Twin Stabilised
 D.C. Supplies
 PP3 \& PP3R
 Instruction Manual

Twin Stabilised
 D.C. Supplies PP3 \& PP3R
 Instruction Manual

ADVANCE ELECTRONICS LIMITED
INSTRUMENT DIVISION
roebuck road, hainautt, hford, essex, england TELEPHONE HAINAULT 444 TELEGRAPH ATtENUATE. ILFORD

Contents

sECTION I Introduction 3
SECTION 2 Specification 4
SECTION 3 Operating Instructions 5
3.1 Preparations for Use 5
3.2 Metering5
3.3 Overload 5
3.4 Four Terminal Nemork 5
3.5 Fuses5
SECTION 4 Circuit Description 6
4.1 General 6
4.2 Stabilising Circuit 6
4.3 Overload Cut-out 6
SECTION 5 Maintenance 7
5.1 General 7
5.2 Re-alignment of Voltage Calibration 7
5.3 Adjustment of Overload Cut-out 7
SECTION 6 Components List 9
SECTION 7 Factory Service 10
I/lustrations
Fig. 1 Component Location Diagram8
Fig. 2 Circuit Diagram 9

The Twin Stabilised D.C. Supply PP3 is a portable instrument providing two independent and floating stabilised d.c. supplies, each variable from 0 to 30 V at 1A maximum. The two supplies can be used separately, or connected in series to provide a maximum output of 60 V at 1 A .

In both sections of the instrument, the range is covered in three overlapping nominal 10 V steps, with fine adjustment provided by a variable control directly calibrated in volts. A voltmeter and a dual-range ammeter are provided, and these can be switched independently to monitor either section.
Both sections are provided with four terminal output networks which virtually eliminate the effect of
resistance in the connecting leads to the load.
Overload protection is effected by an electronic circuit which affords complete protection against both progressive and sudden short circuit overloads. This circuit is reset from the front panel by operation of the on/off switch.
The instrument will operate from a.c. supplies of 90 to 130 V and 200 to 240 V . Fuses are provided to protect against both supply surges and internal component failure. The Twin Srabilised D.C. Supply PP3R is a 19 -inch rack mounting version of the PP3. The specification is identical to the PP3 but the PP3R has the additional facility of the output being available on a 10 -way terminal block at the rear of the instrument.

2 Specification

Power Requirements The instrument operates from an a.c. supply of 90 to 130 V , or 200 to 240 V , at 40 to $60 \mathrm{c} / \mathrm{s}$.

Performance (each unit) output voltage 0 to 30 V d.c. in threc overlapping ranges, 0 to $10 \mathrm{~V}, 10$ to 20 V and 20 to 30 V .
output current 0 to 1 A .
output mpedance d.c.--less than 0.01 ohms. a.c. (up to $100 \mathrm{kc} / \mathrm{s}$)-less than 0.2 ohms.

RIPPLE Less than 1 mV peak-to-peak.
STABILISATION Allowable supply variation from nominal value is 7% before loss of stabilisation or component overloading occurs. Change of output voltages due to supply input variation of 47% is approximately 10 mV .

Metering Two meters are fitted: an ammeter which can be switched to either supply, ranges 0 to IA and 0 to 0.1 A F.S.D.; a voltmeter which can be switched to read either output voltage with an accuracy of : 2%.

Voltage Calibration The coarse and fine volage setting controls are calibrated to an accuracy of approximately 0.2 V , using external meters.

Overload Protection Provided by electronic cutouts which can be reset from the front panel.

