Main Control Board:

1. If the Motor locks, a surge of current flows through the Motor Driver Circuit on the ADF Main Control Board, which may cause damage to the circuit. The current capacitance of the circuit has been increased to protect the circuit in the event of a surge.
2. During the production process, it was found that some ADF Main Control Boards had a relatively narrow adjustment range for the Transport Drive Motor speed. In some cases, the Motors could not reach the target adjustment speed. The defective boards were not installed in the ADF Units. Therefore, the same symptom will not occur on production machines released from the factory. To ensure the proper functionality of the ADF Main Control Board, IC \#NJM4151 on the ADF Main Control Board has been modified as follows:

Tech Service Bulletin No. A292/A293 - 015 REISSUE \star Page 2 of 2

The following parts updates are being issued for all A292/A293 Parts Catalogs.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
B3015500	B3015510	ADF Main Control Board	1	1	37	22

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style ADF Main Control Board installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H4705600353
Gestetner 3370	H4805600003
Ricoh AFICIO 551	H4705600064
Ricoh AFICIO 700	H4805600101
Savin 2055DP	H4705600353
Savin 2070DP	H4805600003

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- iv
- $3-39 \& 40$

Updated Information (Table of Contents)
Updated Information (Copy Tray Type 700 Installation)
2.10.4 BASIC DUPLEX FEED OPERATION 2-80
Longer than A4 / Letter lengthwise 2-80
2.11 ENERGY SAVER MODES 2-83
2.11.1 LOW POWER MODE 2-83
Entering low power mode 2-83
What happens in low power mode 2-83
Return to stand-by mode 2-83
INSTALLATION
3. INSTALLATION PROCEDURE 3-1
3.1 INSTALLATION REQUIREMENTS 3-1
3.1.1 ENVIRONMENT 3-1
3.1.2 MACHINE LEVEL 3-1
3.1.3 MINIMUM SPACE REQUIREMENTS 3-2
3.1.4 POWER REQUIREMENTS 3-2
3.2 COPIER (A229/A293) 3-3
3.1.1 ACCESSORY CHECK. 3-3
3.1.2 INSTALLATION PROCEDURE 3-4
3.3 LCT (A698) 3-14
3.3.1 ACCESSORY CHECK 3-14
3.3.2 INSTALLATION PROCEDURE 3-15
3.4 3,000-SHEET FINISHER (B312) 3-20
3.4.1 ACCESSORY CHECK 3-20
3.4.2 INSTALLATION PROCEDURE 3-21
3.5 PUNCH UNIT INSTALLATION (A812) FOR B312 FINISHER 3-24
3.5.1 ACCESSORY CHECK 3-24
3.5.2 PUNCH UNIT INSTALLATION 3-25
3.6 FINISHER (B302) 3-28
3.6.1 INSTALLATION PROCEDURE 3-28
3.7 PUNCH UNIT INSTALLATION (A812) FOR B302 FINISHER 3-31
3.7.1 ACCESSORY CHECK 3-31
3.1.2 PUNCH UNIT INSTALLATION 3-32
3.8 KEY COUNTER INSTALLATION 3-35
3.9 COPY CONNECTOR KIT INSTALLATION 3-36
3.10 COPY TRAY TYPE 700 INSTALLATION 3-39
SERVICE TABLES
4. SERVICE TABLES 4-1
4.1 GENERAL CAUTIONS 4-1
4.1.1 DRUM 4-1
4.1.2 DRUM UNIT 4-1
4.1.3 TRANSFER BELT UNIT 4-2
4.1.4 SCANNER UNIT 4-2
4.1.5 LASER UNIT 4-2
4.1.6 CHARGE CORONA 4-3

3.10 COPY TRAY TYPE 700 INSTALLATION

3.10.1 ACCESSORY CHECK

Check the accessories in the box against the following list.

Description Q'ty

1. Copy Tray ... 1
2. Tray Paper Limit Sensor Assembly...................................... 1
3. Cap - 222 ... 4
4. Connector Cap .. 1
5. Philips Tapping Screw - M4x8... 2

3.10.2 INSTALLATION PROCEDURE

1) Remove the left cover [A] (2 screws).
[A]

2) Slide the collars (black) [B] into the holes in the rubber rollers [C] of the exit drive roller.

\Rightarrow
3) Remove the shorting connector $[A]$.
4) Install the tray paper limit sensor assembly [B].

[B]
5) Reinstall the left cover.
6) Install the four caps ($\phi 22$) [C] and the connector cap [D].
7) Install the copy tray [E].

RTEDEM TECHNICAL SERVICE BULLETIN

BULLETIN NUMBER: A292/A293-017

11/17/2000

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-11
- 4-15
- 4-28
- 4-40
- 4-41
- 4-42
- 4-44
- 4-45
- 4-46
- 4-64
- 4-65

> Updated Information (SP Mode)

Mode No.(Class 1, 2 \& 3)				Function	Settings
1-007	By-pass Feed Paper Size Display				
				Displays the paper width sensor data for the by-pass feed table. 132 : A3 133 : A4 Lengthwise 134 : A5 Lengthwise 141 : B4 Lengthwise 142 : B5 Lengthwise 160 : DLT 164 : LG 166 : LT Lengthwise 172 : HLT Lengthwise	
1-008	Duplex Fence Position Adjustment				
				Adjusts the position of the fence (side-toside position with reference to paper feed).	$\begin{aligned} & 0 \sim-2 \\ & 0.5 \mathrm{~mm} / \mathrm{step} \\ & -1.0 \mathrm{~mm} \end{aligned}$
1-103	Fusing Idling				
			*	Selects whether fusing idling is done or not. If fusing is incomplete on the 1st and 2nd copies, change the setting to a longer time. This may occur if the room is cold. Refer to "Detailed Section Descriptions Fusing Temperature Control" for more details.	0: 51/2 min. 1: 10 min . 2: 15 min . 3: No idling
$1-104$	Fusing Temperature Control				
			*	Selects the fusing temperature control mode. After changing the setting, turn the main switch off and on.	On/Off control Phase control
1-105	Fusing Temperature Adjustment				
	1	By-pass	*	Adjusts the fusing temperature for paper fed from a by-pass tray.	$\begin{aligned} & 170 \sim 200 \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 185^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
	2	OHP	*	Adjusts the fusing temperature for OHP sheets fed from the by-pass feed unit.	$\begin{aligned} & +10 \sim-10^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 0\left(165^{\circ} \mathrm{C}\right) \end{aligned}$
	3	Thick Paper	*	Adjusts the fusing temperature for thick paper fed from the by-pass feed unit.	$\begin{aligned} & +5 \sim-10^{\circ} \mathrm{C} \\ & 1^{\circ} \mathrm{C} / \text { step } \\ & 0\left(195^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$
1-106	Fusing Temperature Display				
				Displays the fusing temperature.	

