MS2665C/MS2667C/MS2668C Spectrum Analyzer Service Manual

Third Edition

To ensure that this equipment is used safely, important safety items are explained in the MS2665C/MS2667C/MS2668C Spectrum Analyzer Operation Manual. This manual explains important service items related to service. Read both the operation manual and this manual, and keep both with the equipment.

Measuring Instruments Division Measurement Group ANRITSU CORPORATION

For Safety

For safety, do not open the equipment covers.
If repair is required, contact the sales representative, branch office, or agent at the telephone number and address given in this document or in the equipment operation manual.

Although not recommended by Anritsu Corporation, if it is really imperative to open the covers for emergency repair, take great care not to touch any dangerous parts. Always request repair by a trained engineer who understands the hazards.

Anritsu Corporation will not accept liability for any injuries sustained as a result of opening the equipment covers.

MS2665C/MS2667C/MS2668C
Spectrum Analyzer
Service Manual

15	April	1998 (First Edition)
2	March	1999 (Third Edition)

Copyright © 1998-1999, ANRITSU CORPORATION.
All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.
The contents of this manual may be changed without prior notice.

Part Names \& Part Numbers

Please specify the part numbers shown in the parts list when making inquiries or when ordering parts. There may be a difference between the names of parts used in this manual and the parts actually used in the equipment or supplied for repair. This is because equivalent parts with the same functions, performance and reliability as the parts specified in the circuit diagrams and parts list have been used or supplied. Since the parts are equivalent, they have absolutely no adverse effect on the equipment specified functions, performance or reliability.

Table of Contents

For Safety ii
Section 1 General 1-1
Section 2 MS2665C 2-1
2.1 Overall Circuit description 2-2
2.2 Troubleshooting 2-9
2.3 Mechanical configuration 2-31
Section 3 MS2667C 3-1
3.1 Overall Circuit description 3-2
3.2 Troubleshooting 3-9
3.3 Mechanical configuration 3-33
Section 4 MS2668C 4-1
4.1 Overall Circuit description 4-2
4.2 Troubleshooting 4-9
4.3 Mechanical configuration 4-27
Section 5 Firmware installation 5-1
Section 6 Performance test system 6-1
6.1 Required instruments 6-2
6.2 Required software 6-2
6.3 Test group 1 6-3
6.4 Test group 2 6-4
6.5 Test group 3 6-6
Section 7 Options 7-1
7.1 Introduction 7-2
7.2 Parts, PC board installation 7-3
7.3 Software setting 7-7
7.4 Performance test 7-11

Section 1 General

This manual is for smooth maintenance and service work of the MS2665C/MS2667C/MS2668C Spectrum analyzer.

Refer to the separate operation manual for handling the instruments.

Our basic policy to the repair to the factory system, i.e. the defective instruments should be returned to Anritsu for repair.

However, it may be time consuming and some kinds of repairs can be easily done in the field.

Therefore, Anritsu allows only those who Anritsu has authorized to open the instrument and repair it.

As clearly stated in the WARRANTY statement, any unauthorized modification, repair, or attempt to repair will render the warranty void.

This service manual is composed of the following sections:
SECTION 2 MS2665C
This section contains the following items of MS2665C.
(1) Overall circuit description, (2) Troubleshooting procedure, (3) Mechanical configuration.

SECTION 3 MS2667C
This section contains the following items of MS2667C.
(1) Overall circuit description, (2) Troubleshooting procedure, (3) Mechanical configuration.

SECTION 4 MS2668C
This section contains the following items of MS2668C.
(1) Overall circuit description, (2) Troubleshooting procedure, (3) Mechanical configuration.

SECTION 5 Firmware installation
This section describes Firmware installation procedure.

SECTION 6 Performance test system
This section describes performance test procedure after repairing modules.

SECTION 7 Options

This section describes option installation procedures and performance test.

Section 1 General

1-2.

Section 2 MS2665C

2.1 Overall Circuit description 2-2
2.2 Troubleshooting 2-9
2.2.1 Introduction 2-9
2.2.1.1 Service kit 2-9
2.2.1.2 Required equipment 2-9
2.2.1.3 Circuit reference 2-10
2.2.2 Detecting faulty module 2-13
2.2.3 Disassembling cabinet 2-15
2.2.4 Replacement of faulty module 2-15
2.2.5 Adjustment after module replacement 2-16
2.2.5.1 Reference crystal oscillator (Option 01) adjustment 2-16
2.2.5.2 Sweep adjustment 2-18
2.2.5.3 IF1 (ATT), IF2 (AMP) adjustment 2-24
2.2.6 Assembling cabinet 2-26
2.2.7 Checking items after assembling cabinet 2-26
2.2.8 Frequency response compensation 2-27
2.3 Mechanical configuration. 2-31
2.3.1 Disassembling/Assembling cabinet 2-31
2.3.2 Removing/Assembling units and PC boards 2-35
2.3.3 Front unit disassembly/assembly 2-39
2.3.4 A09 OPTION BASE disassembly/assembly 2-43
2.3.5 Removing/Assembling A0501 HI-SPEED AD from A05 SCAN/AD 2-47

Section 2 MS2665C

2.1 Overall Circuit description

MS2665C is a superheterodyne system scanning-type spectrum analyzer. This section describes overall circuit of the MS2665C spectrum analyzer with its block diagram.

An RF input signal after passing through an RF switch and variable RF ATTN in 21 GHz S-ATT is switched by PIN diode switch in 21 GHz YTF/SW to two different signal routes depending on input RF frequency.

For an RF input frequency of 9 kHz to 3.1 GHz (termed as band 0), the signal passes through 3.2 GHz LPF and then to 1 st mixer (1st MIX), where it is mixed with 1st local signal (4.1 GHz to 7.2 GHz) to generate 4110.69 MHz 1st IF signal. The 1st IF signal is then passed through an amplifier and image rejection filters, and fed to 2nd mixer (2nd MIX), where it is mixed with 4 GHz 2 nd local signal to generate 110.69 MHz 2 nd IF signal.

For an RF input frequency of 3.1 GHz to 21.2 GHz (band 1 to 3), the signal goes to YTF (YIG tuned filter) in $21 \mathrm{GHz} \mathrm{YTF/}$ SW, and then to H. MIXER. In H. MIXER, the RF signal gets mixed with the 1 st local signal (3.6 GHz to 7.5 GHz) to generate 689.31 MHz 1st IF signal.
This 1st IF signal is passed through a series of amplifiers and image rejection filters before further mixing with 800 MHz 2nd local signal to convert the signal to 110.69 MHz 2 nd IF signal.

Depending on the active band of RF input, one of the two above 2 nd IF signal is sent to IF section for further processing.

The 1st local signal generated at YTO (YIG tuned oscillator) is frequency-swept by scan signal from SCAN/AD section after phase-lock to reference signal (its frequency is 11 MHz to 14 MHz with the resolution of 1 Hz steps) generated on LOCAL-A section at the center frequency of its sweeping range, in normal sweep condition.

The YTO output is passed through an amplifier, and then divided into three paths with directional couplers. One of divided signal is fed to sampler circuit and the other are fed to the above mixers to frequency-convert.
In the sampler circuit, sampling signal (its frequency is 94 MHz to 106 MHz with the resolution of 1 MHz steps) generated on LOCAL-A section is frequency-multiplied, and then mixed with the YTO output to generate sampler IF signal with a frequency of 11 MHz to 14 MHz .
The sampler IF signal is compared with the reference signal of 11 MHz to 14 MHz at PFD.

The reference signal frequency (fREF) and the sampling signal frequency (fs) are controlled by CPU section according to the measuring frequency of the instrument, and set so that the center frequency of 1 st local signal is fs $* \mathrm{~N} \pm$ fREF (, where N is an integer).
Meanwhile, the scan signal strength that is equivalent to frequency sweep width is controlled from LOCAL-A section.

The 2 nd local signals of 4 GHz and 800 MHz are also phase-locked to 100 MHz VCXO signal, of which the frequency is also phase-locked to 10 MHz crystal oscillator (option 01).

In the instrument, a high accuracy 625 kHz signal is present for level accuracy calibration. This signal is generated by frequency-dividing the 10 MHz reference signal, and its power level is varied with 1 dB steps by CAL ATT.
Internal calibration operation being carried out, this calibrating signal is fed to the RF signal-route through the switch in 21 GHz S-ATT.

2-2

At the IF section the incoming signal is divided into two paths. The main route leads to image rejection filters while the second, a highly attenuated feeler path signal is used for generation of wide band trigger signal in TRIG/GATE section (option 06) situated on OPTION BASE board.
The main signal after passing through an image rejection filter is beat down to a 10.69 MHz signal using a 100 MHz reference signal. This signal is then sent to various Resolution Band Width (RBW) setting circuits.

For RBW setting of 30 Hz to 200 Hz the signal is frequency converted to 450 kHz using 10.24 MHz signal. After passing through the RBW circuits (Crystal filter circuits) the signal is up converted back to 10.69 MHz signal and passed through wider RBW setting circuits.
For RBW setting of 300 Hz to 3 MHz the signal is sent directly to wide RBW setting circuits without any frequency modifications.

The RBW processed signal is passed onto SCAN/AD section, where it passes through logarithmic amplifiers and then to a linear detector. This linear detected signal is passed through smoothing filters called Video Band Width Filters (VBW). This smoothed signal is then passed through Positive or Negative peak detection circuits and the output is converted to digital signal by a Analog to Digital Convertor (ADC) circuit.
The results are then written (in digital word format) to a Dual Port RAM through one of the ports.

The CPU of the instrument on CPU section reads from the other port of Dual Port RAM and processes the data before displaying on the LCD screen. The CPU also controls various interface functions such as reading the Key Inputs or remote control commands received, and various outputs such as prints or plots of various data. The CPU also generates various commands required for controlling or setting of all hardware units inside the instrument.

FRONT BOARD section generates the KEY and rotary-knob encoder data, drives the LEDs, detects the power switch (PWR SW) setting, controls the power-supply On/Stby setting, and supplies power for the LCD backlight, etc.

Section 2 MS2665C

2.2 Troubleshooting

2.2.1 Introduction

2.2.1.1 Service kit

The ordering number of service kit is 34 Y 117630 .

Table 2-2-1 Service kit

Name	Quantity	Drawing number	Description
Adjustment driver	1	34 Z 99432	
Adjustment driver	1	34 Z 81433	
Torque wrench	1	34 B 35154	
HRM554S	2	NO. 1305	NP-SMAJ adapter
HRM501	2	NO. 1305	SMAJ-SMAJ adapter
HRM519	2	NO. 1305	SMAP-BNCJ adapter
Extender cable	3	34J92837F	BNC-PJ-1.5, 27DP-LP-1.5, 300 mm
Extender cable	3	34J94207	27DP-BJ, 27DP-LP-1.5, 300 mm
Extender cable	2	S4J10001F	BNC-P, 1000 mm
Extender cable	3	S4W10184C	SMA-P-3T-NI (8), 300 mm
Extender cable	1	349J109862	for A08 LOCAL-A
Extender cable	1	34 Y 109639	for 3 GHz CONVERTER
Extender cable	1	34 Y 109632	for A05 SCAN/AD
Extender cable	1	34 Y 109632 B	for A09 OPTION BASE
Extender cable	2	34 Y 109632 C	for A09 OPTION BASE
Extender cable	2	34 Y 109632 D	for A05 SCAN/AD

2.2.1.2 Required equipment

Table 2-2-2 shows the equipment to prepare for overall adjustment of the spectrum analyzer.
Table 2-2-2 Required equipment

Nomenclature	Model number	Manufacture
Synthesized signal generator	MG3633A	Anritsu
Frequency counter	MF76A	Anritsu
Swept frequency synthesizer	6769B	Anritsu
two Power meters	ML4803A	Anritsu
Power sensor	MA4701A	Anritsu
Power sensor	MA4705A	Anritsu
Digital multimeter	HP3478A	Hewlett Packard
GPIB interface board	GPIB-PC2/2A	National Instruments Corp.
two 3 dB attenuators		
IBM-PC/AT compatible		
a printer		

Section 2 MS2665C

2.2.1.3 Circuit reference

This paragraph supplies the exchangeable module list of the spectrum analyzer with its overall circuit diagram.
Table 2-2-3 Exchange modules of the MS2665C

Schematic number	Name	Model number	Ordering number	Note
1	A01 MOTHER BOARD	322U12876	34Y106673	
2	A02 FRONT BOARD	322U14223	34Y118357	
3	A03 CPU	322U14225	34Y118358	
4	A04 PMC/GPIB	322U12853	34Y106693	
5	A05 SCAN/AD	34 Y 112923 C	34 Y 112923 C	
6	A06 IF (B)	322U13830	34Y106718	
7	A08 LOCAL-A	322U12849	34Y106679	
8	3GHz CONVERTER	34Y108179B	34 Y 108179 B	
9	A13 MICRO CONVERTER	34Z110446C	34 Y 110446 C	
10	A14 1ST LO AMP	$34 Z 110447$	34Y110447	
11	$21 \mathrm{GHz} \mathrm{S-ATT}$	339H37752	339H37752	
12	$21 \mathrm{GHz} \mathrm{YTF/SW}$	329H13289	329H13289	
13	H.MIXER	329H13290	329H13290	
14	POWER SUPPLY UNIT	34Z112975	34Z112975	
15	TFT LCD MODULE	NL3224AC35-01	No1256	
16	A09 OPTION BASE	322U12930	34Y106684	
Options				
17	A0501 HI-SPEED AD	332U36333	34Y106688	Option 04
18	A0901 TRIG/GATE	322U12979	34Y106695	Option 06
19	A0902 AM/FM MONITOR	322U12981	34Y106699	Option 07
20	A04 PMC/CENTRONICS	34Y106692B	34Y106692B	Option 10

To identify a exchange module, a label printed "Model number" is pasted on module.

Section 2 MS2665C

2.2.2 Detecting faulty module

The flowchart shows the way to locate the faulty module among them.

Section 2 MS2665C

After executing internal calibration, you can locate the faulty module using "Cal Status" (as shown below). "Cal Status" can be displayed by the key operation : open the second page of Cal menu with "More" key, and press "F5" key.

If error occurred (Status value is not zero), the faulty module corresponding to each item is shown below :

NO.	Error item (at the status is not zero)	Faulty module
01	Det Offset	A05 SCAN/AD
02	Total Gain	A06 IF
03	Lin Det	A05 SCAN/AD
04	Log Det	A05 SCAN/AD
05	RF Atten	HR S-ATT
06	Pre Ampl	3 GHz PRE AMP
07	IF Ampl (10)	A06 IF
08	IF Ampl (1)	A06 IF
09	RBW Loss (T)	A06 IF
10	RBW Loss (F)	A06 IF
11	FM DC/AC	A0902 AM/FM MONITOR
12	FM Gain	A0902 AM/FM MONITOR
13	FM Offset	A0902 AM/FM MONITOR
14	Freq Lock	A08 LOCAL-A
15	Freq Cal	A08 LOCAL-A
16	RBW BW	A06 IF

2.2.3 Disassembling cabinet

Refer to 2.3.1.

2.2.4 Replacement of faulty module

Refer to 2.3.2 to 2.3.5.

Section 2 MS2665C

2.2.5 Adjustment after module replacement

This paragraph describes the overall adjustment required after replacement of any modules in following Table. Look for modules which you replaced in Table. Please carry out work corresponding to module which you replaced. This adjustment is not necessary, if the module you replaced does not belong to the following Table.

Replaced module	
A08 LOCAL-A	Carry out 2.2.5.1 and 2.2.5.2.
3GHz CONVERTER	Carry out 2.2.5.2 and 2.2.5.3.
A13 MICRO CONVERTER	
21GHz YTF/SW	

2.2.5.1 Reference crystal oscillator (option 01) adjustment

Remark:

Before this adjustment, leave the spectrum analyzer power-on at least for 6 to 7 hours. This adjustment needs a very high accuracy frequency standard (10 MHz).

Required equipment :

(1) MG3633A Synthesized signal generator
(2) MF76A Frequency counter

Setup :

Fig. 2-2-1
(1) Connect the spectrum analyzer Buff Out (on its rear panel) to MG3633A REF INPUT (on its rear panel).
(2) Connect the MG3633A OUTPUT to MF76A Input.
(3) Connect the MF76A EREQ STD 10 MHz IN (on its rear panel) to 10 MHz standard signal. And set the EXT/INT selector switch to EXT.

Procedure :

(1) Set the MG3633A output to :

Center frequency, $1 \mathrm{GHz}(\mathrm{CW})$
Output level, 0 dBm
(2) Set the MF76A to resolution 1 Hz .
(3) Adjust the "Reference Adjust Screw (Multi-turn potentiometer)" visible through the hole provided on the rear panel (refer to Fig. 2-2-2) to make the MF76A reading $1,000,000,000 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$.

Fig. 2-2-2 The location of an adjuster of Reference crystal oscillator

Section 2 MS2665C

2.2.5.2 Sweep adjustment

Required equipment :
(1) 6769B Swept frequency synthesizer,
(2) MG3633A Synthesized signal generator,
(3) HP3478A Digital multimeter.

