DESCRIPTION

The AN2577 is a premium performance $43 / 4$-digit digital panel instrument which enhances Analogic's broad line of high performance digital panel instruments. The full scale readout (± 39999 count) provides a resolution of $\pm 0.0025 \%$ with a guaranteed accuracy of $\pm 0.005 \%$. The input amplifier has a bipolar differential input circuit with an input impedance of 10° ohms. It is protected against overvoltages up to ± 100 volts. The AN2577 is offered with either of two full-scale ranges: the ± 3.9999-volt range provides $100 \mu \mathrm{~V} /$ count sensitivity; the ± 399.99 millivolt range provides a $10 \mu \mathrm{~V} /$ count sensitivity.
The 3 -phase, dual-slope A/D converter includes an automatic zero feature for long-term accuracy. The "unknown" integration period is optimized to yield a Normal Mode Rejection Ratio (NMRR) in excess of 90 dB . The entire input amplifier and A / D converter are isolated (floated) up to ± 300 volts with respect to digital ground. This level of isolation yields a Common Mode Rejection Ratio (CMRR) of up to 140 dB .

The digital portion includes the drivers for the large LED red, planar display, and several status and control lines. Control signal inputs are included to BLANK the display, HOLD the last value, TEST the display, and to select the decimal point location. The AN2577 may be externally triggered for up to 10 conversions per second. Status signals include converter STATUS and OVERRANGE. The standard AN2577 includes a universal ac power supply for either 110 Vac or $220 \mathrm{Vac} \pm 20 \%$, from 50 to 500 Hz (@ 2.7 Watts). The power supply provides up to 1400 volts dc or ac peak isolation between the digital ground and ac power line, and between the analog ground and ac power line.
The optional parallel BCD outputs are microprocessor-compatible, word-programmable, tri-state outputs. This feature allows the data from one or more digital panel instruments to be transferred over a single set of data lines.
The standard AN2577 is packaged in a rugged DIN/NEMA high-Impact molded plastic case which is UL94V-0 rated. An optional all-metal case provides additional EMI/RFI shielding and protection. Every AN2577 is subjected to comprehensive testing under Analogic's Quality Assurance program which includes a 100 -hour temperaturecycled burn-in, from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$, with power ON/OFF cycling. Every instrument is vibration tested, calibrated, and shipped with a detailed calibration certificate, certified by Analogic's Quality Assurance Department. The AN2577 is covered by a full 12 -month warranty.

FEATURES

- High Performance - Low Cost
- Accuracy of $\pm 0.005 \%$ of Reading ± 1 Count
- 10 microVolt Sensitivity (for $\pm 399.99 \mathrm{mV}$ FS)
- $\pm 0.0025 \%$ Readout Resolution for 39999 Counts
- Floating Bipolar Differential, Guarded FET input
- Ultra Low Bias Current (Less Than 50 picoAmps)
- Automatic Zero for Long-Term Stability
- Input Protection for more than 100 Volts
- Floating \& Isolated Input (1400 Volts)
- High Input Impedance (1000 Megohms)
- CMRR Greater Than 140 dB
- NMRR Greater Than 90 dB
- One Line Cycle Integration Period
for highest NMRR and CMRR
- DISPLAY TEST, HOLD, BLANK, OVERRANGE and Converter Status Control Signals
- TRI-STATE BCD Output, WordProgrammable; Optional
- Ratiometric Capability, 3-Wire; Optional
- Large . $43^{\prime \prime}$ (11 mm) LED Display for Maximum Readability
- Universal Power Options Include:
$110 \mathrm{VAC} \pm 20 \%$ @ 2.7 Watts 220VAC $\pm 20 \%$ @ 2.7 Watts
- DIN/NEMA Standard Case; UL94V-0 Rated
- 12-Month Recommended Recalibration Interval
- Rear Screw Terminal Connector Available

APPLICATIONS

- Precision Analytical Instrumentation
- High Accuracy Digital Process Indicators With Universal Computer Bus Interface
- Industrial Weighing and Scaling Systems
- Laboratory Digital Phase Angle Indicators
- High Resolution Strain Gauge Digitizers

Fig. 1. AN2577 Functional Block Diagram.