Mode No. (Class 1, 2 \& 3)				Function	Settings
4-903	Filter Setting				
	85	Scanner Gamma Selection Text/Photo Mode		Selects the scanner and printer gamma settings used when 'Service Mode' for Text/Photo mode is selected. 0 : Scanner gamma for 'Photo Priority' is used. 1: Scanner gamma for 'Normal' is used. 2: Scanner gamma for 'Text Priority' is used.	$\begin{aligned} & 0 \sim 2 \\ & 1 / \text { step } \\ & 1 \end{aligned}$
4-904	IPU Setting -1				
	1	Laser Pulse Positioning in Text and Text/Photo	*	Selects whether or not laser pulse positioning control is used in text and text/photo modes Do not change the value.	$\begin{aligned} & \text { 0: Off } \\ & \text { 1: On } \end{aligned}$
	2	Gradation Processing Selection Photo	S	Selects the gradation processing procedure. 0 : Three-gradation error diffusion 1: Four-gradation error diffusion 2: 8" $\times 8^{\prime \prime}$ dither matrix 3: $6^{\prime \prime} \times 6^{\prime \prime}$ dither matrix 4: 4" $\times 4^{\prime \prime}$ dither matrix A larger dither matrix gives coarser reproduction of halftones. This SP is ignored unless the user selects 'Service Mode' in UP mode.	$\begin{aligned} & 0 \sim 4 \\ & 1 \end{aligned}$
	4	Forced Binary Mode	S	1: Binary processing is done for all image modes.	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$
	6	Smoothing Filter Level in Photo Mode	S	Selects the smoothing filter level in photo mode. 0 : None 1: Weak 5: Strong	$\begin{aligned} & 0 \sim 5 \\ & 2 \end{aligned}$
	7	Texture Erase Filter Level in Text Mode	S	Selects the strength of the filter for erasing texture from the image in text/photo mode. 0 : None 1: Weak 2: Strong	$\begin{aligned} & 0 \sim 2 \\ & 0 \end{aligned}$

Mode No.(Class 1, 2 \& 3)			Function	Settings
4-904	IPU Setting -1			
	20	Thin Line Mode in Laser Writing - Text	Selects thin line mode level in laser writing for text mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$
	22	Thin Line Mode in Laser Writing Text/Photo	Selects thin line mode level in laser writing for text/photo mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$
	23	Thin Line Mode in Laser Writing - Pale	Selects thin line mode level in laser writing for pale mode. 0 : None 1: Weak 2: Medium 3: Strong	$\begin{aligned} & 0 \sim 3 \\ & 2 \end{aligned}$

Mode No.(Class 1, 2 \& 3)				Function	Settings
4-911	HDD				
	1	HDD Media Check		Checks for bad sectors on the hard disk that develop during machine use. This takes 4 minutes. This SP mode should be done when an abnormal image is printed. There is no need to do this at installation as the hard disk firmware already contains bad sector information, and damage is not likely during transportation. Bad sectors detected with this SP mode will be stored in the NVRAM with the bad sector data copied across from the firmware. If the machine detects over 50 bad sectors, SC361 will be generated. At this time, use SP4-911-2.	Start
	2	HDD Formatting		Formats the hard disk. This takes 4 minutes. Do not turn off the main power switch during this process.	
	6	HDD Bad Sector Information Reset		Resets the bad sector information which is stored in the NVRAM. This SP should be used when the hard disk is replaced.	Start
	7	HDD Bad Sector Display	*	Displays the number of bad sectors there are on the hard disk. If the machine detects a total of over 50 bad sectors on the disk, SC361 will be generated. At this time, use SP4-911-2.	Total: 0 Copy: 0 Printer: 0 Copy Server: 0
	8	HDD Model Name Display		Displays the model name of the HDD. If the HDD is not installed or the HDD connector is not connected, SC360 will be displayed. However, the user can make single copies.	

This page intentionally left blank.

Mode No.	Function	Settings
(Class $1,2 \& 3)$		

Mode No. (Class 1, 2 \& 3)		Function	Settings
7-906	Clear Original Number of Each size		
		Resets all counters of SP7-202.	Start
7-907	Clear Job Number of Each size		
		Resets all counters of SP7-306.	Start
7-908	Document : Clear Original Number		
		Resets all counters of SP7-002-2.	Start
7-920	Document Server: Clear Scanned Storage		
		Resets the counter of SP7-320.	Start
7-921	Document Server : Clear Original Number of Each Size		
		Resets all counters of SP7-321.	Start
7-923	Document Server : Clear Print Number of Each Copy		
		Resets all counters of SP7-323	Start
7-924	Document Server : Clear Print Job Logging		
		Resets all counters of SP7-324	Start
7-925	Document Server : Clear Print Job Page Distribution		
		Resets all counters of SP7-325	Start
7-926	Document Server : Clear Print Job File Distribution		
		Resets all counters of SP7-326	Start
7-927	Document Server : Clear Print Job Set Distribution		
		Resets all counters of SP7-327.	Start
7-990	Display the detail information for SC990		
	001 Filename 002 Line Number 003 Value	Displays the detail information for SC990.	

TECHNICAL SERVICE BULLETIN

BULLETIN NUMBER:

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

- UPDATE 1: Transfer Unit - To improve uneven density in half tone areas the Cleaning Roller Gears (Item No. 8 page 93 \& Item No. 31 page 95) were changed. Please refer to Technical Service Bulletin A292/A293 - 005, since these gears were part of an assembly the part number for the Transfer Belt Unit and Transfer Casing Unit have been changed.

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

Tech Service Bulletin No. A292/A293-018
Page 2 of 2

- UPDATE 2: Original Length Sensor - To ensure the detection of the original length, a filter has been added to the sensor.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AW010078	A2941843	Photosensor with Filter - H50	2	1	41	8

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

BULLETIN NUMBER: A292/A293-019
11/20/2000
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: LOW IMAGE DENSITY

SYMPTOM:

Low image density on copies caused by low copy volume made on machine around 20 to 30 K after installation.

CAUSE:

The Fusing Fan Motor stops when the low power timer runs out (60 sec) and the machine enters Energy Saver Mode. Because the Fusing Lamp remains on in order to maintain hot roller temperature, the temperature of the areas surrounding the unit rises. The resulting heat can damage the toner that is stored in the bottle above the Fusing Unit, causing some of the toner's constituents to separate out. The altered toner is then sent to the Development Unit and is mixed in with the developer, causing developer chargeability to drop. This results in low image density on copies.

This heat damage occurs on low copy volume machines, as the toner remains in the bottle for extended period of time.

SOLUTIONS:

Firmware:

The off timing of the Fusing Fan Motor has been delayed to remove the hot air around the Toner Bottle.

Hardware:

As an added measure, a Heat Insulator will be installed between the front frame of the Scanner Unit and Toner Bottle to ensure that the toner is not damaged, even if the internal temperature should rise.

Newly Installed Machines:

Upgrade the BICU firmware to ver 3.5.1 or later at installation.

Tech Service Bulletin No. A292/A293-019
Page 2 of 2

Field machines which have no low ID problem:

Please upgrade the BICU firmware to ver 3.5.1 at the next field visit.