Setup for the procedure (1), (2) :

Fig. 2-2-3

Connect the spectrum analyzer RF Input to MG3633A OUTPUT.
Setup for the procedure (3) :
(1) Connect digital multimeter HI input to the TP4 terminal on A1306 MICRO DRIVER PC board attached to A13 MICRO CONVERTER.
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (4), (5), (6) :

Fig. 2-2-4
(1) Connect the spectrum analyzer RF Input to 6769B RF OUTPUT.

Procedure :

(1) Local sweep adjustment

Initialize the spectrum analyzer and the MG3633A.

1) Set the spectrum analyzer to :

Center frequency, 100 MHz
Span, 100 kHz
Set the MG3633A output to :
LEVEL, -10 dBm
Frequency, 100 MHz (CW)
Press " \rightarrow CF" key of the spectrum analyzer.
2) Set the MG3633A output frequency to 99.96 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and set the marker function to delta maker mode (Press "Marker" key and press "F2" key).
3) Set the MG3633A output frequency to 100.04 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and read the frequency difference between 99.96 MHz input and 100.04 MHz input.
4) Adjust the variable resistor R96 on A08 LOCAL-A (refer to Fig. 2-2-5) until the reading of frequency difference becomes $80 \mathrm{kHz} \pm 200 \mathrm{~Hz}$, to repeat the procedure 2), 3).
(2) YTO FM sweep adjustment

Initialize the spectrum analyzer.

1) Set the spectrum analyzer to :

Center frequency, 1000 MHz
Span, 10 MHz
Set the MG3633A output to :
Frequency, 1000 MHz (CW)
Press " \rightarrow CF" key of the spectrum analyzer.
2) Set the MG3633A output frequency to $996 \mathrm{MHz}(\mathrm{CW})$.

On the spectrum analyzer, press "Peak Search" key, and set the marker function to delta maker mode (Press "Marker" key and press "F2" key).
3) Set the MG3633A output frequency to 1004 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and read the frequency difference between 996 MHz input and 1004 MHz input.
4) Adjust the variable resistor R 53 on 3 GHz CONVERTER (refer to Fig. 2-2-5) until the reading of frequency difference becomes $8 \mathrm{MHz} \pm 40 \mathrm{kHz}$, to repeat the procedure 2), 3).

Section 2 MS2665C

(3) YTF tuning DAC adjustment

1) Turn the spectrum analyzer on, while pushing " 0 " key, and initialize the spectrum analyzer.
2) Set the spectrum analyzer to zero Span.
3) Enter Cal menu by pushing "Shift +0 " keys. Open the second page of the Cal menu, and enter Maintenance menu with "F6" key. Enter RF/Micro converter maintenance menu with "F2" key, and open the 6th page of the menu (Press "More" key 5 times).
4) Set YTF Pre-tuning value to 3600 by pushing "F2" key (assigned YTF Pre-tuning function) and data keys.
5) Adjust the variable resistor R60 on the A13 MICRO CONVERTER (refer to Fig. 2-2-6) to make multimeter reading -3.600 ± 0.005 Volts.
6) Set YTF Pre-tuning value to 7600 by pushing "F2" key.
7) Adjust the variable resistor R57 on the A13 MICRO CONVERTER (refer to Fig. 2-2-6) to make multimeter reading -7.600 ± 0.005 Volts.
8) Repeat the procedure 4), 5), 6), 7) until you get the required voltage corresponding to each YTF Pre-tuning value.
(4) YTF tuning adjustment
9) Initialize the spectrum analyzer (Press "Preset" key and press "F1" key).
10) After 5 seconds waiting, set the spectrum analyzer to :

Center frequency, 2.92 GHz
Zero Span
Set the 6769B output to :
Frequency, $2.92 \mathrm{GHz}(\mathrm{CW})$
RF LEVEL, -20 dBm
3) Enter Cal menu by pushing "Shift +0 " keys. Enter Pre-selector Tuning menu with "F6" key.
4) Press "F2" key and set Pre-selector bias value to 0 , using the data keys or the knob on the front panel.
5) Adjust the variable resistor R22 on A13 MICRO CONVERTER (refer to Fig. 2-2-6) to make displayed signal level maximum.
6) Set the spectrum analyzer to :

Center frequency, 6.4 GHz
Zero Span
Set the 6769B output to :
Frequency, $6.4 \mathrm{GHz}(\mathrm{CW})$
RF LEVEL, -20 dBm
7) Enter Cal menu by pushing "Shift +0 " keys. Enter Pre-selector Tuning menu with "F6" key.
8) Press "F2" key and set Pre-selector bias value to 0 , using the data keys or the knob on the front panel.
9) Adjust the variable resistor R31 on A13 MICRO CONVERTER (refer to Fig. 2-2-6) to make displayed signal level maximum.
10) Put the screw of the variable resistor R68 on A13 MICRO CONVERTER (refer to Fig. 2-2-6) center in its rotation range.
(5) YTO main sweep adjustment

Initialize the spectrum analyzer and the 6769B.

1) Set the spectrum analyzer to :

Center frequency, 1.5 GHz
Span, 3 GHz
Set the 6769B output to :
RF LEVEL, -10 dBm
Frequency, 1.5 GHz (CW)
Press " \rightarrow CF" key of the spectrum analyzer.
2) Set the 6769 B output frequency to 300 MHz .

On the spectrum analyzer, press "Peak Search" key, and set the marker function to delta marker mode (Press "Marker" key and press "F2" key).
3) Set the 6769B output frequency to 2.7 GHz .

On the spectrum analyzer, press "Peak Search" key, and read the frequency difference between 300 MHz input and 2.7 GHz input.
4) Adjust the variable resistor R 57 on 3 GHz CONVERTER (refer to Fig. 2-2-5) until the reading of frequency difference becomes $2.4 \mathrm{GHz} \pm 6 \mathrm{MHz}$, to repeat the procedure 2), 3).
5) Initialize the spectrum analyzer (Press "Preset" key and press "F1" key).

Set the 6769B to :
Frequency, $14.2 \mathrm{GHz}(\mathrm{CW})$
RF LEVEL, -20 dBm
6) Set Pre-selector bias value to 0 , according to above-mentioned procedure.
7) Press "Peak Search" key to place marker indicator on the top of 14.2 GHz signal.
8) Adjust the variable resistors R63 and R64 on A13 MICRO CONVERTER (refer to Fig. 2-2-6) to make the signal level maximum, i.e. increase the level roughly with R63, and then using R64, make it exactly maximum.

Section 2 MS2665C

(6) Confirmation of YTF tuning

Initialize the spectrum analyzer and the 6769B.

1) Set the spectrum analyzer to :

Start frequency, 3 GHz
Stop frequency, 21 GHz
Log Scale, 2 dB
Storage Max Hold (Press "A, B" key, press "F5" key and "F2" key).
2) Set the 6769 B to :

F 1 frequency, 3 GHz
F2 frequency, 21 GHz
RF LEVEL, -10 dBm
Analog sweep ON
Sweep time, 50 seconds
3) Confirm that the waveform on the analyzer's display is flat, after the 6769 B finishes its 50 -second sweeping.

Fig. 2-2-5 The location of adjusters on A08 LOCAL-A and 3GHz CONVERTER

Fig. 2-2-6 The location of adjusters on A13 MICRO CONVERTER

Section 2 MS2665C

2.2.5.3 IF1 (ATT), IF2 (AMP) adjustment

Required equipment :
(1) 6769B swept frequency synthesizer
(2) ML4803A Power meter
(3) MA4705A Power sensor
(4) IBM PC/AT compatible

Setup :

(1) Connect the spectrum analyzer RF Input to 6769B RF OUTPUT
(2) Connect the spectrum analyzer and the personal computer with RS-232C interface

Procedure :

(1) Turn the spectrum analyzer on, while pushing " 0 " key.
(2) Initialize the spectrum analyzer:

1) Enter Preset menu with "Preset" key,
2) Initialize the spectrum analyzer completely with "F1" key.
(3) Calibrate the spectrum analyzer using its internal calibration function :
3) Enter Cal menu with "Shift" key and "0" key,
4) Calibrate the spectrum analyzer by pushing "F1" key.
[Mixer harmonic order 1]
(4) Set mixing mode to Band 1-:
5) Enter Frequency menu by pressing "Frequency" key, and open its second page with "More" key,
6) Enter Band menu with "F1" key,
7) Set mixing mode to Band 1 - by pushing "F3" key.
(5) Set the spectrum analyzer to:

Center frequency, 5.00 GHz
Span, 1 MHz
Set the 6769B output frequency to $5.00 \mathrm{GHz}(\mathrm{CW})$.
(6) Adjust the 6769B output level to make power meter reading -10 dBm at the end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(7) Tune the spectrum analyzer's pre-selector, using its pre-selector auto tune function :

1) Enter Cal menu with "Shift +0 " key,
2) Enter Pre-selector Tuning menu with "F6" key,
3) Tune the pre-selector by pushing "Fl" key.
(8) Read marker level using peak search function (Press "Peak Search" key), and if maker reading is within - $10 \mathrm{dBm} \pm 0.2$ dB , skip next procedure.
(9) Enter RF/MICRO CONVERTER maintenance menu, and open its 6th page :
4) Enter Cal menu by pushing "Shift +0 " key. Open the second page of the Cal menu,
5) Enter maintenance menu with "F6" key,
6) Enter RF/Micro Converter maintenance menu with "F2" key. Open the 6th page of the RF/Micro Converter maintenance menu (Press "More" key 5 times).
Adjust IF-Gain 1 and IF-Gain 2 so that the maker reading becomes $-10 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$.
[Mixer harmonic order 2]
(10) Set mixing mode to Band 2+ (refer to the procedure (4)).
(11) Set the spectrum analyzer to :

Center frequency, 12.01 GHz
Span, 1 MHz
Set the 6769 B output frequency to $12.01 \mathrm{GHz}(\mathrm{CW})$.
(12) Adjust the 6769B output level to make power meter reading -10 dBm at the end of cable, and then connect the cable to the spectrum analyzer's RF Input.
(13) Tune the spectrum analyzer's pre-selector (refer to the procedure (7)).
(14) Read marker level with "Peak Search" key, and if marker reading is not within $-10 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$, adjust IF-Gain 1 and 2 to make the reading $-10 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$ (refer to the procedure (9)).
[Mixer harmonic order 3]
(15) Set mixing mode to Band 3+ (refer to the procedure (4)).
(16) Set the spectrum analyzer to :

Center frequency, 18.201 GHz
Span, 1 MHz
Set the 6769B output frequency to 18.201 GHz .
(17) Adjust the 6769B output level to make -10 dBm with power meter at the end of cable, and then connect the cable to the spectrum analyzer's RF Input.
(18) Tune the spectrum analyzer's pre-selector (refer to the procedure (7)).
(19) Read the marker level with "Peak Search" key, and if marker reading is not within $-10 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$, adjust IF-Gain 1 and 2 to make the reading $-10 \mathrm{dBm} \pm 0.2 \mathrm{~dB}$ (refer to the procedure (9)).

Section 2 MS2665C

(20) Write the compensation value of adjusted IF-Gain 1 and IF-Gain 2 to the spectrum analyzer's Flash Memory with Flash Memory writing command "CDW" from personal computer. For example :
CMD > MENTE P2110 ON
CMD > CD40 1, 0
CMD > CD41 1, 3
CMD > CD40 2, 0
CMD > CD41 2, 17
CMD > CD40 3, 0
CMD > CD41 3, 30
CMD > CDW
, where
line 1 makes the spectrum analyzer maintenance mode ON.
<CD40 $\mathrm{n}, \mathrm{m}>$ is IF-Gain 1 setting statement. " n " is a mixer harmonic order number. " m " is a compensation value in procedure (9), (14), (19) (0 to 255 integer).
Similarly, <CD41 n, l> is IF-Gain 2 setting statement. " l " is the compensation value (0 to 255 integer).

2.2.6 Assembling cabinet

Refer to 2.3.1.

2.2.7 Checking items after assembling cabinet

After switching the power on, check for the following faults.
(1) No burning smell and/or smoke.
(2) Fan rotates
(3) No strange sounds.

After checking the above items, make sure the original defect has been repaired.

2.2.8 Frequency response compensation

Perform Frequency response compensation, when one of the following modules is replaced. This Frequency response compensation is not necessary, if the module you replaced does not belong to the following modules.

- A03 CPU
- 21 GHz S-ATT
- 3GHz CONVERTER
- $21 \mathrm{GHz} \mathrm{YTF} / \mathrm{SW}$
- A13 MICRO CONVERTER
- H. MIXER
- A14 1st LO AMP

Frequency response caused by front-end components such as step attenuator, low pass filter and mixer is corrected by measuring the response and storing the data in instrument's memory.
Frequency response compensation process consists of four steps that are performed semi-automatically with "Frequency Response Compensation" software. The four steps are as follows :

1. DUT (Device Under Test) check,
2. Signal source power output calibration with power meter,
3. Frequency response measurement using the calibrated power output,
4. Compensation data updating.

Required instrument :

(1) 6769B Swept Frequency Synthesizer
(2) MG3633A Synthesized Signal Generator
(3) two ML4803A Power Meters
(4) MA4705A Power Sensor
(5) MA4601A Power Sensor
(6) two 3 dB attenuators
(7) IBM-PC/AT compatible for controller
(8) GPIB-PC2/2A
(9) ML2437A Power Meter (for MS2667C and MS2668C)
(10) MA2444A Power Meter (for MS2667C and MS2668C)

Required software :

(1) MS-DOS Ver. 5.0 or later and Windows 3.1, or Windows 95
(2) Frequency Response Compensation software.

Section 2 MS2665C
Setup :
IBM-PC/AT Compatible

GP-IB control

Fig. 2-2-7
(1) At the measurement of frequency response, connect the spectrum analyzer's RF Input to 6769B RF OUTPUT through a signal feeder. The signal feeder consists of a coaxial cable (e.g. SUCOFLEX) less than 1 m length and two 3 dB attenuators attached to each end of the cable.
(2) At the calibration of power output, connect the end of the feeder to power sensor.

Note that 1) the coaxial cable and 3 dB attenuators must be with a frequency range over the spectrum analyzer's range, 2) use a torque wrench for tightening each connection, 3) do not disconnect the connections of the 6769B and the signal feeder after the power calibration in order to keep the measured data valid.

Procedure :

Note that the spectrum analyzer (DUT) and the measuring instruments must be warmed up at least for an hour, before the compensation process.
(1) Run the Frequency Response Compensation program, and then confirm that 6769 B output is set to $10 \mathrm{MHz}(\mathrm{CW})$.
(2) After 5 minutes waiting or more, input the serial number of the spectrum analyzer to the personal computer.
(3) Execute "DUT Check" by pushing the button on the PC display.
(4) After internal calibration of the spectrum analyzer, confirm that the spectrum analyzer's "Cal Status" is all zero.
(5) Carry out zero adjustment and sensor sensitivity adjustment on the power meter, and then connect the MA4601A power sensor to the end of the cable from MG3633A OUTPUT.
(6) Set MG3633A output to $625 \mathrm{kHz}(\mathrm{CW})$, and adjust the output level so that power meter reading becomes 0 dBm at the end of the cable, and then connect this end to the spectrum analyzer RF Input.
(7) After "Preset All", set the spectrum analyzer to :

Center frequency, 625 kHz
Span, 50 kHz
RBW, 10 kHz
VBW, 1 kHz
Atten, 10 dB
Reference Level, 0 dBm
(8) On the spectrum analyzer's display, read the marker level of 625 kHz signal, and input the reading to " 625 kHz CAL OSC Level" space on the PC display. For example: when marker reading is 0.30 dBm , input " 0.30 " to the space.

Section 2 MS2665C

(9) Measure the 6769 B power output with " 6769 B output calibration" program.

1) Connect the 6769B RF OUTPUT to the MA4601A (for MS2665C) or MA2444A (for MS2667/68C) through a signal feeder. The signal feeder consists of a coaxial cable (e.g. SUCOFLEX) less than 1 m length and two 3 dB attenuators attached to each end of the cable. Note : Use a torque wrench for tightening each connection.
2) Run the "6769B output calibration" program by pushing the button on the PC display.
3) Change the power sensor for the MA4705A according to PC message. (for MS2665C only)
4) Before going to next step, leave the 6769B at least for 5 minutes after the program stopping.

Note that 1) The connections of the 6769B and the signal feeder must not be disconnected after the measurement in order to keep the measured data valid, 2) this measurement is needed once a day, as long as the 6769B is power on.
(10) Connect the end of the signal feeder to the spectrum analyzer RF Input.
(11) Run "Frequency Response Measurement" program with the button on the PC display.
(12) Write frequency response compensation data into the spectrum analyzer's memory with the button on the PC display.

2.3 Mechanical configuration

2.3.1 Disassembling/Assembling cabinet

(1) Removing Feet (1) to (8))

Remove the S1/S2/S3 screws and remove the S3 screw of the rear.
(2) Removing around cover (10)

Remove the four S1 screws (1) to (4)) and remove the S3 screw of the rear.
Remove the around cover (10) to pull backward.
(3) Removing Front Frame (11)

After (1) removing procedure, remove the (11) to pull forward.
To assemble, perform inversely.

