LQ-510/AP-4000

TECHNICALMANUAL

EPSON

FCC COMPLIANCE STATEMENT FOR AMERICAN USERS

This equipment uses and generates radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has been type tested and found to comply with limits for a Class B computing device in accordance with Sub-part J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment on and off, the user is encouraged to try to correct the interference by one or more of the following measures:

- reorient the receiving antenna
- relocate the computer with respect to the receiver
- move the computer away from the receiver
- plug the computer into a different outlet so that the computer and receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet, prepared by the Federal Communications Commission, helpful: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.
© 1989 Seiko Epson Corporation

Epson America, Inc.
Customer Service Department
23610 Telo Avenue
Torrance, California 90505

All rights reserved. No portion of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric, mechanical, photocopying, recording, or otherwise, without the written permission of Epson America, Inc. No patent liability is assumed with respect to use of the information contained herein. While every precaution has been taken in the preparation of this book, Epson America, Inc., assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

Epson@ is a registered trademark of Seiko Epson Corporation. LQ-510 ${ }^{\text {TM }}$ is a trademark of Epson America, Inc.

PRECAUTIONS

Precautionary notations throughout the text are categorized relative to 1) personal injury, and 2) damage to equipment:

DANGER Signals a precaution which, if ignored, could result in serious or fatal personal injury. Great caution should be exercised in performing procedures preceded by a DANGER heading.

WARNING Signals a precaution which, if ignored, could result in damage to equipment.
The precautionary measures itemized below should always be observed when performing repair/maintenance procedures.

DANGER

1. ALWAYS DISCONNECT THE PRODUCT FROM BOTH THE POWER SOURCE AND PERIPHERAL DEVICES BEFORE PERFORMING ANY MAINTENANCE OR REPAIR PROCEDURE.
2. NO WORK SHOULD BE PERFORMED ON THE UNIT BY PERSONS UNFAMILIAR WITH BASIC SAFETY MEASURES AS DICTATED FOR ALL ELECTRONICS TECHNICIANS IN THEIR LINE OF WORK.
3. WHEN PERFORMING TESTING AS DICTATED WITHIN THIS MANUAL, DO NOT CONNECT THE UNIT TO A POWER SOURCE UNTIL INSTRUCTED TO DO SO. WHEN THE POWER SUPPLY CABLE MUST BE CONNECTED, USE EXTREME CAUTION IN WORKING ON POWER SUPPLY AND OTHER ELECTRONIC COMPONENTS.

WARNING

1. Repairs on Epson products should be performed on/y by an Epson-certified repair technician.
2. Make certain that the source voltage is the same as the rated voltage, listed on the serial number/rating plate. If the Epson product has a primary AC rating different from the available power source, do not connect it to the power source.
3. Always verify that the Epson product has been disconnected from the power source before removing or replacing printed circuit boards and/or individual chips.
4. In order to protect sensitive microprocessors and circuitry, use static discharge equipment, such as anti-static wrist straps, when accessing internal components.
5. Replace malfunctioning components only with those components recommended by the manufacturer; introduction of second-source ICs or other nonapproved components may damage the product and void any applicable Epson warranty.

REVISION SHEET

REVISION	DATE ISSUED	UPDATES
A	May 1, 1989	1st issue

FCC Compliance Statement for American Users

This equipment has been tested and found to comply with limits for a Class B digital device, pursuant to Part 16 of the FCC Rules. These limits are designed to provide reasonable protections against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on. The user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and the receiver
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help.

WARNING: The connection of a nonshielded interface cable to this equipment will invalidate the FCC Certification of this device and may cause interference levels that exceed the limits established by the FCC for this equipment. If this equipment has more than one interface connector, do not leave cables connected to unused interfaces.

For Canadian Users

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de Classe B prescrites dans le règlement sur le brouillage radioélectriques édicté par le Ministère des Communications du Canada.

Subsequent product modifications will be brought to your attention via service bulletins. Please revise the text when you receive these bulletins.

This document is subject to change without notice.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of Epson America, Inc. No patent liability is assumed with respect to use of the information contained herein. While every precaution has been taken in the preparation of this book, Epson America, Inc., assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

- 1990 Epson America, Inc.

Epson America, Inc.
23610 Telo Avenue
Torrance, California 90505

[^0]
Addendum

The AP4000 is mechanically and electronically the same as the LQ-510.

All the information contained herein is equally applicable to both printers.

Below is a list of unique parts for the Epson ActionPrinter 4000:

Part Number	Description
1002192	Logo plate
5000119	Individual carton box
5000133	Pad sleeve

ActionPrinter 4000 parts not listed above are identical to those for the LQ-510.

TABLE OF CONTENTS

CHAPTER 1.	GENERAL DESCRIPTION
CHAPTER 2.	PRINCIPLES OF OPERATION
CHAPTER 3.	OPTIONAL EQUIPMENT
CHAPTER 4.	DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT
CHAPTER 5.	TROUBLESHOOTING
CHAPTER 6.	MAINTENANCE
APPENDIX	

CHAPTER 1

GENERAL DESCRIPTION

1.1 FEATURES 1-1
1.2 SPECIFICATIONS 1-3
1.2.1 Hardware Specifications 1-3
1.2.2 Firmware Specifications (ESC/P) 1-9
1.3 INTERFACE OVERVIEW 1-13
1.4 DIP SWITCHES AND JUMPER SETTING 1-16
1.4.1 DIP Switch Settings 1-16
1.4.2 Jumper Setting 1-17
1.5 SELECTYPE FUNCTION 1-17
1.6 SHEET LOADING AND SHEET EJECTION 1-18
1.7 TEAR-OFF FUNCTION 1-18
1.8 OPERATING INSTRUCTIONS 1-19
1.8.1 Self-Test 1-19
1.8.2 Hexadecimal Dump Function 1-20
1.8.3 Bit-Image Printing 1-21
1.8.4 Error Conditions 1-22
1.8.5 Buzzer Operation 1-22
1.8.6 Printer Initialization 1-22
1.8.7 Default Values 1-23
1.8.8 Adjust Lever Operation 1-23
1.8.9 Printer Protection for Heavy-Duty Printing 1-24
1.9 MAIN COMPONENTS 1-25
1.9.1 SAMA Board 1-26
1.9.2 SANPNL Control Panel 1-27
1.9.3 SANPS(E) Board 1-28
1.9.4 Printer Mechanism (M-5710) 1-28
1.9.5 Housing 1-29

LIST OF FIGURES

Figure 1-1. Exterior Views of the LQ-510 1-2
Figure 1-2. Pin Configuration 1-3
Figure 1-3. Label Dimensions 1-5
Figure 1-4. Printable Area for Cut Sheets 1-6
Figure 1-5. Printable Area for Continuous Paper 1-7
Figure 1-6. Character Matrix 1-12
Figure 1-7. Data Transmission Timing 1-13
Figure 1-8. \quad Self-Test Printout 1-19
Figure 1-9. Hexadecimal Dump Function 1-20
Figure 1-10. Lever Position 1-23
Figure 1-11. LQ-510 Component Layout 1-25
Figure 1-12. SAMA Main Control Board 1-26
Figure 1-13. SANPNL Control Panel 1-27
Figure 1-14. Power Supply Filter Board 1-26
Figure 1-15. Model 5710 Printer Mechanism 1-28
Figure 1-16. Housing 1-29

LIST OF TABLES

Table 1-1. Interface Options 1-1
Table 1-2. Optional Units 1-1
Table 1-3. Cut-Sheet Specifications 1-4
Table 1-4. Continuous Paper Specifications 1-4
Table 1-5. Envelope Specifications 1-5
Table 1-6. Label Specifications 1-5
Table 1-7. Printing Mode 1-10
Table 1-8. Character Matrix and Character Size 1-11
Table 1-9. Data Transmission Timing 1-13
Table 1-10. Printer Select/Deselect Control 1-15
Table 1-11. \quad Settings for DIP Switch 1 (SW1) 1-16
Table 1-12. Settings for DIP Switch 2 (SW2) 1-16
Table 1-13. International Character Set Selection 1-16
Table 1-14. Font Selection 1-17
Table 1-15. Character Pitch Selection. 1-17
Table 1-16. Print Density 1-21
Table 1-17. Bit-Image Printing 1-21
Table 1-18. Lever Position 1-23

GENERAL DESCRIPTION 1

1.1 FEATURES

The LQ-510 is a small, light-weight, low-cost printer, comparable to the LQ-500 with advanced paper-handling. Its main features are as follows:

1. Advanced paper handling: auto back-out and cut-sheet loading.
2. Expanded ESC/P-code printing, implemented as a standard feature.
3. Printing speeds in characters per second (cps): 180 cps (alphanumeric Draft 12 cpi)

150 cps (alphanumeric Draft 10 cpi)
60 cps (alphanumeric LQ 12 cpi)
50 cps (alphanumeric LQ 10 cpi)
4. Optional 8100 series interface.
5. Clear, easy-to-read printing with a standard Epson font.
6. Two built-in LQ fonts (Roman and Sans Serif).
7. An optional multi-font module can provide a wide variety of fonts.
8. Control panel switch selection of Draft, Roman, Sans Serif, or slot-mounted (optional multi-font module) font.
9. Control panel switch selection of normal or condensed printing.
10. Optional cut-sheet feeder (CSF) for easy handling of cut sheets.

The LQ-510 is equipped with the standard Epson 8-bit parallel interface. Various interface options allow printing from a wide variety of computers, Table I-I lists the interface options, Table 1-2 lists the optional units available, and Figure I I shows an exterior view of the printer.

Table I-I. Interface Options

Model	Description
8143	New serial interface board
8148	Intelligent serial interface board
8165	Intelligent IEEE-488 interface board

NOTE: Refer to the "Optional Interface Technical Manual" for details.

Table 1-2. Optional Units

Model	Description
C80612	Single-bin cut-sheet feeder
C80006	Pull tractor unit
7753	Ribbon cartridge (black)
7768	Film ribbon cartridge
7407	Multi-font cartridge

(Printer Cover A)

(Printer Cover B)
Figure I-I. Exterior Views of the LQ-510

1.2 SPECIFICATIONS

This section describes the specifications for the LQ-510 printer.

1.2.1 HARDWARE SPECIFICATIONS

Printing Method
Pin Configuration

Serial, impact, dot matrix
24 wires (12×2, staggered, 0.2 mm diameter)

Figure 1-2. Pin Configuration Friction feed, tractor feed (push tractor: standard; pull tractor: optional)

NOTE: Be aware of the following points regarding paper handling.

Friction Feed:

1. Do not use continuous paper.
2. Do not use a single sheet shorter than 7.28 inches (182 mm) or longer than 10.28 inches (257 mm).
3. Do not perform a reverse paper feed when the paper is within .34 inch $(8.5 \mathrm{~mm})$ from the top or within .88 inch $(22 \mathrm{~mm})$ from the bottom.
4. Do not perform a reverse feed greater than $1 / 6$ inch after the paper end has been detected.
5. Use the pull-out unit.
6. Do not use multi-part single-sheet forms.

Tractor Feed

1. Release the friction-feed mechanism.
2. Multiple copies must be joined by pasting at the perforation or tractor holes.
3. Paper for copies must be carbonless, multi-part paper.

Push Tractor Feed

1. Use the pull-out unit.
2. Do not perform reverse feeding for distances greater than $1 / 6$ inch.
3. Accuracy of paper feed cannot be assured, and reverse feeding cannot be performed, after the paper end is detected.

Push-Pull Feed

1. Remove the pull-out unit and attach the pull tractor unit.
2. Do not lose the paper between the platen and pull tractor unit.
3. Precisely adjust the horizontal positions of the pull and the push tractors.
4. Do not perform reverse feeding for distances greater than $1 / 6$ inch.
5. Do not perform reverse feeding after the paper end is detected.

Pull Tractor Feed

1. Remove the pull-out unit and attach the pull tractor unit.

Line Spacing $\quad 1 / 6$ inch, or programmable in units of $1 / 360$ inch

Paper Insertion
Paper-Feed Speed

Paper Specifications

From rear
Friction, without CSF $\quad 100 \mathrm{~ms} /$ line (at $1 / 6$-inch line feed) 2.2 inches per second (continuous feed)
$100 \mathrm{~ms} /$ line (at $1 / 6$-inch line feed)
2.2 inches per second (continuous feed)
$100 \mathrm{~ms} /$ line (at $1 / 6$-inch line feed)
2.2 inches per second (continuous feed)

Friction, with CSF
Tractor
See Tables 1-3 through 1-6.

Table 1-3. Cut-Sheet Specifications

Width	7.15 to 10.1 inches $(182$ to 257 mm$)$
Length	14.3 inches, maximum $(364 \mathrm{~mm}$, maximum $)$
Thickness	0.0025 to 0.0055 inch $(0.065 \mathrm{to} 0.14 \mathrm{~mm})$
Weight	14 to 24 pounds $\left(52.3 \mathrm{~g} / \mathrm{m}^{2}\right.$ to $\left.90 \mathrm{~g} / \mathrm{m}^{2}\right)$
Quality	Xerographic, bond, airmail paper, etc.
Copies	Not available

Table 1-4. Continuous-Paper Specifications

Width	4 to 10 inches (101 to 254 mm$)$
Copies	3 sheets (1 original and 2 copies)
Quality	Bond, xerographic, airmail, etc.
Total Thickness	0.0025 to 0.01 inch (0.065 to 0.25 mm$)$
Weight	1 sheet -14 to 22 pounds $\left(52.3 \mathrm{~g} / \mathrm{m}^{2}\right.$ to $\left.82 \mathrm{~g} / \mathrm{m}^{2}\right)$
	3 sheets -12 to 15 pounds $\left(40 \mathrm{~g} / \mathrm{m}^{2}\right.$ to $\left.58.2 \mathrm{~g} / \mathrm{m}^{2}\right)$ each

Table 1-5. Envelope Specifications

Size	Number 6: 6.64×3.68 inches $(166 \times 92 \mathrm{~mm})$ Number 10: 9.6×4.16 inches $(240 \times 104 \mathrm{~mm})$ Quality Thickness
	Bond paper, xerographic paper, airmail 0.0063 to 0.0197 inch $(0.16$ to 0.52 mm$)$ $($ Within the printing area, the thickness differential must not exceed 0.0098 inch $[0.25$ Wm $]))$. 12 to 24 pounds $\left(45 \mathrm{~g} / \mathrm{m}^{2}\right.$ to $\left.91 \mathrm{~g} / \mathrm{m}^{2}\right)$

NOTES:

1. Printing on envelopes can be performed only when the temperature is normal.
2. Envelopes should be positioned horizontally.
3. For Number 6 envelopes, set the left side so that it matches the setting mark on the sheet guide.

Table 1-6. Label Specifications

Sire Thickness	Greater than $21 / 2 \times 15 / 16$ inches $(63.5 \times 23.8 \mathrm{~mm})$ 0.0063 to 0.0075 inch $(0.16$ to 0.19 mm$)$ *Thickness of the base paper must be 0.0028 to 0.0031 inch $(0.07$ to 0.09 mm$)$

NOTES:

1. Printing on labels is available only at normal temperatures.
2. Labels must be fanfold.
3. For printing on labels with pressure sensitive paper, the following conditions must be met:
(1) sheets of labels must be joined at the perforation or tractor holes.
(2) the total thickness may not be greater than 0.0118 inch (0.3 mm)
(3) the temperature must be between $+41^{\circ} \mathrm{F}$ and $+95^{\circ} \mathrm{F}\left(+5^{\circ}\right.$ and $\left.+35^{\circ} \mathrm{C}\right)$, and relative humidity between 10% and 80%
4. Examples of acceptable labels: Avery Continuous-Form Labels

Avery Mini-Line Labels
5. Do not perform reverse feed.

Figure 1-3. Label Dimensions

Printable Area

The figure below illustrates the printable area for cut sheets.

Figure 1-4. Printable Area for Cut Sheets

* At least 0.12 inch (3 mm) when paper width is less than 9 inches (229 mm); at least .9 inch $(24 \mathrm{~mm})$ when the paper width is 10.1 inches (257 mm).

Printing is possible approximately 1.12 inches (28 mm) from the paper's detected bottom edge; the .53 inch $(13.5 \mathrm{~mm})$ value (lowest print position) is for reference only. Paper feed accuracy cannot be assured within 0.87 inch (22 mm) of either the top or bottom edge.

Figure 1-5. Printable Area for Continuous Paper

* NOTES: 1. .52 inch (13 mm) or greater for paper widths of 4 to 9.5 inches (101 to 242 mm). 1.04 inches (26 mm) or greater for paper widths of 10 inches (254 mm).

2. .52 inch (13 mm) or greater for paper widths of 4 to 9.5 inches (101 to 242 mm). .96 inch $(24 \mathrm{~mm})$ or greater for paper widths of 10 inches (254 mm).