The PCB ROM revision 'F' version 3.6 (file name A292REVF.EXE) can be downloaded through the Technology Solution Center FTP Site http://tsc.ricohcorp.com.

NOTE: Refer to Publication Bulletin \# 023 for more information about the FTP Internet Web Site.

Field machines which have low ID problem:

1. Upgrade the BICU firmware to ver 3.5.1.
2. Replace the developer.
3. Replace the toner bottle.
4. Remove and clean the toner in the Toner Hopper.

BULLETIN NUMBER: A292/A293 - 020
11/28/2000
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Toner Bottle Holder - If the Shutter Cover is not hung on the hook of the Right Inner Cover, machine vibration may cause the Inner Shutter to move and cover the entrance to the Toner Hopper. To secure the Shutter Cover in place, a boss ($\phi 2, h=2$) has been added to the Cover. When installing the Right Inner Cover, be sure to place the boss in the Guide Rail as shown in the illustration below. Please update your Parts Catalog with the following information.

Right Inner Cover
Hook: Right Inner Cover
Boss: Shutter Cover

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2933201	A2933205	Toner Bottle Holder Ass'y (NRG/SVN)	1	1	77	1
A2933202	A2933206	Toner Bottle Holder Ass'y (RIC LT)	1	1	77	1
A2933203	A2933207	Toner Bottle Holder Ass'y (RIC EU)	1	1	77	1
A2933204	A2933208	Toner Bottle Holder Ass'y (INF/LAN) *	1	1	77	1

* See Update 2 for further changes to P/N A2933208.

Continued...

Tech Service Bulletin No. A292/A293-020
Page 2 of 4

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

- UPDATE 2: Caution Decal - A Caution Decal has been added to the Toner Bottle Holder Assembly. The Decal has been applied to the change made in Update 1 and affects P/N A2933208. Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2933208	A2933209	Toner Bottle Holder Ass'y	1	1	77	1
A2293223	A2933237	Bottle Holder	1	1	77	14
-	A2933238	Decal - Caution	1	-	77	37 *

* Denotes new item number.

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

Page 3 of 4

- UPDATE 3: Left Scale Sheet - To ensure that the Left Scale fits the exposure glass correctly, the width of the Left Scale Sheet has been changed from 15.5 mm to 14.5 mm . Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A1931752		Left Scale Guide	1	1	41	3
	\rightarrow A2931793	Left Scale Sheet	1	1	41	3

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

Tech Service Bulletin No. A292/A293-020
Page 4 of 4

- UPDATE 4: Gear- $32 Z$ - To improve the reliability, Gear-32Z with the one-way clutch has been changed. Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AB014155	AB013778	Gear - 32Z	1	1	63	20

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

BULLETIN NUMBER: A292/A293 - 020 REISSUE \star

12/22/2000

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

UPDATE 1: Toner Bottle Holder - If the Shutter Cover is not hung on the hook of the Right Inner Cover, machine vibration may cause the Inner Shutter to move and cover the entrance to the Toner Hopper. To secure the Shutter Cover in place, a boss ($\phi 2, \mathrm{~h}=2$) has been added to the Cover. When installing the Right Inner Cover, be sure to place the boss in the Guide Rail as shown in the illustration below. Please update your Parts Catalog with the following information.

Right Inner Cover
Hook: Right Inner Cover
Boss: Shutter Cover

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2933201	A2933205	Toner Bottle Holder Ass'y (NRG/SVN)	1	1	77	1
A2933202	A2933206	Toner Bottle Holder Ass'y (RIC LT)	1	1	77	1
A2933203	A2933207	Toner Bottle Holder Ass'y (RIC EU)	1	1	77	1
A2933204	A2933208	Toner Bottle Holder Ass'y (INF/LAN) *	1	1	77	1

* See Update 2 for further changes to P/N A2933208.

Continued...

Tech Service Bulletin No. A292/A293 - 020 REISSUE \star
Page 2 of 4

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Toner Bottle Holder Ass'y installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H4705400242
Gestetner 3370	H4805400429
Ricoh AFICIO 551	H4705400391
Ricoh AFICIO 700	H4805500001
Savin 2055DP	H4705400242
Savin 2070DP	H4805400429

- UPDATE 2: Caution Decal - A Caution Decal has been added to the Toner Bottle Holder Assembly. The Decal has been applied to the change made in Update 1 and affects P/N A2933208. Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A2933208	A2933209	Toner Bottle Holder Ass'y	1	1	77	1
A2293223	A2933237	Bottle Holder	1	1	77	14
-	A2933238	Decal - Caution	1	-	77	37 *

[^4]Continued...

Tech Service Bulletin No. A292/A293 - 020 REISSUE \star
Page 3 of 4

UNITS AFFECTED:

A292/A293 Serial Number cut-in not available at time of publication.

- UPDATE 3: Left Scale Sheet - To ensure that the Left Scale fits the exposure glass correctly, the width of the Left Scale Sheet has been changed from 15.5 mm to 14.5 mm . Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A1931752		Left Scale Guide	1	1	41	3
	\rightarrow A2931793	Left Scale Sheet				

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Left Scale Guide installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4705700002
Gestetner 3370	H 4805700001
Ricoh AFICIO 551	H 4705700331
Ricoh AFICIO 700	H 4805600339
Savin 2055DP	H 4705700002
Savin 2070DP	H 4805700001

Tech Service Bulletin No. A292/A293 - 020 REISSUE \star Page 4 of 4

- UPDATE 4: Gear- $\mathbf{3 2 Z}$ - To improve the reliability, Gear-32Z with the one-way clutch has been changed. Please update your Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
AB014155	AB013778	Gear - 32Z	1	1	63	20

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style Gear $32 Z$ installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4705600638
Gestetner 3370	H 4805600004
Ricoh AFICIO 551	H 4705600648
Ricoh AFICIO 700	H 4805600101
Savin 2055DP	H 4705600638
Savin 2070DP	H 4805600004

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: IMAGE QUALITY OF HALF TONES AND GRAY SCALES

SYMPTOM:

The image quality of half tones or gray scale areas on printouts are not clear or sharp enough.

SOLUTION:

1. Recommend customers to set the Edge Smoothing function to the OFF position in the printer driver when printing. The default setting of the Edge Smoothing function for each driver language and printer controller type is as follows:

Driver Language	Controller Type A	Controller Type B
PCL5e	ON	OFF
PCL6	ON	OFF
PostScript3	OFF	OFF

2. Change the Printer Dot Edge parameter in the printer SP mode (Printer SP - Settings - Printer Dot Edge Parameter) from "Normal" (default) to "SP Mode".

NOTE: With this change, the print line width can be thickened. This change is valid only when the Edge Smoothing function is set to "OFF".
3. Change Copy SP2114 (Printer Dot Edge parameter setting) to the original settings.

SP Number	Original Setting
SP2114-1	7
SP2114-2	7
SP2114-3	11
SP2114-4	7

4. If the customer likes even thicker line width, change Copy SP2114 (Printer Dot Edge parameter setting) from the original settings to the thicker settings.