Operating Temperature The instrument can operate at full load in ambient temperatures up to $35^{\circ} \mathrm{C}$.
Dimensions PP3 Width I8in., depth 111 in., height $13 \operatorname{lin}$. $(46 \times 29 \times 34 \mathrm{~cm})$.
Dimensions PP3R Width 19in., height $12 \frac{1}{4} \mathrm{in}$, depth $9 \frac{1}{2} \mathrm{in}$. behind panel and $1 \frac{3}{4}$ in. projecting in front of panel $(48.25 \times 31 \times[24+3.5] \mathrm{cm})$.
Weight $381 \mathrm{~b}(17 \mathrm{~kg})$.
Finish PP3 Dark blue metal case with light grey front panel and medium grey surround. All colours to B.S.2660. Case tint No. 7-086, front panel tint No. $9-093$, front panel surround tint No. 9-095.
PP3R Panel and protection cover dark admiralty grey to B.S.381.C, tint No. 632.

3 Operating Instructions

Warning

This instrument uses transistors, and for this reason it should not be operated in ambient temperatures in excess of $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$, or under conditions which limit free circulation of air through the ventilation panels.

3.1 Preparations for use

Remove the rectangular plate that covers the a.c. supply socket at the rear of the case, and ensure that the supply voltage adjustment panel is correctly set for the local supply, and that the correct fuse is fitted. Alternative fuses are provided, a 3A fuse for use when the instrument is operated from a 200 to 240 V supply, and a 5 A fuse for operation from a 90 to 130 V supply. The fuse not in use is carried in a clip next to the supply socket. Switch the ammeter selector switch to one of the $1 A$ ranges, and connect the load or loads to the output terminals. The two sections of the instrument can be connected in series if more than 30 V is required. but under no circumstances should the two sections be connected in parallel

Connect the instrument to the a.c. supply, set the output voltage controls to the required setting, and switch on

3.2 Metering

The ammeter and voltmeter can be switched independently to monitor each section of the instrument. When
the two supplies are used in series, the output voltage is indicated by the sum of the two voltmeter readings.

3.3 Overload

The overload circuit will operate when the load current exceeds approximately $1 \cdot 4 \mathrm{~A}$. To reset, switch the supply switch to OFF, wait three seconds, and then switch on again.
It should be noted that the connection of a capacitive load to the output terminals, while the instrument is operating, can cause the cut-out to operate due to the initial surge current.

3.4 Four Terminal Network

The four terminal network is provided to keep the voltage across the load constant irrespective of voltage drop occurring along the d.c. supply leads.
To make use of this facility, use two further leads of any convenient gauge to connect each end of the actual load to the appropriate potential terminals.

3.5 Fuses

The a.c. input circuit includes a single fuse, the rating of which is chosen according to the supply voltage. In the lower voltage range, 90 to 130 V , the fuse rating is 5 A , for the higher voltage range, 200 to 240 V , the fuse rating is 3 A .
The internal circuits are protected by two 3 A fuses.

4 Circuit Description

4.1 General

The wo sections of the PP3 are identical, and the corcuit diagram in fig. ? shows only one section complete.
The ace imput is applied to the trassormer (TI) primary winding via sections A and B of the oxom swith, the luse FSI and the suply volage tapping panel The supply tamsomer has one high woltage and one low voltage secordary unding for each section, the low volage withe being taped to provide three outpat whese ranges. To prevent switching surges, resistors R1 and R2 are switched into circuit momenarily as the range switch is opeated.
A selerium bridge rectifer, MRI, rectifies the output from the low-voltage windirg, and the resulting d.c. is smoothed by the 2500 . F capector (1 and fed to the output teminals via the series regulator transistor TR2. Ore section of the current whth 84 , inserted in thim ime to the regative otfout commat, is used to witeh the internal ammeter into citut when required. The volmeter is connected acres the ow pou terminals by means of switches S 3 A and Ste
A bleed resistor R4 is permanerny comected across © A, be smothing capacior, and bis is paralled by a
 is a ferther bleed resistor conneved across $C 6$ and any capachy in the load chmuil to monde a dischange path indenendent of the series regulator TR2