Fabric

Film

Reliability

Printhead Life

Safety Approvals

Safety Standards

Radio Frequency Interference (RFI)

Electrical Specifications

Power Conditions
Frequency Range
Rating Current
Insulation Resistance
Dielectric Strength

Environmental Requirements

Temperature
Humidity
Shock Resistance
Resistance to Vibration

Model: 7753 ribbon cartridge
Color: black
Reliability: 2 million (LQ characters at 48 dots/character)
Dimensions: 11.6 (width) $\times 1.36$ (height) $\times 2.84$ (depth) inches ($290 \mathrm{~mm} \times 34 \mathrm{~mm} \times 71 \mathrm{~mm}$)
Model: 7768 ribbon cartridge
Color: black
Reliability: 2 million characters at 48 dots/character
Dimensions: 11.6 (width) x 1.36 (height) $\times 2.84$ (depth) inches ($290 \mathrm{~mm} \times 34 \mathrm{~mm} \times 71 \mathrm{~mm}$)

Mean Cycles Between Failures (MCBF): 3 million lines (excluding printhead)
Mean Time Before Failure (MTBF): 4000 Power-On Hours (25% duty)
200 million strokes/wire

UL478 (U.S. version)
CSA22.2\#154
VDE0806 (TUV) (European version)
FCC class B (U.S. version)
VDE0871 (self-certification) (European version)

108 VAC to 132 VAC (120 V version)
198 VAC to 264 VAC (220/240 V version)
49.5 to 60.5 Hz
1.8 A AC (120 V version)

1 A AC (220/240 V version)
10 megohms minimum (between AC line and chassis)
1250 VAC (rms), 1 minute (120 V version) (between AC line and chassis)
3750 VAC (rms), 1 minute (220/240 V version)
41° to $95^{\circ} \mathrm{F}$ (5 to $35^{\circ} \mathrm{C}$) - operating
-22° to $140^{\circ} \mathrm{F}\left(-30\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ - with shipment container
10 to 80% RH - operating
5 to 85% RH - non-operating
1 G , within 1 ms - operating
2 G , within 1 ms - non-operating
$0.25 \mathrm{G}, 55 \mathrm{~Hz}$ maximum - operating
$0.50 \mathrm{G}, 55 \mathrm{~Hz}$ maximum - storage
13.23 pounds (6 kg)
16.72 (width) x 13.88 (depth) x 5.6 (height) inches
($418 \times 347 \times 139.9 \mathrm{~mm}$), excluding knobs and paper guides

1.2.2 FIRMWARE SPECIFICATIONS (ESC/P)

Control Codes	ESC/P-84 (Epson Standard Code for Printers)
Printing Direction	Bidirectional (text)
	Bidirectional (bit-image) (when SW 2-6 is ON and control command [ESC U 1] input)
	Unidirectional (bit-image)
Input Data Buffer	8 K bytes (when SW $2-5$ is ON)*
	1 K byte (when SW $2-5$ is OFF)
	* If DIP SW 2-5 is set to ON, downloading will be ignored.
Character Code	8-bit
Character Sets	96-character ASCII and 15 international character sets
Family	Epson Roman (Family number: 0)
	Epson Sans Serif (Family number: 1)
Font	Epson Roman 10, Epson Roman 12, Epson Roman 15,
	Epson Roman Proportional
	Epson Sans Serif 10, Epson Sans Serif 12,
	Epson Sans Serif 15, Epson Sans Serif Proportional
	Epson Draft 10, Epson Draft 12, Epson Draft 15
Printing Mode	Selection and mixing of the following modes are allowed (except that 15 cpi
	Condensed Mode is not available):
	- Printing quality (draft/letter quality)
	- Character pitch (10, 12, 15, or proportional)
	- Condensed
	- Double-width
	- Double-height
	- Bold
	- Double-strike
	- Italic
	- Underlined
	- Double-underlined
	- Overscore
	- Strike-through
	- Outline
	- Shadow
Printing Speed	See Table 1-7.
Printing Columns	See Table 1-7.
Character Matrix	See Table 1-8.
Character Size	See Table 1-8.

Table 1-7. Printing Mode

Print pitch	Condensed	Emphasized	Double width		Printable columns	Character pitch (cpi)	Printing speed (cps)	
							Draft	LQ
10	0	0	0		80	10	150	50
	0	0	1		40	5	75	25
	0	1	0		80	10	75	50
	0	1	1		40	5	37.5	25
	1	x	0		137	17.1	128.6	85.7
	1	x	1		69	8.5	64.3	42.9
12	0	0	0		96	12	180	60
	0	0	1		48	6	90	30
	0	1	0		96	12	90	60
	0	1	1		48	6	45	30
	1	x	0		160	20	150	100
	1	X	1		80	10	75	50
15	0	0	0		120	15	225	75
	0	0	1		60	15	112.5	37.5
	0	1	0		120	7.5	12.5	75
	0	1	1		60	7.5	56.3	37.5
	1	x	x		Condensed not available			
Proportional	0	X	0	maximum	69	8.6	-	42.9
				minimum	160	20	-	100
	0	x	1	maximum	34	4.3	-	21.4
				minimum	80	10	-	50
	1	x	0	maximum	137	17.1	-	85.7
				minimum	320	40	-	200
	1	x	1	maximum	69	8.6	-	42.9
				minimum	160	20	-	100
Proportional super/ subscript	0	X	0	maximum	103	12.8	-	64.3
				minimum	240	30	-	150
	0	x	1	maximum	51	6.4	-	32.1
				minimum	120	15	-	75
	1	x	0	maximum	206	25.7	-	128.6
				minimum	480	60	-	300
	1	x	1	maximum	103	12.8	-	64.3
				minimum	240	30	-	150

NOTES: 1. The "maximum" value applies when only characters of maximum width are printed.
2. The "minimum" value applies when only characters of minimum width are printed.
3. "-" indicates that the "LQ" character set is automatically selected when proportional pitch is specified.

Table 1-8. Character Matrix and Character Size

Printing mode	Face matrix	HDD	$\begin{gathered} \text { Character size } \\ \text { 1 } \quad \mathrm{H} \times \mathrm{V}(\mathrm{~mm}) \\ \hline \end{gathered}$	Unit ESC sp
Draft 10-pitch	9×23	120	1.9×3.2	120
Draft 12-pitch	9×23	120	1.9×3.2	120
Draft 15-pitch	9×16	120	1.0×2.3	120
Draft 10-pitch, condensed		240	-	240
Draft 12-pitch. condensed	-	240	-	240
LQ 10-pitch	29×23	360	2.0×3.2	180
LQ 12-pitch	29×23	360	2.0×3.2	180
LQ 15-pitch	15×16	360	1.0×2.3	180
LQ 10-pitch, condensed	-	360	-	360
LQ 12-pitch, condensed	-	360	-	360
LQ proportional	37×23 maximum 18×23 minimum	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 2.6 \times 3.2 \\ & 1.0 \times 3.2 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$
LQ proportional, condensed	-	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$-$	$\begin{aligned} & 360 \\ & 360 \end{aligned}$
LQ proportional, super/ subscript	28×16 maximum 12×16 minimum	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	$\begin{aligned} & 1.8 \times 2.3 \\ & 0.7 \times 2.3 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$
LQ proportional, super/ subscript, condensed	-	$\begin{aligned} & 360 \\ & 360 \end{aligned}$	-	$\begin{aligned} & 360 \\ & 360 \end{aligned}$

NOTES: 1. HDD is horizontal dot density in dots per inch.
2. Face matrix and character size indicate maximum character size. This value changes according to differences in paper, ribbon, etc.
3. Unit ESC sp (which also can be sent as the unit followed by the character string CHR\$(\&h20)) indicates the minimum length to be added to the right of the character that can be specified with the ESC sp control code.
4. "-" indicates that character matrix is reshaped by printer firmware. Character width becomes half of noncondensed character width.

12 dots (10 pitch) 120 DPI
15 dots (12 pitch) 180 DPI
16 dots (15 pitch) 240 DPI
14 dots (condensed 10 pitch) 240 DPI
12 dots (condensed 12 pitch) 240 DPI

$$
\begin{aligned}
& 36 \text { dots (} 10 \text { pitch) } 360 \mathrm{DPI} \\
& 30 \text { dots (} 12 \text { pitch) } 360 \mathrm{DPI} \\
& 24 \text { dots (} 15 \text { pitch) } 360 \mathrm{DPI} \\
& 21 \text { dots (condensed } 10 \text { pitch) } 360 \mathrm{DPI} \\
& 18 \text { dots (condensed } 12 \text { pitch) } 360 \mathrm{DPI}
\end{aligned}
$$

* 15 dots are made from 29 dots by printer firmware.

Figure 1-6. Character Matrix

1.3 INTERFACE OVERVIEW

The standard 8-bit parallel interface has the following specifications:

Data Format
Synchronization
Handshaking
Signal Level
Connector
Data Transmission Timing

8-bit parallel
By STROBE pulse
By BUSY and $\overline{A C K N L G}$ signals
TTL-compatible
57-30360 (Amphenol) or equivalent See Figure 1-7.

Figure 1-7. Data Transmission Timing

Table 1-9 shows the connector pin assignments and signal functions of the 8-bit parallel interface.

Table 1-9. Connector Pin Assignments and Signal Functions

Pin No.	Signal Name	Return Pin No.	Dir.	Functional Description
1	STROBE	19	In	Strobe pulse to read the input data. Pulse width must be more than 0.5 $\mu \mathrm{s}$. Input data is latched at the fall- ing edge of this signal.
2	DATA 1	20	In	Parallel input data to the printer. 3
DATA 2	21	In	"HIGH" level means data "1."	
"LOW" level means data "0."				
4	DATA 3	22	In	"LOW
5	DATA 4	23	In	
6	DATA 5	24	In	
7	DATA 6	25	In	
8	DATA 7	26	In	
9	DATA 8	27	In	
$\mathbf{1 0}$	ACKNLG	28	out	This pulse indicates data was received and the printer is ready to accept more data. Pulse width is $11 \mu \mathrm{~s}$, approximate.
11				out

Table 1-9 Connector Pin Assignments and Signal Functions (Cont.)

Pin No.	Signal Name	Return Pin No.	Dir.	Functional Description
12	PE	30	out	"HIGH" indicates paper out. This signal is effective only when the ERROR signal is "LOW."
13	SLCT	-	out	Always "HIGH" output. (Pulled up to +5 V through $3.3 K-o h m ~ r e g i s t e r) ~$.
14	AUTOFEED-XT	-	In	If "LOW" when the printer is initialized, a line feed is automatically performed when the carriage return (CR) code is received (auto LF).
15				Not used.
16	GND			Ground for twisted pair grounding.
17	Chassis GND	-	-	Chassis ground level of printer.
18				Not used.
$19-30$	GND		In	Gulse (width: $50 \mu s$, minimum, active "LOW") input for printer initialization.
31	INIT	16	out	"LOW" indicates an error occurred in the printer.
32	ERROR	-	-	Ground for twisted pair grounding.
33	GND	-	-	Not used.
34		-	out	Always "HIGH." (Pulled up to +5 V through 3.3K-ohm register.)
35		-	If "LOW," when printer is initialized, DC1/DC3 control is disabled.	
36	SLCT-IN	-	In	

NOTES: 1. "Dir." refers to the signal flow direction as viewed from the printer.
2. "Return" denotes a twisted-pair return line.
3. The cable used must be shielded to prevent noise.
4. All interface conditions are based on TTL levels. Both the rise and fall times of all signals must be less than $0.2 \mu \mathrm{~s}$.
5. The AUTO FEED-XT signal can be set to LOW by DIP switch 2-4.
6. The SELECT-IN signal can be set to LOW by jumper 10.
7. Printing tests, including those of the interface circuits, can be performed without using external equipment by setting DATA 1-8 of the interface connector to certain codes and connecting the$\overline{A C K N L G}$ signal to the STROBE signal.

Table 1-10 shows the printer select/deselect (DC1/DC3) control, including relations among ON-LINE, SELECT-IN input, DC1/DC3, and interface signals.

Table 1-10. Printer Select/Deselect Control

ON-LINE SW	SLCT-IN	DC1 / DC3	ERROR	BUSY	ACKNLG	DATA ENTRY
Off-Line	HIGH/LOW	DC1 / DC3	LOW	HIGH	No pulse	Disable
On-Line	HIGH	DC1	HIGH	LOW/HIGH (during data entry)	Pulse output after entry	Enable (normal process)
		DC3	HIGH	LOW/HIGH (during data entry)	Pulse output after entry	Enable (waits for DC1, see Note 2.)
	LOW	DC1	HIGH	LOW/HIGH (during data entry)	Pulse output after entry	Enable (normal process)
		DC3	HIGH	LOW/HIGH (during data entry)	Pulse output after entry	

NOTES: 1. In Table 1-10, it is assumed that no ERROR status exists other than that attributable to OFF-LINE mode.
2. Once the printer has been put in the deselected state by the DC3 code, the printer will not revert to the selected state unless the DC1 code is input again. (In the deselected state, the printer ignores input data until the DC1 code is received.)
3. The DC1 and DC3 codes are enabled only when the SLCT-IN signal (Input Connector Number 36 for the parallel interface unit) is HIGH and printer power is initialized.
4. If the SLCT-IN signal is LOW when the printer is initialized, DC1 /DC3 printer select/deselect control is invalidated, and these control codes are ignored.
5. If the $\overline{\text { SLCT-IN }}$ signal is HIGH, and is not set to LOW by jumper 10 when the printer is initialized, the printer starts from the selected (DC1) state.

1.4 DIP SWITCHES AND JUMPER SETTING

This section describes the DIP switch selections and jumper setting for the LQ-510 printer.

1.4.1 DIP SWITCH SETTINGS

The two DIP switches for the printer are located on the control panel, and function as shown in Tables 1-11 through 1-15. (Note that the status of the DIP switches is read only at power up or upon receipt of the INIT signal.)

Table 1.11. Settinga for DIP Suvitch 1 (SW1)

Mo.	Dencription	On	Off
1 2 3	Inturnationel charatir ext sametion	Sex Tuble 1-13.	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$	Fom splection (LO-610 POM versions SDe-w or bevom) (LQ-1010 ROM versions TAMO4C or beiow) Page leneth (LOS10 FOM versions TBO00A or teow (LQ1010 ROM version TBCona or thowe	See Tebre 1-14.	
6	Concienaed printing	On	OM
7	Coce taple sumetion	Graphic	Helles
8	Cut-shent frecer (CSF) mode	On	OHI

Table 1-12. Settings for DIP Sultch 2 (STV)

No.	Deseription	On	Onl
1	Page langth (LO-510 ROM versions SDeWt or beromi) (LO-1010 ROM versior: TAMOAC or bevow) Not used (LO-610 POM wersions TBDOQA or town) (LOL1010 ROM vartion TECBOA or mova)	12 inery	11 inche
2	Teer-all mode	On	Orl
3	1-ineh midp	On	OVI
4	Avo LF	On	Orf
5	Inpet dan buther	80,	16.
-	Print arnecten for crephica *	Bldractional	Uniesrectiona
78	Cherater preh mavetion	Sen Tilut $1-15$ below.	

Table 1-1s. International Character Set Selection

1-1	12	1-3	Country	1.1	12	1-9	Country
On	On	On	U.8.	Ofi	On	On	Donmerts 1
On	On	Of	France	Of	On	On	Sumpion
On	Ont	On	Germary	On	On	On	
On	Off	Off	U.K.	On	On	Off	Spain 1

Table 1-14. Font Select\&n (ROM Version SD6-W6 or Below or TAA04C or Below)

$1-4$	$1-8$	Font
On	On	Floman
On	On	Sans sert
On	On	Slot
On	On	Drat

Tab\& 1-14. Page Length Selection (ROM Version TBD00A or Above or TBC00A or Above

1.4	$1-5$	Page Length
On	OH	11 inches
On	OfI	12 inches
Of	On	8.5 inches
On	On	11.7 inches

Table 1-15. Character Pitch Selection

$2-7$	$2-6$	Character Pitch (In characters per inch)
On	OW	10 cpi
On	Of	12 cpl
Of	On	15 cpl
On	On	Proportional

1.4.2 JUMPER SETTING

Jumper 10, which is user-selectable, is located inside the option board cover. If the jumper is connected, the $\overline{\text { SLCT-IN }}$ signal is fixed to LOW, and DC1 /DC3 printer select control is ignored.

1.5 SELECTYPE FUNCTION

SelecType enables easy selection of fonts and printing modes, and can be used to select any of the fonts listed on the control panel for either condensed or normal printing. If the printer uses an optional slot-mounted multi-font (ROM cartridge), these fonts also can be selected from the control panel. SelecType functions only when the printer is not printing, at which time the font can be selected by pressing the FONT switch. The printing mode is selected by pressing the CONDENSED switch (again, only when the printer is not printing). The selected font and mode are indicated on the printer's control panel.

1.6 SHEET LOADING AND SHEET EJECTION

The release lever enables disengaging of the push tractor unit drive mechanism. The printer therefore provides some improved paper-handling functions through combination of the release lever and LOAD/EJECT control panel switch.