SP Number	Original Setting	Thicker Setting
SP2114-1	7	10
SP2114-2	7	10
SP2114-3	11	15
SP2114-4	7	10

NOTE: Do not set any other combinations of the four settings other than in the above table. Otherwise an unexpected image appears on printouts. This SP is only valid when the Edge Smoothing function is set to "OFF" and the Printer Dot Edge Parameter in the printer SP Mode is set to "SP Mode".

BULLETIN NUMBER: A292/A293-022
APPLICABLE MODEL: A292/A293
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

01/15/2001

SUBJECT: SERVICE CODE 337

SYMPTOMS:

SYMPTOM 1: A Service Code 337 occurs intermittently during a copy/print job or at power up.
SYMPTOM 2: A Service Code 337 is not displayed but is recorded in the service code logging data.

CAUSES:

CAUSE 1: A Capacitor had failed on the BICU Board.
CAUSE 2: When the Main Switch is turned "OFF" the 24 vdc is removed before the 5 vdc . This may cause a Service Code 337 to occur. Since this occurs when the machine is being turned "OFF", there is no Service Code 337 displayed, but the code is still recorded in the logging data.

SOLUTIONS:

SOLUTION 1: Replace the BICU Board (P/N: A2937552).
NOTE The part number has not changed.
SOLUTION 2: Update the firmware to level " H " version 3.11.1 or higher.
NOTE SYMPTOM 2 does not require the replacement of the BICU Board. System 2 only requires the firmware to be updated to Level " H " version 3.11 .1 or higher.

The firmware revision "H" version 3.11 .1 (file name A292REVH.EXE) can be downloaded through the Technology Solution Center FTP Site http://tsc.ricohcorp.com.

NOTE Refer to Facts Line Bulletin \# FLOO2 and Publication Bulletin \#023 for more information about the FTP Internet Web Site and EPROM / Flash Card Exchange program.

Tech Service Bulletin No. A292/A293 - 022
 Page 2 of 5

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style BICU Board installed during production.

MODEL NAME	SERIAL NUMBER
Ricoh Aficio 551	H4705500174 to H4705500177, H4705500179, H4705500182, H4705500184, H4705500185, H4705500188, H4705500189 to H4705500206, H4705500210 to H4705500216, H4705500230, H4705500234, H4705500236, H4705500237, H4705500240, H4705500249, H4705500257, H4705500260, H4705500263, H4705500266, H4705500267, H4705500282, H4705500284, H4705500291, H4705500294, H4705500296, H4705500297, H4705500299, H4705500526 to H4705500716. H4705600001 to H4705600196, H4705600198, H4705600199, H4705600201, H4705600203, H4705600205, H4705600228, H4705600232, H4705600234, H4705600240, H4705600264, H4705600272, H4705600647 to H4705600860. H4705700331 to H4705700775. H4705800301 to H4705800800, H4705800901 to H4705801050. H4705900166, H4705900169 to H4705900220, H4705900222 to H4705900225, H4705900227 to H4705900241, H4705900244 to H4705900255, H4705900257 to H4705900319, H4705900321 to H4705900324, H4705900326 to H4705900462, H4705900464 to H4705900598, H4705900601 to H4705900615, H4705900617 to H4705900629, H4705900631 to H4705900635, H4705900637 to H4705900639, H4705900641, H4705900644, H4705900646 to H4705900650, H4705900652 to H4705900663, H4705900665 to H4705900668, H4705900670 to H4705900678, H4705900680, H4705900682, H4705900684 to H4705900701, H4705900703 to H4705900706, H4705900708 to H4705900710, H4705900712, H4705900714 to H4705900717, H4705900719 to H4705900725, H4705900727, H4705900729, H4705900731, H4705900732, H4705900734, H4705900735, H4705900737, H4705900738, H4705900740 to H4705900754, H4705900756 to H4705900780, H4705900782 to H4705900789, H4705900791 to H4705900798, H4705900800 to H4705900816, H4705900819 to H4705900821, H4705900824, H4705900825, H4705900827 to H4705900831, H4705900834 to H4705900845, H4705900850, H4705900852, H4705900854 to H4705900856, H4705900858, H4705900860 to H4705900868, H4705900871 to H4705900873, H4705900878, H4705900897, H4705900906, H4705900916, H4705900983, H4705901060, H4705901062, H4705901088, H4705901099, H4705901105, H4705901120, H4705901125.
Ricoh Aficio 700	$\begin{aligned} & \text { H4805500046 to H4805500427, H4805500429, H4805500431 to H4805500472, } \\ & \text { H4805600101 to H4805600201, H4805600203 to H4805600207, } \\ & \text { H4805600209 to H4805600499, H4805700311 to H4805700328, } \\ & \text { H4805700330 to H4805700615, H4805800001 to H4805800155, } \\ & \text { H4805800326 to H4805800705. } \end{aligned}$
Savin 2055DP Gestetner 3355	```H4705500301 to H4705500308, H4705500311 to H4705500331, H4705500333, H4705500431, H4705500435, H4705500440, H4705500443, H4705500452, H4705500465, H4705500476, H4705500477, H4705500484, H4705500487, H4705500489, H4705500525, H4705600417 to H4705600420, H4705600423 to H4705600439, H4705600441 to H4705600446, H4705600448 to H4705600646, H4705700001 to H4705700330, H4705800001 to H4705800300, H4705800801 to H4705800900, H4705900001 to H4705900164.```

Tech Service Bulletin No. A292/A293-022
Page 3 of 5

MODEL NAME	SERIAL NUMBER
Savin 2055DP Gestetner 3355	H4705500301 to H4705500308, H4705500311 to H4705500331, H4705500333, H4705500431, H4705500435, H4705500440, H4705500443, H4705500452, H4705500465, H4705500476, H4705500477, H4705500484, H4705500487, H4705500489, H4705500525, H4705600417 to H4705600420, H4705600423 to H4705600439, H4705600441 to H4705600446, H4705600448 to H4705600646, H4705700001 to H4705700330, H4705800001 to H4705800300, H4705800801 to H4705800900, H4705900001 to H4705900164.
Savin 2070DP Gestetner 3370	H4805500473 to H4805500652, H4805600001 to H4805600100, H4805700001 to H4805700125, H4805700127 to H4805700144, H4805700146 to H4805700150, H4805700152 to H4805700154, H4805700156 to H4805700191, H4805700193 to H4805700198, H4805700200 to H4805700202, H4805700205 to H4805700208, H4805700211 to H4805700213, H4805700219 to H4805700221, H4805700223, H4805700225, H4805700227 to H4805700232, H4805700235 to H4805700238, H4805700240 to H4805700257, H4805700259 to H4805700269, H4805700271 to H4805700277, H4805700279 to H4805700310, H4805800156 to H4805700163, H4805800165 to H4805800170, H4805800172 to H4805800187, H4805800189, H4805800191, H4805800192, H4805800194, H4805800195, H4805800197 to H4805800199, H4805800201 to H4805800256, H4805800258 to H4805800325, H4805900002, H4805900005 to H4805900007, H4805900009 to H4805900027, H4805800029, H4805900031, H4805900033, H4805900034, H4805900036, H4805900039, H4805900041 to H4805900057, H4805900059 to H4805900063, H4805900065 to H4805900075, H4805900077, H4805900079, H4805900080, H4805900083, H4805900084, H4805900086 to H4805900090, H4805900092, H4805900093, H4805900095 to H4805900100, H4805900103, H4805900105, H4805900109 to H4805900112, H4805900114, H4805900116 to H4805900130, H4805900132 to H4805900149, H4805900151 to H4805900189, H4805900191 to H4805900195, H4805900197, H4805900199, H4805900200, H4805900202, H4805900206, H4805900209, H4805900210, H4805900212 to H4805900214.