4.2 Stabilising Circuit

The ouput from the high olage scoondary winding of T in rectifed by the selentum beidee rectiter MR2. smoothed by an RC filter (2 R 3 and C 3, and used to provide a seference whate so wo ascaded nown stabilisers VI $(150 \mathrm{~V})$ and $\mathrm{V}^{2} 285 \mathrm{~V}$.
Apotential divider network, RV2to RVI, is connected ateoss the noon stabiliner V^{2}, th the fohm resistor R27. The volage at the wifer of RV4, the front panel soltage control is compared will the potential acros the output termimats by means of a differential amplifer, the long-tated peir TRt and TRS. Sections A and B of swith $S 2$ adunt the potential divider ration
as wach output voltage range is selected. The preset controls in the divider network are included to permit accurate calibration of the voltage ranges.
Any ouput from the differential amplifier is current. amplified by two emitter follower stages TR 3 and TRI, and applied as a correction signal to the base of the series regulator TR2. The effective impedance of TR2 is thus adjusted until the output and reference voltages are cyual
A four-terminal output network is provided, and when this is in use the potential terminals are connected independently to the load. The stabilising eircuit thus controls the actual voltage across the load, whtually climinating the effect of the resistance of the power supply leads.
The corree operating potentials for the transistor circuiss, including the overload cutout, are derived from the high voltage d.e. supply tia the zener diodes MRS and MR6.

4.3 Overload Cut-out

Transistors TR6 and TR7 constitute a bi-stable multivibrator circuit with TRG normally conducting. When the output current from the section exceeds a predetermined walue, the potential developed across the series resistor 23 Ingegers the multivibutor which then changes its state. TR7 now conducts and the potential developed across R26 is used to shut-of the difiesential amplifier, catising the section output voltage to fall to zero. The gemaniam diode MR4 is included in circuit to block signals from the difierential amplifier which might othervise trigger the muhtivibrator.
To rese the cut-out circuit it is ondy necessary to switch the unit off for a few seconds, and then switeh on again. The mutivibmor will then be in its origimal state with TR6 conducting.
The selenium rectifice MR3 is connected across the ouput terminals to prevent the development of a reverse voltage when the cut-out operates. This provision is particularly necessary when the for supply sections are operated in series.

5.1 General

The PP3 is of robust construction, and employs semiconductors throughout, with the exception of the two neon stabilisers. A high level of reliability has been achieved and the instrument should operate indefinitely without requiring extensive maintenance. In cases of dilliculty, it is recommended that the instrument is returned to the factory for attention.
To obtain aceess to the intermal components, place the instrument face downwards on a hat surface, remove the four retaining serews in the back, and lift off the case. Fig. / shows the location of the components on the chassis assembly.
To remove the control knobs, it is first necessary to remove the spring-loaded plastic section of each knob to expose the retaining screw. When replacing the knob ensure that the indentation on the top of the plastic section soincides with the cursor on the skin.
Voltage calibration aceuracy wing the builtin voltmeter is $2 "^{\circ}$. Inereased aceuracy can be obtaned by using a suitable extemal meter connected direety atoron the whmeter terminals.

5.2 Re-alignment of Voltage Calioration

To reatien the voltage calibution using intemat or extemal meters, proced as Follows:-

1. Rembe the instumen from the catse, conned it to the ate supply and swith om.
\therefore So the whemeter selector witch to the required sction
\therefore Se the range soluctor mith to the 0100 porturn, and adjust the varable control to gite a watheg of cataty IV on the whmeter.
t. Check that the comsor on the vamable commot
 of it spindte until the alypment is corred.
 conthel to 10 . Adjust RUI. loceted near the watio of the main chass. umbil the bolmoter
 lame blamad meter
2. So the sariable conmol to or and adous RY? (wee fg. /) with an malated mod unt the volmeter ind hatm exacty 201
3. Repeat 5 and 6 until no fimther adjustment is necessary.
4. Switch to the $10-20 \mathrm{~V}$ range, sot the variable control to ' 10^{\prime} ' and adjust RV5 until the meter indicates 20 V (accuracy : 2°, , i.e. 0.4 V using internal meter).
5. Set the variable control to O and adjust RV3 until the meter indicates 10 V (aceuracy: 2% i.e. $: 0.2 \mathrm{~V}$ using internal meter).
6. Repeat 8 and 9 until no further adjustment is necessary.
7. Switch to the $0-10 \mathrm{~V}$ range, set the variable control $10^{\circ} 10^{\prime}$ and adjust RV6 until the meter indicates 10 V . The voltage calibration , hould now be correct.