Cut-Sheet Loading and Ejection

To load a sheet of paper, position the paper-release lever back, place the sheet along the paper guide, and press the LOAD/EJECT switch. This loads the paper to the top-of-form position. Pressing the LOAD/EJECT switch after the paper has been loaded will cause the paper to be ejected.

Continuous-Paper Loading and Ejection (Back-Out)

To load fanfold paper, move the paper-release lever forward, and insert the paper into the push tractor. Pressing the LOAD/EJECT switch will then cause paper to be automatically loaded to the top-of-form position. Pressing the LOAD/EJECT switch after the fanfold paper has been loaded causes the printer to eject the paper backward from the push tractor. To back out several pages, press the LOAD/EJECT switch several times (reverse feed is performed on a page-by-page basis).
The MULTI-PART LED will flash only when the paper is loaded and the ON LINE switch pressed. This indicates that the printer has entered "top-of-form adjust" mode, and that the user may adjust the top-of-form position, as well as the loading positions for subsequent forms. Adjustment is made using the FORM FEED button, which will increment the paper forward, and the LINE FEED switch, which will increment the paper in reverse. (The minimum feed amount is $1 / 80$ inch.) When the cut-sheet feeder is used, the adjusted position for the top of form will be lost after the printer is reinitialized, and the top of form will be reset to the default value. When continuous paper is used, however, printer memory maintains the adjusted top-of-form position even after printer initialization.

1.7 TEAR-OFF FUNCTION

If the tear-off function is enabled by making the appropriate DIP switch setting, it operates when the release lever is set to the tractor position. In this case, if the input data buffer is empty and the printer is on line, the paper is automatically fed to the tear-off position, and the MULTI-PART LED flashes to indicate that the FORM FEED and LINE FEED switches are now available to perform micro-adjustment. The user may then adjust the paper to the desired tear-off position. This position becomes the new tear-off position default, and will remain valid even if the printer is reset and reinitialized, and regardless of whether the main power has been interrupted. When new data is input to the printer, the paper is automatically returned to its original position, and printing then starts. Paper that was advanced to the tear-off position will also be returned to its original position if the ON LINE switch is pressed (switching the printer from on line to off line).

1.8 OPERATING INSTRUCTIONS

This section describes the self-test and hexadecimal dump functions, error states, printer initialization, and buzzer operation.

1.8.1 SELF-TEST

To begin self-test printing in draft mode, turn the printer on while depressing the LINE-FEED button. To begin printing in letter-quality (LQ) mode, turn the printer on while depressing FORM FEED.

Self-test printing can be stopped and restarted by pressing ON LINE (this will not affect the ON-LINE indicator). To conclude the self-test, press the ON-LINE switch to stop the printing; then turn off the printer.

The first printed line of the self-test indicates the firmware revision number. Following this line, the current DIP switch settings are printed.

Country	SW1-1 1-2 1-3	Page length	SW2-1
USA	on on on	11"	off
France	on on off	12	on
Germany	on off on	Tear off mode	sm2-2
U.K.	on off off	Invalid	off
Denmark	off on on	V\&lid	on
Sweden	off on off	I skip	342-3
Italy	off off on	Invalid	off
Spain	off off off	Valid	on
Font	SW1-4 1-5	Auto LF	Sw2-4
Roman	off off	Invalid	off
Sans serif	on off	Valid	on
slot	off on	Receive buffer	3420
Draft	on on	1 kbytes	07
	SW1-6	8kbytes	on
Invalid	off	Graphics print	342-6
Valid	on	uni-d	0 ff
CG table	Sm1-7	Bi-d	on
Italic	off	Pitch	Sw2-1 2-8
Graphic	on	10 pitch	off oft
CSF mode	SW1-8	12 Pitch	on off
Invalid	off	15 pitch	off on
Valid	on	Proportional	on on

[^1]Figure 1-8. Self-Test Printout

1.8.2 HEXADECIMAL DUMP FUNCTION

HEX dump mode is activated if the printer is switched on while both the LINE-FEED and FORM-FEED buttons are depressed. When this mode is in effect, the hexadecimal representation of the input data is printed beside the corresponding printable ASCII characters. Periods (.) are printed beside control code input data. This function is useful for checking the data the printer is receiving from the host.

Data Dump Mode

1 B	40	OD	1B	55	00	1B	33	1E	00	OD	0 A	OD	0A	OD	OA
12	1 B	70	00	1B	78	01	1B	57	00	1 B	4D	20	20	20	20
43	48	41	50	54	45	52	20	31	OD	0A	20	20	20	20	7
45	4E	45	52	41	4C	20	44	45	53	43	52	49	50	4	9
4 F	4E	OD	0 A	OD	0 A	20	20	20	20	31	2E	31	20	4	5
41	54	55	52	45	53	OD	0 A	20	20	20	20	31	2 E	32	20
53	50	45	43	49	46	49	43	41	54	49	4F	4E	53	0D	0 A
20	20	20	20	20	20	20	20	31	2 E	32	2E	31	20	46	61
72	64	77	61	72	65	20	53	70	65	63	69	66	69	3	61
74	69	6 F	6 E	73	OD	0 A	20	20	20	20	20	20	20	20	1
2 E	32	2 E	32	20	46	69	72	6D	77	61	72	65	20	53	70
5	63	69	66	69	63	61	74	69	6 F	6E	73	20	28	45	53
43	2 F	50	29	OD	0 A	20	20	20	20	3	2 E	33	20	9	E
54	45	52	46	41	43	45	20	4F	56	45	5	56	49	45	7
0D	0 A	20	20	20	20	31	2E	3	20	44	4	50	20	3	7
49	54	43	40	45	53	20	41	4E	44	20	4A	55	4D	50	45
52	20	53	45	54	54	49	4 E	47	0D	0A	20	20	20	0	20
20	20	20	31	2 E	34	2 E	3	20	44	49	50	20	53	77	69
74	63	68	20	53	65	74	74	69	6E	67	73	OD	0 A	20	20
20	20	20	20	20	20	31	2E	34	2E	32	20	4A	75	6D	70
65	72	20	53	65	74	74	69	6E	67	0D	0 A	20	20	20	20
31	2E	35	20	53	45	4C	45	43	54	59	50	45	20	46	55
4 E	43	54	49	4F	4E	OD	0 A	20	20	20	20	31	2E	36	20
53	48	45	45	54	20	4C	4F	41	4	49	4E	47	20	41	E
44	20	53	48	45	45	54	20	45	4 A	45	43	54	49	4F	4E
OD	0A	20	20	20	20	31	2 E	37	20	54	45	41	52	2D	4 F
46	46	20	46	55	4E	43	54	49	4F	4E	0D	0 A	20	20	20
20	31	2 E	38	20	4F	50	45	52	41	54	4	4E	47	20	9
4E	53	54	52	55	43	54	49	4F	4E	53	0D	0A	20	20	20
20	20	20	20	20	31	2E	38	2E	31	20	53	65	6 C	66	2D
54	65	73	74	OD	0A	20	20	20	20	20	20	20	20	31	2E
30	2E	32	20	48	65	78	6	64	65	63	69	6D	61	6 C	20
4	75	6D	70	20	46	75	6E	63	74	69	6	6E	OD	0 A	20
20	20	20	20	20	20	20	31	2E	38	2 E	33	20	42	69	4
2D	49	6D	61	67	65	20	50	72	69	6 E	74	69	6 E	67	OD
0 A	20	20	20	20	20	20	20	20	31	2E	38	2E	3	20	4.5
72	72	6 F	72	20	43	6 F	6	64	69	7	6	6 F	6E	73	D
0 A	20	20	20	20	20	20	20	20	31	2E	38	2E	35	20	42
75	7 A	7 A	65	72	20	4F	70	65	72	61	74	69	6 F	6E	OD
0 A	20	20	20	20	20	20	20	20	31	2 E	38	2 E	36	20	50
72	69	6E	74	65	72	20	49	6E	69	74	69	61	6C	6	7A
61	74	69	6 F	6 E	0D	0 A	20	20	20	20	2	20	20	20	31
2 E	38	2 E	37	20	44	65	66	61	75	6C	74	20	56	61	6 C
75	65	73	0D	0 A	20	20	20	20	20	20	20	20	31	2	38
2 E	38	20	41	64	6A	75	73	74	20	4C	65	76	65	72	20
4	70	65	72	61	74	69	6 F	6 E	0D	0 A	20	20	20	20	20
20	20	20	31	2 E	38	2E	39	20	50	72	69	6E	74	65	72
0	50	72	6 F	74	65	63	74	69	6 F	6E	20	66	6 F	72	20
48	65	61	76	79	2D	44	75	74	79	20	50	72	69	6 E	74
69	6E	67	0D	0 A	20	20	20	20	31	2E	3	20	4D	41	9
4 E	20	43	4 F	4D	50	4F	4E	45	4E	54	53	0D	0 A	20	20
20	20	20	20	20	20	31	2 E	39	2E	31	20	53	4	4D	41
20	42	6 F	61	72	64	OD	0 A	20	20	20	20	20	20	20	20
31	2E	39	2E	32	20	53	4	4E	50	4E	4C	20	42	6 F	61
72	64	0D	0 A	20	20	20	20	20	20	20	20	31	2E	39	2E
33	20	53	41	4E	50	53	28	45	29	20	42	6 F	61	72	64
OD	0 A	20	20	20	20	20	20	20	20	31	2E	39	2E	34	20
50	72	69	6 E	74	65	72	20	4D	65	63	68	61	6E	69	73
6 D	20	28	4D	2D	35	37	31	30	29	OD	0 A	20	20	20	20
20	20	20	20	31	2E	39	2 E	35	20	48	6 F	75	73	69	6E
67	OD	0 A	OD	0 A	20	20	20	20	31	2E	31	20	46	45	41
54	55	52	45	53	OD	0 A	OD	0 A	20	20	20	20	54	68	65
20	4C	51	2D	35	31	30	2 F	35	35	30	20	69	73	20	61

. @ . U. . $3 \ldots .$.
CHAPTER 1.. ENERAL DESCRIPTI ON... 1.1 FE ATURES. 1.2
SPECIFICATIONS.
1.2.1 Ha
rdware Specifica
tions.
.2.2 Firmware Sp ecifications (ES C/P). 1.3 IN TERFACE OVERVIEW 1.4 DIP SW ITCHES AND JUMPE R SETTING.
1.4.1 DIP Swi tch Settings.. 1.4.2 Jump
er Setting..
1.5 SELECTYPE FU NCTION.. 1.6
SHEET LOADING AN D SHEET EJECTION 1.7 TEAR-O FF FUNCTION.
1.8 OPERATING I NSTRUCTIONS. 1.8.1 Self-

Test.
8.2 Hexadecimal

Dump Function..
1.8.3 Bit
-Image Printing. 1.8.4 E
rror Conditions. 1.8 .5 B
uzzer Operation 1.8 .6 P
rinter Initializ ation.
.8.7 Default Val ues. 1.8
. 8 Adjust Lever
Operation.
1.8.9 Printer

Protection for
Heavy-Duty Print ing. 1.9 MAl N COMPONENTS.
1.9.1 SAMA

Board.
1.9.2 SANPNL Boa
rd.. 1.9 .

3 SANPS(E) Board
1.9 . 4

Printer Mechanis m (M-5710).
1.9.5 Housin
g.. . 1.1 FEA

TURES... The
LQ-510/550 is a

Figure 1-9. Hexadecimal Dump Function

1.8.3 BIT-IMAGE PRINTING

This printer offers the following four standard print densities ("dpi" indicates "dots per inch"):
120 dpi (including half dots): Triple speed
180 dpi (including half dots): Double speed
240 dpi (including half dots): 1.5 speed
360 dpi (including half dots): Normal speed
The firmware implements the print densities as shown in Table 1-16.

Table 1-16. Print Density

| Pins | m | Bit Image Printing Mode | Dot Density
 $(\mathbf{d p i})$ | Dot
 Printing | $\mathbf{2 5 6 \times \mathbf { n 2 } + \mathbf { 1 }}$ | Print Speed
 $(\mathbf{i p s})$ |
| :---: | :---: | :--- | ---: | :---: | :---: | :---: | :---: |
| 8 | 0 | Single-density | 60 | yes | 660 | 15 |
| 8 | 1 | Dual density | 120 | yes | 1320 | 7.5 |
| 8 | 2 | Double speed, dual density | 120 | no | 1320 | 15 |
| 8 | 3 | Quadruple density | 240 | no | 2640 | 7.5 |
| 8 | 4 | CRT graphics | 80 | yes | 880 | 7.5 |
| 8 | 6 | CRT graphics II | 90 | yes | 990 | 10 |
| 24 | 32 | Single density | 60 | yes | 660 | 15 |
| 24 | 33 | Dual density | 120 | yes | 1320 | 7.5 |
| 24 | 38 | CRT graphics II | 90 | yes | 990 | 10 |
| 24 | 39 | Triple density | 180 | yes | 1980 | 5 |
| 24 | 40 | Hex. density | 360 | no | 3960 | 5 |

NOTES: 1. Dot density is in dots per inch; print speed is in inches per second.
2. The format of the graphics command is ESC* $\mathrm{m} \mathrm{n1} \mathrm{n} 2$ [DATA]. Column 2 of the table shows the significance of the various options for m.

The firmware handles the print densities as shown in Table 1-17.

Table 1-17. Bit-Image Printing

Dot Density	Printing Method
80 dpi	Prints at 240 dpi by expanding the bit image by three: $80 \times 3=240$

1.8.4 ERROR CONDITIONS

If any of the following error conditions are detected, the printer automatically enters off-line mode.

- Home position is not detected at printer mechanism initialization.
- Home position is detected during printing.
- ON LINE is pressed when the printer is already on line. This will switch the printer to off line.
- When a paper-out signal is detected and forms-override is finished.
- If "paper out" is detected after the printer performs a paper-loading operation with the cut-sheet feeder enabled.

The following interface signals are output to indicate the error and to halt data transmission:
BUSY signal becomes HIGH.
ERROR becomes LOW.
No $\overline{\text { ACKNLG }}$ pulse is sent.

1.8.5 BUZZER OPERATION

The buzzer operates as follows:

- When the BEL code is sent to the printer, the buzzer sounds continuously for 0.5 seconds.
- When the paper-out error is detected, the buzzer sounds 3 times, for 0.1 second each time. The interval between sounds is 0.1 second.
- When abnormal carriage movement is detected, the buzzer sounds 5 times, for 0.5 seconds each time. The interval between sounds is 0.5 seconds.
- When the panel setting is accepted, the buzzer sounds for 0.1 second.

1.8.6 PRINTER INITIALIZATION

There are two types of initialization: hardware initialization and software initialization.

Hardware Initialization

Hardware initialization occurs when the printer power switch is turned on (provided that the AC power cord is plugged in), or when the INIT signal is received over the parallel interface line.

Upon hardware initialization, the printer does the following:
(a) Initializes the printer mechanism.
(b) Clears the input data buffer.
(c) Clears the downloaded character set.
(d) Clears the print buffer.
(e) Returns the printer settings to their default values.

Software Initialization

Software initialization occurs when the printer receives the software initialize code. For a software initialization, the printer does not perform the functions listed under (a), (b), and (c) above. Instead, the settings changed by the last SelecType operation are reset.

1.8.7 DEFAULT VALUES

When the printer is initialized, the following default values and functions are set:

Page Position
Left and Right Margin
Line Spacing
Vertical Tabs
Horizontal Tabs
VFH Channel
Family Number of Type
Style
Download Characters
Justification
Character Spacing
Bit-Image Mode Assignment
Printing Effects
Condensed Printing

The current paper position becomes the top-of-form position Released
1/6 inch
Cleared
Every 8 characters (relative)
Channel 0

Font selected by DIP switch
Deselected (if software initialization) Cleared (if hardware initialization)
Left justification
10 cpi
ESC K = ESC* 0, ESC L = ESC * 1 $E S C Y=E S C$ * $2, E S C Z=E S C$ * 3
All effects other than condensed printing are cleared Setting selected by DIP switch

1.8.8 ADJUST LEVER OPERATION

The position of the adjust lever must be set to accord with the paper thickness. If the lever is set to position four or above, the MULTI-PART indicator lights and the printing speed is increased. See Table 1-18 and Figure 1-10.

Table 1-18. Lever Position

Lever Position*	Paper Thickness
2nd position	$0.06-0.12 \mathrm{~mm}$
3rd position	$0.13-0.18 \mathrm{~mm}$
4th position	$0.19-0.25 \mathrm{~mm}$

. If the printing density is light, position the adjust lever one step lower.

Figure 1-10. Lever Position

1.8.9 PRINTER PROTECTION FOR HEAVY-DUTY PRINTING

The printer incorporates "printhead protection" to safeguard it from overheating and from the potential ill effects of a voltage drop to the head driver. If the temperature of the head exceeds a specified value, printing is automatically suspended. Printing automatically resumes when the temperature drops to another specified value.