RETURN PROCESS:

The Technology Solutions Center has established an assertive program for the return of all BICU Boards that exhibit the SC337 phenomenon. The program is simple but requires the cooperation of each location to ensure a smooth flow of returned boards. In an effort to meet the demand for replacement BICU Boards we request your cooperation to identify priority machines exhibiting the Service Code 337-Symptom 1 problem. Please indicate machines that are a priority by marking an " X " in the priority column on the BICU Board Return Authorization form.

RETURN AUTHORIZATION:

Fax the completed form to $\mathbf{7 1 4 - 5 6 6 - 2 6 8 0}$ to obtain a Material Return Authorization Number.

REPLACEMENT BICU BOARDS:

Ricoh Electronics Inc. will contact your location by fax with the MRA number and automatically ship replacement BICU Boards based on the count submitted on the attached MRA Form.

FINAL RETURNS:

Package all BICU Boards for return to the address provided. Ricoh Electronics INC. will maintain a balance between what was shipped as replacements and what was actually returned. Include a copy of the MRA Form inside and outside of the return package.

RETURN TO:

```
Ricoh Electronics Inc.
Mr. Minh C La
1101 Bell Ave
Tustin, Ca 92780-6428
```


BILLING:

The servicing location is required to return all defective BICU Boards within 14 business days of receiving replacement boards or they will be billed for the parts. If the quantity of returned boards is less than the quantity shipped to your location, REI will begin the billing process for the normal cost for the BICU Boards within 14 days.

DEADLINE:

This program expires on 12/31/01.

MRA FORM FOR THE BICU BOARD EXCHANGE

MRA \# \qquad

INSTRUCTIONS:

Fill in the serial numbers for each affected machine and fax the form to 714-566-2680. Upon receipt of your MRA number, return each BICU Board to the address listed below:

Ricoh Electronics Inc.
Attn: Mr. Minh C La
1101 Bell Ave
Tustin, Ca 92780-6428
714-566-2680
Include A Copy of the MRA Form inside And Out Side of the Returned Package

BICU BOARD MATERIAL RETURN AUTHORIZATION FORM

Dealership: \qquad
Ship to Address: \qquad
Contact: \qquad
Main Phone \# \qquad
Fax Phone \#: \qquad

Account \#: \qquad
Please indicate machines that are a priority by marking an " x " in the priority column.

	Priority	Copier Serial Numbers (FOR DEALER USE ONLY)	Boards Sent Out From REI (For REI USE ONLY)	Boards Returned From Dealer (For REI USE ONLY)
1.				
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				

GESTETNER - 3355/3370
RICOH - Aficio 551/700
SAVIN - 2055DP/2070DP

SUBJECT: NVRAM REMOVAL, REPLACEMENT AND HANDLING PROCEDURE

SYMPTOM:

NVRAM data is erased or pins are damaged during removal and replacement.

CAUSE:

Improper removal and handling of the NVRAM.

SOLUTION:

The following steps should be followed to help avoid damaging the NVRAM during the removal and replacement process.

CAUTION: The NVRAM contains an internal battery, so please observe the following guidelines when removing, handling and replacing the NVRAM:

NVRAM REMOVAL:

NOTE: Before NVRAM removal, please review the NVRAM download procedure in the field service manual on page 4-79 and 4-80.

1. Before NVRAM replacement, the main power switch machine must be turned 'OFF' and must be left plugged in to the wall outlet. The machine is left plugged in to ensure that the frame of the machine is electrically grounded.
2. To eliminate the possibility of electrical static discharge (ESD) buildup in the body, touch a metal portion of the machine prior to handling any electronic components.
3. Remove the BICU Board from the machine, placing it on a non-conductive surface. If not, this may result in the loss of all the data stored inside the NVRAM.
4. Insert a small flat-head (standard) screwdriver into the space between the NVRAM casing and the NVRAM socket (at both ends where there are no pins) and lift it up on both ends with the screwdriver. Then, remove it by hand.

CAUTION: Use extreme care NOT to touch any of the NVRAM pins with the screwdriver or insert the screwdriver too far under the NVRAM where the BICU Board could be damaged. Since the NVRAMs casing is made of a resin (plastic), it is necessary to take extra care when removing it so that the casing doesn't break.

NVRAM REPLACEMENT:

NOTE: It is important to pay close attention to the following steps when Inserting the NVRAM.

1. Before handling and installing the NVRAM, to eliminate the possibility of electrical static discharge (ESD) buildup in the body, touch a metal portion of the machine prior to handle NVRAM.
2. Ensure the NVRAM is oriented correctly on the BICU Board and in the socket by locating the Index Notch on both the NVRAM and BICU Board (see photo to the right).
3. Ensure that all of the pins on both sides of the NVRAM have been properly set in their holes before fully seating it into the socket.
4. Press downward on the NVRAM chip using even pressure, to ensure a proper fit and to avoid damaging to the pins.

Index Notch Location on the BICU Board

BULLETIN NUMBER: A292/A293-024

SAVIN - 2055DP/2070DP

SUBJECT: PAPER JAM IN THE INVERTER SECTION

SYMPTOM:

During copying, a jam occurs in the inverter section.

CAUSE:

Defective upper exit guide plate (A2294472) An extra rib was added to some of the guide plates during the molding process at the factory. The extra rib may interfere with the exit guide pawl causing the inverter section to jam.

SOLUTION:

PRODUCTION COUNTERMEASURE:

The mold of the exit guide plate has been changed.

FIELD COUNTERMEASURE PROCEDURE:

1. Turn off the main power switch.
2. Open the front cover.
3. Remover the stopper $[A](1$ screw $)$.
4. While releasing the lever $[B]$, pull out the fusing unit $[\mathrm{C}]$ as shown.
NOTE: Hold the bottom of the fusing unit as shown.

[B]
Continued...

Tech Service Bulletin No. A292/A293-024
Page 2 of 3
5. Open the upper exit guide plate (Lever E2) and inspect the guide plate.

- If the guide plate does not have the extra rib, no further action is required.
- If the guide plate has the extra rib then performed the field modification in step 6.