5.3 Adjustment of Overload Cut-out

To adjust the overload cut-out, a muttimeter such as the Aometer model 7 or 8 and a bariable resistor rated at 0 to 10 ohms (minimum) 1.5 A , will be required. To make the adjusment. proced as follows:

1. Remose the instrument form the case, and invert the chassis.
2. Se the slider of the appropriate ection potentiometer RV7 (located at the from of the component board to that end of the potentiometer track commected to the 10 K sexter.
3 Set the multimeter to the 10A range and connet it in series with the load sesistor auross the ouphit terminals of the supply. Se the lond to maximum resiname and suitely of the internal ammeter.
f. Sol the buput to SV and whetron

5 Adjus the load revistom mat the multimeter moliate a curren of 1-4
(1) Mose the vider of R ${ }^{-7}$ anas from the RKK mestare end of tis tack until the output drops suddenly to yero.
\therefore Swith on: shehty incrane the load resistance and then sulteh or agan.
8. Deerate the load resistance and wock that the
 to operate at the comee leact. serdjust RV7 as necosary

6 Components List
(One Section and Common Circuits only)

Aesistors

Ref.	Descrinitun			Par No.
R1	108	- 10\%	RMA 8	140
R2*	100	. 10%	RMA 8	140
R3	500 n	$\div 5 \%$	3W, W, W. Dubilier Al	11248
R4	470Ω	. 5%	5W, W.W. RRC LG75	231
R5	10Ω	: 10%	RMA 8	140
R6	12Ω	. 10%	RMA 9	12826
R7	47 K	. 5%	3W, W.W. RRC RWV4-J	138
R8	15K	15\%	3W, W.W. RRCLG75	921
R9	6.8 K	$=10 \%$	RMA 8	10355
R10	22 K	. 5%	RMA 9 WW	6963
R11	4.7 K	- 10\%	RMA 9	1499
R12	1.5 K	- 10\%	RMA 9	4405
R13	21 K	: $1 \% \mathrm{H}, \mathrm{S}$	Weiwyn C22	494
R14	4.7 K	10\%	RMA 9	1499
R15	39 K	+5\%	RRC 2 HS 3	132
R16	3.9 K	-5\%	RRC 2 HS 3	132
R17	3.9 K	: 5\%	RRC 2HS3	132
R18	3.9 K	+5\%	RRC 2 HS 3	132
R19	390 K	: 10%	RMA 9	7494
R20	Not u			
R21	2.2K	$\therefore 10 \%$	RMA 9	867
R22	22 K	- 10%	RMA 9	867
R23	0.25Ω		(3) S.W.G. Constantan)	
R24	10 K	10\%	RMA 9	671
R25	15K	-10\%	RMA 9	1177
R26	2.2K	10\%	RMA 9	867
R27	1Ω	$: 10 \%$	3W, W.W. RRCRWV4.	239
R28	1Ω	. 10%	3W, W.W. RRC RWV4-j	239
R29	1.5K	: 10%	RMA 8	11097
R30	10 K	: 5\%	3W, W.W. RRC LG75	381
R31	220Ω	$=10 \%$	RMA 9 IW	1272
R32	220 K	: 10%	RMA 9 1W	6703
R33	10Ω	: 10%	RMA 9	1903
RV1	68 K	Preset Pot	EGEN 126	230
RV2	2K	Preset Pol	EGEN 196	131
RV3	2K	Presel Pot	EGEN 196	131
RV4	5K	Pot. Colve	O CLR 3001/11	145
RV5	2K	Preset Pot	EGEN 196	131
RV6	2K	Preset Pot	EGEN 196	131
RV7	2K	Presel Pot	EGEN 196	131