ANALOG INPUT

Configuration

Full Scale Range
Input Resistance
Bias Current © $25^{\circ} \mathrm{C}$
Input Protection
$\pm 3.9999 \mathrm{Vdc}$ Full Scale

$\pm 399.99 \mathrm{mVdc}$ Full Scale
Input Filter
Normal Mode Rejection Ratio
Ratiometric Operation
COMMON MODE
Signal Return to Digital Ground
Voltage (CMV)
dc Rejection Ratio;(CMRR)
ac Rejection Ratio;(CMRR)

Digital Ground to ac Power Line
Voltage (CMV)
ac Relection Ratio;(CMRR) PERFORMANCE
$\begin{array}{r}\text { Accuracy } \\ \text { Resolution } \\ \text { Range Tempio }\end{array}$
Zero Stability
DISPLAY AND CONTROLS Response
Type of Display
Polarity Indication
OVERRANGE Indication

Decimal Points

TRIGGER/HOLD Input Logic 0 holds last reading, logic

DISPLAY TEST INPUT

ANALOG TO DIGITAL CONVERSION

Technique

Rate

1 allows a nominal 2.5 conver-
sion/second rate. A positive pulse with a rise time $<200 \mathrm{nsec}$ and a pulse width of $>2 \mu \mathrm{sec}$ will trigger a new conversion up to 8 conv. $/ \mathrm{sec}$. (L5) or 10 conv. $/ \mathrm{sec}$. (L6). CMOS compatible 0 to +5 Vdc).
BLANK INPUT Logic "0" (open collector or equivalent) blanks display.
Bipolar, isolated and floating dif ferential input.
$\pm 3.9999 \mathrm{Vdc}$ or $\pm 399.99 \mathrm{mVdc}$. >1000 Megohms.
50pA typical, 100pA max.
$\pm 100 \mathrm{Vdc}$ or ac rms continuous without damage.
$\pm 20 \mathrm{Vdc}$ or ac rms continuous without damage.

Single-pole, optimized signalenhancement filter.
90 dB typical, 70 dB min. @ 50 or 60 Hz .
3 -wire ratio input for use with external reference (Consult factory).
$\pm 300 \mathrm{Vdc}$ or ac peak. 140 dB typical, 120 dB min . 120 dB typical, 100 dB min. © 50 to 60 Hz .

1400 Vdc or ac peak. 160 dB min. (a) 50 to 60 Hz .
$\pm 0.005 \%$ of reading ± 1 count. $\pm 0.0025 \%$ for ± 39999 counts. $\pm 5 \mathrm{ppm}$ of reading ${ }^{\circ} \mathrm{C}$ typical. $\pm 10 \mathrm{ppm}$ of reading $/{ }^{\circ} \mathrm{C}$ max. Autozero: $\pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical for 399.99 mV full scale; $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical for 3.9999 Vdc full scale. Less than 100 msec for $\pm 0.005 \%$ of reading accuracy for a " + " or " - " full-scale step input.

7-segment planar, red LED, $0.43^{\prime \prime}$ (11 mm) high.
Automatic," + " or " - " sign displayed.

All digits blanked to prevent erroneous readout, " +" or "-" sign and decimal point remain on.
4-position, user-selectable at rear connector.

Logic " 0 " (sink 0.2mA to digital ground). Tests all 35 segments of display by displaying " 88888 "

Dual-slope, 3-phase conversion with automatic zero correction. Complete conversion each cycle. 2.5 conversions per second nominal, for best visual interpretation. For high speed, see Application Data.

Analog To Digital

Conversion (continued).
Input Integration Perlod

DIGITAL OUTPUTS

Parallel BCD (Optional)

POWER

Cholce of 2 ac Power Inputs

ENVIRONMENTAL PHYSICAL

 Operating Temperature Range Storage Temperature Range Relative HumidityCase

Dimensions Weight EMI/RFI

Special Line Noise Suppression

reliability

MTBF
Burn-In

Vibration
Calibration

Recalibration

Warranty
20.00 milliseconds nominal for optimum 50 Hz rejection. 16.67 milliseconds nominal for optimum 60 Hz rejection.
All outputs are TTUCMOS compatible (0 to +5 VDCpositive true logic except as noted).
Latched and buffered wordprogrammable TRI-STATE outputs are available for computer bus interfacing. The 20 bits of digital data are available as parallel output or organized for a $4,8,12,16$ or 20 -bit data bus. A separate TRI-STATE ENABLE input (CMOS compatible 0 to +5 V) controls each of the 4 -bit bytes. BUSY and BUSY provide the user with output register status. (One TTL load each).
Logic "1" indicates a " +" displayed.
Logic " 0 " indicates that output exceeds ± 39999 counts.