Good
This guide plate does not have the extra rib, no further action is required.

[E]

Page 3 of 3

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style upper exit guide plate installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H4715001857 \sim
Gestetner 3370	H4815001141 \sim
Ricoh Aficio 551	H4715001857 \sim
Ricoh Aficio 700	H4815001141 \sim
Savin 2055DP	H4715001857 \sim
Savin 2070DP	H4815001141 \sim

UNITS AFFECTED WITH EXTRA RIB:

All A292/A293 copiers manufactured with the Serial Numbers listed below may have the upper exit guide plate installed with the extra rib during production.

Model Name	Serial Number
Gestetner 3355	$\begin{aligned} & \text { H4706001191~1300, H4714900561~0940 } \\ & \text { H4715000397~0916 } \end{aligned}$
Gestetner 3370	H4814900186 ~ 0405, H4815000001~0300
Ricoh Aficio 551	H4706000276 ~ 1190, H4714900001~0560 H4714900941~1637, H4715000001~0396 H4715000917 ~ 1856
Ricoh Aficio 700	H4806000191~440, H4814900001~0185 H4814900406 ~ 0980, H4815000301~1140
Savin 2055DP	$\begin{aligned} & \hline \text { H4706001191~1300, H4714900561~0940 } \\ & \text { H4715000397~0916 } \end{aligned}$
Savin 2070DP	H4814900186 ~ 0405, H4815000001~0300

BULLETIN NUMBER: A292/A293 - 025

07/13/2001
APPLICABLE MODEL:
GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Left/Right Holders - To prevent the left or right holder from breaking in the middle, the shape of the pressure roller cleaning rollers have been changed. The strength of the holders have been increased by a factor of 1.65. Please update your A292/A293 Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A0974126	A2944077	Left Holder (120 V)	1	0	97	10
A0974129	A2944078	Right Holder (120 V)	1	0	97	7

NOTE: These parts can be replaced individually but the modification is effective only when both holders are replaced as a pair.

UNITS AFFECTED:

A92/A293 Serial Number cut-in not available at time of publication.

- UPDATE 2: Rear Drum Seal - To standardize the rear drum seal with other models, the rear drum seal has been changed. Please update your A292/A293 Parts Catalog with the following information.

UNITS AFFECTED:

A92/A293 Serial Number cut-in not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

BULLETIN NUMBER: A292/A293 - 025 REISSUE \star
 APPLICABLE MODEL:

08/21/2001

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following parts updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Left/Right Holders - To prevent the left or right holder from breaking in the middle, the shape of the pressure roller cleaning rollers have been changed. The strength of the holders have been increased by a factor of 1.65. Please update your A292/A293 Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A0974126	A2944077	Left Holder (120 V)	1	0	97	10
A0974129	A2944078	Right Holder (120 V)	1	0	97	7

NOTE: These parts can be replaced individually but the modification is effective only when both holders are replaced as a pair.

UNITS AFFECTED:

A92/A293 Serial Number cut-in not available at time of publication.

```
Tech Service Bulletin No. A292/A293 - 025 REISSUE \(\star\)
Page 2 of 2
```

- UPDATE 2: Rear Drum Seal - To standardize the rear drum seal with other models, the rear drum seal has been changed. Please update your A292/A293 Parts Catalog with the following information.

					REFERENCE	
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A134 2392	A294 3572	Rear Drum Seal	1	0	91	6

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new style rear drum seal installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H4715200832
Gestetner 3370	H4815200918
Ricoh AFICIO 551	H4715200411
Ricoh AFICIO 700	H4815200192
Savin 2055DP	H4715200832
Savin 2070DP	H4815200918

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- 4-94 Updated Information (Dip Switches - Main Board)

4.5 TEST POINTS/DIP SWITCHES/LEDS

4.5.1 DIP SWITCHES

ADF Main Board

DPS100					Description
		2	3	4	
		0	0	0	Normal operating mode
		0	0	1	Motor Test: Transport motor - Forward
		0	1	0	Motor Test: Transport motor - Reverse
		0	1	1	Motor Speed Adjustment (Automatic)
		1	0	0	Original stop position adjustment - Single-sided original mode (No original skew correction)
		1	0	1	Original stop position adjustment - Double sided original mode
		0	0	0	Free Run: Single-sided original mode with skew correction
		0	1	0	Free Run: Single-sided original mode without skew correction
		1	1	0	Free Run: Double-sided original mode
Others					Do not select

"SADF" LED turns on when one of the DIP switches is on.
MCU: All the dip switches should be OFF. Do not change the settings.

4.5.2 TEST POINTS

BICU

Number	Monitored Signal
TP113	GDN
TP123	5 VE
TP136	Not used
TP143	Not used

Paper Feed Board

Number	Monitored Signal
TP101	Ground
TP102	+24 V
TP103	Ground
TP104	+5 V

I/O Board

Number	Monitored Signal
TP104	+12 V
TP154	+5 V
TP155	Ground
TP162	+24 V
TP163	Ground
TP172	-12 V
TP173	+24 VINT

SUBJECT：TANDEM TRAY ENHANCEMENT KIT

SYMPTOMS：

－Right tray does not lift up．
－Left tray back fence is damaged．

CAUSES：

Right Tray Does Not Lift Up：

The side fences re－open after the tray has been closed，causing the tray not to lift up（even when paper has been loaded）．
This has a tendency to happen when the tray is forcibly closed，in which case the paper in the tray will shift to the left from this shock（causing the side fences to re－open）．This can also occur if the customer mis－loads the paper in the right tray．

Tech Service Bulletin No. A292/A293-027
Page 2 of 3

Left Tray Back Fence Is Damaged:

The shock of closing the left tray (or paper mis-load) causes the right tray side fences to open, which in turn causes the left back fence to move to the right (attempting to shift the paper over to the right tray). When there is paper in the right tray, the left back fence is damaged from the resulting resistance.

SOLUTIONS:

PRODUCTION COUNTERMEASURE:

Right Tray Does Not Lift Up:

A cushion (shock absorber) has been added to the right rear inner cover of the right tray.

Left Tray Back Fence Is Damaged:

The mask ROM software for the tandem tray has been changed so that the left tray back fence does not move, even when the right tray side fences are open.

Tech Service Bulletin No. A292/A293-027
Page 3 of 3

FIELD COUNTERMEASURE:

Install the Tandem Tray Enhancement Kit (P/N A2939900), which contains the following parts:

- Inner Cover - Right Rear (with cushion)

The shape of this part has been changed. In addition, a cushion has been added to this part for shock absorption.

When the tray is closed, the cushion contacts the rear side plate. As a result, even if the tray is forcefully pushed in, the cushion will absorb the shock and prevent the side fences from re-opening.

- IC - HD6433294C82P (On the Paper Feed Control Board)

The left tray can only move when the right tray is in its lowest position and there is no paper in the right tray.

UNITS AFFECTED:

All A292/A293 copiers manufactured after the Serial Numbers listed below will have the new parts installed during production.