Capacitors

Ref.	Description			Part No.
Cl	$2500 \mu \mathrm{~F}$	50 V D.C.	WKG. Hunts L32/1	136
C2 3$\}$	$32+32 \mu \mathrm{~F}$	350 V . D.C	C. WKG. Hunts L32/3	135
C4	0.05 FF	150 V D.C	WKG. Hunts W99	7491
C5	$25 \mu \mathrm{~F}$	50 V D.C.	WKG. Hunts JF102	10027
C6	$500 \mu \mathrm{~F}$	70 V D.C.	WKG. Hunts S1928	427
C7	$8, \mathrm{~F}$	50 V D.C.	WKG. Plessey CE1250/1	476
C8	$0.1 \mu \mathrm{~F}$		Hunts W48	325
C9	$500 \mu \mathrm{~F}$	$50 \vee \text { D.C. }$	WKG. TCC CE26DE (PP3R only)	473
Transistors				
TRI	V60/201P	Newmark		137
TR2	OC. 28	Mullard		148
TR3	OC. 44	Mullard		338
TR4	OC. 44	Mullard		338
TR5	OC. 44	Mullard		338
TR6	OC. 44	Mullard		338
TR7	OC. 44	Mullard		338
Rectifiers				
MR1	Selenium	Rectifier	I.R.C. LiBi SBKD	1226
MR2	Selenium	Rectifier	S \& H B250/C75	12784
MR3	Selenium	Rectifier	S \& H B 30/C600	334
MR4	Germaniu	um Diode	Westinghouse WG5B	11538
MR5	Zener Dio	ode	$2710 \% 688$	129
MR6	Zener Dio		$2510 \% 5.6 \mathrm{~V}$	128
Miscellaneous				
V1	150C4			154
V2	GD83M			1460
\$1	On/Off swis	witch		13382
\$2	Range sw	uith		13386
\$3	Voltmeter	switch		13389
S4	Ammeter	swith		13388
LPI	Indicator	lamp		11077
FS!	Fuse 3A	Bulgin F12		428
FSI	Alternative	隹 fuse SA	Belling Lee L1055	12807
FS2	Fuse 3A	Bulgin F12		428
TI	Supply tr	ansformer		MT374
	Insiructio	n Manual		245

2 MAINS SWITCIES SI L．H．UNIT \＆SS R．H．UNIT
2 RANGE SWITCHES $\$ 2$ I VOLTMETER SWITCH 53 1 amMETER SWITCH $\$ 4$

ALL SWITCHES SHOWN IN ANTICLOCKWISE POSITION R．H．\＆L．H．POWER PACKS ARE IDENTICAL IN EVERY DETAIL THEREFORE ONLY THE L．H．POWER PACK IS DRAWN

NOTE
EVERY EFFORT IS MADE TO KEEP THIS CIRCUIT UP－TO－DATE BUT THE RIGHT IS RESERVED TO ALTER THE VALUES OR AMEND THE CIRCUIT WITHOUT NOTICE

DWG．NO．C13\＄29 ISSUE 17 （modified）

FIG, 2 CIRCUIT DIAGRAM PP3

7 Factory Service

Our Factory Service Department is at your disposal should you wish to obtain further repair information by telephone or letter. The Type and Serial Number of the instrument should always be quoted. We maintain an efficient service facility and the instrument can, if necessary, be returned to our factory for repair.
The instrument is guaranteed for a period of one year from its delivery to the purchaser for the replacement of defective parts, other than valves, semiconductors and fuses.

Valves and semiconductors are subject to the manufacturer's guarantee.

Full details of the service or repair required should accompany equipment returned to us for servicing. The equipment must be adequately packed, preferably in the special box supplied, and shipped with transportation charges prepaid. We can accept no responsibility for instruments arriving damaged. Should the cause of failure during the guarantee period be due to misuse or abuse of the instrument, or if the guarantee has expired, the repair will be charged and put in hand without delay unless other instructions are received.
our sales, service and engineering derartments are at your service at all times.