If heavy-duty printing causes the voltage to the head drive circuit to drop to a specified value, printing is immediately suspended. If the voltage recovers, the line that was being printed is completed. This protection occurs when half or more of the wires are activated simultaneously and continuously.

1.9 MAIN COMPONENTS

To facilitate maintenance and repair, the main components of the LQ-510 printer are designed so that they can be removed and replaced easily.

The main components are:

1) SAMA board: The main control board. The CPU, which is contained on this board, controls all the main functions.
2) SANPNL control panel: The control panel.
3) SANPS board: (120 V Version) The power supply circuit board. SANPSE Board (220/240 V Version)
4) $\mathrm{M}-5710$:

The printer mechanism.

Figure 1-11. LQ-510 Component Layout

1.9.1 SAMA BOARD

The use of the μ PD7810HG CPU simplifies the circuitry design of the main control board.

Figure 1-12. SAMA Main Control Board

1.9.2 SANPNL CONTROL PANEL

The SANPNL control panel, which is the LQ-510's control panel, contains the switches and the indicator LEDs illustrated below.

Figure 1-13. SANPNL Control Panel

1.9.3 SANPS(E) BOARD

The power supply circuit (SANPS/SANPSE board), which is housed at the upper left of the lower case, consists of a line filter, fuse, power switch, and switching regulator circuit. It converts the AC line voltage to the $+24 \mathrm{~V},+12 \mathrm{~V},-12 \mathrm{~V}$, and +5 VDC voltages used by the printer.

(SANPS Board)

(SANPSE Board)

Figure 1-14. Power Supply Filter Board

1.9.4 PRINTER MECHANISM (M-5710)

The M-5710 printer mechanism was developed expressly for use with LQ-510 printer. Its components include a carriage motor, carriage mechanism, paper-feed motor, paper-feed mechanism, ribbon-feed mechanism, printhead, and sensors.

Figure 1-15. Model 5710 Printer Mechanism

1.9.5 HOUSING

The housing for the LQ-510 consists of upper and lower cases. The upper case houses the control panel. The lower case contains the printer mechanism and the main control board. The printer cartridge can be removed and replaced easily.

Figure 1-16. Housing

CHAPTER 2
 PRINCIPLES OF OPERATION

2.1 OVERVIEW 2-1
2.1.1 Connectors Summary 2-1
2.1.2 Outline of Printer Mechanism Operation 2-3
2.1.2.1 Sensors 2-4
2.1.2.2 Motors 2-9
2.1.2.3 Printhead 2-9
2.1.3 Circuit Overview 2-10
2.1.3.1 Overview of Power Supply Circuit 2-10
2.1.3.2 Control Circuit Block Diagram 2-11
2.2 OPERATION OF THE POWER SUPPLY CIRCUIT 2-13
2.2.1 Power Supply Circuit Block Diagram 2-13
2.2.2 Filter Circuit 2-14
2.2.3 Rectifier and Smoothing Circuit 2-15
2.2.4 Starting Circuit (Main Switching Circuit) 2-15
2.2.5 + 24 VDC Voltage Control Circuit 2-19
2.2.6 + 5 VDC Regulator Circuit 2-21
2.2.7 Voltage Limiting Circuit 2-25
2.2.8 ± 12 VDC Supply Circuit 2-26
2.3 PRINTER MECHANISM AND CONTROL CIRCUIT OPERATION 2-27
2.3.1 Vx Voltage Supply Circuit 2-27
2.3.2 Reset Circuit 2-28
2.3.3 Address Decoder and Bank Register 2-33
2.3.4 Carriage Operation 2-35
2.3.4.1 Carriage Mechanism 2-35
2.3.4.2 Carriage Motor Specifications 2-36
2.3.4.3 Carriage Motor Drive Circuit Block Description. 2-36
2.3.4.4 Gate Array E01A05 Operation in Carriage Motor Drive Circuit 2-37
2.3.4.5 Carriage Motor Drive Circuit 2-38
2.3.4.6 Carriage Motor Software Control 2-47
2.3.5 Paper Feed 2-51
2.3.5.1 Paper-Feed Mechanism Operation 2-51
2.3.5.2 Paper-Feed Motor Specifications 2-52
2.3.5.3 Paper-Feed Motor Drive Circuit 2-53
2.3.5.4 Paper-Feed Motor Software Control 2-54
2.3.6 Printhead 2-55
2.3.6.1 Printhead Printing Operation 2-55
2.3.6.2 Printhead Specifications 2-55
2.3.6.3 Printhead Drive Circuit Block Diagram 2-56
2.3.6.4 Gate Array E05A02 Operation in Printhead Drive Circuit 2-57
2.3.6.5 Printhead Drive Circuit 2-56
2.3.6.6 Printhead Software Control 2-59
2.3.7 A/D Converter Circuit 2-60
2.3.8 Host Interface 2-63
2.3.9 EEPROM Circuit 2-64
2.3.10 Ribbon-Feed Mechanism 2-65

LIST OF FIGURES

Figure 2-1.	Cable Connections	2-2
Figure 2-2.	Printer Mechanism Block Diagram	2-3
Figure 2-3.	Paper-End Sensor Mechanism	2-4
Figure 2-4.	Paper-End Sensor Circuit	2-4
Figure 2-5.	Home-Position Sensor Mechanism	2-5
Figure 2-6.	Home-Position Sensor Circuit	2-5
Figure 2-7.	Thermal Sensor Mechanism (Printhead Temperature Detection) \qquad	2-6
Figure 2-8.	Thermal Sensor Circu	2-6
Figure 2-9.	Platen Gap Sensor Mechanism	2-7
Figure 2-10.	Platen Gap Sensor Circuit	2-7
Figure 2-11.	Friction/Tractor Sensor Mechanism	2-8
Figure 2-12.	Friction/Tractor Sensor Circuit	2-8
Figure 2-13.	Printhead	2-9
Figure 2-14.	Overview of Power Supply Circuit Operation	2-10
Figure 2-15.	Control Circuit Block Diagram	2-11
Figure 2-16.	Power Supply Circuit Block Diagram	2-13
Figure 2-17.	Filter Circuit (SANPS Board, 120 V Version).	2-14
Figure 2-18.	Filter Circuit (SANPSE Board, 220/240 V Version)	2-14
Figure 2-19.	Rectifier and Smoothing Circuit	2-15
Figure 2-20.	Starting Circuit (Main Switching Circuit)	2-17
Figure 2-21.	Main Switching Circuit Waveforms.	2-18
Figure 2-22.	+24 VDC Voltage Control Circuit	2-19

Figure 2-23. Switching Circuit (During PCI Operation) 2-20
Figure 2-24. Over-Current Protection (OCP) 2-20
Figure 2-25. + 5 VDC Regulator Circuit 2-21
Figure 2-26. Oscillator Waveforms 2-22
Figure 2-27. Constant Voltage Control 2-22
Figure 2-28. EAI Output 2-22
Figure 2-29. Over-Current Protection (OCP) 2-23
Figure 2-30. IC494 Internal Circuit 2-24
Figure 2-31. PWM Output 2-24
Figure 2-32. Voltage Limiting Circuit 2-25
Figure 2-33. ± 12 VDC Supply Circuit 2-26
Figure 2-34. Vx Voltage Circuit 2-27
Figure 2-35. Reset Circuit 2-28
Figure 2-36. $\overline{\text { RESET Output }}$ 2-29
 2-30
Figure 2-38. $\quad \overline{R E S E T}$ Pulse Oscillation Process (Module Removed) 2-31
Figure 2-39. INIT Signal Input Circuit 2-32
Figure 2-40. Address Decoder 2-33
Figure 2-41. Bank Register 2-34
Figure 2-42. Carriage Mechanism 2-35
Figure 2-43. Carriage Drive Circuit Block Diagram 2-36
Figure 2-44. Gate Array Operation 2-37
Figure 2-45. Carriage Motor Drive Circuit 2-38
Figure 2-46. SLA7020M Circuit Diagram 2-39
Figure 2-47. Phase Data Input Timing (2-2 Phase) 2-40
Figure 2-48. Phase Signal Timing Chart (2-2 Phase) 2-40
Figure 2-49. Phase Data Input Circuit (1-2 Phase) 2-41
Figure 2-50. Phase Signal Timing Chart (1-2 Phase) 2-41
Figure 2-51. Phase Data Conversion Circuit 2-42
Figure 2-52. Reference Voltage Generation Circuit 2-43
Figure 2-53. Constant Current Control Circuit 2-44
Figure 2-54. Waveforms 2-45
Figure 2-55. Carriage Motor Control 2-48
Figure 2-56. Home-Position Seek 2-49
Figure 2-57. Printing Area and Printing Timing 2-50
Figure 2-58. Friction-Feed Operation 2-51
Figure 2-59. Push-Tractor-Feed Operation 2-52
Figure 2-60. Paper-Feed Motor Drive Circuit 2-53
Figure 2-61. Paper-Feed Motor Drive Timing Chart 2-54
Figure 2-62. Printhead Printing Operation 2-55
Figure 2-63. Printhead Drive Circuit Block Diagram 2-66
Figure 2-64. Printhead Drive Circuit 2-57
Figure 2-65. Printhead Drive Waveforms 2-58
Figure 2-66. Print Timing 2-59
Figure 2-67. Relationship Between Head Driving Voltage and Print Driving Pulse Width 2-59
Figure 2-68. A/D Converter Circuit 2-61
Figure 2-69. Host Interface 2-63
Figure 2-70. EEPROM Circuit 2-64
Figure 2-71. Ribbon-Feed Mechanism 2-65

LIST OF TABLES

Table 2-1. Board Connector Summary 2-1
Table 2-2. Power Supply Applications 2-10
Table 2-3. Reference Voltages 2-43
Table 2-4. Phase-Excitation Method 2-47
Table 2-5. Drive Sequence (2-2 Excitation) 2-47
Table 2-8. Drive Sequence (1-2 Excitation) 2-47
Table 2-7. Excitation Sequence 2-54
Table 2-8. E05A02 Gate Array Functions 2-57
Table 2-9. Scan Lines and DIP Switches 2-62
Table 2-10. Ribbon-Feed Gear Train 2-66

PRINCIPLES OF OPERATION 2

2.1 OVERVIEW

This chapter describes the signals at the connectors linking the primary components of the LQ-510. These components include the printer mechanism, power supply circuits, and control circuits. The chapter also describes the operation of the printer's circuitry and printer mechanism.

2.1.1 CONNECTOR SUMMARY

The interconnection of the primary components is illustrated in Figure 2-1. Table 2-1 summarizes the functions, sizes, and types of the connectors shown in the figure.

Table 2-1. Board Connector Summary

Board	Connector	Function	Pins	Reference Table
SAMA Board	CN1	Host I/F (Parallel)	36	1-9
	CN2	Optional I/F Board	26	A-10
	CN3	Font Module or Identity Module	32	A-11
	CN4	Control Panel	16	A-12
	CN5	Release Lever	2	A-13
	CN6	Adjust Lever	2	A-14
	CN7	CR Motor and PF Motor	12	A-15
	CN8	Head 1	17	A-16
	CN9	Head 2	15	A-17
	CN10	DC Power Input	6	A-18
	CN11	DC Power Input	4	A-19
	CN12	CR Home Position	2	A-20
	CN13	PE Signal	2	A-21
SANPS(E) Board	CN1	AC Power Input	2	-
	CN2	DC Power Output	10	-

Host Computer

NOTE: $\quad C R=$ carriage.
$P F=$ paper feed.
Figure 2-1. Cable Connections

2.1.2 OUTLINE OF PRINTER MECHANISM OPERATION

The Model 5710 printer mechanism is a serial, impact, dot-matrix mechanism that prints at 180 dots per inch (dpi) in both horizontal and vertical directions. Figure 2-2 shows a block diagram of the printer mechanism.

NOTE: CW = clockwise; CCW = counterclockwise,
HP = home position.
$P E=$ paper end.
Figure 2-2. Printer Mechanism Block Diagram

2.1.2.1 Sensors

The printer mechanism is equipped with the following sensors:
Paper-End (PE) Sensor
Home-Position (HP) Sensor
Thermal Sensor (for sensing printhead temperature)
Platen Gap (PG) Sensor
Friction/Tractor Sensor

Paper-End Sensor (PE Sensor)

Figures 2-3 and 2-4 show the paper-end sensor. This sensor switch is ON when no paper is in place (e.g., when the paper supply has run out).

Figure 2-3. Paper-End Sensor Mechanism

Figure 2-4. Paper-End Sensor Circuit

Home-Position Sensor (HP Sensor)

Figures 2-5 and 2-6 show the home-position sensor. The sensor switch is ON when the carriage is at the home position.

$$
\begin{aligned}
& \text { Home position } \rightarrow \text { ON } \rightarrow \text { LOW } \\
& \text { Other positions } \rightarrow \text { OFF } \rightarrow \text { HIGH }
\end{aligned}
$$

The reference position for the carriage drive is determined by this sensor.

Figure 2-5. Home-Position Sensor Mechanism

Figure 2-6. Home-Position Sensor Circuit

Thermal Sensor (Printhead Temperature Detection)

The thermal sensor in the printhead monitors the printhead temperature. If the head temperature exceeds a specified upper limit, printing is automatically suspended. Printing resumes when the temperature drops to a specified lower value. Figure 2-8 illustrates the printer's thermal-sensor circuit.

Figure 2-7. Thermal Sensor Mechanism (Printhead Temperature Detection)

Figure 2-8. Thermal Sensor Circuit

Platen Gap (PG) Sensor

The PG sensor is ON whenever the adjust lever position is set to the fourth position or above. If the sensor is ON , printing will be in multiple copy mode, and the print speed will be relatively slow.

Adjust Lever Position 1 to $3 \rightarrow$ OFF \rightarrow HIGH
Adjust Lever Position 4 to $7 \rightarrow$ ON \rightarrow LOW

Figure 2-9. Platen Gap Sensor Mechanism

Figure 2-10. Platen Gap Sensor Circuit

Friction/Tractor Sensor

The friction/tractor sensor detects the position of the release lever to determine whether tractor feed or friction feed is in effect.

Release Lever Position: Front \rightarrow Friction Feed \rightarrow OFF \rightarrow HIGH level Release Lever Position: Rear \rightarrow Tractor Feed \rightarrow ON \rightarrow LOW level

Figure 2-11. Friction/Tractor Sensor Mechanism

Figure 2-12. Friction/Tractor Sensor Circuit

2.1.2.2 Motors

This printer has the following motors:
Carriage motor (stepper motor)
Paper-feed motor (stepper motor)

Carriage Motor

The carriage motor is used to move the carriage right and left along the platen. This unit employs a fourphase, 48-step motor using either 1-2 or 2-2 phase excitation and is controlled by an open-loop system.

Paper-Feed Motor

Paper is fed using a four-phase, 48-step motor operating with either 1-2 or 2-2 phase excitation, which advances the paper either $1 / 180$ inch or $1 / 360$ inch for each phase switch. The CPU controls the motor through an open loop.

2.1.2.3 Printhead

Figure 2-13 shows the dot-wire operation. When the head-driving coil is energized, the dot wire is pushed out. The dot wire strikes the ribbon, causing the ribbon to impact the paper, thereby printing a dot.

Figure 2-13. Printhead

2.1.3 Circuit Overview

This section describes the circuitry.

2.1.3.1 Overview of the Power Supply Circuit

The power circuit for this system is an SANPS(E) board. The circuit converts the AC power source to the $+24,+5$, and ± 12 VDC that the unit requires.

Figure 2-14. Overview of Power Supply Circuit Operation

Table 2-2. Power Supply Applications

Voltage	Application
+5 V	Logic circuit Paper-feed motor holding voltage, etc.
+24 V	Carriage motor drive voltage Paper-feed motor drive voltage Printhead drive voltage
$\pm 12 \mathrm{~V}$	Optional I/F voltage
VX	Reset circuit Printhead data signal pull-up voltage Paper-feed motor phase data signal pull-up voltage

NOTE: The voltage Vx is generated on the SAMA board using the +5 V power supply.

2.1.3.2 Control Circuit Block Diagram

Figure 2-15 shows a block diagram of the control circuitry.

NOTE: CG = character generator.
$G A=$ gate array.
Figure 2-15. Control Circuit Block Diagram

The control circuit consists mainly of the following ICs:

- μ PD7810HG CPU (5B)

The μ PD7810HG executes the program in the PROM (6A) and controls all the printer operations. Upon receiving the RESET signal, the CPU begins executing the program from address 0000 hex.
. PROM (6A)
The PROM includes the control program (firmware).

- HM65256 PSRAM (5A)

The HM65256 PSRAM is external memory for the CPU. It is used as an input data buffer and line buffer for expanding data, and as working area for the program.

- E01A05 Gate Array (7A)

The E01A05 functions are as follows:

1. Parallel I/F
2. Address decoder
3. Bank register
4. Data address multiplexer
5. Reset
6. CR motor control

- E05A02 Gate Array (1 A)

The E05A02 was developed for 24pin, dot-matrix printers and is used to simplify the interface between the CPU and the printhead.