Parts List

(1) 32 E 11805 A

Front foot
(2) 32 E 11805 B

Front foot
(3) 32 E 11806 A

Front foot Receiver
(4) 32 E 11806 B

Front foot Receiver
(5) 32 E 11807 A

Rear foot
(6) 32 E 11807 B

Rear foot
(7) 32 E 11808 A

Rear foot Receiver
(8) 32 E 11808 B

Rear foot Receiver
(9) 34 Y 107601

Tilt handle 3/4MW
(10) 333 B 35279

Around cover assembly
(11) 32 E 13058

Front frame

Section 2 MS2665C

2.3.2 Removing/Assembling units and PC boards

(1) Removing MICRO CONVERTER (4) and 1ST LO AMP (5)

After removing the screws and each cables, remove the (4) (5) to pull backward.
(2) Removing Step Attenuator (3) Band ATT Angle (2)

After removing the $\mathrm{S} 1 / \mathrm{S} 2$ screws, remove the (2) (3).
(3) Removing 21 GHz YTF/SW (7)

After removing the Angle (8), remove the (7)
(4) Removing PMC/GPIB (18) and CPU board (17)

After removing the S3 screw, remove the (17) (18) to pull backward.
To assemble, perform inversely.

Parts List

(1) 34 J 107713
(2) 332 B 36744 B
(3) 339 H 37752
(4) 34 Y 110446 C
(5) 34 Y 110447
(6) 329 H 13290
(7) 329 H 13289
(8) 34B111361

N-J SMA-P Adapter
ATT Angle
21 GHz Step Attenuator
A13 MICRO CONVERTER
A14 1ST LO AMP
H.MIXER

21GHz YTF/SW
Angle
(9) 33 B 38019

Plate
(10) 34 J 110924

Semi-rigid cable
(11) 439 H 32078

SMA-Attenuator
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
A03 CPU
A04 PMC/GPIB
or A04 PMC/CENTRONICS

Section 2 MS2665C

Fig. 2-3-2

Section 2 MS2665C

2.3.3 Front unit disassembly/assembly

Removing TFT LCD MODULE

(1) After removing the $\mathrm{S} 1, \mathrm{~S} 2$ screws and encoder knob (5), remove the front panel (1).
(2) After removing the S 3 screw, remove the (2), (3) and (4) to pull forward.
(3) After removing the S 4 screw and each cables, remove the LCD (2).

To assemble, perform inversely.

Parts List

(1) 322B13049 Front panel
(2) No 1256
(3) 332 B 40222
(4) 322 B 13048

TFT LCD MODULE
(5) 322 B 13048

LCD panel
(5) 33 E 32858

Front cover
(6) 34 Y 106676

Encoder knob
(7) 34 Y 106673

A02 FRONT BOARD
A01 MOTHER BOARD

Section 2 MS2665C

2.3.4 A09 OPTION BASE disassembly/assembly

Parts List

(1) 34 Y 106684

A09 OPTION BASE
(2) 34 Y 106695

A0901 TRIG/GATE
(3) 34 Y 106699
(4) 34 Y 106697

A0902 AM/FM MONITOR
(5) 34 Y 113473

A0903 TV MONITOR
or 34Y117105
A0904 QP DETECTOR

Section 2 MS2665C

Fig. 2-3-5

2.3.5 Removing/Assembling A0501 HI-SPEED AD from A05 SCAN/AD

 Parts List(1) 34 Y 112923 A or 34 Y 112923 C
(2) 34 Y 106688
A0501 HI-SPEED AD

Fig. 2-3-6

Section 2 MS2665C

Section 3 MS2667C

3.1 Overall Circuit description 3-2
3.2 Troubleshooting 3-9
3.2.1 Introduction 3-9
3.2.1.1 Service kit 3-9
3.2.1.2 Required equipment 3-9
3.2.1.3 Circuit reference 3-10
3.2.2 Detecting faulty module 3-15
3.2.3 Disassembling cabinet 3-16
3.2.4 Replacement of faulty module 3-16
3.2.5 Adjustment after module replacement 3-16
3.2.5.1 Reference crystal oscillator adjustment 3-16
3.2.5.2 Sweep adjustment 3-16
3.2.5.3 IF Gain-1 (ATT), IF Gain-2 (AMP) of Internal Mixer Band adjustment 3-26
3.2.5.4 IF Gain-1 (ATT), IF Gain-2 (AMP) of External Mixer Band adjustment 3-30
3.2.6 Assembling cabinet 3-32
3.2.7 Checking items after assembling cabinet 3-32
3.2.8 Frequency response compensation 3-32
3.3 Mechanical configuration 3-33
3.3.1 Disassembling/Assembling cabinet 3-33
3.3.2 Removing/Assembling units and PC boards 3-37
3.3.3 Disassembling/Assembling Components around RF Input 3-41
3.3.4 Disassembling/Assembling Units and Components on lower surface 3-45
3.3.5 Front unit disassembly/assembly 3-51
3.3.6 OPTION BASE disassembly/assembly 3-55
3.3.7 Removing/Assembling A0501 HI-SPEED AD from SCAN/AD 3-59
3.3.8 Connecting the cable to Diplexing Bandswitch and F2626 (YTF) 3-60

Section 3 MS2667C

3.1 Overall Circuit description

MS2667C is a superheterodyne system scanning-type spectrum analyzer.
This section describes overall circuit of the MS2667C spectrum analyzer with its block diagram.
An RF input signal after passing through an RF switch and variable RF ATTN in Switched Attenuator is switched by Diplexing Bandswitch to two different signal routes depending on input RF frequency.

For an RF input frequency of 9 kHz to 3.1 GHz (termed as band 0), the signal passes through 3.2 GHz LPF and then to 1 st mixer (1st MIX), where it is mixed with 1st local signal (4.1 GHz to 7.2 GHz) to generate 4110.69 MHz 1st IF signal. The 1st IF signal is then passed through an amplifier and image rejection filters, and fed to 2nd mixer (2nd MIX), where it is mixed with 4 GHz 2 nd local signal to generate 110.690 MHz 2 nd IF signal.

For an RF input frequency of 3.1 GHz to 30 GHz (band 1 to 5), the signal goes to YTF (YIG tuned filter), and then to 30 GHz H.MIXER. In 30 GHz H.MIXER, the RF signal gets mixed with the 1 st local signal (3.6 GHz to 7.5 GHz) to generate 689.31 MHz 1st IF signal.

This 1st IF signal is passed through a series of amplifiers and image rejection filters before further mixing with 800 MHz 2nd local signal to convert the signal to the 110.690 MHz 2 nd IF signal.

Depending on the active band of RF input, one of the two above 2nd IF signal is sent to IF section for further processing.

The 1st local signal generated at YTO (YIG tuned oscillator) is frequency-swept by scan signal from SCAN/AD section after phase-lock to reference signal (its frequency is 11 MHz to 14 MHz with the resolution of 1 Hz steps) generated on LOCAL-SP1, 2 section at the center frequency of its sweeping range, in normal sweep condition.

The YTO output is passed through an amplifier, and then divided into three paths with directional couplers. One of divided signal is fed to sampler circuit and the other are fed to the above mixers to frequency-convert.
In the sampler circuit, sampling signal (its frequency is 94 MHz to 106 MHz with the resolution of 1 MHz steps) generated on LOCAL-SP1, 2 section is frequency-multiplied, and then mixed with the YTO output to generate sampler IF signal with a frequency of 11 MHz to 14 MHz .
The sampler IF signal is compared with the reference signal of 11 MHz to 14 MHz at PFD.

The reference signal frequency (fREF) and the sampling signal frequency (fs) are controlled by CPU section according to the measuring frequency of the instrument, and set so that the center frequency of 1st local signal is fs $* \mathrm{~N} \pm \mathrm{fREF}$ (, where N is an integer).
Meanwhile, the scan signal strength that is equivalent to frequency sweep width is controlled from LOCAL-SP1, 2 section.

The 2nd local signals of 4 GHz and 800 MHz are also phase-locked to 100 MHz VCXO signal, of which the frequency is also phase-locked to 10 MHz crystal oscillator.

In the instrument, a high accuracy 625 kHz signal is present for level accuracy calibration. This signal is generated by frequency-dividing the 10 MHz reference signal, and its power level is varied with 1 dB steps by CAL ATT.
Internal calibration operation being carried out, this calibrating signal is fed to the RF signal-route through the switch in Switched Attenuator.

At the IF section the incoming signal is divided into two paths. The main route leads to image rejection filters while the second, a highly attenuated feeler path signal is used for generation of wide band trigger signal in TRIG/GATE section (option 06) situated on OPTION BASE board.
The main signal after passing through an image rejection filter is beat down to a 10.69 MHz signal using a 100 MHz reference signal. This signal is then sent to various Resolution Band Width (RBW) setting circuits.

For RBW setting of 30 Hz to 200 Hz the signal is frequency converted to 450 kHz using 10.24 MHz signal. After passing through the RBW circuits (Crystal filter circuits) the signal is up converted back to 10.690 MHz signal and passed through wider RBW setting circuits. For RBW setting of 300 Hz to 3 MHz the signal is sent directly to wide RBW setting circuits without any frequency modifications.

The RBW processed signal is passed onto SCAN/AD section, where it passes through logarithmic amplifiers and then to a linear detector. This linear detected signal is passed through smoothing filters called Video Band Width Filters (VBW). This smoothed signal is then passed through Positive or Negative peak detection circuits and the output is converted to digital signal by a Analog to Digital Converter (ADC) circuit.

The results are then written (in digital word format) to a Dual Port RAM through one of the ports.

The CPU of the instrument on CPU section reads from the other port of Dual Port RAM and processes the data before displaying on the LCD screen. The CPU also controls various interface functions such as reading the Key Inputs or remote control commands received, and various outputs such as prints or plots of various data. The CPU also generates various commands required for controlling or setting of all hardware units inside the instrument.

FRONT BOARD section generates the KEY and rotary-knob encoder data, drives the LEDs, detects the power switch (PWR SW) setting, controls the power-supply On/Stby setting, and supplies power for the LCD backlight, etc.

Section 3 MS2667C

3.2 Troubleshooting

3.2.1 Introduction

This section describes how to troubleshoot the MS2667C.

3.2.1.1 Service kit

Refer to 2.2.1.1.

3.2.1.2 Required equipment

Table 3-2-1 shows the equipment to prepare for overall adjustment of the spectrum analyzer.
Table 3-2-1 Required equipment

Nomenclature	Model number	Manufacture
Synthesized signal generator	MG3633A	Anritsu
Frequency counter	MF76A	Anritsu
Swept frequency synthesizer	$6769 B$	Anritsu
Power meter	ML4803A	Anritsu
Power sensor	MA4601A	Anritsu
Power meter	ML2437A	Anritsu
Power sensor	MA2444A	Anritsu
Adapter (K female to K female)	K222B	Anritsu
Digital multimeter	HP3478A	Hewlett Packard
GPIB interface board	GPIB-PC2/2A	National Instruments Corp.
two 3 dB attenuators	41KC-3	Anritsu
IBM-PC/AT compatible		
a printer		

Section 3 MS2667C

3.2.1.3 Circuit reference

This paragraph supplies the exchange module list of the spectrum analyzer with its overall circuit diagram.
Table 3-2-2 Exchange Modules of MS2667C

Schematic number	Name	Model name	Ordering number	Note
1	MOTHER BOARD	MM200013A	34Y115415	
2	A02 FRONT BOARD	322U14223	34Y118357	
3	A03 CPU	322U14225	34Y118358	
4	A04 PMC/GPIB	322U12853	34Y106693	
5	SCAN/AD	MM200014A	34Y112923D	
6	IF(B)	MM200015A	34Y106718B	
7	LOCAL-SP2	MM200016A	34Y111112B	Order both numbers
	LOCAL-SP1	MM200017A	34Y111111B	
8	RF CONVERTER	MM200019A	34Y117226	
9	2nd CONVERTER	MM200020A	34Y117228	*pair 1
		MM200022B	34 Y 117228 B	* pair 2
10	1ST LO AMP	MM200021A	34Y118007	
11	AK-AKF PANEL CONNECTOR	B46790	B46790	
12	Switched Attenuator	D29638	D29638	
13	Diplexing Bandswitch	D29870	D29870	
14	OPEN LOOP YIG FILTER	F2626	34Y117225	*pair 1
	30 GHz YTF	MM200001A	339H41853	*pair 2
15	30GHz H.MIXER	339H41184B	339H41184B	
16	POWER SUPPLY UNIT	34Z114508	34Z114508	
17	TFT LCD MODULE	NL3224AC35-01	No1256	
18	OPTION BASE	MM200018A	34Y106684B	
Options				
19	A0501 HI-SPEED AD	332U36333	34Y106688	Option 04
20	A0901 TRIG/GATE	34Y106695B	34Y106695B	Option 06
21	A0902 AM/FM MONITORA	34Y106699B	34Y106699B	Option 07
22	A04 PMC/CENTRONICS	34Y106692B	34 Y 106692 B	Option 10

To identify a exchange module, a label printed "Model number" is pasted on module.

Remark :

1. MS2667C has two kinds of YTF as exchange module. When you replace a YTF, check YTF model according to following procedure.
(1) Keep key " 0 " depressed while switching on the spectrum analyzer.
(2) Enter RF/Micro Conv maintenance menu.
1) Enter Cal menu by pushing "Shift" + " 0 " keys. Open second page of Cal menu by pushing "more".
2) Enter maintenance menu with "F6" (Maintenance) key.
(3) Press "Fl" (Version \& options) keys.
(4) Press Key "more" 3 times. MAINTENANCE (4/4) page appears. Check YTF model. If " 09 : YTF MODEL" is not indicated, order "F2626".
If "09: YTF MODEL" is indicated, order same model which is indicated.

2. 2nd Converter (Schematic number 9) and YTF (Schematic number 14) forms a pair.
*pair 1 : MM200020A (34Y117228) and F2626 (34Y117225)
*pair 2 : MM200022B (34Y117228B) and MM200001A (339H41853)
When you replace a YTF, make sure to order the same model number.
When you replace 2nd Converter, Check model number of YTF (easily visible) and make sure to order it's matching pair.
3. When you replace a A02 FRONT BOARD or A03 CPU, check circuit board number (322U******) of A03 CPU. If circuit board number of A03 CPU is 322U13903, make sure to order A02 FRONT BOARD (322U14223) and A03 CPU (322U14225).
If circuit board number of A 03 CPU is 322 U 14225 , make sure to order one module which you replace.

Section 3 MS2667C

Section 3 MS2667C

3.2.2 Detecting faulty module

The flowchart shows the way to locate the faulty module among them.

3.2.3 Disassembling cabinet

Refer to 3.3.1.

3.2.4 Replacement of faulty module

Refer to 3.3.2 to 3.3.8.

3.2.5 Adjustment after module replacement

This paragraph describes the overall adjustment required after replacement of any modules in following Table. Look for modules which you replaced in Table. Please carry out work corresponding to module which you replaced. This adjustment is not necessary, if the module you replaced does not belong to the following Table.

Replaced module	
LOCAL-SP2 and LOCAL-SP1	Carry out 3.2.5.1 and 3.2.5.2.
RF CONVERTER OPEN LOOP YIG FILTER (F2626) 30GHz YTF	Carry out 3.2.5.2 and 3.2.5.3.
2nd CONVERTER	Carry out 3.2.5.2 to 3.2.5.4.
30GHz H.MIXER	Carry out 3.2.5.3.
A03 CPU	Carry out 3.2.5.3 and 3.2.5.4.

3.2.5.1 Reference crystal oscillator adjustment

Refer to 2.2.5.1.

3.2.5.2 Sweep adjustment

Required equipment :
(1) 6769B Swept frequency synthesizer
(2) MG3633A Synthesized signal generator
(3) HP3478A Digital multimeter

Setup for the procedure (1), (2) :

Fig. 3-2-1
Connect the spectrum analyzer RF Input to MG3633A OUTPUT.

Setup for the procedure (3) :

(1) Connect digital multimeter HI input to the X3 terminal on LOCAL-SP2 PC board. (Refer to Fig. 3-2-4)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (4) :

(1) Connect digital multimeter HI input to the X21 terminal on LOCAL-SP2 PC board. (Refer to Fig. 3-2-4)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (5) :

(1) Connect digital multimeter HI input to the X3 terminal on A1307 YTF DRIVER PC board attached to 2nd CONVERTER. (Refer to Fig. 3-2-5)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (6), (7) :

(1) Check model of YTF on lower surface.
(2) Set jumper pins, X10 and X12 on A1307 YTF DRIVER PC board attached to 2nd CONVERTER, to YTF model side which you checked at (1). (Refer to Fig. 3-2-5)
Example: When YTF model is "F2626", jumper pins are set as follows.

Fig.3-2-2

Section 3 MS2667C

(3) Connect the spectrum analyzer RF Input to 6769B RF OUTPUT.

Fig. 3-2-3

Procedure :

(1) Local sweep adjustment

Initialize the spectrum analyzer and the MG3633A.