MODEL NAME	SERIAL NUMBER
Gestetner 3355	H 4715400151
	H 4715500222
Gestetner 3370	H 4815400001
	H 4815500001
Ricoh Aficio 551	H 4715301184
	H 4715500127
Ricoh Aficio 700	H 4815400341
	H 4815500122
Savin 2055DP	H 4715400151
	H 4715500222
Savin 2070DP	H 4815400001
	H 4815500001

BULLETIN NUMBER: A292/A293-028

09/19/2001

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: PARTS CATALOG UPDATES

GENERAL:

The following part catalog updates are being issued for all A292/A293 Parts Catalogs.

- UPDATE 1: Belt Unit Knob - To improve ease of operation, a cover has been added to the belt unit knob.

REFERENCE						
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM
A0963960	A2933960	Belt Unit Knob	1	1	139	16

- UPDATE 2: Optical Housing Assembly - As per field request, the optical housing assembly has been registered as a service part.

| | | REFERENCE | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEW PART NUMBER | DESCRIPTION | QTY | PAGE | ITEM |
| A2931871 | Optical Housing Assembly | 1 | 49 | 35^{*} |

*DENOTES NEW ITEM NUMBER

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

APPLICABLE MODEL:

GESTETNER - 3355/3370
RICOH - AFICIO 551/700
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

The Service Manual pages listed below must be replaced with the pages supplied. Each bulletin package contains 1 set of replacement pages.

PAGES:

The revised areas have been highlighted by an arrow \Rightarrow.

- vi
- 5-5 to 5-10

Table of Content Page
New Section 5.2 PM Counter
4.5.2 TEST POINTS 4-94
4.5.3 FUSES 4-95
4.5.4 VARIABLE RESISTORS 4-96
4.5.5 LEDS 4-96
4.6 SPECIAL TOOLS AND LUBRICANTS 4-96
4.6.1 SPECIAL TOOLS 4-96
4.6.2 LUBRICANTS 4-96
4.7 FIRMWARE HISTORY 4-100
PREVENTIVE MAINTENANCE
5. PREVENTIVE MAINTENANCE SCHEDULE 5-1
5.1 PM TABLE 5-1
5.2 PM COUNTER 5-5
REPLACEMENT AND ADJUSTMENT
6. REPLACEMENT AND ADJUSTMENT 6-1
6.1 EXTERIOR 6-1
6.1.1 FILTERS 6-1
Ozone Filter: Duct 6-1
Filter Vacuum 6-1
6.2 DOCUMENT FEEDER 6-2
6.2.1 COVER REMOVAL 6-2
6.2.2 FEED UNIT REMOVAL AND SEPARATION ROLLER REPLACEMENT 6-4
6.2.3 FEED BELT REPLACEMENT 6-5
6.2.4 PICK-UP ROLLER REPLACEMENT 6-6
6.2.5 SENSOR REPLACEMENT 6-7
Entrance and Registration Sensors 6-7
Width Sensor 6-8
Exit Sensor and Inverter Sensor 6-9
6.2.6 TRANSPORT BELT REPLACEMENT 6-10
6.3 SCANNER UNIT 6-11
6.3.1 EXPOSURE GLASS 6-11
6.3.2 LENS BLOCK 6-12
6.3.3 ORIGINAL SIZE SENSORS 6-13
6.3.4 EXPOSURE LAMP 6-14
6.3.5 SCANNER MOTOR / MCU 6-15
Scanner Motor 6-15
MCU 6-15
6.3.6 SCANNER WIRES 6-16
Rear Scanner Drive Wire 6-19
Front Scanner Drive Wire 6-20
Reinstallation 6-21
6.4 LASER UNIT 6-23
6.4.1 CAUTION DECAL LOCATIONS 6-23
6.4.2 LD UNIT REPLACEMENT 6-24

$\Rightarrow 5.2$ PM COUNTER

Each PM part has a counter which counts up at the appropriate time. (For example, the counter for the hot roller counts up every copy, and the counter for a feed roller counts up when paper is fed from the corresponding tray.) These counters should be used as references for part replacement timing.

5.2.1 PM COUNTER ACCESS PROCEDURE

1) Press the following keys in sequence.

$$
\mathrm{C} / \otimes \rightarrow \square \mathbf{1} \rightarrow 0 \rightarrow \square \rightarrow \square
$$

Hold the C key for more than 3 seconds
The SP mode menu is displayed.

2) Press [PM Counter] on the display.

3) The following menu appears on the display.

SP Mode (Parts replacement)	Prev. Menu	Exit
Select Item		
Al PM parts list	Counterist print out	
Parts list for PM yield indicator	cSS Calling Seting	
Parts exceedingtarget yilid		
Clear all PM settings		

1. All PM Parts List

Displays all the counters for PM parts.
On this screen, the current counter and the target yield of each PM part can be checked.

Additionally, the PM yield indicator setting can be changed. To change the setting press the [Yes/No] key in the "PM yield" column. When "Parts list for PM yield" is selected in the parts replacement menu, only the parts with [Yes] in the "PM yield" are listed.

SP Mode (Parts replacement)				Prev. Menu		Exit
All PM parts list						
No	Description	PM yield	Current	Target		
001	Developer	Yes	0000236	0000K	Clear	
002	Oil Supply \& Cleaning Web	Yes	0000236	0300K	Clear	
003	Web Cleaning Roller	Yes	0000236	0300K	Clear	
004	Hot Roller	Yes	0000236	0450K	Clear	
005	Pressure Riller	Yes	0000236	0450K	Clear	
006	Pressure Roller Cleaning Roller	Yes	0000236	0300K	Clear	
007	Hot Roller Strippers	Yes	0000236	0300k	Clear	
008	Development Filter	Yes	0000236	0300K	Clear	
009	Toner Hopper Filter - Center	Yes	0000236	0300k	Clear	
010	Toner Hopper Filter - Front	Yes	0000236	0300K	Clear	
011	Feed Roller - Tray 1	Yes	0000228	0300K	Clear	
012	Pick-up Roller - Tray 1	Yes	0000228	0300K	Clear	
013	Separation Roller - Tray 1	Yes	0000228	0300k	Clear	
014	Feed Roller - Tray 2	Yes	0000000	0300k	Clear	01/03
015	Pick-up Riller - Tray 2	Yes	0000000	0300k	Clear	
016	Separation Roller - Tray 2	Yes	0000000	0300k	Clear	Previous page
017	Feed Roller - Tray 3	Yes	0000000	0300k	Clear	
018	Pick-up Roller - Tray 3	Yes	0000000	0300k	Clear	Next page

To clear a counter, press [Clear] on the display. The following appears.

Then press [Yes] to clear the counter.

If one of the keys in the "No" column is pressed, the following appears on the display.

On this screen, the records of the last three part replacements are displayed. When 'Clear current counter' is pressed, the current counter is cleared, the current counter is overwritten to "Latest 1", the Latest 1 counter is overwritten to "Latest 2", and the Latest 2 counter is overwritten to "Latest 3 ".