A logic "1" indicates that the converter is busy. A TRIGGER or HOLD command will be ignored at this time.

110 Vac rms $\pm 20 \%, 47$ to 500 Hz (3) 2.7 watts nominal (88 to 132 Vac input range). 220Vac rms $\pm 20 \%, 47$ to 500 Hz @ 2.7 watts nominal (176 to 264 Vac input range).
$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
0 to 90%, noncondensing.
DIN/NEMA standard, high-impact molded plastic case UL94V-0 rated; metal case available. (See Ordering Guide).

DIN/NEMA (See Fig. 14).
12 oz . (360 grams).
Shielding on five sides with metal case option.
Provision made for surge suppressor varistor and line input passive filtering for industrial applications. (Consult factory).
$>60,000$ Hours, calculated.
100 hours with 0 to $+55^{\circ} \mathrm{C}$
temperature cycles and power on/off cycles.
Each unit vibrated at $5 g$'s for 30 seconds.
NBS traceable, detailed certificate of calibration shipped with each unit.
Recommended at 12 -month intervals.
12 Months.

PIN DESIGNATIONS

J1			
(BOTTOM OF CASE)			

(TOP OF CASE) TRI-STATE BCD OUTPUTS

Consult factory.

Fig. 16. Internal View.

Rear View - Bezel
Not Shown for

Clarity

Analogic Part No.
PL10-5563
B. Optional

Analogic Part No. PL10-5535
A. Standard Card-Edge Connector (Solderable)

(Connectors Optional See Fig. 17)

NEED APPLICATION HELP?

CONSULT NEAREST ANALOGIC SALES OFFICE OR REPRESENTATIVE.

Fig. 17. Rear Panel Connectors.

[^0]
PRINCIPLES OF OPERATION

The AN2577 utilizes an autozeroed, 3-phase dual-slope analog-to-digital converter which includes an input filter, a buffer stage, an integrator and a comparator. The input filter is optimized* and provides over-voltage protection with FET input clamp diodes. The input buffer is a voltage follower with a FET input stage which features high (gigaohm) input impedance and low (picoAmp) bias currents. A gain of 10 is provided in the buffer for the $\pm 399.99 \mathrm{mV}$ full-scale option.
In each conversion cycle, the internal offset voltages are sensed and compensated for automatically (Autozero Phase). The displayed data is the digitized ratio of the input signal to the precision reference located in the instrument. Optionally, the user may Introduce his own reference (scaled for +1 volt dc), where the output count of 10000 would represent an input equal to the full value of the external reference. (Display $=V_{\text {in }} / V_{\text {ret }} \times 10000$).
A front panel-accessible span control permits the user to calibrate the precision internal reference to system standards. Analogic's precision reference is calibrated and traceable to NBS standards.
Signal return is separated from digital ground through the pulse transformer interface between the analog and digital circuits.
All timing and control functions are performed by a proprietary CMOS integrated circuit which drives the LED display in a multiplexed BCD format.

- Maximum filtering, while allowing a full-scate input step to seftle to 1 count within 1 conversion period.

Fig. 2. Simplified Schematic Diagram.

Fig. 3. Input Configurations and Common Mode Voltages.

MODE: FREE RUN AT 2.5 CONVERSIONS PER SECOND NOMINAL

MODE: TRIGGERED

Fig. 4. Timing Diagram

The TRISTATE ENABLE input contrals for each of the five 4 -bit bytes are CMOS compatible 10 to +5 V). Multiple lines may be tied together and anabled simuleanaously.
The BCD output is automatically enabled by an internal 100 K ohm pull-down resistor and can be disabled by an exiarnal 10 Kohm pull-up resistor, connected between the appropriate ENABLE input and 12 pin $\mathbf{R}(+5 \mathrm{~V})$ as shown. This allows data to be controlled by a mechanical switch. TTL, DTL or CMOS logic (Note: External 10 Kohm resistor not required for CMOS interface).

Fig. 5. Interfacing to BCD Enable Inputs.

To display the desired decimal point, simply connect the appropriate pin as shown to Digital Ground (J1, PinN) using a jumper lead.