1) Set the spectrum analyzer to :

Center frequency, 100 MHz
Span, 100 kHz
Set the MG3633A output to :
LEVEL, -10 dBm
Frequency, 100 MHz (CW)
Press " \rightarrow CF" key of the spectrum analyzer.
2) Set the MG3633A output frequency to 99.96 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and set the marker function to delta maker mode (Press "Marker" key and press "F2" key).
3) Set the MG3633A output frequency to 100.04 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and read the frequency difference between 99.96 MHz input and 100.04 MHz input.
4) Adjust the variable resistor R123 on LOCAL-SP2 (refer to Fig. 3-2-4) until the reading of frequency difference becomes $80 \mathrm{kHz} \pm 200 \mathrm{~Hz}$, to repeat the procedure 2), 3).
(2) YTO FM sweep adjustment

Initialize the spectrum analyzer.

1) Set the spectrum analyzer to :

Center frequency, 1000 MHz
Span, 10 MHz
Set the MG3633A output to :
Frequency, 1000 MHz (CW)
Press " \rightarrow CF" key of the spectrum analyzer.
2) Set the MG3633A output frequency to $996 \mathrm{MHz}(\mathrm{CW})$.

On the spectrum analyzer, press "Peak Search" key, and set the marker function to delta maker mode (Press "Marker" key and press "F2" key).
3) Set the MG3633A output frequency to 1004 MHz (CW).

On the spectrum analyzer, press "Peak Search" key, and read the frequency difference between 996 MHz input and 1004 MHz input.
4) Adjust the variable resistor R53 on RF CONVERTER (refer to Fig. 3-2-4) until the reading of frequency difference becomes $8 \mathrm{MHz} \pm 40 \mathrm{kHz}$, to repeat the procedure 2), 3).

Section 3 MS2667C

(3) YTF offset voltage adjustment 1

1) Set the spectrum analyzer.

Center frequency : 4 GHz
Span $: 400 \mathrm{MHz}$
2) On the spectrum analyzer, press "single" key.
3) After sweep of the spectrum analyzer is finished, check the $X 3$ voltage (multimeter indicated). This voltage value is V1.
4) Set the spectrum analyzer's span to 401 MHz .
5) On the spectrum analyzer, press "single" key.
6) After sweep of the spectrum analyzer is finished, check the X3 voltage (multimeter indicated). This voltage value is V 2 .
7) Adjust R287 on the LOCAL-SP2 (refer to Fig. 3-2-4) until the difference voltage between V1 and V2 is below ± 1 mV , to repeat the procedure 1) to 6).
(4) YTF offset voltage adjustment 2

1) Set the spectrum analyzer.

Center frequency : 4 GHz
Span $: 4 \mathrm{GHz}$
2) On the spectrum analyzer, press "single" key.
3) After sweep of the spectrum analyzer is finished, check the $X 21$ voltage (multimeter indicated). This voltage value is V1.
4) Set the spectrum analyzer's span to 4.01 GHz .
5) On the spectrum analyzer, press "single" key.
6) After sweep of the spectrum analyzer is finished, check the X21 voltage (multimeter indicated). This voltage value is V2.
7) Adjust R280 on the LOCAL-SP2 (refer to Fig. 3-2-4) until the difference voltage between V1 and V2 is below ± 1 mV , to repeat the procedure 1) to 6).

Fig. 3-2-4 The location of adjusters on LOCAL-SP2 and RF CONVERTER

Section 3 MS2667C

(5) YTF tuning DAC adjustment

1) Turn the spectrum analyzer on, while pushing " 0 " key, and initialize the spectrum analyzer.
2) Set the spectrum analyzer to zero Span.
3) Enter Cal menu by pushing "Shift +0 " keys. Open the second page of the Cal menu, and enter Maintenance menu with "F6" key. Enter RF/Micro converter maintenance menu with "F2" key, and open the 6th page of the menu (Press "More" key 5 times).
4) Set YTF Pre-tuning value to 3600 by pushing "F2" key (assigned YTF Pre-tuning function) and data keys. (Press keys " 3 " + " $6 "+" 0 "+" 0 "+$ "Enter")
5) Adjust the variable resistor R27 on the 2nd CONVERTER (refer to Fig. 3-2-5) to make multimeter reading -3.600 ± 0.005 Volts.
6) Set YTF Pre-tuning value to 7600 by pushing "F2" key. (Press keys " 7 " + " 6 " + " 0 " $+" 0$ " + "Enter")
7) Adjust the variable resistor R30 on the 2nd CONVERTER (refer to Fig. 3-2-5) to make multimeter reading -7.600 ± 0.005 Volts.
8) Repeat the procedure 4), 5), 6), 7) until you get the required voltage corresponding to each YTF Pre-tuning value.
(6) YTF tuning adjustment
9) Keep key "Preset" depressed while Switching ON the spectrum analyzer.
10) Wait till sweep of the spectrum analyzer starts and after that Switch OFF the power supply of the spectrum analyzer.
11) Now once again keep key " 0 " depressed while switching on the spectrum analyzer.
12) Initialize the spectrum analyzer (Press key "preset", followed by Key "F1").
13) Set the spectrum analyzer to:

Center frequency : 3.2 GHz
Span $: 200 \mathrm{MHz}$
6) Set 6769B Signal generator output to:

Frequency $\quad: 3.2 \mathrm{GHz}$
RF level : -10 dBm
7) Enter Cal menu by pushing "Shift" + " 0 " keys. Open the second page of Cal menu (press the key "more"), and enter Maintenance menu with "F6" key.
8) Select key "Mainte RF/Micro Conv" (F2), and press the key "more".
9) Press the key "Main Swp \rightarrow off" (F2). At this point YTF filter shape appears on the display of the spectrum analyzer.
10) Adjust R79 on the 2 nd Converter (refer to Fig. 3-2-5) so as to shift the center of filter display about 5 MHz below the center frequency of the display.

10 dB down point
$\mathrm{A}=\mathrm{B}$

11) Set the spectrum analyzer to :

Center frequency : 20 GHz
12) Set 6769B Signal generator output to:

Frequency $: 20 \mathrm{GHz}$
RF level : -10 dBm
13) Enter Cal menu by pushing "Shift" + " 0 " keys. Open the second page of Cal menu (press the key "more"), and enter Maintenance menu with "F6" key.
14) Select key "Mainte RF/Micro Conv" (F2), and press the key "more".
15) Press the key "Main Swp \rightarrow off" (F2). At this point YTF filter shape appears on the display of the spectrum analyzer.
16) Wait 1 minuets.
17) Adjust R70 on the 2 nd Converter (refer to Fig. 3-2-5) so as to shift the center of filter display to the center frequency of the display.

Section 3 MS2667C

(7) YTF Sweep adjustment

1) Initialize the spectrum analyzer (Press key "preset", followed by Key "F1").
2) Set 6769B Signal generator output to:

Frequency $\quad: 22.2 \mathrm{GHz}$
RF level : -10 dBm
3) Set Marker of the spectrum analyzer to 22.2 GHz (Press keys "Marker" + " $2 "+" 2 "+$ "." + " 2 "+"GHz") and adjust R41 on the 2nd Converter (refer to Fig. 3-2-5) to make Marker read maximum.
4) Set Pre-selector bias value to 0 by pressing keys "frequency" + "F5" (Pre-selector Tuning) + "F2" (Manual).
5) Set the marker function to delta marker mode (Press keys "Marker" + "F2").
6) Change Pre-selector bias value to negative value by the knob on the front panel as to read the level of delta marker to $-6 \mathrm{~dB} \pm 1 \mathrm{~dB}$. Now read Pre-selector bias value (P1).
7) Change Pre-selector bias value to positive value by the knob on the front panel as to read the level of delta marker to $-6 \mathrm{~dB} \pm 1 \mathrm{~dB}$. Now read Pre-selector bias value (P2).
8) Adjust R41 (rough adjustment) or R42 (close adjustment) on the 2nd Converter (refer to Fig. 3-2-5) until P1 + P2 become below ± 8, to repeat the procedure 4) to 8).

Fig. 3-2-5 The location of adjusters on 2nd CONVERTER

3.2.5.3 IF Gain-1 (ATT), IF Gain-2 (AMP) of Internal Mixer Band adjustment Required equipment :

(1) 6769B swept frequency synthesizer
(2) ML2437A Power sensor
(3) MA2444A Power sensor

Setup :

(1) Connect RF Input of the spectrum analyzer to RF OUTPUT of 6769B.

Procedure :

(1) Keep key " 0 " depressed while switching on the spectrum analyzer.
(2) Initialize the spectrum analyzer :

1) Enter Preset menu with "preset" key.
2) Initialize the spectrum analyzer completely with "F1" key.
(3) Calibrate the spectrum analyzer using its internal calibration function:
3) Enter Cal menu with "Shift" key and " 0 " key.
4) Calibrate the spectrum analyzer by pushing "F1" key.
[Band 1-]
(4) Set Manual Band to Band 1-:
5) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
6) Enter Internal mixer Band menu with "F1" (Internal Mix) key.
7) Set manual band to Band 1- by pushing "F3" (Manual Band 1-) key.
(5) Set the spectrum analyzer to :

Center frequency $: 4.8 \mathrm{GHz}$
Span $: 200 \mathrm{MHz}$
Set the 6769 B output frequency to $4.8 \mathrm{GHz}(\mathrm{CW})$.
(6) Adjust the 6769B output level to make power meter reading - 10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(7) Tune the spectrum analyzer's pre-selector, using its pre-selector auto tune function :

1) Press "frequency" key.
2) Carry out pre-selector Auto Tune function by pushing "F4" (Pre-selector Auto Tune) key.
(8) Take the marker to signal peak by pushing "Peak Search" key.
(9) Enter RF/Micro Conv maintenance menu, and open its 6th page :
3) Enter Cal menu by pushing "Shift" + " 0 " keys. Open second page of Cal menu by pushing "more".
4) Enter maintenance menu with "F6" (Maintenance) key.
5) Enter RF/Micro Converter maintenance menu with "F2" (Mainte RF/Micro conv) key. Open the 6th page of RF/ Micro converter maintenance menu (Press "more" key 5 times).
(10) Set IF Gain- 1 and IF Gain- 2 values to 0 .
6) Press "F4" (IF Gain-1) + " 0 " + "enter" keys and on display appears a writing "IF Gain1 set to 0 ".
7) Press "F5" (IF Gain-2) + " 0 " + "enter" keys and on display appears a writing "IF Gain2 set to 0 ".
(11) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.

- If the level is lesser than this, the level can be raised by increasing the Number of IF Gain-2 (F5) from 0 to 255 in single whole numbers.

Press "F5" + "number (0 to 255)" + "enter" keys.

- If the level is greater than this, the level can be lowered by increasing the Number of IF Gain-1 (F4) from 0 to 255 in single whole numbers.

Press "F4" + "number (0 to 255)" + "enter" keys.
[Band 1+]
(12) Set Manual Band to Band $1+$:

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key.
3) Set manual band to Band $1+$ by pushing "F4" (Manual Band $1+$) key.
(13) Set the spectrum analyzer to :

Center frequency $\quad: 7.25 \mathrm{GHz}$
Span : 200 MHz
Set the 6769 B output frequency to $7.25 \mathrm{GHz}(\mathrm{CW})$.
(14) Adjust the 6769B output level to make power meter reading - 10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(15) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(16) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(17) Set IF Gain- 1 and IF Gain-2 values to 0 (refer to procedure (10)).
(18) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).

Section 3 MS2667C

[Band 2+]
(19) Set Manual Band to Band 2+ :

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band 2+ by pushing "F2" (Manual Band 2+) key.
(20) Set the spectrum analyzer to :

Center frequency $: 11.65 \mathrm{GHz}$
Span : 200 MHz
Set the 6769 B output frequency to $11.65 \mathrm{GHz}(\mathrm{CW})$.
(21) Adjust the 6769B output level to make power meter reading -10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(22) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(23) Enter RF/Micro Conv maintenance menu, and open its 6 th page (refer to procedure (9)).
(24) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(25) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Band 3+]
(26) Set Manual Band to Band 3+:

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band 3+ by pushing "F3" (Manual Band 3+) key.
(27) Set the spectrum analyzer to :

Center frequency $: 18.8 \mathrm{GHz}$
Span $: 200 \mathrm{MHz}$
Set the 6769B output frequency to $18.8 \mathrm{GHz}(\mathrm{CW})$.
(28) Adjust the 6769B output level to make power meter reading - 10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(29) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(30) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(31) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(32) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Band 4+]
(33) Set Manual Band to Band 4+:

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "Fl" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band $4+$ by pushing "F4" (Manual Band 4+) key.
(34) Set the spectrum analyzer to :

Center frequency $\quad: 26.15 \mathrm{GHz}$
Span : 200 MHz
Set the 6769B output frequency to 26.15 GHz (CW).
(35) Adjust the 6769B output level to make power meter reading -10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(36) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(37) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(38) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(39) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Writing the compensation values of IF Gain1 and IF Gain2 to Flash Memory]
(40) After the above adjustment is done, Press "F6" (return) + "Fl" (Version \& options) keys.
(41) Press Key "more" 3 times. MAINTENANCE (4/4) page appears.
(42) Press the cursor down key ("F5") till it falls on "Save model and Option Data?" and after that press "F1" (Select) Key.
(43) On pressing the above key F1 key turns to "SAVE". Press again and "F1" key turns "Really save?" at this stage press "F2" (Yes).
(44) The display shows a message "Now saving, Wait \qquad ."
(45) Wait till this message disappears and after that Switch OFF the power supply of the spectrum analyzer.
(46) Now once again Switch ON the power supply of the spectrum analyzer with "Preset" key depressed.

3.2.5.4 IF Gain-1 (ATT), IF Gain-2 (AMP) of External Mixer Band adjustment Required equipment :

(1) MG3633A Synthesized signal generator
(2) ML2437A Power sensor
(3) MA2444A Power sensor

Setup :

(1) Connect 1st Local output connector of the spectrum analyzer to RF OUTPUT of MG3633A by cable.
(2) Connect REF OUTPUT connector of MG3633A to REF In of the spectrum analyzer.

Procedure :

(1) Keep key " 0 " depressed while switching on the spectrum analyzer.
(2) Initialize the spectrum analyzer :

1) Enter Preset menu with "preset" key.
2) Initialize the spectrum analyzer completely with "F1" key.
(3) Calibrate the spectrum analyzer using its internal calibration function:
3) Enter Cal menu with "Shift" key and " 0 " key.
4) Calibrate the spectrum analyzer by pushing "F1" key.
[External mixer band]
(4) Set External mixer band on condition :
5) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
6) Enter External mixer Band menu with "F2" (External Mix) key.
7) Set external band on by pushing "F1" (Ext Mix ON/OFF) key.
(5) Set conversion loss to 15 dB :
8) Press "F4" (Conversion loss) + " 1 " + " $5 "+$ "dB" keys.
(6) Set the spectrum analyzer to :

Center frequency : 25 GHz (Press "F4" (Center frequency) + " 2 " + " 5 " + "GHz")
Span $: 1 \mathrm{MHz}$ (Press "F5" (Span) + " 1 " + "MHz")
7) Adjust the MG3633A output level to make power meter reading - $25 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$ at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's 1st Local output connector on Front panel.
(8) Enter RF/Micro Conv maintenance menu, and open its 6th page :

1) Enter Cal menu by pushing "Shift" + " 0 " keys. Open second page of Cal menu by pushing "more".
2) Enter maintenance menu with "F6" (Maintenance) key.
3) Enter RF/Micro Converter maintenance menu with "F2" (Mainte RF/Micro conv) key. Open the 6th page of RF/ Micro converter maintenance menu (Press "more" key 5 times).
(9) Set IF Gain-1 and IF Gain-2 values to 0.
4) Press "F4" (IF Gain-1) + " 0 " + "enter" keys and on display appears a writing "IF Gain1 set to 0 ".
5) Press "F5" (IF Gain-2) + " 0 " + "enter" keys and on display appears a writing "IF Gain2 set to 0 ".
(10) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-10 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.

- If the level is lesser than this, the level can be raised by increasing the Number of IF Gain-2 (F5) from 0 to 255 in single whole numbers.

Press "F5" + "number (0 to 255)" + "enter" keys.

- If the level is greater than this, the level can be lowered by increasing the Number of IF Gain-1 (F4) from 0 to 255 in single whole numbers.

Press "F4" + "number (0 to 255)" + "enter" keys.
[Writing the compensation values of IF Gain1 and IF Gain2 to Flash Memory]
(11) After the above adjustment is done, Press "F6" (return) + "F1" (Version \& options) keys.
(12) Press Key "more" 3 times. MAINTENANCE (4/4) page appears.
(13) Press the cursor down key ("F5") till it falls on "Save model and Option Data?" and after that press "F1" (Select) Key.
(14) On pressing the above key F1 key turns to "SAVE". Press again and "F1" key turns "Really save?" at this stage press "F2" (Yes).
(15) The display shows a message "Now saving, Wait \qquad .."
(16) Wait till this message disappears and after that Switch OFF the power supply of the spectrum analyzer.
(17) Now once again Switch ON the power supply of the spectrum analyzer with "Preset" key depressed.

3.2.6 Assembling cabinet

Refer to 3.3.1.

3.2.7 Checking items after assembling cabinet

Refer to 2.2.7.

3.2.8 Frequency response compensation

Perform Frequency response compensation, when one of the following modules is replaced. This Frequency response compensation is not necessary, if the module you replaced does not belong to the following modules.