Additionally, the target yield can be changed on this screen. To change the target yield setting, do the following:

1) Press [Change target yield] on the screen.
2) Input the target yield using the ten-key pad.
3) Press the \# key.

2. Parts List for PM Yield Indicator

SP Mode (Parts replacement)					Prev. Menu	Exit
Parts list for PM yield indicator						
No	Description	Exceed	Current	Target		
001	Developer		0000236	0000k	Clear	
002	Oil Supply \& Cleaning Web		0000236	0300k	Clear	
003	Web Cleaning Roller		0000236	0300k	Clear	
004	Hot Roller		0000236	0450k	Clear	
005	Pressure Roller		0000236	0450k	Clear	
006	Pressure Roller Cleaning Roller		0000236	0300k	Clear	
007	Hot Roller Strippers		0000236	0300k	Clear	
008	Development Filter		0000236	0300k	Clear	
009	Toner Hopper Filter - Center		0000236	0300k	Clear	
010	Toner Hopper Filter - Front		0000236	0300k	Clear	
011	Feed Roller - Tray 1		0000228	0300k	Clear	
012	Pick-up Roller - Tray 1		0000228	0300k	Clear	
013	Separation Roller - Tray 1		0000228	0300k	Clear	
014	Feed Roller - Tray 2		0000000	0300k	Clear	01/01
015	Pick-up Roller - Tray 2		0000000	0300k	Clear	
016	Separation Roller - Tray 2		0000000	0300K	Clear	Prexious page
017	Feed Roller - Tray 3		0000000	0300k	Clear	
018	Pick-up Roller - Tray 3		0000000	0300k	Clear	xtpage

On this screen, only the parts selected in the "All PM parts list" screen are displayed. Normally, the PM parts counters should be checked on this screen.
If the current counter exceeds the target yield, there is a * mark in the "Exceed" column.

Each counter can also be cleared on this screen. To clear all counters on this screen at once, see 'Counter Clear for Parts Exceeding Target Yield' on the next page.

3. Parts Exceeding Target Yield

Only the parts whose counters are exceeding the target yield are displayed. If none of the PM counters is exceeding the target yield, this item cannot be selected from the parts replacement menu.

4. Counter Clear for Parts Exceeding Target Yield

Clears all the counters which are exceeding the target yield. When this item is selected, the following appears on the display.

Press [Yes] to clear the counters.

5. Clear All PM Settings

Clears all the PM counters and returns all the settings (PM parts list and target yield) to the defaults. When this item is selected, the following appears.

Press [Yes] to clear the settings.

6. Counter List Print Out

Prints a list of all the PM part counters. When this item is selected, the following appears on the display.

Press [Print] to print out the counter list.

7. CSS Calling Setting (RSS Function)

This function is for Japanese machines only.

RTEDEN TECHNICAL SERVICE BULLETIN

APPLICABLE MODEL:

GESTETNER - $3355 / 3370$
RICOH - AFICIO 551/700/551P/700P
SAVIN - 2055DP/2070DP

SUBJECT: SERVICE MANUAL - INSERT

GENERAL:

Ricoh is pleased to announce the immediate availability of the Ricoh Aficio 551P \& 700P (Printer Versions) Digital Imaging Systems with an embedded Fiery EB-70 Controller. These systems are designed to deliver increased productivity for the most demanding workgroup or production-oriented environments.

The Service Manual pages listed below must be replaced with the pages supplied.
Each bulletin package contains 1 set of replacement pages.
PAGES:

- LEGEND

Service Manual - Additional models added (Aficio 551P/700P)

- LEGEND

Parts Catalog - Additional models added (Aficio 551P/700P)

LEGEND

PRODUCT CODE	COMPANY		
	GESTETNER	RICOH	SAVIN
A292	3355	Aficio 551	2055DP
A293	3370	Aficio 700	2070DP
A292 w/G594 Controller	--	Aficio 551P	--
A293 w/G594 Controller	--	Aficio 700P	--

DOCUMENTATION HISTORY

REV. NO.	DATE	COMMENTS
$*$	$5 / 2000$	Original Printing

LEGEND

PRODUCT CODE	COMPANY		
	GESTETNER	RICOH	SAVIN
A292	3355	Aficio 551	2055DP
A293	3370	Aficio 700	2070DP
A292 w/G594 Controller	--	Aficio 551P	--
A293 w/G594 Controller	--	Aficio 700P	--
A698	Large Capacity Tray - RT37		
B302	3,000 Sheet Finisher -SR810		
B312	3,000 Sheet Finisher - SR740		
A763	Booklet Finisher - SR750		
B333/B322	Copy Tray/Connector Kit Type 700		
A812	Punch Unit Type 850		
B375	LG Kit		
G594	EB70 Pinter Controller		

DOCUMENTATION HISTORY

REV. NO.	DATE	COMMENT
$*$	$05 / 2000$	First Printing

BULLETIN NUMBER: B322-001

08/28/2000

APPLICABLE MODEL:

GESTETNER - COPY CONNECTOR TYPE 700 for 3355/3370
RICOH - COPY CONNECTOR TYPE 700 for AFICIO 551/700
SAVIN - COPY CONNECTOR TYPE 700 for 2055DP/2070DP

SUBJECT: INTERFACE CABLE

GENERAL:

To meet UL standards, the Interface Cable has been changed. The Clamp has also changed. The following parts updates are being issued for all B322 Parts Catalogs.

	REFERENCE							
OLD PART NO.	NEW PART NO.	DESCRIPTION	QTY	INT	PAGE	ITEM		
B3285050	B3225070	Interface Cable	1	$3 / \mathrm{S}$	3	6		
11050389	11050034	Clamp	2	$3 / \mathrm{S}$	3	106		

UNITS AFFECTED:

B322 Serial Number cut-in not available at time of publication.

INTERCHANGEABILITY CHART:

0	OLD and NEW parts can be used in both OLD and NEW machines.	2	NEW parts CAN NOT be used in OLD machines. OLD parts can be used in OLD and NEW machines.
1	NEW parts can be used in OLD and NEW machines. OLD parts CAN NOT be used in NEW machines.	3	OLD parts CAN NOT be used in NEW machines. NEW parts CAN NOT be used in OLD machines.
$3 / S$	Must be installed as a set on units manufactured prior to the S/N cut-in. On units manufactured after the S/N cut-in or previously modified, use the new part numbers individually.		

[^0]: ADF
 "Rating voltage of Output Connector for Accessory; Max. DC 24 V"

[^1]: \triangle CAUTION
 Properly place the LCT on the plate [B] of the LCT connector.
 12. Insert the two pins [C] on the LCT connector into the two holes on the LCT.
 13. Secure the LCT to the LCT connector (3 screws).
 14. Set the cap [D] in the front screw access hole.

[^2]: . CAUTION
 Unplug the main machine power cord before starting the following procedure.

[^3]: * Denotes new item number.

[^4]: * Denotes new item number.