- EEPROM (7B)

The EEPROM has a 128 -bit memory, which is used to store the paper position.

- M10A17 or M10A20 Mask ROM (1M CG, 4A)

The M10A17 or M10A20 mask ROM incorporates the character generators. The ROM includes character design.

Other control circuits are as follows:

- Paper-Feed Motor Drive Circuit

This circuit drives the paper-feed motor, which is a four-phase, stepper motor. The CPU controls the motor's rotation (position and speed).

- Carriage Motor Drive Circuit

The carriage motor drive circuit drives the carriage motor, which is a four-phase stepper motor. The rotation of the motor (position and speed) is controlled by outputting the phase switching signal by the E01A05 gate array.

2.2 OPERATION OF THE POWER SUPPLY CIRCUIT

The power circuit used in the printer is either a 120 V SANPS board for the U.S., Taiwan, and the Middle East or a $220 / 240$ V SANPSE board (for Europe, Asia, etc.). The basic operation of both boards is the same, however, and they are treated as one in this manual.

2.2.1 POWER SUPPLY CIRCUIT BLOCK DIAGRAM

Figure 2-18 shows the power supply circuit block diagram. The SANPS(E) board uses a forward-convertor type switching regulator circuit, and outputs $+5,+24$, and +12 VDC.

The incoming AC power passes first through a noise filter, then through a full-wave rectifying circuit. The power then passes into the main switching circuit, which outputs +24 V and ± 12 VDC. Stabilization is provided by an over-voltage limiting circuit located on the 24 V line, which feeds back to the main switching circuit. The 24 V line is also used to generate the 5 V output.

Figure 2-16. Power Supply Circuit Block Diagram

2.2.2 FILTER CIRCUIT

The input filter is a conventional LC filter circuit that functions both to dampen incoming noise and to prevent externally generated noise from running though the AC line. All the circuit's coils and condensers are designed to withstand fluctuations in the incoming AC power.

Figure 2-17. Filter Circuit (SANPS Board, 120 V Version)

Figure 2-16. Filter Circuit (SANPSE Board, 220/240 V Version)

2.2.3 RECTIFIER AND SMOOTHING CIRCUIT

The AC IN voltage from the filter circuit is full-wave rectified by diode bridge DB1, and converted to approximately $2 \times$ AC IN voltage by smoothing capacitor C7. The +24 VDC, +5 VDC, and ± 12 VDC voltages are converted from this DC voltage.

NOTE: The item in parentheses pertains to the 220/240 V version

Figure 2-19. Rectifier and Smoothing Circuit

2.2.4 STARTING CIRCUIT (MAIN SWITCHING CIRCUIT)

Figure 2-20 shows the starting circuit. The operation sequence is as follows.
(1) When the main power source is connected, the AC input passes through the input filter and is then rectified and smoothed. The resulting DC voltage VIN is input into the circuit.
(2) VIN is applied to starting resistance R7 and passes through point A. Base current IB flows through transistor Q1, causing the transistor to conduct.
(3) At the same time, VIn is applied to coil 4-3 of pulse transformer T1, causing a voltage of (7/60T) (VIN) at $8-2$, so that the positive feedback current of switching circuit ls flows in the direction of B. This causes a sharp rise, and Q1 quickly switches on.
(4) Current is through coil $4-3$ increases linearly over time. During this time, a voltage of (10/60T) Vin is induced through coils $7-8$ and $8-11$, and a voltage of (19/60T) Vin through coil 9-10. For all these coils, then, current attempts to flow in the direction of D ; however, this direction opposes the direction of diodes D22, D23, and D20, so that no current flows through the secondary side of the circuit.
(5) Current ı in the primary winding increases, but because the potential at point 6 of coil 6-2 is fixed, Q1 base current lB cannot surpass a specified level. As a result of this, the value of current Ic (= IL) flowing from coil $4-3$ to the Q1 collector cannot surpass a maximum of hfe (IB). Therefore, the 4-3 current value stops changing, and the coil voltage drops. At the same time, a reverse voltage is applied to coil 6-2, IB drops, and current flows through D3 opposite to direction B. At this time, the potential at point A is higher than that at point E , and C 10 absorbs the current flowing in the $\mathrm{A}-\mathrm{E}$ direction. Q1 is quickly shut off by the resulting sharp drop.
(6) The above process causes the energy previously induced in the secondary side (in step (4), above) to be released from coils $7-8,8-11$, and $9-10$ in the direction opposite to D, and current flows in the easyflow direction of the diodes. Therefore, the secondary side outputs a voltage.
(7) The release of energy declines linearly over time. When energy release is completed, all T1 coil voltages momentarily reach zero. R3, however, again induces switching current IB in the direction of B, and Q1 conducts. Because the potential at point E then surpasses that at point A, the energy in $C 10$ is released, so that IB is maintained.
(8) The sequence returns to the stage described in (3) above. This repetition enables the circuit to maintain oscillation. R7 is involved, however, only at the start time.

The above sequence is generally known as a self-excitation type ringing choke converter (RCC) configuration. Note that, at the instant when Q1 goes off (in step (5), above), the potential at point F jumps violently upward, but because of the action of D2, the energy is fed into R5 and consumed.
Below are shown the waveforms for each part of the circuit.
As Figure 2-21 makes clear, the output voltage is controlled by the time period that Q1 is off. In other words, the circuit is controlled by controlling the period during which Q1 is off.

NOTE: items in parentheses refer to the 220/240 V version.

Figure 2-20. Starting Circuit (Main Switching Circuit)

NOTE: Items in parentheses refer to the 220/240 V version.

Figure 2-21. Main Switching Circuit Waveforms

2.2.5 +24 VDC VOLTAGE CONTROL CIRCUIT

Figure 2-22 shows the +24 VDC voltage control circuit. To maintain the correct voltage on the +24 V line, the main switching transistor goes off if the voltage exceeds 24 V . If excess voltage occurs, reverse current flows through Zener diode ZD20, PC1 is activated, and the condition of the switching circuit is as shown in Figure 2-23.

NOTE: Items in parentheses refer to the $220 / 240 \mathrm{~V}$ version.

Figure 2-22. +24 VDC Voltage Control Circuit

When PC1 is activated, the voltage at shunt regulator gap G reaches at least 2.5 V , $\mathrm{K}-\mathrm{A}$ becomes a conductor, Q3 goes on, Q2 goes on, and shunt transistor Q1 goes off.
Even if PC1 is not activated, K-A will conduct if current I in the transformer's primary winding surpasses a certain value, creating a potential difference of at least 2.5 V across resistance R4. Resistance R4, in other words, serves as an excess current detector.

NOTE: Items in parentheses refer to the 220/240 V version.
Figure 2-23. Switching Circuit (During PC1 Operation)

NOTE: Items in parentheses refer to the 220/240 V version.
Figure 2-24. Over-Current Protection (OCP)

2.2.6 +5 VDC REGULATOR CIRCUIT

Figure 2-25 shows the +5 VDC Regulator Circuit. The +5 VDC is generated from the +24 VDC by a choppertype switching regulator circuit utilizing a TL494. Through pin 13 of the output control terminal, the TL494 can cause the IC to operate in either push-pull or parallel mode. In the illustration, pin 13 is LOW, and parallel action is in effect. In other words, the operation of the IC's two output transistors will be exactly alike.

The IC incorporates an internal oscillating circuit. The oscillating frequency is determined by the external inputs to pins 5 and 6 . In this circuit, the frequency, set by R29 and C 25 , is about 27 K Hz .

Figure 2-25. +5 VDC Regulator Circuit

EA1 and EA2 in the IC are error amplifiers. EA2 is used to detect the output voltage. Figure 2-27 illustrates the setting of the output voltage. The rated voltage of Zener diode ZD23 is 5 V . Accordingly, 5 V is input at the negative terminal of EA2.

The error amplifier works to bring the voltages at the positive and negative terminals into conformance. Voltage is output, when necessary, to bring the voltage at the positive terminal to 5 V .

Figure 2-28 shows the EA2 output conditions. If the voltage of pin 16 becomes higher than that of pin 15 (i.e., if over-voltage occurs), EA2 begins output. PWM is activated on the basis of the output level, and the circuit's output voltage is lowered. (Further details are provided subsequently.)

$20 \mu \mathrm{~s} / \mathrm{DIV}$

Figure 2-26. Oscillator Waveforms

Figure 2-28. EA1 Output

EA1 is used to detect excessive output current. Figure 2-29 illustrates the mechanism. The output voltage is input to the negative terminal, and in order for equal voltage to appear at the positive terminal:

R35 becomes the load current flow (see Figure 2-29). In other words, higher current than this will trigger over-current protection, the output voltage will be reduced, and the current will, thereby, be restricted.

Figure 2-29. Over-Current Protection (OCP)

Pulse Width Modulation (PWM) Circuit

Figure 2-30 shows the internal circuit of the TL494IC. The output control (pin 13) is fixed at "L," and so the IC's internal push-pull circuit is never used.
The wired OR of the EA1 and EA2 outputs is input to the negative terminal of the PWM, a sawtooth waveform from the oscillator is input to the positive terminal, and the PWM modulated waveform is output as shown in Figure 2-31.

Figure 2-30. IC494 Internal Circuit

Figure 2-31. PWM Output
This circuit does not perform dead time control.

2.2.7 VOLTAGE LIMITING CIRCUIT

Figure 2-32 shows the voltage limiting circuit. In this circuit, switching transistor Q1 goes off if the voltage on the +24 V line reaches about +30 V , or if the voltage on 'the +5 V line reaches about +6 V . Zener diode ZD22 is used to detect abnormal voltage on the +24 V line; Zener diode ZD21 is used on the +5 V line.

(120 V Version)
Figure 2-32. Voltage Limiting Circuit

2.2.8 ± 12 VDC SUPPLY CIRCUIT

The voltage from the transformer is rectified by D22 or D23, and +12 VDC is produced. Theory suggests that load variations can cause large variations in the output voltage. In particular, output voltage may be quite high under no-load conditions. To prevent this problem, dummy resistors R24 and R25 are inserted into the circuit.

(120 V Version)

Figure 2-33. ± 12 VDC Supply Circuit

2.3 PRINTER MECHANISM AND CONTROL CIRCUIT OPERATION

This section describes the operation of printer mechanism and control circuit.

2.3.1 Vx VOLTAGE SUPPLY CIRCUIT

When the +24 V power supply line reaches $11.6 \mathrm{~V}(11 \mathrm{~V}+0.6 \mathrm{~V})$, transistors Q33 and Q34 turn on and $\mathrm{Vx}(+5 \mathrm{~V})$ is output. On the other hand, if the 24 V power supply line drops to 11.6 V or less, Q33 and Q34 turn off, and the Vx voltage is shut off.

The $V x$ voltage is used to prevent abnormal operation of the printer when the power is switched on or off.

- Reset Circuit Power Supply

When the power is switched on or off, the circuit is reset so that it will not drive the printer until the power supply stabilizes.

- Pull-Ups for the Printhead Signal Lines

These prevent printhead malfunctions when power is switched on or off.

- Pull-ups for the Paper-Feed Motor Signal Lines

These prevent paper-feed motor malfunctions when power is switched on or off.

Figure 2-34. Vx Voltage Circuit

2.3.2 RESET CIRCUIT

Figure 2-35 shows the reset circuit. The RESET signal generated here is sent to the $\overline{\text { RESET }}$ terminal of CPU μ PD7810HG (5B) and to connector CN2-13 (optional interface), and serves as a hardware initialization signal. The RESET signal is output from the circuit when any of the following occur:
a. Power is turned on or off.
b. A module (font or identity) is mounted or removed.
c. The CPU itself generates a reset.

Note that initialization can occur whenever the host computer sends an INIT signal.
d. The INIT signal is input from either the host interface or an optional interface.

Figure 2-35. Reset Circuit

Power On or Off

D4, R40, and C19 in Figure 2-35 comprise an ON/OFF $\overline{\text { RESET }}$ circuit. The purpose of this circuit is to cause the CPU to start from address 0000 hex. when power is applied and to prevent CPU malfunctions when the power is switched off.

The rising edge of the $V x$ voltage cancels the RESET signal after a delay of time constant ($\mathrm{R} 40 \times \mathrm{C} 19$), which is produced by the integration circuit of resistor R40 and capacitor C19. The falling edge of the Vx voltage activates a RESET signal by discharging capacitor C19 via diode D4.
The gate array (pins 49 to 51) is used for waveform shaping.

Figure 2-36. $\overline{\text { RESET }}$ Output

Module Installation or Removal

Figure 2-37 shows the RESET pulse-generation process that occurs when a ROM cartridge is mounted. The bracketed numbers below correspond to the circled numbers in the figure. After the ROM cartridge is mounted, the LOW signal flows into the CAR terminal of gate array (7A), a LOW signal is correspondingly output from the DISC terminal (1), and RESET is output from the ROUT terminal (2).

As the DISC terminal goes LOW, capacitor C19 is discharged with a time constant R67 x C19 (3). When the discharge of C19 reduces the potential at the THLD terminal to threshold voltage Vth, the RESET signal is canceled 4 , and the $\overline{\text { DISC }}$ terminal goes HIGH (5). After the DISC terminal goes HIGH, Vx voltage discharges C 19 at time constant R40 $\times \mathrm{C} 19$ (6).

Figure 2-37. $\overline{\text { RESET Pulse Oscillation Process (Module Mounted) }}$

When the ROM cartridge is removed (see Figure 2-38), the CAR terminal of the gate array (7A) receives a HIGH signal, the DISC terminal then outputs a LOW signal (1) and the ROUT terminal outputs a RESET signal (2). The remainder of the sequence is similar to that which occurs when a ROM cartridge is mounted; please refer to the preceding page.

Figure 2-38. $\overline{\text { RESET Pulse Oscillation Process (Module Removed) }}$

Reset Caused by CPU

A LOW signal from CPU port PB6 passes through the low-pass filter formed by R64 and C40 and inputs to pin 47 of the IC7A gate array. In the array, waveform shaping occurs and causes the DISC terminal to go LOW; the charge on capacitance C19 is then released, and terminal THLD of the gate array goes LOW. The reset signal is then output by the ROUT terminal.

INIT Signal Input (from CN1 or CN2)

When the INIT signal is input from either the host interface or optional interface, the CPU performs initialization. From the interface, the INIT signal passes through the low-pass filter formed by R62 and C9 and inputs to the NMI offering terminal of the CPU. The NMI offering terminal will also input the voltage of the +24 VDC line formed by Zener diode ZD2 and transistor Q32.

Figure 2-39. INIT Signal Input Circuit

2.3.3 ADDRESS DECODER AND BANK REGISTER

The passages below describe the address decoder and bank register.

Address Decoder

This unit includes an address decoder in gate array E01 A05 (7A). The address decoder outputs a chip-select signal to the internal PROM (6A), external PROM, 4MCG (3A), 1MCG (4A), external CG, RAM (5A), HEAD gate array (1A) via address lines AB12 through AB15 and bank lines 7 and 6 (in the gate array). The chip select for the CS, however, is generated in conjunction with the RD signal, and that of the RAM is generated in conjunction with the ALE signal.

Figure 2-40. Address Decoder

Firmware performs a soft-type check to determine whether an external PROM is attached. If an external PROM is in place correctly, a LOW signal is sent to bit 7 of address F001 hex., enabling a switch-over to the external program.

Bank Register

This unit has a bank register in gate array E01A05 (7A). The bank lines are set by writing to address F002 hex., and can be checked by reading the same address.

Figure 2-41. Bank Register

2.3.4 CARRIAGE OPERATION

This section describes the carriage.

2.3.4.1 Carriage Mechanism

The carriage mechanism includes the printhead, the carriage, the timing belt, the carriage motor, and the platen. Figure 2-42 shows the carriage mechanism.

The timing belt is connected into the bottom of the carriage. The belt is driven by the carriage motor and moved via the belt-driven pulley. The printhead is mounted on the carriage, and the entire unit is moved right and left along the carriage guide shaft and plate.

Figure 2-42. Carriage Mechanism

2.3.4.2 Carriage Motor Specifications

Specifications for the carriage motor are as follows:

Type	4-phase, 48-pole stepper motor
Drive Voltage	$24 \mathrm{~V} \pm 10 \%$
Coil Resistance	36 ohms $\pm 7 \%$ at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
Current	Maximum 0.34 A (rush current)
	Driving: 0.3 A (typical) (triple speed, 24 V)
	0.23 A (typical) (double speed, 1.5 speed, normal speed, 24 V)
	Holding: $0.05 \mathrm{~A} \pm 20 \%$

2.3.4.3 Carriage Drive Circuit Block Description

Figure 2-43 shows a block diagram of the carriage motor drive circuit. In this circuit, phase switching for the carriage motor is not directly executed by the CPU, but by the gate array (7A) using pulses from the CPU. SLA7020M is utilized to drive the carriage motor, using a stabilized current.