- A03 CPU
- Switched Attenuator
- RF CONVERTER
- Diplexing Bandswitch
- 2nd CONVERTER
- OPEN LOOP YIG FILTER (F2626) or 30GHz YTF
- 1st LO AMP
- 30GHz H.MIXER

With regards to the method of performing Frequency response compensation, refer to 2.2.8.

3.3 Mechanical configuration

3.3.1 Disassembling/Assembling cabinet

(1) Removing Feet (1) to (8))

Remove the S1 screws and remove the S2/S3 screws of the rear.
(2) Removing around cover (10)

Remove the four S1 screws (1) to (4)) and remove the S3 screw of the rear.
Remove the around cover (10) to pull backward.
(3) Removing Front Frame (11))

After (1) removing procedure, remove the (11) to pull forward.
To assemble, perform inversely.

Parts List

(1) 32 E 11805 A

Front foot
(2) 32 E 11805 B

Front foot
(3) 32 E 11806 A

Front foot Receiver
(4) 32 E 11806 B

Front foot Receiver
(5) 32 E 11807 A

Rear foot
(6) 32 E 11807 B

Rear foot
(7) 32 E 11808 A

Rear foot Receiver
(8) 32 E 11808 B

Rear foot Receiver
(9) 34 Y 107601

Tilt handle
(10) 323 B 14135

Around cover assembly
(11) 32 E 13058

Front frame

Section 3 MS2667C

Section 3 MS2667C

3.3.2 Removing/Assembling units and PC boards

Removing RF CONVERTER (7), PC Boards (3) to (6), Power Supply (2).
(1) After 3.3.1 (2) removing procedure, remove the $\mathrm{S} 1 / \mathrm{S} 2 / \mathrm{S} 3 / \mathrm{S} 4 / \mathrm{S} 5$ screws and remove the rear panel (1).
(2) Removing PC Boards (3) to (6))

After (1) removing procedure, remove PC Boards (3) to (6) to pull backward.
(3) Removing RF CONVERTER (7)

After (1) removing procedure, remove the S6/S7/S8 screws and remove the unit (7) to pull backward.
(4) Removing Power Supply (2)

After (1) removing procedure, remove the S 9 screws and remove the Power Supply (2) to pull backward.
To assemble, perform inversely.

Parts List

(1) 323B14028 Rear panel
(2) 34 Z 114508

Power supply
(3) 34 Y 111112 B

LOCAL-SP2
34Y111111B
LOCAL-SP1
(4) 34 Y 106718 B

IF (B)
(5) 34 Y 106684 B

OPTION BASE
(6) 34 Y 112923 D

SCAN/AD
(7) 34 Y 117226

RF CONVERTER

Section 3 MS2667C

Fig. 3-3-2

Section 3 MS2667C

3.3.3 Disassembling/Assembling Components around RF Input

Removing Diplexing Bandswitch (1), Switched Attenuator (2), AK-AKF PANEL Connector (7).
(1) Removing Diplexing Bandswitch (1)

After 3.3.1 (2) removing procedure, remove the S1 screws and Disconnect Diplexing Bandswitch's connector which is connected to Swithched Attenuator (2).
(2) Removing Switched Attenuator (2)

1) After (1) procedure, remove the $S 2 / S 3 / S 4 / S 5 / S 6$ screws and remove encorder knob (3) and the front panel (4) to pull forward.
2) Remove the $S 7 / \mathrm{S} 8 / \mathrm{S} 9$ screws and remove the angle (5), which Swiched Attenuator (2) and Block (6), are Attached to pull backward.
3) Remove the S10 screws and disconnect AK-AKF PANEL CONNECTOR's (7) connector which is connected to Swithched Attenuator (2).
(3) Removing AK-AKF PANEL CONNECTOR

After (2) procedure, remove the W1 washer and N1 nut and remove AK-AKF PANEL CONNECTOR (7) by rotating it.
To assemble, perform inversely.

Parts List

(1) D29870
Diplexing Bandswitch
(2) D29638
Switched Attenuator
(3) 33 E 32858
Encoder knob
(4) 322 B 13832
Front panel
(5) 33 B 40005
Angle
(6) 34 H 115321
BLOCK
(7) B46790
AK-AKF PANEL CONNECTOR

Section 3 MS2667C

Fig. 3-3-3

Section 3 MS2667C

3.3 Mechanical configuration

3.3.4 Disassembling/Assembling Units and Components on lower surface

Caution :

30 GHz YTF (MM200001A) is attached to the plate (4), to form the module, by the S 4 screws which is tightened at pre-determined torque of 6 kg . If torque of the S 4 screws is changed, the performance specification of 30 GHz YTF will be affected.
Therefore 30 GHz YTF must not be disassembled from the plate (4).

Removing 2nd CONVERTER (1), 1 st LO Amp (2), YTF (3), 30GHz H.MIXER (5).
(1) Removing 2nd CONVERTER (1)

After 3.3.1 (2) removing procedure, remove the S1/S2 screws and remove the 2nd Converter (1) to pull backward.
(2) Removing 1st LO Amp (2)

After 3.3.1 (2) removing procedure, remove the S 3 screws and remove the 1 st LO Amp (2).
(3) Removing YTF (3) (For F2626)

If YTF is OPEN LOOP YIG FILTER (F2626), perform this removing procedure.
If YTF is 30 GHz YTF (MM200001A), please perform (4) removing procedure.

1) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4) (YTF (3), 30GHz H.MIXER (5) and 1st LO Amp (2) are Attached on the plate (4).
2) Remove the S 5 screws.
3) Loose the $S 7$ screws. If there are no $S 7$ screws, perform procedure 4).
4) Disconnect 30 GHz H.MIXER's connector which is connected to YTF (3).
5) Remove the S 4 screws.
(4) Removing YTF (3) (For 30 GHz YTF)

If YTF is 30 GHz YTF (MM200001A), perform this removing procedure.
If YTF is OPEN LOOP YIG FILTER (F2626), please perform (3) removing procedure.

1) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4) (YTF (3), 30GHz H.MIXER (5) and 1st LO Amp (2) are Attached on the plate (4).
2) Remove the S 3 screws and remove the 1 st LO Amp (2).
3) Remove the $S 5$ screws.
4) Loose the S 7 screws. If there are no S 7 screws, perform procedure 5).
5) Disconnect 30GHz H.MIXER's connector which is connected to YTF (3).

Caution :

For 30 GHz YTF, do not remove the S 4 screws.
(5) Removing 30GHz H.MIXER (5)

1) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4) (YTF (3), 30GHz H.MIXER (5) and 1st LO Amp (2) are Attached on the plate (4).
2) Remove the $\mathbf{S} 5$ screws.
3) Loose the S 7 screws. If there are no S 7 screws, perform procedure 4).
4) Disconnect 30GHz H.MIXER's connector which is connected to YTF (3).

Section 3 MS2667C

Assembling 2nd CONVERTER (1),1st LO Amp (2), YTF (3), 30GHz H.MIXER (5).
(1) Assembling 2nd CONVERTER (1).

Perform removing procedure (1) inversely.
(2) Assembling 1st LO Amp (2).

Perform removing procedure (2) inversely.
(3) Assembling YTF (3) (For F2626)

If YTF is OPEN LOOP YIG FILTER (F2626), perform this assembling procedure.
If YTF is $30 \mathrm{GHz} \mathrm{YTF} \mathrm{(MM200001A)} ,\mathrm{please} \mathrm{perform} \mathrm{(4)} \mathrm{assembling} \mathrm{procedure}$.

1) Tighten the S 4 screws.
2) Connect 30 GHz H.MIXER's connector to YTF (3)'s connector.

At this time, make sure that the lower surface cover of 30 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.3-3-4)

Fig. 3-3-4
3) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.3-3-4). If there are no S7 screws, perform procedure 4).
4) Tighten the $S 5$ screws.
5) Attach the plate (4) and tighten the N1 nuts.
(YTF (3), 30 GHz H.MIXER (5) and 1 st LO Amp (2) are Attached on the plate (4).
(4) Assembling YTF (3) (For 30 GHz YTF)

If YTF is 30 GHz YTF (MM200001A), perform this assembling procedure.
If YTF is OPEN LOOP YIG FILTER (F2626), please perform (3) assembling procedure.

1) Connect 30 GHz H.MIXER's connector which is connected to YTF (3).

At this time, make sure that the lower surface cover of 30 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.3-3-4)
2) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.3-3-4). If there are no S 7 screws, perform procedure 3).
3) Tighten the S 5 screws.
4) Attach the 1 st $\mathrm{LO} \mathrm{Amp}(2)$ and tighten the S 3 screws.
5) Attach the plate (4) and tighten the N 1 nuts.
(YTF (3), 30 GHz H.MIXER (5) and 1 st LO Amp (2) are Attached on the plate (4).
(5) Assembling 30GHz H.MIXER (5)

1) Connect 30 GHz H.MIXER's connector which is connected to YTF (3).

At this time, make sure that the lower surface cover of 30 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.3-3-4)
2) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.3-3-4). If there are no S7 screws, perform procedure 3).
3) Tighten the S 5 screws.
4) Attach the plate (4) and tighten the N1 nuts.

Caution :

Use MODEL 01-201 TORQUE WRENCH (Anritsu) when connectors, which are connected to YTF (F2626) 3), are tightened.
If there is not it, use torque wrench whose torque is 8 IN-LBS.
MODEL 01-201 TORQUE WRENCH (Anritsu) is not necessary, if YTF (3) is 30GHz YTF (MODEL NAME :
MM200001A).

Parts List

(1) 34 Y 117228 or 34 Y 117228 B
(2) 34 Y 118007
(3) 34 Y 117225

339H41853
(4) 33 B 40911
(5) 339 H 41184 B
(6) 33 J 41083
(7) 34 J 117450
(8) 34 J 117451
(9) 34 J 117453
(10) 34 J 117452
(11) 34 J 117454

2nd CONVERTER
1st LO AMP
YTF (F2626) or
YTF (30GHz YTF)
Plate
30GHz H.MIXER
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable
Semi-rigid cable

Section 3 MS2667C

3.3.5 Front unit disassembly/assembly

Remove TFT LCD MODULE (2)

(1) After 3.3.3 (2) 1) and 2) procedures, remove the S 3 screws and remove (2), (3), (4) to pull forward.
(2) After removing the S 4 screws and each cables, remove the LCD (2).

To assemble, perform inversely

Parts List

(1) 322 B 13832

Front panel
(2) No1256
(3) 332 B 40222

TFT LCD MODULE
(4) 322 B 13833

LCD panel
(5) 33 E 32858

Front cover
(6) 34 Y 118357

Encoder knob
A02 FRONT BOARD
(7) 34 Y 115415

MOTHER BOARD

Section 3 MS2667C

3.3.6 OPTION BASE disassembly/assembly

Parts List

(1) 34 Y 106684 B

OPTION BASE
(2) 34 Y 106695 B

A0901 TRIG/GATE
(3) 34 Y 106699 B

A0902 AM/FM MONITOR
(4) None
(5) None

Section 3 MS2667C

Fig. 3-3-7

3.3.7 Removing/Assembling A0501 HI-SPEED AD from SCAN/AD

 Parts List(1) 34 Y 112923 D
SCAN/AD
(2) 34 Y 106688
A0501 HI-SPEED AD

Fig. 3-3-8

3.3.8 Connecting the cable to Diplexing Bandswitch and F2626 (YTF)

(1) Connecting the cable to Diplexing Bandswitch

Connect each wire of the cable to following terminal of Diplexing Bandswitch.

- Red (\#2) wire to \#1 pin of Diplexing Bandswitch
- Blown (\#1) wire to \#2 pin of Diplexing Bandswitch
- Orange (\#3) wire to Ground pin of Diplexing Bandswitch

(2) Connecting the cable to F2626 (YTF)

Connect each wire of the cable to following terminal of F2626.

- Blown (\#1) wire to "E5" pin of F2626
- Red (\#2) wire to "E6" pin of F2626
- Orange (\#3) wire to "E3" pin of F2626
- Yellow (\#4) wire to "E4" pin of F2626

Section 4 MS2668C

4.1 Overall Circuit description 4-2
4.2 Troubleshooting 4-9
4.2.1 Introduction 4-9
4.2.1.1 Service kit 4-9
4.2.1.2 Required equipment 4-9
4.2.1.3 Circuit reference 4-10
4.2.2 Detecting faulty module 4-15
4.2.3 Disassembling cabinet 4-16
4.2.4 Replacement of faulty module 4-16
4.2.5 Adjustment after module replacement 4-16
4.2.5.1 Reference crystal oscillator adjustment 4-16
4.2.5.2 Sweep adjustment 4-16
4.2.5.3 IF Gain-1 (ATT), IF Gain-2 (AMP) of Internal Mixer Band adjustment 4-22
4.2.5.4 IF Gain-1 (ATT), IF Gain-2 (AMP) of External Mixer Band adjustment 4-25
4.2.6 Assembling cabinet 4-26
4.2.7 Checking items after assembling cabinet 4-26
4.2.8 Frequency response compensation 4-26
4.3 Mechanical configuration 4-27
4.3.1 Disassembling/Assembling cabinet 4-27
4.3.2 Removing/Assembling units and PC boards 4-27
4.3.3 Disassembling/Assembling Components around RF Input 4-27
4.3.4 Disassembling/Assembling Units and Components on lower surface 4-27
4.3.5 Front unit disassembly/assembly 4-33
4.3.6 A09 OPTION BASE disassembly/assembly 4-33
4.3.7 Removing/Assembling A0501 HI-SPEED AD from A05 SCAN/AD 4-33
4.3.8 Connecting the cable to Diplexing Bandswitch and F2626 (YTF) 4-33

Section 4 MS2668C

4.1 Overall Circuit description

MS2668C is a superheterodyne system scanning-type spectrum analyzer.
This section describes overall circuit of the MS2668C spectrum analyzer with its block diagram.

An RF input signal after passing through an RF switch and variable RF ATTN in Switched Attenuator is switched by Diplexing Bandswitch to two different signal routes depending on input RF frequency.

For an RF input frequency of 9 kHz to 3.1 GHz (termed as band 0), the signal passes through 3.2 GHz LPF and then to 1 st mixer (1st MIX), where it is mixed with 1st local signal (4.1 GHz to 7.2 GHz) to generate 4110.69 MHz 1 st IF signal. The 1st IF signal is then passed through an amplifier and image rejection filters, and fed to 2nd mixer (2nd MIX), where it is mixed with 4 GHz 2 nd local signal to generate 110.690 MHz 2 nd IF signal.

For an RF input frequency of 3.1 GHz to 40 GHz (band 1 to 5), the signal goes to YTF (YIG tuned filter), and then to 40 GHz H.MIXER. In 40 GHz H.MIXER, the RF signal gets mixed with the 1 st local signal (3.6 GHz to 7.5 GHz) to (For bands of 1 and 2; RF Input frequency of 3.1 to 8.1 GHz) generate 689.31 MHz 1 st IF signal.
At higher RF input frequencies (For bands of 3 to 5 ; RF Input frequency of 7.9 to 40 GHz) the 1 st LO signal (3.6 to 6.8 GHz) is passed through a frequency doubler and the doubled frequency (7.2 to 13.6 GHz) is then fed to 40 GHz H.MIXER. In 40 GHz H.MIXER this signal gets mixed input signal to generate a 689.3 MHz 1 st IF signal.
This 1st IF signal is passed through a series of amplifiers and image rejection filters before further mixing with 800 MHz 2nd local signal to convert the signal to the 110.690 MHz 2 nd IF signal.

Depending on the active band of RF input, one of the two above 2nd IF signal is sent to IF section for further processing.

The 1st local signal generated at YTO (YIG tuned oscillator) is frequency-swept by scan signal from SCAN/AD section after phase-lock to reference signal (its frequency is 11 MHz to 14 MHz with the resolution of 1 Hz steps) generated on LOCAL-SP1, 2 section at the center frequency of its sweeping range, in normal sweep condition.

The YTO output is passed through an amplifier, and then divided into three paths with directional couplers. One of divided signal is fed to sampler circuit and the other are fed to the above mixers to frequency-convert.
In the sampler circuit, sampling signal (its frequency is 94 MHz to 106 MHz with the resolution of 1 MHz steps) generated on LOCAL-SP1, 2 section is frequency-multiplied, and then mixed with the YTO output to generate sampler IF signal with a frequency of 11 MHz to 14 MHz .

The sampler IF signal is compared with the reference signal of 11 MHz to 14 MHz at PFD.

The reference signal frequency (fREF) and the sampling signal frequency (fs) are controlled by CPU section according to the measuring frequency of the instrument, and set so that the center frequency of 1st local signal is fs * $\mathrm{N} \pm$ fREF (, where N is an integer).

Meanwhile, the scan signal strength that is equivalent to frequency sweep width is controlled from LOCAL-SP1, 2 section.

The 2 nd local signals of 4 GHz and 800 MHz are also phase-locked to 100 MHz VCXO signal, of which the frequency is also phase-locked to 10 MHz crystal oscillator.

4.1 Overall Circuit description

In the instrument, a high accuracy 625 kHz signal is present for level accuracy calibration. This signal is generated by frequency-dividing the 10 MHz reference signal, and its power level is varied with 1 dB steps by CAL ATT.
Internal calibration operation being carried out, this calibrating signal is fed to the RF signal-route through the switch in Switched Attenuator.