Fig. 6. Decimal Point Position Terminals.

NOTE: (Consult Factory for Ratiometric Option).
A voltage ratio measurement can eliminate the need for a costly precision power supply to provide transducer excitation. This is accomplished by the dual-slope integrating A/D converter which displays the digitized ratio of $V_{\text {in }} / V_{\text {ref }} \times 10000$. Thus, if the external reference varies, the signal voltage will change proportionally. This makes the long term accuracy of the external reference supply noncritical and it need only be stable during the measurement period.

Fig. 10. Using AN2577 for 3-Wire Ratiometric Measurements.

HOLD MODE:

Grounding directly
or applying a logic " 0 "
to Pin F from open collector or equivalent, holds last Reading in display.

TRIGGER MODE:

- A new conversion can be initiated anytime the CONVERTER STATUS output (J 1 pin J) is low. A positive trigger pulse, (logic "1" CMOS compatible, 0 to +5 Vdc) with a rise time of less than 200 nsec., will start a new conversion.

NOTE: A trigger pulse at any other time will be ignored by the converter and the conversion in process will continue until complete.

Fig. 12. TRIGGER/HOLD Control.

Select shunt resistance R_{S} according to following:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}-\frac{\text { Desired Full Scale Count }}{\text { Full Scale Range of Input Current }} \times \mathrm{K} \\
& \text { where } \\
& \mathrm{K}=0.0001 \text { for } 3.9999 \mathrm{~V}_{\text {IN }} \\
& \mathrm{K}=0.00001 \text { for } 0.39999 \mathrm{~V}_{\text {IN }}
\end{aligned}
$$

Fig. 14. Current Input.

Fig. 11. Conversion Rate Control.

For signal voltages V_{S} greater than 4 Volts, select R_{A} and R_{B} for proper scaling such that $V_{i n}$ is $\leqslant 4$ Volts for a "3.9999" Display." Program Decimal Point accordingly (See Fig. 6).
*According to $V_{I N}=\left(\frac{R_{B}}{R_{A}+R_{B}}\right) \times V_{s}$.

Fig. 13. Input Scaling.

Fig. 15. Installation Dimensions.

APPLICATION DATA

When the word-programmable TRI-STATE BCD option is installed, 20 -bits of latched and buffered parallel BCD outputs are available on connector J2 and are automatically enabled. BUSY and BUSY indicate when data is valid. The same BCD option can be used when the AN2577 must inter. face with a data bus structure which requires data in 4, 8 , 12, 16 or 20 bit bytes. This can be accomplished simply by jumpering the DIGIT ENABLE lines together, according to the word size (see chart). A high level (Logic 1) disables the BCD output.

Fig. 8. BCD Output Timing Diagram.

Data Bus

$$
4,8,12,16 \text { or } 20 \text { Bits }
$$

The TRI-STATE BCD outputs of the AN2577 may be tied together into a common data bus and individually enabled for input to a single recording device, such as a printer, digital comparator, computer or other peripheral equipment. This eliminates costly external switching of multiple BCD lines and simplifies system interfacing.

Fig. 9a. Multiple Station Monitor.

Fig. 7. Word-Programming Tri-State BCD Output.

Fig. 9b. Multiple Channel Data Acquisition.

[^0]: ANALOGC.
 ANALOGIC CORPORATION - Audubon Road - Wakefield, Massachusetts 01880 Tel. (617) 246-0300 ■ TWX (710) 348-0425 - Telex 94-9307
 ANALOGIC INTERNATIONAL Audubon Road Wakefield, Massachusetts 01880 Tel. (617) 246 -0300 TWX (710) 348-0425 Telex $94-9307$
 ANALOGIC AG - Kanalstrasse 15 Postfach CH-8152- Glattbrugg - Switzerland Tel. (41) 1-810-0666 : Telex 845-59699
 ANALOGIC LIMITED = 68 High Street - Weybridge, Surrey KT13 8BN - England
 Tel. (44) 932-41251 n Telex 851-928030
 ANALOGIC REGIONAL OFFICES
 Cincinnati, Ohio (606 371-0064 ■ San Jose, Calif. (408) 247-6401
 Tustin, Calif. (714) $838-7243$ ■ Garland, Texas (214) 681-0483
 Houston, Texas (713) 777-6360