Figure 2-43. Carriage Drive Circuit Block Diagram

2.3.4.4 Gate Array E01A05 Operation in Carriage Drive Circuit

The phase switching for the carriage motor (stepper motor) is performed by gate array E01A05 (7A). This gate array first sets the excitation system (2-2 phase or 1-2 phase) and rotation direction (clockwise or counterclockwise). Then, after the CPU outputs a pulse to the TM terminal of the gate array, the array executes auto phase switching to drive the stepper motor. Figure 2-44 illustrates this process.

(For a 2-2 phase excitation setting)

Figure 2-44. Gate Array Operation

The carriage motor control port of the gate array is assigned to address F003 hex.

2.3.4.5 Carriage Motor Drive Circuit

This unit utilizes an SLA7020M IC for the stepper motor drive. This IC causes the motor to be driven at the specified current. The current value is determined by the value of the external voltage input. Within the IC, the $A B(A A)$ phase and the $C D(B B)$ phase are completely differentiated and create identical circuits. For convenience, only the $A B(A A)$ circuit is explained below. Figure 2-45 shows the carriage motor drive circuit. Figure 2-46 shows the SLA7020M circuit diagram.

Figure 2-45. Carriage Motor Drive Circuit

NOTE: Phase CD is equivalent to the above.

Figure 2-46. SLA7020M Circuit Diagram

SLA7020M Phase Signal Input Circuit

Although most stepper-motor control ICs input four-phase data directly, the SLA7020M requires a special type of phase data. In the case of 2-2 phase excitation, Figure 2-47 shows the excitation signal input circuit.
The A-phase-side excitation signal input is via a single line. The output is divided among non-inverted A-phase output and k-phase output passed through an inverter. Therefore, the A-phase output side will be ON when the excitation input signal is HIGH. And the A-phase output side will be ON when the excitation input signal is LOW. Figure 2-48 shows the timing chart for 2-2 phase excitation.

Figure 2-47. Phase Data Input Circuit (2-2 Phase)

Figure 2-48. Phase Signal Timing Chart (2-2 Phase)

In the case of 1-2 phase excitation, Figure $2-49$ shows the excitation signal input circuit. When the Td terminal is LOW, the SLA702M can cut off the output current. By using this function, the unaltered 2 -phase excitation signal can cause the $1-2$ phase excitation to be $\mathrm{ON} 3 / 8$ ths of the time, which is a suitable value. Figure 2-50 shows the timing chart.

Figure 2-49. Phase Data Input Circuit (1-2 Phase)

Figure 2-50. Phase Signal Timing Chart (1-2 Phase)

In order for this control to be performed easily, the circuit is constructed as shown in Figure 2-50. Further, if the $\overline{\text { CRENB }}$ signal is made HIGH, the Td terminal becomes LOW, and stepping of the motor is forced to stop.

Figure 2-51. Phase Data Conversion Circuit

Reference Voltage Generation Circuit

Figure 2-52 shows the reference voltage generation circuit, and Table 2-3 shows the reference voltages. The SLA7020M drives the stepper motor based on current proportional to the reference voltages set here. There are four stages of reference voltage values (motor drive current values), and these are switched to correspond to the drive speed of the motor.

Figure 2-52. Reference Voltage Generation Circuit

Table 2-3. Reference Voltages

PBO	PB1	PB2	Reference Voltage
H	H	L	0.322 V
H	L	H	0.267 V
L	H	H	0.223 V
H	H	H	0.071 V

Constant Current Drive Circuit

The constant current drive circuit is shown in Figure 2-53 (for A-phase only), and the waveforms for each part are shown in Figure 2-54. In Figure 2-53, the reference voltage is indicated by Vref; this voltage determines the peak current through resistance R6. Resistance R10, and capacitance C46 determine the OFF time of the chopper.

Figure 2-53. Constant Current Control Circuit

Figure 2-54. Waveforms

The circuit's constant current control process is shown above.

Peak Current Detection (to - $\mathbf{t 1}_{1}$)

(1) When excitation input IN goes ON, so does MOSFET Q1. The A-coil excitation current lon then flows along the route shown by the solid line (-).
(2) As lon increases, so does the voltage at R6.
(3) When R6 voltage exceeds Vref, COMP 1 inverts, and the TD voltage falls to near zero.
(4) When VTD drops below the COMP2 threshold voltage, COMP2 inverts.
(5) COMP2 inversion causes Q1 gate voltage to go LOW, and Q1 goes OFF.

Chopper OFF Time (t1-t2)

(6) When Q1 goes OFF, reverse potential is generated in the motor coil, causing the coil current route to switch from ION to lOFF.
(7) IOFF flow then causes current flow in R6 to change direction. COMP1 feedback voltage VRS (V-) thereby drops below Vref, and COMP1 again inverts.
(8) COMP1 output stages are formed by an open collector circuit. As a result of the inversion in step (7), COMP1 output goes HIGH, so that To voltage Vtd gradually rises, in line with the time constant determined by resistance R10 and capacitance C46.
(9) The MOSFET gate voltage is maintained at OFF until the value of the TD voltage reaches the COMP2 reference voltage of 2 V .

The period above, during which V to is rising from 0 V to 2 V , is equivalent to Toff.

Chopper ON Time (t2-t3)

(10) When TD voltage VTD reaches the COMP2 reference value (2 V), COMP2 inverts, and Q1 goes on.
(11) When Q1 goes on, the current flow switches from IOFF to IoN.
(12) On the basis of the time content of motor coil A, IoN, after a certain delay, gradually rises in response to power source voltage Vcc.
(13) As Ion increases, R6 potential Vrs also increases. Until the value of Vrs reaches that of Vref, Q1 remains on, supplying current ION from the power source to the motor.

The period in which Vrs advances toward VTD is equivalent to Ton.

2.3.4.6 Carriage Motor Software Control

This section describes the carriage motor software control.

Excitation System

The excitation system is determined by the firmware and is executed in accordance with the carriage speed, as shown in Table 2-4. The motor drive sequence for each excitation system is shown in Tables 2-5 and 2-6.

Table 2-4. Phase-Excitation Method

Carriage Speed		Phase-Excitation Method
$x 3$	900 pps	$2-2$ Phase
$x 2$	600 pps	$2-2$ Phase
$x 15$	900 pps	$1-2$ Phase
$x 1$	600 pps	$1-2$ Phase

pps = pulses per second

Table 2-5. Drive Sequence (2-2 Excitation)

CR DIRECTION	Left \rightarrow Right				Right \rightarrow Left			
Step No.	Phase A	Phase B	Phase C	Phase D	Phase A	Phase B	Phase C	Phase D
1	ON	OFF	ON	OFF	ON	OFF	OFF	ON
2	ON	OFF	OFF	ON	ON	OFF	ON	OFF
3	OFF	ON	OFF	ON	OFF	ON	ON	OFF
4	OFF	ON	ON	OFF	OFF	ON	OFF	ON

Table 2-6. Drive Sequence (1-2 Excitation)

| CR DIRECTION | Left \rightarrow Right | | | | Right \rightarrow Left | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step No. | Phase A | Phase B | Phase C | Phase D | Phase A | Phase B | Phase C | Phase D |
| 1 | ON | OFF | OFF | ON | ON | OFF | ON | OFF |
| 2 | ON | OFF | OFF | OFF | ON | OFF | OFF | OFF |
| 3 | ON | OFF | ON | OFF | ON | OFF | OFF | ON |
| 4 | OFF | OFF | ON | OFF | OFF | OFF | OFF | ON |
| 5 | OFF | ON | ON | ON | OFF | OFF | ON | ON |
| 6 | OFF | ON | OFF | OFF | OFF | ON | OFF | OFF |
| 7 | OFF | ON | OFF | ON | OFF | ON | ON | OFF |
| 6 | OFF | OFF | OFF | ON | OFF | OFF | ON | OFF |

Since a stepper motor is used for the carriage motor, it is possible to hold at any position and switch printing direction. The carriage motor control system is an open-loop system, which switches the phases in accordance with set speeds.

Figure 2-55. Carriage Motor Control

Home-Position Seek

The control that causes the carriage to move to the home position when the power is turned on is called home-position seek. Figure $2-58$ shows home-position seek operation.
When power is applied, the printer executes $2-2$ phase excitation for 20 or 30 ms (regardless of the phaseswitching timing) and checks the $\overline{\mathrm{HOME}}$ signal. The result of this check determines whether the starting position should be 1 or 2 . The carriage enters the home position only once during the initialization.

Figure 2-56. Home-Position Seek

Printing Area

The printing area is defined as starting 23 phase-switching times following the home position.

NOTE: pps = pulses per second dpi = dots per inch

Figure 2-57. Printing Area and Printing Timing

Abnormal Carriage Operation

This unit does not employ a print timing signal (PTS) sensor and cannot detect abnormal carriage operation. Therefore, no error occurs even if carriage movement is prevented by external forces. An error occurs if the $\overline{\text { HOME signal is received in the printing area, in which case the carriage stops. }}$

2.3.5 PAPER FEED

This section describes the paper-feed operation.

2.3.5.1 Paper-Feed Mechanism Operation

The paper-feed mechanism operates by friction feed for cut sheets and by the push tractor feed method for fanfold paper.

Friction-Feed Operation

The paper is held against the platen by two paper-feed rollers and by the printer cover. The paper-feed motor is driven to rotate the platen gear, via the paper-feed reduction gear, in the direction shown in Figure 2-58. The rotation of the platen gear feeds the paper in the direction of the arrow, as a result of friction from the paper-feed rollers and platen. Because the paper is held against the platen by the spring force of the paperfeed rollers, the paper can be released by shifting the paper-release lever forward.

Figure 2-58. Friction-Feed Operation

Push-Tractor-Feed Operation

When the push tractor unit is used, paper is loaded so that its holes mesh with the tractor pins along the tractor belt. The paper-feed motor is driven and (via the pinion on the motor shaft) rotates the gears in the direction shown in Figure 2-59, rotating the tractor belts. This causes the tractor belt to move, and the paper advances in the direction indicated by the arrow. When push-tractor feeding is used, the pressure of the paper-feed rollers against the platen is released by moving the paper-release lever to its forward setting.

Figure 2-59. Push-Tractor-Feed Operation

2.3.5.2 Paper-Feed Motor Specifications

Paper-feed motor specifications are as follows:

Type	Four-phase, ± 48-pole stepper motor
Drive Voltage	$24 \mathrm{VDC} \pm 10 \%$
Coil Resistance	40 ohms $\pm 7 \%$ at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$
Phase Excitation	$2-2$ phase or $1-2$ phase excitation
Current	Maximum, 1.1 A (rush current)
	Driving: 0.30 A typical
	Holding: $0.06 \mathrm{~A} \pm 20 \mathrm{~mA}$
Driving Frequency	400 pps

2.3.5.3 Paper-Feed Motor Drive Circuit

The paper-feed motor drive circuit is shown in Figure 2-60. The paper-feed motor is a stepper motor that can utilize either 2-2 phase or 1-2 phase excitation. When paper-feed signal PA4 is set to LOW, Q27 is turned on, and +24 V is supplied to the motor. When the paper-feed motor is not driven, +5 V is supplied, via resistor R30 and diode D3, to hold the motor.

Figure 2-60. Paper-Feed Motor Drive Circuit

2.3.5.4 Paper-Feed Motor Software Control

A four-phase, 48-step open-loop controlled motor is used to drive paper feeding. A 2-2 phase excitation is normally used for this printer, under which a one-step phase change drives the paper a distance of $1 / 180$ inch. The 1-2 phase excitation is used only when it is necessary to achieve a drive distance of $1 / 360$ inch. Table 2-7 shows the paper-feed motor excitation system.

Table 2-7. Excitation Sequence
(Clockwise: Paper Feeds Forward, 2-2 Phase Excitation)

Step No.	PAO	PA1	PA2	PA3	Phase A	Phase B	Phase C	Phase D
0	H	L	H	L	ON	OFF	ON	OFF
1	H	L	L	H	ON	OFF	OFF	ON
2	L	H	L	H	OFF	ON	OFF	ON
3	L	H	H	L	OFF	ON	ON	OFF

NOTE: If the paper-feed motor is driven counterclockwise, paper is fed in reverse.

Figure 2-61 shows the paper-feed motor drive timing chart.

(For 2-2 phase excitation)

Figure 2-61. Paper-Feed Motor Drive Timing Chart

NOTE: If there are fewer than 10 steps, the speed does not change.

2.3.6 Printhead

This section describes printhead operation.

2.3.6.1 Printhead Printing Operation

Dot-wire operation during printing is as follows: when the head-driving coil for a dot wire is energized, the actuating plate (which is engaged to one end of the dot wire) is attracted to the iron core, and drives the dot wire toward the platen. The dot wire forcefully pushes both ribbon and paper against the platen to print a dot in the paper.
When the head-driving coil is de-energized, the actuating plate spring causes the actuating plate to return to its initial position. After striking the platen, the dot wire also returns to its initial position, partly in response to the impact energy, and partly as a result of the wire-resetting spring. The dot wire then remains engaged to the actuating plate until it is driven again. Figure 2-62 illustrates the printhead printing operation.

Figure 2-62. Printhead Printing Operation

2.3.6.2 Printhead Specifications

Printhead specifications are as follows:

Solenoids
Wire Diameter
Pin Arrangement
Drive Voltage
Coil Resistance

24 solenoids
0.20 mm
12×2, staggered
24 VDC $\pm 10 \%$
19.1 ± 1.0 ohms at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$

2.3.6.3 Printhead Drive Circuit Block Diagram

Gate array E05A02 is used as an 8-bit x 3 data latch. The CPU determines the pulse width for the head-wire drive pulses from gate array E05A02 by monitoring the printhead drive power (+ 24 V line). The CPU also monitors the printhead temperature and suspends printing if the temperature becomes too high.

Figure 2-63. Printhead Drive Circuit Block Diagram

2.3.6.4 Gate Array E05A02 Operation in Printhead Drive Circuit

The E05A02 gate array includes circuitry to interface the CPU and the printhead. This general-purpose gate array has special commands that lighten the load on the CPU when outputing printhead data.

The gate array consists mainly of an 8 -bit x $3=24$-bit data latch. The gate array has functions (commands) for writing data to all 24 bits of the data latches efficiently. Because the CS terminal of this gate array is activated by accessing address F004 hex. and F005 hex., the command output address and data output address are determined as shown in Table 2-8.

Table 2-6. E05A02 Gate Array Functions

Address (Hex.)	Function
F004	Outputs a command: Bit 7: Data latch writing sequence set-up 0: Ascending order 1: Descending order
	Bit 6: HPW valid/invalid setting Bit 5: Counter resetting Bit 4 to Bit 0: Optional
F005	Latches data and increases the counter: When latching data, the data is NANDed with the contents of the current latch and is pro- tected against double writes (the same data cannot be output twice in succession). Latching data into all the data latches is completed by latching three bytes, one at a time. When HPW is valid as a command, the latched head data is inverted, then output while HPW is LOW.

NOTE: When the HPW setting is invalid, $\overline{\text { HPW }}$ output is in the open-drain ON state, independent of the HPW input. The drive pulse is input to the HPW terminal.

2.3.6.5 Printhead Drive Circuit

The drive pulse width is adjusted using CPU port PC6. The Vx voltage is used to pull up the output signals from the gate array in order to prevent printhead malfunctions.

Figure 2-64. Printhead Drive Circuit

Figure 2-65. Printhead Driving Waveforms

2.3.6.6 Printhead Software Control

During operation at 900 pulses per second (pps), one print cycle is performed at each phase-switching step to meet the specifications of the printhead (solenoid drive frequency: 900 Hz). The drive pulse width is adjusted by using an A / D converter to detect the drive voltage and is kept within the area shown by the oblique lines in Figure 2-67.

Figure 2-66. Print Timing

Figure 2-67. Relationship between Head Driver Voltage and Print Driving Pulse Width

2.3.7 A/D CONVERTER CIRCUIT

Figure 2-68 shows the A/D converter circuit. The functions of this converter are as follows:

- Monitors the +24 V line to determine the drive pulse width for the printhead.
- Monitors the temperature (the resistance value) of the printhead.
- Reads the initial DIP switch settings.
- Reads value of the setting of the bidirectional adjustment (DIP switches).
- Reads the control panel switches.

The circuit's reference voltage Vref is set, based on shunt regulator TL431 CLPB, R44, and R45, as follows:

$$
\text { VREF }=\frac{2.5 \mathrm{~V}}{\mathrm{R} 45} \quad(\mathrm{R} 45+\mathrm{R} 44)=4.5 \mathrm{~V}
$$

NOTE: The shunt regulator reference voltage value is 2.5 V .

With this voltage serving as the reference, the +24 V line is monitored by AN6, the head temperature is monitored by AN7, and the DIP switches, bidirectional adjustment (DIP switches), and control panel switches are read using AN0 through AN5.

Figure 2-68. A/D Converter Circuit

Table 2-9 shows the relationship between the scan lines and DIP switches.