At the IF section the incoming signal is divided into two paths. The main route leads to image rejection filters while the second, a highly attenuated feeler path signal is used for generation of wide band trigger signal in TRIG/GATE section (option 06) situated on OPTION BASE board.
The main signal after passing through an image rejection filter is beat down to a 10.69 MHz signal using a 100 MHz reference signal. This signal is then sent to various Resolution Band Width (RBW) setting circuits.

For RBW setting of 10 Hz to 100 Hz the signal is frequency converted to 450 kHz using 10.24 MHz signal. After passing through the RBW circuits (Crystal filter circuits) the signal is up converted back to 10.690 MHz signal and passed through wider RBW setting circuits. For RBW setting of 300 Hz to 3 MHz the signal is sent directly to wide RBW setting circuits without any frequency modifications.

The RBW processed signal is passed onto SCAN/AD section, where it passes through logarithmic amplifiers and then to a linear detector. This linear detected signal is passed through smoothing filters called Video Band Width Filters (VBW). This smoothed signal is then passed through Positive or Negative peak detection circuits and the output is converted to digital signal by a Analog to Digital Converter (ADC) circuit.
The results are then written (in digital word format) to a Dual Port RAM through one of the ports.

The CPU of the instrument on CPU section reads from the other port of Dual Port RAM and processes the data before displaying on the LCD screen. The CPU also controls various interface functions such as reading the Key Inputs or remote control commands received, and various outputs such as prints or plots of various data. The CPU also generates various commands required for controlling or setting of all hardware units inside the instrument.

FRONT BOARD section generates the KEY and rotary-knob encoder data, drives the LEDs, detects the power switch (PWR SW) setting, controls the power-supply On/Stby setting, and supplies power for the LCD backlight, etc.

Section 4 MS2668C

4.2 Troubleshooting

4.2.1 Introduction

This section describes how to troubleshoot the MS2668C.

4.2.1.1 Service kit

Refer to 2.2.1.1.

4.2.1.2 Required equipment

Refer to 3.2.1.2.

Section 4 MS2668C

4.2.1.3 Circuit reference

This paragraph supplies the exchange module list of the spectrum analyzer with its overall circuit diagram.
Table 4-2-1 Exchange Modules of MS2668C

Schematic number	Name	Model name	Ordering number	Note
1	MOTHER BOARD	MM200013A	34Y115415	
2	A02 FRONT BOARD	322U14223	34Y118357	
3	A03 CPU	322U14225	34Y118358	
4	A04 PMC/GPIB	322U12853	34Y106693	
5	SCAN/AD	MM200014A	34Y112923D	
6	IF(B)	MM200015A	34Y106718B	
7	LOCAL-SP2	MM200016A	34Y111112B	Order both numbers
	LOCAL-SP1	MM200017A	34Y111111B	
8	RF CONVERTER	MM200019A	34Y117226	
9	2nd CONVERTER	MM200020A	34Y117228	
10	COUPLER/AMP	MM200023A	34Y118006	
11	AK-AKF PANEL CONNECTOR	B46790	B46790	
12	Switched Attenuator	D29638	D29638	
13	Diplexing Bandswitch	D29870	D29870	
14	OPEN LOOP YIG FILTER	F2626	34Y117225	
	F2626 MODULE	MM200025A	339H42762	
	MLFP1312 MODULE	MM200026A	339H42762B	
15	40GHz H.MIXER	339H41184B	339H41184B	
16	POWER SUPPLY UNIT	34Z114508	34Z114508	
17	TFT LCD MODULE	NL3224AC35-01	No1256	
18	OPTION BASE	MM200018A	34Y106684B	
19	Switched Doubler	D29650	D29650	
Options				
20	A0501 HI-SPEED AD	332U36333	34Y106688	Option 04
21	A0901 TRIG/GATE	34Y106695B	34Y106695B	Option 06
22	A0902 AM/FM MONITOR	34Y106699B	34Y106699B	Option 07
23	A04 PMC/CENTRONICS	34Y106692B	34Y106692B	Option 10

To identify a exchange module, a label printed "Model number" is pasted on module.

Remark :

1. MS2668C has three kinds of YTF as exchange module. When you replace a YTF, check YTF model according to following procedure .
(1) Keep key " 0 " depressed while switching on the spectrum analyzer.
(2) Enter RF/Micro Conv maintenance menu.
1) Enter Cal menu by pushing "Shift" + " 0 " keys. Open second page of Cal menu by pushing "more".
2) Enter maintenance menu with "F6" (Maintenance) key.
(3) Press "F1" (Version \& options) keys.
(4) Press Key "more" 3 times. MAINTENANCE (4/4) page appears. Check YTF model. If " 09 : YTF MODEL" is not indicated, order "F2626".
If "09 : YTF MODEL : F2626" is indicated, order "F2626 MODULE".
If "09 : YTF MODEL : MLFP1312" is indicated, order "MLFP1312 MODULE".

2. When you replace a A02 FRONT BOARD or A03 CPU, check circuit board number (322U******) of A03 CPU . If circuit board number of A03 CPU is 322U13903, make sure to order A02 FRONT BOARD (322U14223) and A03 CPU (322U14225).
If circuit board number of A 03 CPU is 322 U 14225 , make sure to order one module which you replace.

Section 4 MS2668C

Section 4 MS2668C

4.2.2 Detecting faulty module

The flowchart shows the way to locate the faulty module among them.

4.2.3 Disassembling cabinet

Refer to 4.3.1.

4.2.4 Replacement of faulty module

Refer to 4.3.2 to 4.3.8.

4.2.5 Adjustment after module replacement

This paragraph describes the overall adjustment required after replacement of any modules in following Table. Look for modules which you replaced in Table. Please carry out work corresponding to module which you replaced. This adjustment is not necessary, if the module you replaced does not belong to the following Table.

Replaced module	
LOCAL-SP2 and LOCAL-SP1	Carry out 4.2.5.1 and 4.2.5.2.
RF CONVERTER	Carry out 4.2.5.2 and 4.2.5.3.
F2626 MODULE	
MLFP1312 MODULE	
OPEN LOOP YIG FILTER (F2626)	Carry out 4.2.5.2 to 4.2.5.4.
2nd CONVERTER	Carry out 4.2.5.3.
40GHz H.MIXER	Carry out 4.2.5.3 and 4.2.5.4.
A03 CPU	

4.2.5.1 Reference crystal oscillator adjustment

Refer to 2.2.5.1.

4.2.5.2 Sweep adjustment

Required equipment :
(1) 6769B Swept frequency synthesizer
(2) MG3633A Synthesized signal generator
(3) HP3478A Digital multimeter

Setup for the procedure (1), (2) :

Fig. 4-2-1

Connect the spectrum analyzer RF Input to MG3633A OUTPUT.

Setup for the procedure (3) :

(1) Connect digital multimeter HI input to the X3 terminal on LOCAL-SP2 PC board. (Refer to Fig. 3-2-4)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (4) :

(1) Connect digital multimeter HI input to the X21 terminal on LOCAL-SP2 PC board. (Refer to Fig. 3-2-4)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (5) :

(1) Connect digital multimeter HI input to the X3 terminal on A1307 YTF DRIVER PC board attached to 2nd CONVERTER. (Refer to Fig. 3-2-5)
(2) Connect digital multimeter LO input to the spectrum analyzer's common.

Setup for the procedure (6), (7) :

(1) Check model of YTF. (Refer to "Remark" of 4.2.1.3)
(2) Set jumper pins, X10 and X12 on A1307 YTF DRIVER PC board attached to 2nd CONVERTER, to YTF model side which you checked at (1). (Refer to Fig 3-2-5)
Example : When YTF model is "F2626", jumper pins are set as follows.

Fig. 4-2-2

Section 4 MS2668C

(3) Connect the spectrum analyzer RF Input to 6769B RF OUTPUT.

Fig. 4-2-3

Procedure :

(1) Local sweep adjustment

Refer to 3.2.5.2 Procedure (1) Local sweep adjustment.
(2) YTO FM sweep adjustment

Refer to 3.2.5.2 Procedure (2) YTO FM sweep adjustment.
(3) YTF offset voltage adjustment 1

Refer to 3.2.5.2 Procedure (3) YTF offset voltage adjustment 1.
(4) YTF offset voltage adjustment 2

Refer to 3.2.5.2 Procedure (4) YTF offset voltage adjustment 2.
(5) YTF tuning DAC adjustment

Refer to 3.2.5.2 Procedure (5) YTF tuning DAC adjustment.
(6) YTF tuning adjustment

1) Keep key "Preset" depressed while Switching ON the spectrum analyzer.
2) Wait till sweep of the spectrum analyzer starts and after that Switch OFF the power supply of the spectrum analyzer.
3) Now once again keep key " 0 " depressed while switching on the spectrum analyzer.
4) Initialize the spectrum analyzer (Press key "preset", followed by Key "F1").
5) Set the spectrum analyzer to :

Center frequency : 3.2 GHz
Span $: 200 \mathrm{MHz}$
6) Set 6769B Signal generator output to :

Frequency $\quad: 3.2 \mathrm{GHz}$
RF level : -10 dBm
7) Enter Cal menu by pushing "Shift" + " 0 " keys. Open the second page of Cal menu (press the key "more"), and enter Maintenance menu with "F6" key.
8) Select key "Mainte RF/Micro Conv" (F2), and press the key "more".
9) Press the key "Main Swp \rightarrow off" (F2). At this point YTF filter shape appears on the display of the spectrum analyzer.

Section 4 MS2668C

10) Adjust R79 on the 2 nd Converter (refer to Fig. 3-2-5) so as to shift the center of filter display about 5 MHz below the center frequency of the display.

\qquad
11) Set the spectrum analyzer to :

Center frequency : 30 GHz
12) Set 6769B Signal generator output to :

Frequency $: 30 \mathrm{GHz}$
RF level : -10 dBm
13) Enter Cal menu by pushing "Shift" + " 0 " keys. Open the second page of Cal menu (press the key "more"), and enter Maintenance menu with "F6" key.
14) Select key "Mainte RF/Micro Conv" (F2), and press the key "more".
15) Press the key "Main Swp \rightarrow off" (F2). At this point YTF filter shape appears on the display of the spectrum analyzer.
16) Wait 2 minutes.
17) Adjust R70 on the 2nd Converter (refer to Fig. 3-2-5) so as to shift the center of filter display to the center frequency of the display.

$$
\begin{gathered}
10 \mathrm{~dB} \text { down point } \\
\mathrm{A}=\mathrm{B}
\end{gathered}
$$

(7) YTF Sweep adjustment

1) Initialize the spectrum analyzer (Press key "preset", followed by Key "F1").
2) Set 6769B Signal generator output to:

Frequency : 26.2 GHz
RF level : -10 dBm
3) Set Marker of the spectrum analyzer to 26.2 GHz (Press keys "Marker" + " 2 "+" 6 "+"." + " 2 " + " GHz ") and adjust R41 on the 2nd Converter (refer to Fig. 3-2-5) to make Marker read maximum.
4) Set Pre-selector bias value to 0 by pressing keys "frequency" + "F5" (Pre-selector Tuning) + "F2" (Manual).
5) Set the marker function to delta marker mode (Press keys "Marker" + "F2").
6) Change Pre-selector bias value to negative value by the knob on the front panel as to read the level of delta marker to $-6 \mathrm{~dB} \pm 1 \mathrm{~dB}$.
Now read Pre-selector bias value (P1).
7) Change Pre-selector bias value to positive value by the knob on the front panel as to read the level of delta marker to $-6 \mathrm{~dB} \pm 1 \mathrm{~dB}$.
Now read Pre-selector bias value (P2).
8) Adjust R41 (rough adjustment) or R42 (close adjustment) on the 2nd Converter (refer to Fig. 3-2-5) until P1 + P2 become below ± 8, to repeat the procedure 4) to 8).

4.2.5.3 IF Gain-1 (ATT), IF Gain-2 (AMP) of Internal Mixer Band adjustment Required equipment :

(1) 6769B swept frequency synthesizer
(2) ML2437A Power sensor
(3) MA2444A Power sensor

Setup :

(1) Connect RF Input of the spectrum analyzer to RF OUTPUT of 6769B.

Procedure:

(1) Keep key " 0 " depressed while switching on the spectrum analyzer.
(2) Initialize the spectrum analyzer :

1) Enter Preset menu with "preset" key.
2) Initialize the spectrum analyzer completely with "F1" key.
(3) Calibrate the spectrum analyzer using its internal calibration function :
3) Enter Cal menu with "Shift" key and " 0 " key.
4) Calibrate the spectrum analyzer by pushing "F1" key.
[Band 1-]
(4) Set Manual Band to Band 1-:
5) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
6) Enter Internal mixer Band menu with "F1" (Internal Mix) key.
7) Set manual band to Band 1- by pushing "F3" (Manual Band 1-) key.
(5) Set the spectrum analyzer to :

Center frequency $: 4.35 \mathrm{GHz}$
Span : 200 MHz
Set the 6769 B output frequency to $4.35 \mathrm{GHz}(\mathrm{CW})$.
(6) Adjust the 6769B output level to make power meter reading - 10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(7) Tune the spectrum analyzer's pre-selector, using its pre-selector auto tune function :

1) Press "frequency" key.
2) Carry out pre-selector Auto Tune function by pushing "F4" (Pre-selector Auto Tune) key.
(8) Take the marker to signal peak by pushing "Peak Search" key.
(9) Enter RF/Micro Conv maintenance menu, and open its 6th page :
3) Enter Cal menu by pushing "Shift" + " 0 " keys. Open second page of Cal menu by pushing "more".
4) Enter maintenance menu with "F6" (Maintenance) key.
5) Enter RF/Micro Converter maintenance menu with "F2" (Mainte RF/Micro conv) key. Open the 6th page of RF/ Micro converter maintenance menu (Press "more" key 5 times).
(10) Set IF Gain-1 and IF Gain- 2 values to 0 .
6) Press "F4" (IF Gain-1) + " 0 " + "enter" keys and on display appears a writing "IF Gain 1 set to 0 ".
7) Press "F5" (IF Gain-2) + " 0 " + "enter" keys and on display appears a writing "IF Gain2 set to 0 ".
(11) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.

- If the level is lesser than this, the level can be raised by increasing the Number of IF Gain-2 (F5) from 0 to 255 in single whole numbers.

Press "F5" + "number (0 to 255)" + "enter" keys.

- If the level is greater than this, the level can be lowered by increasing the Number of IF Gain-1 (F4) from 0 to 255 in single whole numbers.

Press "F4" + "number (0 to 255)" + "enter" keys.
[Band 1+n=1]
(12) Set Manual Band to Band $1+\mathrm{n}=1$:

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key.
3) Set manual band to Band $1+\mathrm{n}=1$ by pushing " F 4 " (Manual Band $1+\mathrm{n}=1$) key.
(13) Set the spectrum analyzer to :

Center frequency $\quad: 6.75 \mathrm{GHz}$
Span : 200 MHz
Set the 6769 B output frequency to $6.75 \mathrm{GHz}(\mathrm{CW})$.
(14) Adjust the 6769B output level to make power meter reading -10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(15) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(16) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(17) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(18) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Band $1+\mathrm{n}=2$]
(19) Set Manual Band to Band $1+\mathrm{n}=2$:

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "Fl" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band $1+\mathrm{n}=2$ by pushing " F 2 " (Manual Band $1+\mathrm{n}=2$) key.
(20) Set the spectrum analyzer to :

Center frequency $: 11.1 \mathrm{GHz}$
Span : 200 MHz
Set the 6769B output frequency to $11.1 \mathrm{GHz}(\mathrm{CW})$.

Section 4 MS2668C

(21) Adjust the 6769B output level to make power meter reading -10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(22) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(23) Enter RF/Micro Conv maintenance menu, and open its 6 th page (refer to procedure (9)).
(24) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(25) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Band 2-]
(26) Set Manual Band to Band 2- :

1) Enter Frequency menu by pushing "Frequency" key, and open its second page with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band 2- by pushing "F3" (Manual Band 2-) key.
(27) Set the spectrum analyzer to :

Center frequency $: 20.3 \mathrm{GHz}$
Span : 200 MHz
Set the 6769 B output frequency to $20.3 \mathrm{GHz}(\mathrm{CW})$.
(28) Adjust the 6769B output level to make power meter reading - 10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(29) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(30) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(31) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(32) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ refer to procedure (11)).
[Band 3-]
(33) Set Manual Band to Band 3-:

1) Enter Frequency menu by pushing "Frequency" key, and open its second age with "more" key.
2) Enter Internal mixer Band menu with "F1" (Internal Mix) key and open its second page with "more" key.
3) Set manual band to Band 3- by pushing "F4" (Manual Band 3-) key.
(34) Set the spectrum analyzer to :

Center frequency $: 33.1 \mathrm{GHz}$
Span : 200 MHz
Set the 6769B output frequency to $33.1 \mathrm{GHz}(\mathrm{CW})$.
(35) Adjust the 6769B output level to make power meter reading -10 dBm at end of cable feeding the signal to the spectrum analyzer, and then connect the cable to the spectrum analyzer's RF Input.
(36) Tune the spectrum analyzer's pre-selector (refer to procedure (7)).
(37) Enter RF/Micro Conv maintenance menu, and open its 6th page (refer to procedure (9)).
(38) Set IF Gain-1 and IF Gain-2 values to 0 (refer to procedure (10)).
(39) Adjust IF Gain 1 and IF Gain 2 so that marker reading becomes $-12 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$ (refer to procedure (11)).
[Writing the compensation values of IF Gain1 and IF Gain2 to Flash Memory]
(40) After the above adjustment is done, Press "F6" (return) + "F1" (Version \& options) keys.
(41) Press Key "more" 3 times. MAINTENANCE (4/4) page appears.
(42) Press the cursor down key ("F5") till it falls on "Save model and Option Data?" and after that press "F1" (Select) Key.
(43) On pressing the above key F1 key turns to "SAVE". Press again and "F1" key turns "Really save?" at this stage press "F2" (Yes).
(44) The display shows a message "Now saving, Wait \qquad .."
(45) Wait till this message disappears and after that Switch OFF the power supply of the spectrum analyzer.
(46) Now once again Switch ON the power supply of the spectrum analyzer with "Preset" key depressed.

4.2.5.4 IF Gain-1 (ATT), IF Gain-2 (AMP) of External Mixer Band adjustment

Refer to 3.2.5.4.

4.2.6 Assembling cabinet

Refer to 4.3.1.

4.2.7 Checking items after assembling cabinet

Refer to 2.2.7.

4.2.8 Frequency response compensation

Perform Frequency response compensation, when one of the following modules is replaced. This Frequency response compensation is not necessary, if the module you replaced does not belong to the following modules.

- A03 CPU
- Switched Attenuator
- RF CONVERTER
- Diplexing Bandswitch
- 2nd CONVERTER
- OPEN LOOP YIG FILTER (F2626)
- F2626 MODULE
- MLFP 1312 MODULE
- Switched Doubler
- 40GHz H.MIXER

With regards to the method of performing Frequency response compensation, refer to 2.2.8.

4.3 Mechanical configuration

4.3.1 Disassembling/Assembling cabinet

Refer to 3.3.1.

4.3.2 Removing/Assembling units and PC boards

Refer to 3.3.2.

4.3.3 Disassembling/Assembling Components around RF Input

Refer to 3.3.3.

4.3.4 Disassembling/Assembling Units and Components on lower surface

Caution :

For F2626 MODULE and MLFP1312 MODULE (A label printed "Model number" is pasted on plate (4), YTF are attached to the plate (4), to form the module, by the S 4 screws which is tightened at pre-determined torque of 6 kg . If torque of the S 4 screws is changed, the performance specification of YTF will be affected.
Therefore YTF must not be disassembled from the plate (4).

Removing 2nd CONVERTER (1), Coupler/Amp (2), YTF (3), 40GHz H.MIXER (5) Switched Doubler (6).
(1) Removing 2nd CONVERTER (1)

After 3.3.1 (2) removing procedure, remove the S1/S2 screws and remove the 2nd Converter (1) to pull backward.
(2) Removing A15 Coupler/Amp (2)

After 3.3.1 (2) removing procedure, remove the S 3 screws and remove the Coupler/Amp (2).
(3) Removing YTF (3) (For F2626)

If YTF is OPEN LOOP YIG FILTER (F2626), perform this removing procedure.
If YTF is F2626 MODULE or MLFP1312 MODULE, perform (4) removing procedure.

1) After 3.3.1 (2) removing procedure, remove the N 1 nuts and remove the plate (4).
(YTF (3), 40GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4)).
2) Remove the S 5 screws.
3) Loose the S 7 screws. If there are no S 7 screws, perform procedure 4).
4) Disconnect 40GHz H.MIXER's connector which is connected to YTF (3).
5) Remove the S 4 screws.

Section 4 MS2668C

(4) Removing YTF (3) (For F2626 MODULE or MLFP1312 MODULE)

If YTF is F2626 MODULE or MLFP1312 MODULE, perform this removing procedure. If YTF is OPEN LOOP YIG FILTER (F2626), perform (3) removing procedure.

1) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4).
(YTF (3), 40 GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4)).
2) Remove the S 3 screws and remove the Coupler/Amp (2).
3) Remove the S 6 screws and remove the Switched Doubler (6).
4) Remove the $S 5$ screws.
5) Loose the S 7 screws. If there are no $\mathrm{S7}$ screws, perform procedure 6).
6) Disconnect 40 GHz H.MIXER's connector which is connected to YTF (3).

Caution :

For F2626 MODULE or MLFP1312 MODULE, do not remove the S4 screws.
(5) Removing 40 GHz H.MIXER (5)

1) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4).
(YTF (3), 40 GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4)).
2) Remove the $S 5$ screws.
3) Loose the S 7 screws. If there are no $\mathrm{S7}$ screws, perform procedure 4).
4) Disconnect 40 GHz H.MIXER's connector which is connected to YTF (3).
(6) Removing Switched Doubler (6)
5) After 3.3.1 (2) removing procedure, remove the N1 nuts and remove the plate (4).
(YTF (3), 40GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4)).
6) Remove the S 6 screws

Assembling 2nd CONVERTER (1), Coupler/Amp (2), YTF (3), 40GHz H.MIXER (5), Switched Doubler (6).
(1) Assembling 2nd CONVERTER (1)

Perform removing procedure (1) inversely.
(2) Assembling Coupler/Amp (2)

Perform removing procedure (2) inversely.
(3) Assembling YTF (3) (For F2626)

If YTF is OPEN LOOP YIG FILTER (F2626), perform this assembling procedure.
If YTF is F2626 MODULE or MLFP1312 MODULE, please perform (4) assembling procedure.

1) Tighten the S 4 screws.
2) Connect 40GHz H.MIXER's connector to YTF (3)'s connector.

At this time, make sure that the lower surface cover of 40 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.4-3-1)

Fig. 4-3-1
3) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.4-3-1). If there are no S7 screws, perform procedure 4).
4) Tighten the S 5 screws.
5) Attach the plate (4) and tighten the N1 nuts.
(YTF (3), 40GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4).
(4) Assembling YTF (3) (For F2626 MODULE or MLFP1312 MODULE)

If YTF is F2626 MODULE or MLFP1312 MODULE, perform this assembling procedure. If YTF is OPEN LOOP YIG FILTER (F2626), please perform (3) assembling procedure.

1) Connect 40 GHz H.MIXER's connector which is connected to YTF (3). At this time, make sure that the lower surface cover of 40 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.4-3-1)
2) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.4-3-1). If there are no S 7 screws, perform procedure 3).
3) Tighten the S 5 screws.
4) Attach the Coupler/Amp (2) and tighten the $S 3$ screws.
5) Attach the Switched Doubler (6) and tighten the $S 6$ screws.
6) Attach the plate (4) and tighten the N1 nuts.
(YTF (3), 40GHz H.MIXER (5), Coupler/Amp (2) and Switched Doubler (6) are Attached on the plate (4).
(5) Assembling 40GHz H.MIXER (5)
7) Connect 40 GHz H.MIXER's connector which is connected to YTF (3).

At this time, make sure that the lower surface cover of 40 GHz H.MIXER is set parallel to Plate (4). (Refer to Fig.4-3-1)
2) Tighten the $S 7$ screws. while making sure that the Mixer angle rests on the Plate (4) thoroughly with no gap between them (Refer to Fig.4-3-1). If there are no S7 screws, perform procedure 3).
3) Tighten the S 5 screws.
4) Attach the plate (4) and tighten the N1 nuts.

Section 4 MS2668C

Caution :

Use MODEL 01-201 TORQUE WRENCH (Anritsu) when connectors, which are connected to YTF (3), are tightened.
If there is not it, use torque wrench whose torque is 8 IN-LBS.

Parts List

(1) 34 Y 117228

2nd CONVERTER
(2) 34 Y 118006

Coupler/Amp
(3) 34 Y 117225

339H42762
YTF (F2626) or
F2626 Module or
339H42762B
MLFP1312 Module
(4) 33 B 40911

Plate
(5) 339 H 41184

40GHz H.MIXER
(6) D 29650
(7) 33 J 41083
(8) 34 J 117450

Switched Doubler
(9) 34 J 119771

Semi-rigid cable
Semi-rigid cable
(10) 34 J 117453

Semi-rigid cable
(11) 34 J 117452

Semi-rigid cable
(12) 34 J 117454

Semi-rigid cable
(13) 34 J 117236

Semi-rigid cable
Semi-rigid cable

4.3.5 Front unit disassembly/assembly
 Refer to 3.3.5.

4.3.6 A09 OPTION BASE disassembly/assembly

Refer to 3.3.6.
4.3.7 Removing/Assembling A0501 HI-SPEED AD from A05 SCAN/AD Refer to 3.3.7.
4.3.8 Connecting the cable to Diplexing Bandswitch and F2626 (YTF) Refer to 3.3.8.

Section 4 MS2668C

4-34.

Section 5 Firmware installation

To install software, it needs 2 memory cards. Card 1 includes installer software. Card 2 includes spectrum analyzer firmware.
Installation process is as follows.

Refer to paragraph 2.3.1, on disassembly/assembly cabinet.
(1) Switch off the instrument and remove the AC cord.
(2) Place spectrum analyzer vertically with display facing down.
(3) Loosen 4 screws on spectrum analyzer front panel protector legs.
(4) Remove 4 screws on spectrum analyzer rear panel protector legs.
(5) Pull the spectrum analyzer cover upwards. (Tight due to earthling springs used inside, make sure to remove the springs along)
(6) Set the jumper pin X12 (ROM/PMC select) on A03 CPU board to PMC side (refer to Fig. 2-2-6).
(7) Set memory card 1 (installer) at upper side card slot and set memory card 2 (firmware) at lower slot.
(8) Connect AC cord and switch the power-on. Installation starts automatically. (It takes about 90 sec .)
(9) After installation is completed, switch the power-off and set the jumper pin back to ROM side.
(10) Place back the spectrum analyzer cover along with the earthling springs.
(11) Tighten the 4 screws on spectrum analyzer front panel protector legs.
(12) Tighten up 4 screws on spectrum analyzer rear panel protector legs.
(13) Switch on the power supply keeping the "PRESET" key depressed and keep it pressed till the spectrum analyzer starts sweeping.

Section 5 Firmware installation

5-2.

Section 6 Performance test system

The following describes the summary of the performance test system on MS2665C/MS2667C/MS2668C. This test system consists of various measuring instruments that are controlled by GPIB, and covers major part of required performance test. The test process is divided into three groups according to instruments setup.

Meanwhile, average noise level and residual response measurement needs another software running on PTA function.
6.1 Required instruments 6-2
6.2 Required software 6-2
6.3 Test group 1 6-3
6.3.1 Test items : 6-3
6.3.2 Setup : 6-3
6.4 Test group 2 6-4
6.4.1 Test items: 6-4
6.4.2 Setup : 6-5
6.5 Test group 3 6-6
6.5.1 Test items : 6-6
6.5.2 Setup : 6-7

Section 6 Performance test system

6.1 Required instruments

The following table shows the instruments of the performance test system.

Nomenclature	Model number	Manufacture	Note
Swept frequency synthesizer	6769B	Anritsu	
two Synthesized signal generators	MG3633A	Anritsu	
Power meter	ML4803A	Anritsu	
Power sensor	MA4701A	Anritsu	MS2665C only
Power meter	ML4803A	Anritsu	MS2665C only
Power sensor	MA4705A	Anritsu	MS2667, MS2668C only
Power meter	ML2437A	Anritsu	MS2667, MS2668C only
Power sensor	MA2444A	Anritsu	
Adapter (K female to K female)	K222B	Anritsu	
Programmable attenuator	MN63A	Anritsu	
Microwave channel selector	MN74A	Anritsu	
Spectrum analyzer	MS2602A	Anritsu	
Signal source	MG443B	Anritsu	
AM/FM test source	11715A	Hewlett Packard	
two 3 dB attenuators	41KC-3	Anritsu	
Four-point junction pad	MA1612A	Anritsu	
Lowpass filter	Lowpass filter	Anritsu	
Lowpass filter with fc 2 GHz			
50 ohms terminator			
IBM-PC/AT compatible			
GPIB interface board	GPIB-PC2/2A	National Instruments Corp.	

6.2 Required software

Please consult APCS (Anritsu customer service center) for confirmation of software requirements.
Performance test software of MS2665C/MS2667C/MS2668C spectrum analyzer.

6.3 Test group 1

6.3.1 Test items :

Frequency response

6.3.2 Setup :

Fig. 6-3-1

At the measurement of frequency response, connect the spectrum analyzer's RF Input to 6769B RF OUTPUT through a signal feeder. The signal feeder consists of a coaxial cable (e.g. SUCOFLEX) less than 1 m length and two 3 dB attenuators ($41 \mathrm{KC}-3$) attached to each end of the cable.
(1) At the calibration of power output, connect the end of the feeder to power sensor.

Note :

1) The coaxial cable must be with a frequency range over the spectrum analyzer's range.
2) Use a torque wrench for tightening each connection.
3) After the power calibration, do not disconnect the connections of the 6769 B and the signal feeder in order to keep the measured data valid.

Section 6 Performance test system

6.4 Test group 2

6.4.1 Test items :

Displayed frequency accuracy,
Span accuracy,
RBW accuracy, selectivity,
VBW accuracy,
Side band noise at 100 kHz offset,
Reference level accuracy,
RBW switching error,
LOG/Linear scale switching error, Displayed level linearity,
Input attenuator switching error,
Image response,
Multiple response,
Sweep time, time span accuracy,
Detection mode switching error,
Frequency drift,
Narrow RBW accuracy, selectivity (option 02, option 03),
Hi -speed time domain sweep time accuracy (option 04).

6.4.2 Setup :

Power sensor : MA4701A or MA2444A
Fig. 6-4-1

On MN74A, connect CH1 to MG3633A OUTPUT through MN63A and connect CH3 to 6769B RF OUTPUT.
At the measurement, connect the spectrum analyzer's RF Input to COMMON of MN74A through a signal feeder. When Image response or/and Multiple response of MS2667/68C are measured, connect the spectrum analyzer's RF Input to 6769B RF OUTPUT through a signal feeder.
(1) At the calibration of power output, connect the end of the signal feeder to the power sensor.

Section 6 Performance test system

6.5 Test group 3

6.5.1 Test items :

2nd harmonic distortion,
Two signal 3rd intermodulation distortion,
Other spurious responses,
IF through,
1 dB gain compression,
Local signal leakage,
FM demodulation frequency response (option 07),
FM demodulation marker display accuracy (option 07).

6.5.2 Setup :

Fig. 6-5-1

Section 6 Performance test system

On MN74A, connect CH1 to MG3633A OUTPUT, connect CH3 to 6769B RF OUTPUT, and connect CH5 to MS2602A RF Input. Connect MG443B UNBALANCED to 11715A AUDIO IN. On MA1612A, connect SSG3 terminal to MG3633A OUTPUT and terminate SSG2 terminal with 50 ohms terminator.
At the measurement, connect the spectrum analyzer's RF Input to COMMON of MN74A.
(1) Measuring 2nd harmonic distortion, insert two lowpass filters between the RF Input and the COMMON.
(2) Measuring two signal 3rd intermodulation distortion and 1 dB gain compression, connect the RF Input to MA1612A's Receiver terminal and connect the COMMON of MN74A to SSG1 terminal.
(3) Measuring FM demodulation frequency response, connect the RF Input to the COMMON of MN74A, and connect 11715A's FM OUT or FM/4 OUT to CH7 of MN74A according to PC instruction.

Section 7 Options

7.1 Introduction 7-2
7.1.1 Option structure summery 7-2
7.1.2 Retrofit 7-2
7.2 Parts, PC board installation 7-3
7.2.1 Cabinet disassembly/assembly 7-3
7.2.2 Parts/PCBs fitting for each option 7-3
7.2.2.1 Option 04 Hi -speed time domain sweep 7-3
7.2.2.2 Option 06 Trigger/gate circuit 7-4
7.2.2.3 Option 07 AM/FM demodulator (voice monitor) 7-5
7.2.2.4 Option 10 Centronics interface 7-6
7.3 Software setting 7-7
7.4 Performance test 7-11
7.4.1 Option 04 Hi -speed time domain sweep 7-11
7.4.2 Option 06 Trigger/gate circuit 7-12
7.4.2.1 EXT TRIG Check 7-13
7.4.2.2 GATE Check 7-14
7.4.2.3 VIDEO Trig Check 7-14
7.4.2.4 Wide IF Video Trig Check 7-15
7.4.2.5 Line TRIG Check 7-15
7.4.3 Option 07 AM/FM demodulator (voice monitor) 7-16
7.4.3.1 Measure of AM Voice Monitor Voltage 7-17
7.4.3.2 Measure of FM Voice Monitor Voltage (Narrow Band) 7-17
7.4.3.3 Measure of FM Voice Monitor Voltage (Wide Band) 7-18
7.4.4 Option 10 Centronics interface 7-18

Section 7 Options

7.1 Introduction

Current options available with MS2665C, MS2667C and MS2668C are shown in Table 7-1-1.
Table 7-1-1 Options

No of option	Name of option	65C $\mathbf{(1)}$	67C $\mathbf{(2)}$	68C $\mathbf{(3)}$	Installation note		
01	Reference crystal oscillator	\checkmark			Soldering needed to attach crystal oscillator, etc. on A08 LOCAL-A PC board.		
02	Narrow RBW (RBW: 30, 100, 300 Hz)	\checkmark	\checkmark	\checkmark	Soldering needed to attach crystal filters on A06 IF PC board.		
03	Narrow RBW (RBW: 10, 30, 100, 300 Hz)		\checkmark	\checkmark	Soldering needed to attach crystal filters on A06 IF PC board.		
04	High-speed time domain sweep	\checkmark	\checkmark	\checkmark	A0501 HI-SPEED AD needed, see Fig. 2-3-6 (for MS2665C) or		
Fig. 3-3-6 (for MS2667/68C).						,	Trigger/gate circuit
:---							
06							
07							
AM/FM demodulator (voice monitor)							
\checkmark							

(1) " 65 C " means MS2665C.
(2) " $67 \mathrm{C} "$ means MS2667C.
(3) "68C" means MS2668C.