Table 2-9. Scan Lines and DIP Switches

Switch	Scan Line			
	BK0	BK1	BK2	BK3
Panel DIP SW 1-3,1-6, 2-1, 2-4, 2-6, 2-8	L	H	H	H
Panel DIP SW 1-2, 1-5, 1-8, 2-3	H	L	H	H
SAMA DIP SW 7, 8				
Control Panel SW	H	H	L	H
SAMA DIP SW 1, 2, 3, 4, 5, 6	H	H	H	L
Panel DIP SW 1-1, 1-4, 1-7, 2-2, 2-5, 2-8	H	H	H	H

2.3.8 HOST INTERFACE

The host interface circuit is shown in Figure 2-69. $\overline{\text { STROBE }}$ pulses from the host computer pass through the low-pass filter, consisting of R66 and C42, and flow into the STRB terminal. These pulses latch the parallel data and set the BUSY signal HIGH, so that subsequent data transfer is inhibited. The gate array PINT terminal is automatically output by the $\overline{\text { STRB }}$ signal to request a CPU interrupt. When the CPU receives this interrupt request, it reads the data latched in the gate array.

Figure 2-69. Host Interface

2.3.9 EEPROM CIRCUIT

The EEPROM can store the position of continuously fed paper, so that this information can be maintained even if power goes off. Figure 2-70 shows the EEPROM circuit. Note that this is external to the CPU's memory space.

In order to write to the EEPROM, CPU port PA5 goes HIGH. Once the EEPROM has been selected, the data to be sent is set in bank line B2, and is fed bit-by-bit to the EEPROM in line with rising pulses from bank line B1's clock. Data is read, bit-by-bit, in line with falling clock pulses. The EEPROM receives commands to indicate whether to read or write data, and to indicate addresses.

Figure 2-70. EEPROM Circuit

2.3.10 RIBBON-FEED MECHANISM

The ribbon-feed mechanism consists of the ribbon cartridge and the ribbon-feed section. The ribbon-driving gear always is driven counterclockwise (regardless of the timing-belt direction) via the gear trains shown in Table 2-10.

Table 2-10. Ribbon-Feed Gear Train

Direction of Movement of Carriage	Gear Train
$\left.\begin{array}{l}\text { Left to right } \\ (\text { arrow }\end{array} \rightarrow\right)$	Beltdriven pulley \rightarrow Platen gear (1) \rightarrow Platen gear (2) \rightarrow Ribbon-driving gear
Right to left $($ arrow $\rightarrow)$	Belddriven pulley \rightarrow Platen gear (1) (arrow \rightarrow) \rightarrow Platen gear (3) \rightarrow Platen gear (4) Ribbon-driving gear

Figure 2-71 shows the ribbon-feed mechanism. The inked ribbon is held in the cartridge case between the ribbon-feed and the ribbon-pressure roller mounted on the ribbon-driving gear. The ribbon configuration is such that the ribbon can feed endlessly. The ribbon-driving gear drives the rollers, which causes the ribbon to be fed. To prevent ribbon slack, a ribbon-braking spring is attached at the exit of the cartridge case. A ribbon mask is installed to prevent the ribbon from staining the paper.

Figure 2-71. Ribbon-Feed Mechanism

CHAPTER 3

OPTIONAL EQUIPMENT

3.1 INTERFACE OPTIONS 3-1
3.1.1 Model 8143 Serial interface 3-1
3.2 MULTI-FONT MODULE (TOM4 BOARD)
3.3 C80612 CUT-SHEET FEEDER 3-4
3.3.1 C80612 Cut-Sheet Feeder Specifications 3-5
3.3.1.1 General Specifications 3-6
3.3.1.2 Paper Specifications 3-6
3.3.1.3 Printable Area 3-7
3.3.1.4 Dimensions and Weight 3-8
3.3.2 Operating Principles of the Cut-Sheet Feeder 3-9
3.3.2.1 Mechanism Operation 3-10
3.3.3 Cut-Sheet Feeder Disassembly and Reassembly. 3-11
3.3.4 Preventive Maintenance for the Cut-Sheet Feeder 3-15
3.3.4.1 Cleaning 3-15
3.3.4.2 Lubrication 3-15
3.4 C80006 PULL TRACTOR 3-17
3.4.1 Pull Tractor Operation 3-17
3.4.2 Pull Tractor Disassembly and Assembly 3-18

LIST OF FIGURES

Figure 3-1. External Appearance of the Multi-Font Module 3-4
Figure 3-2. LQ-510 with Cut-Sheet Feeder 3-5
Figure 3-3. Printable Area 3-7
Figure 3-4. Dimensions 3-8
Figure 3-5. Cut-Sheet Feeder Operation 3-10
Figure 3-8. Side Cover Removal 3-12
Figure 3-7. Paper-Loading Roller Shaft Removal 3-12
Figure 3-8. E-Ring Removal 3-13
Figure 3-9. Shaft Holder Removal 3-13
Figure 3-10. Hopper Unit Removal 3-14
Figure 3-11. Lubrication Points (1) 3-15
Figure 3-12. Lubrication Points (2) 3-16
Figure 3-13. Push-Pull Operation 3-17
Figure 3-14. Removal of Sprocket Reduction Gear and Related Parts 3-18
Figure 3-15. Removal of Sprocket Mounting Plate L 3-18
Figure 3-18. Removal of Sprocket Mounting Plate 3-19
Figure 3-17. Direction of Paper Guide Roller Removal 3-19
Figure 3.18. Direction for Insertion of Sprocket Wheels. 3-20
LIST OF TABLES
Table 3-1. Optional interfaces 3-1
Table 3-2. Jumper Settings 3-2
Table 3-3. DIP Switch Settings 3-2
Table 3-4. Bit Rate Settings 3-3
Table 3-5. Character Sets 3-4
Table 3-6. DIP Switch Selections 3-9
Table 3-7. Tools for Assembly or Disassembly 3-11
Table 3-8. Lubricants 3-15

3.1 INTERFACE OPTIONS

The LQ-510 can utilize Model 8100 series optional interfaces. The main interfaces are listed in Table 3-1.

Table 3-1. Optional Interfaces

	Model	Description			
RS-232C Current Loop		Buffer Size	Flag Control	X-ON /OFF Control	Max. Bit Rates (bps)
	$\begin{array}{r} 8143 \\ 8148 \\ \hline \end{array}$	None 2K/8K	0	0	19200
$\begin{aligned} & \text { IEEE-488 } \\ & \text { (GP-IB) } \end{aligned}$		Buffer Size	Function	Listen-Only Operation	Address Operation
	8165	2K/8K	AH, L, DC	0	0

NOTE: For details, refer to the "Optional Interfaces Technical Manual."

3.1.1 MODEL 8143 SERIAL INTERFACE OPERATION

With the optional Model 8143 interface, the printer can support the RS-232C data protocol and a 20 mAA neutral current loop.

Specifications

Synchronization	Asynchronous
Bit rate	75 to 19200 bps .
Word length	
Start bit	1 bit
Data bits	7 or 8 bits*
Parity bit	Odd, even, or none*
Stop bit	1 bit or more
Signal level	
RS-232C	Mark = logical "1" (-3 to -27 V)
	Space = logical "0" (+ 3 to + 27 V)
Current loop	Mark = logical " ${ }^{\text {n }}$ (current ON)
	Space = logical "0" (current OFF)
Handshaking	By REV signal or X-ON/OFF code (Signal polarity can be inverted by jumper setting.)

. Selectable by DIP switch.

NOTE: If the parallel interface cable is connected, disconnect it before using the 8143 board, because parallel interface input is used to read jumper settings and DIP switch status.

Jumper Settings

Table 3-2. Jumper Settings

Jumper	Function				
J1	ON: "TTY TXD" is brought to +12 V through a $470-\mathrm{ohm}$ register.				
J2	ON: "TTY TXD RET" is connected to signal ground.				
J3	ON: "TTY RXD" is brought to +12 V through a 470 -ohm register.				
J4	ON: "TTY RXD RET" is connected to signal ground.				
J5	ON: "DTR" and "DCD" are brought to 12 V through a 4.7 K -ohm register.				
JRC	Select input signal level	ON	RS-232C level	ON	Current loop level
JC		OFF		OFF	
JNOR	Select input data entry	ON	MARK (RS-232C) SPACE (Current loop)	ON	Current loop
JREV		OFF		OFF	
JF	Select TTY TXD function	ON	Output REV flag	OFF	Output X-ON/X-OFF signal
JX		OFF		OFF	

DIP Switch Settings

Table 3-3. DIP Switch Settings

DIP SW No.	Function	ON	OFF
1-1 (JB3)	Bit-rate selection	See Table 3-4.	
1-2 (J8/7)	Data-length selection	7-bit	8-bit
1-3 (JB1)	Bit-rate selection	See Table 3-4.	
1-4 (JB2)	Bit-rate selection	See Table 3-4.	
1-5 (JO/E)	Parity selection	Even	Odd
1-6 (JPDS)	Parity selection	See Table 3-4.	
1-7 (P/S)	8143 selection	Enabled	Disabled

Table 3-4. Bit Rate Settings

Bit Rate (bps)	SW1-7 (JB4)	SW1-1 (JB3)	SW1-4 (JB2)	sW1-3 (JB1)	Blt Rate (bps)	SW1-7 (JB4)	SW1-1 (JB3)	sW1-4 (JB2)	sW1-3 (JB1)
75	ON	ON	ON	ON	1800	OFF	ON	ON	ON
110	ON	ON	ON	OFF	2400	OFF	ON	ON	OFF
134.5	ON	ON	OFF	ON	4800	OFF	ON	OFF	ON
150	ON	ON	OFF	OFF	9600	OFF	ON	OFF	OFF
200	ON	OFF	ON	ON	19200	OFF	OFF	ON	OFF
300	ON	OFF	OFF	ON	19200	OFF	OFF	ON	OFF
600	ON	OFF	OFF	ON	19200	OFF	OFF	OFF	OFF
1200	ON	OFF	OFF	OFF	19200	OFF	OFF	OFF	OFF

NOTE: For current loop operation, a data transfer rate greater than 1200 bps cannot be guaranteed.

Handshaking Timing

When the amount of buffer space for input data falls to 256 bytes, the printer indicates that it is "not ready to receive data" by outputting the X-OFF code and/or REV signal (polarity can be selected by jumper setting). When the available buffer space reaches 528 bytes, the printer indicates that it is "ready to receive data" by outputting the X-ON code and/or changing the REV signal.

Error Handling

An asterisk (*) is printed when a parity error is detected. Other errors (e.g., "overrun error" and "framing error") are ignored.

3.2 MULTI-FONT MODULE (TOM4 BOARD)

The optional multi-font module (7407) provides the LQ-510 with seven additional fonts.

1. This module provides seven different font types (Courier, Prestige, Script, OCR-B, OCR-A, Orator, Orator-S).
2. "Orator" and "Orator-S" are new additions.
3. A rotary switch can be used for selecting the font.

Figure 3-1. External Appearance of the Multi-Font Module

At power up, the font choice is based on the setting of the module's rotary switch. Settings 2 through 8 indicate fonts shown in Table 3-5. If the switch is set to " 0 ," " 1 ", or " 9 ," the printer ignores the module. Font selection occurs immediately following the printer selection of the module slot, and the module must be installed at that time if font selection is to occur.

Table 3-5. Character Sets

Number	Font Type	Character Setting
2	Courier	$10,12,15 \mathrm{cpi}$
$\mathbf{3}$	Prestige	$10,12,15 \mathrm{cpi}$
4	Script	$10,12,15 \mathrm{cpi}$
$\mathbf{5}$	OCR-B	10 cpi
$\mathbf{6}$	OCR-A	10 cpi
$\mathbf{7}$	Orator	10 cpi
$\mathbf{8}$	Orator-S	10 cpi

3.3 C80612 CUT-SHEET FEEDER

The LQ-510 printer can use the C80612 cut-sheet feeder. This cut-sheet feeder has the following features:

1. Cut sheets may be handled in the same way as fanfold paper.
2. Sheets may be inserted manually.
3. The feeder is mounted and dismounted easily from the printer.
4. The feeder requires no electrical connection to the printer.
5. The feeder is extremely reliable.
6. A high level of performance can be achieved.

Figure 3-2. LQ-510 with Cut-Sheet Feeder

3.3.1 C80612 CUT-SHEET FEEDER SPECIFICATIONS

This section describes specifications for the C80612 cut-sheet feeder.

3.3.1.1 General Specifications

Hopper Capacity:
For paper weight of:
17 pounds $\left(64 \mathrm{~g} / \mathrm{m}^{2}\right)$
24 pounds $\left(90 \mathrm{~g} / \mathrm{m}^{2}\right)$... 185 sheets maximum 100 sheets maximum

NOTE: If the weight of the paper differs from the above, total thickness of the stack of paper must be less than 0.59 inches (15 mm).

Stacker Capacity: $\quad 17$ pounds $\left(64 \mathrm{~g} / \mathrm{m}^{2}\right)$ paper 100 sheets maximum 24 pounds $\left(90 \mathrm{~g} / \mathrm{m}^{*}\right)$ paper 55 sheets maximum

Reliability:
MCBF (Mean Cycles
Between Failures): $\quad 100,000$ cycles
Environmental Requirements:
Operating temperature range -+41 to $95^{\circ} \mathrm{F}$ (+5 to $35^{\circ} \mathrm{C}$) Storage temperature range -22 to $149^{\circ} \mathrm{F}\left(-30\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ Operating humidity range - 15% to 80% (with no condensation) Storage humidity range - 5\% to 85% (with no condensation)

3.3.1.2 Paper Specifications

Cut-sheet paper must be new or like new, must not be curled or curved, and must be free of surface and edge damage.
Paper type and quality: Plain bond, typewriter, or PPC-quality paper with a minimum wood pulp content

NOTE: Paper with higher wood content, very light, and very heavy paper, must be tested operationally prior to regular use. Paper with a textured embossed, glossy, or hammered surface also must be tested.

Paper width and length: Width -7.17 inches (182 mm) to 8.50 inches (216 mm)
Length - 10.1 inches (257 mm) to 14.3 inches (364 mm)
Paper thickness: $\quad 0.0028$ inches $(0.07 \mathrm{~mm})$ to 0.0039 inches $(0.1 \mathrm{~mm})$
Paper weight: $\quad 17$ pounds to 24 pounds (64 to $90 \mathrm{~g} / \mathrm{m}^{2}$)
Angular deviation: Less than ± 0.02 inches (0.5 mm)
Recommended conditions for paper storage:

$$
\begin{array}{ll}
\text { Temperature: } & +64 \text { to } 72^{\circ} \mathrm{F}\left(18 \text { to } 22^{\circ} \mathrm{C}\right) \\
\text { Humidity: } & \mathbf{4 0 \%} \text { to } 60 \%
\end{array}
$$

3.3.1.3 Printable Area

See Figure 3-3.

Figure 3-3. Printable Area
NOTES: The printable length is approximately 0.87 inches $(22 \mathrm{~mm})$ less than the actual page length. Paperfeed accuracy cannot be assured within 0.87 inches (22 mm) from either top or bottom edge.

3.3.1.4 Dimensions and Weight

Dimensions:
17.5 inches (444 mm) (width) x 17.1 inches (434 mm) (depth) x 16.4 inches (416 mm) (height) including paper-feed knob

NOTE: Dimensions were measured with the cut-sheet feeder mounted on the printer.

Figure 3-4. Dimensions

Approximately 2.42 pounds (1.1 kg) excluding covers

3.3.2 OPERATING PRINCIPLES OF THE CUT-SHEET FEEDER

The cut-sheet feeder is driven by firmware incorporated in the printer. The feeder need not be electronically connected to the printer. Cut-sheet feeder mode can be selected either by DIP switch or by command.

Selection by DIP Switch

The cut-sheet mode is set by DIP switch as shown in the table below.

Table 3-6. DIP Switch Selection

DIP Switch	Function	ON	OFF
$1-8$	Cut-Sheet Feeder Mode	Valid	Invalid

Selection by Command

After the cut-sheet feeder has been mounted on the printer, the following command can be used.
Command: ESC EM
Format: $\quad \operatorname{CHR} \$(27) ; \operatorname{CHR} \$(25) ;$ "n" where "n" signifies the following:
$\mathbf{n}=\mathbf{0} \quad$ cancels the CSF mode
$\mathrm{n}=4 \quad$ specifies the CSF mode
$\mathrm{n}=\mathrm{R} \quad$ ejects a sheet

NOTE: This command should be input when paper is loaded.

3.3.2.1 Mechanism Operation

Paper is loaded between the paper holder and the paper-loading rollers. When the paper-feed motor rotates in reverse, the gears, via the pinion on the motor's shaft, rotate in the direction of the white arrows (see Figure 3-5) and friction causes the paper to advance to the paper guide. When the paper comes into contact with the platen, the rotation of the paper-feed motor changes to the forward direction, and the gears rotate in the direction indicated by the black arrows. Friction causes the paper to advance between the platen and the paper-feed rollers. As it advances, the paper is further guided by the paper-ejecting rollers. Figure 3-5 illustrates the feed operation.