7.1.1 Option structure summery

Option 06 Trigger/gate circuit and 07 AM/FM demodulator are mounted on a PC board named A09 OPTION BASE, that is not installed in our factory when an instrument with none of the two options is shipped. Refer to Fig. 2-3-5 (for MS2665C) or Fig. 3-3-5 (for MS2667/68C).
Option 04 High-speed time domain sweep is mounted on A05 SCAN/AD PC board. Refer to Fig. 2-3-5 (for MS2665C) or Fig. 3-3-5 (for MS2667/68C).

7.1.2 Retrofit

Retrofitting the options, the installation work must be done by only qualified service personnel in Anritsu service centers, because almost all options need disassembling cabinet and PCBs, some options need parts soldering.

7.2 Parts, PC board installation

7.2.1 Cabinet disassembly/assembly

Fig. 2-3-1 and 2-3-2 (for MS2665C) shows mechanical structure of the instruments (For MS2667/68C, see Fig. 3-3-1 and 3-3-2). To disassemble cabinet, perform procedures below.
(1) Remove eight feet.
(2) Draw enclosing cabinet backward and remove it.
(3) Remove rear panel

To assemble, perform inversely.

7.2.2 Parts/PCBs fitting for each option

7.2.2.1 Option 04 Hi -speed time domain sweep

Related units :

(1) A05 SCAN/AD

Additional parts :

(1) A0501 HI-SPEED AD constituent list (34Y106688)

Procedure :

Refer to paragraph 2.3.5 (for MS2665C) or paragraph 3.3 .5 (for MS2667/68C).
(1) Connect A0501-X1 and A0501-X2 to A05-X6 and A05-X7.
(2) Fix A0501 to A05 with the strut and four screws.
(3) Turn on power, change option setting in Maintenance menu to OPT04 ON.

Section 7 Options

7.2.2.2 Option 06 Trigger/gate circuit

Related units :

(1) A09 OPTION BASE

Additional parts :

(1) For MS2665C, A09 OPTION BASE constituent list (34Y106684)
(not necessary when OPT07 is installed)
For MS2667C or MS2668C, A09 OPTION BASE constituent list (34Y106684B)
(not necessary when OPT07 is installed)
(2) For MS2665C, A0901 TRIG/GATE constituent list (34Y106695)

For MS2667C or MS2668C, A0901 TRIG/GATE constituent list (34Y106695B)

Procedure:

Refer to paragraph 2.3.4 (for MS2665C) or paragraph 3.3.4 (for MS2667/68C).
(1) Attach A0901-X1 to A09-X3.
(2) Fix A0901 to A09 with strut and four screws.
(3) Connect A09-X8 and A0901-X2 using the A0901-W1 cable.
(4) Remove BNC mounting plate (no hole) attached to the locations where EXT TRIG IN is indicated on the A09 PCB. (one screw)
(5) Attach A0901-X4 receptacle to a place where EXT TRIG IN is indicated on A09 PCB with BNC mounting plate (with hole) (three screws).
(6) Solder center conductor of the A0901-W2 cable to center conductor of A0901-X4. Solder mesh outer conductor to 2.6 WH and fix along with the BNC mounting plate.
(7) Connect A0901-W2 cable connector to A0901-X3.
(8) Turn on power, change the option setting in the Maintenance menu to OPT06 ON.

7.2.2.3 Option 07 AM/FM demodulator (voice monitor)

Related units :

(1) A09 OPTION BASE

Additional parts:

(1) For MS2665C, A09 OPTION BASE constituent list (34Y106684) (not necessary when OPT06 is installed) For MS2667C or MS2668C, A09 OPTION BASE constituent list (34Y106684B) (not necessary when OPT06 is installed)
(2) For MS2665C, A0902 AM/FM MONITOR constituent list (34Y106699) For MS2667C or MS2668C, A0902 AM/FM MONITOR constituent list (34Y106699B)

Procedure :

Refer to paragraph 2.3.4 (for MS2665C) or paragraph 3.3 .4 (for MS2667/68C).
(1) Attach A0902-X1 to A09-X4.
(2) Fix A0902 to A09 with the strut and six screws.
(3) Connect A09-X10 and A0902-X2 with A0902-W1 cable.
(4) Remove earphone plate (no hole) attached to the location where EAR PHONE is indicated on A09 (one screw).
(5) Attach A0902-X4 (earphone jack) with earphone plate (with hole) to a place where EAR PHONE is indicated on A09. (two screws)
(6) Solder wires of A0902-W2 cable to A0902-X4 terminals.
(7) Connect A0902-W2 cable connector to A0902-X3.
(8) Turn on power, change the option setting in the Maintenance menu to OPT07 ON.

Note:

(1) Do not loosen the screw near A0902-X1 at the corner of the PC board in step (2), or it result in circuit short.

Section 7 Options

7.2.2.4 Option10 Centronics interface

Related units :
(1) A03 CPU

Additional parts :

(1) A04 PMC/CENTRONICS constituent list (34Y106692A or 34Y106692B), refer to paragraph 2.2.1.3 (For MS2665C) or paragraph 3.2.1.3 (For MS2667C) or paragraph 4.2.1.3 (For MS2668C).

Procedure :

Refer to paragraph 2.3.2.
(1) Connect A04-X1 and A04-X2 to A03-X2 and A03-X3.
(2) Fix A04 to A03 and the front frame with strut and five screws.
(3) Remove a cover on the back panel, attach the PARALLEL connector of A04-W1 cable to the back panel with both a patch and the CENTRONICS plate (four screws).
(4) Connect A04-W1 cable to A04-X4.
(5) Do not remove PMC cap on the front panel.
(6) Turn on power, change the option setting in the Maintenance menu to OPT10 ON.

7.3 Software setting

Installation consists of four processes, cabinet disassembly, parts/PCB fitting, cabinet assembly, software setting and calibration/test. Software setting in Maintenance display is required for options to be effective.

Procedure :

Entering Maintenance display
(1) Turn on power while pushing 0 key.
(2) Enter Cal menu by pushing Shift+0 keys.
(3) Open the second page of the Cal menu and enter Maintenance menu with F6 key.
(4) Maintenance display appears with Version \& Options (F1) key.

MAINTENANCE (1/4) Product No.			Mainte-	
			*	
			Select	
ROM Version Sum Code				
MAIN 0.225-003 F736				
MEAS	$0.243-001$	95D1	\uparrow	
$\begin{aligned} & \text { LIBS } \\ & \text { ADB } \end{aligned}$	0.56-001	429 C		
	0.88-001	C3D7		
Power On Time		350 hr		
RTTN	5 dB	0 Counts	\rightarrow	
	$10 \mathrm{~dB} \quad 124$	45 Counts		
	$20 \mathrm{~dB} \quad 47$	71 Counts		
	$40 \mathrm{~dB} \quad 32$	22 Counts	\downarrow	
InputP	Prtet	0 Counts		
	LCD check		return	
			\|1	

Fig. 7-3-1 Maintenance Display

Section 7 Options

Setting of option
(1) Open the second or third page of the Maintenance display.
(2) Set option state by using four arrow keys.

MAINTENANCE (2/4)	Mainte-	
Model: MS2663E	*	
Option 01-14	Select	
01:Reference 0SC : ON OFF		
02: Narrow RBW : ON OFF		
03: Frequency Measure: ON OFF	\uparrow	
04: Hi Speed Time Do-: ON OFF		
05:FM Monitor : ON OFF	\leqslant	
06: Trigger/Gate : ON OFF		
07: AM/FM Sound Moni-: ON OFF		
08:Pre Amplifier : ON OFF	\Rightarrow	
09:GPIB Interface : ON OFF		
10:Parallel Interfa-: ON OFF		
11:PC Card Interface: ON OFF	\downarrow	
12: QP Det with 200Hz:ON OFF		
13: QP Det NON 200Hz: ON OFF		
14:PTA Parallel I/0 : ON OFF		
	return	
Continue Next Page		
	\| 12	

Fig. 7-3-2 Setting of option

Saving the state in EEPROM
When states of options are changed they must be saved in Flash Memory.
(1) Open the fourth page of the Maintenance display.
(2) Set cursor on "Save Model \& Option Data?" by arrow keys.
(3) Push Select (F1) key to enter Save menu.
(4) Push Save (F1) key and confirmation menu appears.
(5) Push Yes (F2) key.
(6) Push return (F6) key to exit Maintenance Display.

It takes about five seconds to save data in Flash Memory.

Fig. 7-3-3 Saving the state in Flash Memory

7.4 Performance test

7.4.1 Option 04 Hi-speed time domain sweep

(1) Required equipment:

6769B Swept frequency synthesizer (Anritsu)
(2) Specifications:

Setting range : $12.5 \mathrm{usec}, 25 \mathrm{usec}, 50 \mathrm{usec}, 100 \mathrm{usec}$ to 900 usec (One most significant digit settable), 1.0 ms to 19 ms
(Two upper significant digits settable)
Accuracy: $\pm 1 \%$
Marker level resolution : 0.1 dB (LOG scale), 0.2% (Linear scale, relative to reference level)
(3) Setup :

Connect the spectrum analyzer's RF Input to 6769B RF OUTPUT.
(4) Measurement :

1) Initialize the spectrum analyzer and the 6769B.
2) After "All Cal", set the spectrum analyzer to :

Center frequency, 100 MHz
Span, 0 Hz
Sweep time, 12.5 usec
RBW, 1 MHz
VBW, 1 MHz
Set the 6769B to :
FREQUENCY, 100 MHz
RF LEVEL, -16 dBm
MODULATION, AM (Internal) 90\%
MODULATION FREQ, 1.6 MHz
3) On the spectrum analyzer, press " \rightarrow Ref" key, set the scale to Linear, and then press "Single" key.
4) After sweeping, move the spectrum analyzer's marker onto left most peak of the sine wave using the knob.
5) On the spectrum analyzer, set the marker function to delta marker mode, and then move the marker onto the 18 th peak from the left most peak.
6) Read the difference of the delta marker, which correspond to 90% of time span.

Section 7 Options

7) Similarly, measure 90% of time span at each setting shown below:

The spectrum analyzer time span	6769B AM frequency	90\% of specification (MIN/MAX)
25 usec	800 kHz	$22.275 \mathrm{usec} / 22.725 \mathrm{usec}$
50 usec	400 kHz	$44.55 \mathrm{usec} / 45.45 \mathrm{usec}$
500 usec	40 kHz	$445.5 \mathrm{usec} / 454.5 \mathrm{usec}$
5 msec	4 kHz	$4.455 \mathrm{msec} / 4.545 \mathrm{msec}$

7.4.2 Option 06 Trigger/gate circuit

(1) Required equipment

1) 6769B Swept signal synthesizer (Anritsu)
2) Function Generator (HP3325B)
(2) Setup

The spectrum analyzer

Fig. 7-4-1
(3) Setting

1) Function Generator (HP3325B)

Frequency: 100 Hz
Function: Square wave
Amplitude : 2.5 volts peak to peak
Offset: 0 V
2) 6769 B

Frequency : $100 \mathrm{MHz}(\mathrm{CW})$
Output Level : -10 dBm
Pulse External
3) The spectrum analyzer

Center frequency : 100 MHz
Couple : Independent
Display: Time
RBt : 30 kHz
VBt: 300 kHz
Time Span : 20 ms
Attenuator: 0 dB

7.4.2.1 EXT TRIG Check

(1) Set the spectrum analyzer to :

Trigger, Triggered
Trigger Source, External

(2) Measurement

By changing the trigger level, find the point where sweep is stopped.
Because ± 2.5 Volts pulse is entered from the HP3325B, sweep should be stopped near that voltage.
Set DC offset to 1.25 Volts on the HP3325B.
The spectrum analyzer is all right if synchronization is properly performed when EXT input is set to TTL.

Section 7 Options

7.4.2.2 GATE Check

(1) Set the spectrum analyzer to:

Time Span, 20 ms
Gate sweep, ON
Gate Display, 1 ms
Gate Length, 2 ms
Gate End, Int
(2) Measurement

A wave-form like the one shown in View Fig. 7-4-2 should be displayed.

Fig. 7-4-2

7.4.2.3 VIDEO Trig Check

(1) Set the spectrum analyzer to:

Time Span, 20 ms
Gate sweep, OFF
Trigger, Triggered
Trigger, Source VIDEO
(2) Measurement

Change the trigger level, and make sure that synchronization is normal within the pulse range shown in Fig. 7-4-3.

Fig. 7-4-3

7.4.2.4 Wide IF Video Trig Check

(1) Specification

Trig Level High : Approximately -5 to -10 dBm
Trig Level Middle : Approximately -15 to -20 dBm
Trig Level Low : Approximately -25 to -30 dBm
(2) Set the spectrum analyzer to :

Trigger Source Wide IF VIDEO
Wide IF Trig Level High
(3) Measurement

Change the output level of 6769B, and find the point where the signal goes out of synchronization.
Similarly, change the trigger level to middle and low, and take measurements.

7.4.2.5 Line TRIG Check

(1) Measurement

Set the HP3325B frequency to 50 Hz .
On the spectrum analyzer, set "Trigger Source" to "Line", and make sure that synchronization is accomplished.

Section 7 Options

7.4.3 Option 07 AM/FM demodulator (voice monitor)

(1) Specifications:
$\mathrm{AM}>1.3 \mathrm{~V}$ peak to peak
FM (Narrow) >1.3 V peak to peak
FM (Wide) $>1.3 \mathrm{~V}$ peak to peak
(2) Required instruments:

1) MG3633A Synthesized signal generator (Anritsu),
2) 8Ω terminator,
3) an earphone plug,
4) an oscilloscope.
(3) Setup :

Fig. 7-4-4

7.4.3.1 Measure of AM Voice Monitor Voltage

(1) Set the MG3633A output to :

Frequency, 1 GHz
Level, -10 dBm
AM, 30\%
$\mathrm{AF}, 1 \mathrm{kHz}$
Set the spectrum analyzer to :
Center frequency, 1 GHz
Span, 0 Hz
RBW, 10 kHz
Sound, AM
Volume, 20
(2) Measurement

Make sure that sound is heard from the internal speaker.
Make sure that the volume is turned up or down by changing the setting.
Set the Volume to 20 , and fix the 8Ω terminator to Phone OUT on the rear of the spectrum analyzer, and check the voltage indicated on the oscilloscope.

7.4.3.2 Measure of FM Voice Monitor Voltage (Narrow Band)

(1) Set the MG3633A output to:

AM, OFF
FM, 3.5 kHz
Set the spectrum analyzer to :
Sound, FM
Volume, 20
(2) Measurement

Make sure that sound is heard from the internal speaker.
Make sure that the volume is turned up or down by changing the setting.
Set the Volume to 20, and fix the 8Ω terminator to Phone OUT on the rear of the spectrum analyzer, and check the voltage indicated on the oscilloscope.

Section 7 Options

7.4.3.3 Measure of FM Voice Monitor Voltage (Wide Band)

(1) Set the MG3633A output to FM 75 kHz .

Set the spectrum analyzer to :
RBW, 300 kHz
Volume, 20
(2) Measurement

Make sure that sound is heard from the internal speaker.
Make sure that the volume is turned up or down by changing the setting.
Set the Volume to 20 , and fix the 8Ω terminator to Phone OUT on the rear of the spectrum analyzer, and check the voltage indicated on the oscilloscope.

7.4.4 Option 10 Centronics interface

(1) Summary

The confirmation of correct operation of centronics interface by printing a hard copy of Spectrum analyzer display to printer attached to the centronics port.
(2) Specification

A clear print out of the analyzer display should be obtained.
(3) Required equipment:

1) Printer with centronics interface-Epson VP-600 or equivalent (e.g. VP-800).
(4) Setup
2) Connect the printer to the spectrum analyzer's Centronics interface.
(5) Procedure
3) Initialize the spectrum analyzer (Press "Preset" key and press "F1" key).
4) Set the spectrum analyzer Connect to prt/plt to CENTRO :

Enter Interface menu by pushing "Shift + ." keys.
Select CENTRO with "F5" key.
3) Enter Copy Cont menu by pushing "Shift + Copy" keys.

Select Printer with "F1" key.
Open the second page of Copy Cont menu (Press "More" key), and enter Printer menu with "F1" key. Select VP-600 with "F2" key, and magnify 1 * 1 with "F4" key.
4) Press Copy key to start printing.
5) Ensure the printing stops on pressing "Stop" key.