Figure 3-5. Cut-Sheet Feeder Operation

3.3.3 CUT-SHEET FEEDER DISASSEMBLY AND REASSEMBLY

This section describes the procedure for removing the hopper unit of the C80612 cut-sheet feeder. Unless otherwise specified, reassembly is performed by reversing the sequence. The diagrams in Figure A-34, which are provided as reference for disassembly and reassembly, show an exploded view of the parts configuration. The required tools are listed in Table 3-7.

Table 3-7. Tools for Assembly or Disassembly

Tool	Availability	Part No.
Phillips screwdriver no. 2	$\mathbf{0}$	8743800200
E-ring holder \#6	$\mathbf{0}$	8740800800

o: commercially available

CAUTION

For safety, wear gloves during disassembly and assembly.
Dismount the cut-sheet feeder from the printer before starting disassembly.
Do not allow oil or grease to contaminate the paper path. If contamination does occur, wipe it away with alcohol.

WARNING

If it is necessary to replace one of the paper-loading rollers, both right and left rollers must be replaced at the same time.

1. Remove side covers L and R.

Figure 3-6. Side Cover Removal
2. Remove the E-ring (6) on the paper-loading roller shaft, and then remove the shaft.

Figure 3-7. Paper-Loading Roller Shaft Removal
3. Remove the two E-rings (6) on the paper support shaft.

Figure 3-8. E-Ring Removal
4. Remove the shaft holder fastening the paper support shaft to frame L.

Figure 3-9. Shaft Holder Removal
5. Remove the E-ring (6) on the paper support shaft (see Figure 3-10).
6. Lift the hopper unit and the paper support shaft together.

Figure 3-10. Hopper Unit Removal

3.3.4 PREVENTIVE MAINTENANCE FOR THE CUT-SHEET FEEDER

The C80612 cut-sheet feeder is well designed and requires only a minimum of preventive maintenance, as follows:

- General cleaning of the device.
- Checking the mechanical functions.

3.3.4.1 Cleaning

- Brush off all paper dust.
- Check the surfaces of the paper-loading and paper-ejecting rollers.

NOTE: If one of the paper-loading rollers is damaged, or if wear is uneven, both rollers must be replaced.

WARNING

Regularly check the shafts of the paper-loading and paper-ejecting rollers. If the printer fails to move the paper, open the right side cover and check the gear wheels for wear or damage.

3.3.4.2 Lubrication

Epson recommends that the points indicated in Figures 3-11 and 3-12 be lubricated with Epson O-3 and G-14 (see Table 3-8). These lubricants have been thoroughly tested and have been found to comply fully with the needs of the cut-sheet feeder.

Table 3-8. Lubricants

Type	Designation	Capacity	Availability	Part No.
Oil	O-3	40 cc	E	B710300001
Grease	G-14	40 g	E	B701400001

E: Epson-exclusive product

Lubricate the paper support shaft and the paper holder shaft using a cloth moistened with O-3.

Figure 3-11. Lubrication Points (1)

Figure 3-12. Lubrication Points (2)

3.4 C80006 PULL TRACTOR

The optional C80006 pull tractor provides optimum continuous paper handling. The pull tractor is especially useful with continuous multi-part forms and labels.

3.4.1 PULL TRACTOR OPERATION

When using the push-pull feed method, fit the paper holes onto the pins along the sprocket wheel and also onto the tractor pins along the tractor belt. The paper-feed motor is driven, via the pinion on the motor's shaft, to rotate the gears in the direction shown in Figure 3-13. The gears, in turn, rotate the sprocket wheels and tractor belt, advancing the paper in the direction indicated by the arrow.

Shifting the release lever forward moves the feed rollers away from the platen and releases the feed.

Figure 3-13. Push-Pull Feed Operation

3.4.2 PULL TRACTOR DISASSEMBLY AND REASSEMBLY

1. Remove the catch fastening the sprocket reduction gear to sprocket mounting plate R. Then remove the reduction gear.
2. From the sprocket shaft, remove the E-ring (6), the sprocket gear, the sprocket gear spring, and the washer.
3. Remove the E-ring (6) on the inside of mounting plate R.

Figure 3-14. Removal of Sprocket Reduction Gear and Related Parts
4. Pull to remove the sprocket shaft and the sprocket support shaft from mounting plate L .

Figure 3-15. Removal of Sprocket Mounting Plate L
5. Remove the E-ring (6) from the sprocket shaft, then remove sprocket mounting plate R.

Figure 3-16. Removal of Sprocket Mounting Plate
6. From the sprocket shaft and the sprocket support shaft, pull and remove sprocket set R, the paper guide roller, and sprocket set L . In separating the paper guide roller, pull in the same direction as the side on which the T -shaped notch is located. (When reassembling, insert from the same side.)

Figure 3-17. Direction of Paper Guide Roller Removal

Reassembly

1. Insertion of the paper guide roller onto the sprocket shaft should be in the direction indicated in Figure 3-18.
2. When inserting the sprocket roller into the sprocket shaft, the marked sides of both wheels should face to the left, and the markings should be analogously positioned.

Figure 3-18. Direction for Insertion of Sprocket Wheels

CHAPTER 4
 DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT

4.1 GENERAL REPAIR INFORMATION 4-1
4.2 DISASSEMBLY AND REASSEMBLY 4-3
4.2.1 Printhead Removal 4-3
4.2.2 Removal of Cases 4-5
4.2.2.1 Upper Case Removal 4-5
4.2.2.2 Control Panel (SANPNL) Board Removal 4-7
4.2.3 Removal of Circuit Boards 4-8
4.2.3.1 SAMA Board Removal 4-8
4.2.3.2 SANPS(E) Board Removal 4-10
4.2.4 Removal of Printer Mechanism 4-11
4.2.4.1 Removal of Platen Unit and Paper Guide. 4-11
4.2.4.2 Removal of Printer Mechanism 4-14
4.2.5 Disassembly of Printer Mechanism 4-15
4.2.5.1 Removal of the Paper-Feed Mechanism. 4-15
4.2.5.2 Removal of Paper-Feed Motor, Release Lever, and Release/Tractor Sensor 4-17
4.2.5.3 Removal of Paper-End Sensor 4-19
4.2.5.4 Disassembly of Platen Unit 4-19
4.2.5.5 Removal of Carriage Unit 4-20
4.2.5.6 Removal of Carriage Motor 4-23
4.2.5.7 Removal of Home-Position Sensor. 4-24
4.2.5.8 Disassembly of Ribbon-Feed Mechanism. 4-24
4.2.5.9 Disassembly of Tractor Unit 4-25
4.3 ADJUSTMENT 4-27
4.3.1 Platen Gap Adjustment 4-27
4.3.2 Adjustment of Bidirectional Printing Alignment 4-29
4.3.2.1 Bidirectional Adjustment DIP Switch 4-29
4.3.2.2 Adjustment Procedures 4-30

LIST OF FIGURES

Figure 4-1. Paper Tension Unit Cover 4-3
Figure 4-2. Printhead Removal 4-4
Figure 4-3. Net 4-4
Figure 4-4. Push Tractor Removal 4-5
Figure 4-5. Upper Case Removal - 1 4-6
Figure 4-6 Upper Case Removal - 2 4-6

Figure 4-7.	Control Panel Removal	4-7
Figure 4-8.	SAMA Board Removal	4-8
Figure 4-9.	Cable	4-9
Figure 4-10.	SANPS(E) Board Removal	4-10
Figure 4-11.	Printer Mechanism Remova	4-11
Figure 4-12.	Removal of Paper Tension Unit Cover	4-11
Figure 4-13.	Paper Tension Unit Remova	4-12
Figure 4-14.	Platen Unit Remova	4-12
Figure 4-15.	Rear View of Printer Mechanism	4-13
Figure 4-18.	Printer Mechanism Remova	4-14
Figure 4-17.	Removal of Paper-Feed Rollers	4-15
Figure 4-18.	Removal of Paper Guide Plate	4-16
Figure 4-19.	Mounting Direction for Paper Guide Plate	4-16
Figure 4-20.	Removal of Paper-Feed Motor	4-17
Figure 4-21.	Spring and Gear Removal	4-17
Figure 4-22.	Removal of the Release Leve	4-18
Figure 4-23.	Removal of the Release/Tractor Senso	4-18
Figure 4-24.	Removal of Paper-End Sensor	4-19
Figure 4-25.	Platen Unit Reassembly	4-19
Figure 4-26.	Bottom View of Printer Mechanism	4-20
Figure 4-27.	Removal of Carriage Guide Shaft Ground Plate.................	4-20
Figure 4-28.	Removal of Carriage Guide Shaft	4-21
Figure 4-29.	Removal of Carriage Guide Plate	4-21
Figure 4-30.	Carriage Guide Shaft and Head Adjust Leve	4-22
Figure 4-31.	Carriage Motor Frame Remova	4-23
Figure 4-32.	Removal of Carriage Motor.	4-23
Figure 4-33.	Removal of Home-Position Senso	4-24
Figure 4-34.	Removal of Ribbon Gear Cover	4-24
Figure 4-35.	Removal of Tractor Frame	4-25
Figure 4-36.	Removal of Tractor Set L, Paper Support, and Tractor Set R \qquad	4-25
Figure 4-37.	Tractor Phase Alignment	4-26
Figure 4-38.	Removal of Ribbon Mask	4-27
Figure 4-39.	Platen Gap	4-28
Figure 4-40.	Carriage Guide Shaft Lever Movement	4-28
Figure 4-41.	Platen Gap Adjustment Position ...	4-28
Figure 4-42.	Procedure for Bidirectional Adjustment	4-31

LIST OF TABLES

Table 4-1. Repair Tools 4-1
Table 4-2. Measuring Instruments 4-1
Table 4-3. Abbreviations for Small Parts 4-2
Table 4-4. Form and Abbreviated Part Name of Screw. 4-2
Table 4-5. Draft Mode 4-29
Table 4-6. LQ Mode 4-30

4.1 GENERAL REPAIR INFORMATION

This chapter describes the procedures for removing, replacing, and adjusting the main components of the LQ-510.

CAUTION

- Prior to beginning any of these procedures, be certain that the AC power cord is disconnected.
- To help prevent hands from being cut by the printer mechanism or sharp plate edges, wear gloves when performing these procedures.

WARNING

- The printer mechanism, boards, and other parts are sometimes held in place with plastic clips rather than screws. Be careful not to damage these clips when removing them.

Tables 4-1 and 4-2 list tools and measuring instruments recommended for carrying out disassembly and repair.
Table 4-1. Repair Tools

Description	Type	Part No.
Brush no. 1	$\mathbf{0}$	B741400200
Brush no. 2	$\mathbf{0}$	B741400100
Cleaning brush	$\mathbf{0}$	B741600000
Round--nose pliers	$\mathbf{0}$	B740400100
Diagonal cutting nippers	$\mathbf{0}$	B740500100
Tweezers	$\mathbf{0}$	B641000100
Soldering iron	$\mathbf{0}$	B740200100
E-ring holder \#2.5*	$\mathbf{0}$	B740800400
E-ring holder \#5	$\mathbf{0}$	B740800700
Phillips screwdriver no. 2	$\mathbf{0}$	B743800200
Screwdriver no. 0	$\mathbf{0}$	B743800300
Thickness gauge (0.44)	$\mathbf{0}$	
Thickness gauge (0.47)	$\mathbf{0}$	

NOTES: 1. (*) indicates the tool that is used to attach the $(2.3 \mathrm{~mm})$ E-ring.
2. o = Commercially available

Table 4-2. Measuring Instruments

Description	Specification	Priority
Oscilloscope	50 MHz	A
Tester		A
Slide calipers		A
Multimeter		B
Logic Analyzer		B

NOTE: $A=$ required; $B=$ recommended
To ensure optimal printer performance, be sure to lubricate, apply adhesive, clean, and maintain the printer following reassembly and adjustment, according to the procedures described in Chapter 6.

In referring to small parts, this manual utilizes the abbreviations listed in Table 4-3.

Table 4-3. Abbreviations for Small Parts

Abbreviation	Description
$\mathrm{CBB}(\mathrm{c})$	Cross-recessed Bind head, Cone point, B-tight screw
$\mathrm{CBS}(\mathrm{c})$	Cross-recessed Bind head, Cone point, S-tight screw

Table 4-4 correlates the forms of the screws with their abbreviated part names.

Table 4-4. Form and Abbreviated Part Name of Screw

1. Cross-recessed head

4.2 DISASSEMBLY AND REASSEMBLY

This chapter details the disassembly procedures for the LQ-510. As a rule, reassembly is performed simply by reversing the disassembly procedures. A number of special notes, however, are provided under the heading "Notes for Reassembly." When a disassembly or reassembly procedure requires that an adjustment be performed, the adjustment is described under the heading, "Required Adjustment." Perform these adjustments as indicated.

WARNING

Be sure that you have read Section 4.1 "General Repair Information ${ }^{n}$ before performing disassembly Remove paper and the ribbon cartridge before disassembly.

The disassembly procedure detailed below is completed in the following sequence: (1) removal of the printhead, (2) removal of the cases, (3) removal of the circuit boards, (4) removal of the printer mechanism unit, and (5) disassembly of the printer mechanism, Exploded diagrams of the LQ-510 and of the printer mechanism are provided in Figures A-31 to A-32.

4.2.1 PRINTHEAD REMOVAL

1. Remove the printer cover, and confirm that paper and ribbon cartridge have been removed.
2. Open the cover of the paper tension unit.

Figure 4-1. Paper Tension Unit Cover
3. Unlock the two levers securing the printhead to the carriage by pulling them down. Then lift and remove the printhead.

Figure 4-2. Printhead Removal
4. Disconnect the head cables from the connector on the printhead.

NOTE:

For the European version of the printer, a net is mounted on the printhead.

Figure 4-3. Net

4.2.2 REMOVAL OF CASES

This section details the procedure for removing the upper case and the control panel (SANPNL).

4.2.2.1 Upper Case Removal

1. Remove the sheet guide assembly, printer cover, and paper-feed knob.
2. Push in the two notches securing the push tractor to the printer mechanism, and remove the push tractor from the printer mechanism.

Figure 4-4. Push Tractor Removal
3. Insert a standard screwdriver into each of the two holes at the front of the lower case, and gently push (see Figure 4-5) to unlock the notches.

Figure 4-5. Upper Case Removal - 1
4. While lifting the upper case, disconnect the cable of the control panel (SANPNL) from connector CN4 on the SAMA board. Then remove the upper case.

Figure 4-6. Upper Case Removal - 2

4.2.2.2 Control Panel (SANPNL) Removal

1. Remove the upper case (as described in the previous section).
2. Turn the upper case over, push in the two notches on the case that secure the control panel to it, and remove the control panel.

Figure 4-7. Control Panel Removal

4.2.3 REMOVAL OF CIRCUIT BOARDS

This section describes the procedure for removing the SAMA board and the SANPS(E) board.

4.2.3.1 SAMA Board Removal

1. Remove the upper case (refer to Section 4.2.2.1). The following connectors on the SAMA board, connecting it to external components, should be disconnected: CN5 (red), CN6 (yellow), CN7 (white), CN8 (flexible flat cable, or "FFC"), CN9 (FFC), CN13 (black), CN12 (white), CN11 (white), and CN10 (white).

WARNING

Do not pull roughly on the connectors or you may damage the board Remove them by pulling gently while holding the board at the same time.

Figure 4-8. SAMA Board Removal
3. Remove the $\operatorname{CBB}(\mathrm{c})(\mathrm{M} 3 \times 10)$ screw and the $\mathrm{CBS}(\mathrm{c})(\mathrm{M} 3 \times 8)$ screw securing the SAMA board to the base plate and the lower case.
4. Loosen the four bent tabs on the lower case, securing it to the SAMA board. Then remove the SAMA board.

WARNING

Be careful not to bend the tabs too far. Also, when pushing the tabs, be careful not to break them or to cause damage to components on the SAMA board.

NOTES FOR REASSEMBLY

The figure below shows the appropriate way to handle the cable connecting the SAMA and SANPS(E) boards.

Figure 4-9. Cable

4.2.3.2 SANPS(E) Board Removal

1. Remove the upper case (refer to Section 4.2.2.1).
2. Disconnect connector CN1 from the SANPS(E) board. This connector connects the board to the power switch.
3. Disconnect connector CN2 from the SANPS(E) board. This connector connects the board to the SAMA board.
4. Remove the $\operatorname{CBS}(\mathrm{c})(\mathrm{M} 3 \times 8)$ screws securing the $\operatorname{SANPS}(\mathrm{E})$ board, and then remove the board.

Figure 4-10. SANPS(E) Board Removal

4.2.4 REMOVAL OF PRINTER MECHANISM

This section describes the removal of the platen unit, paper guide, and printer mechanism. The platen unit and paper guide are removed first to enable quick and easy removal of the printer mechanism.

Figure 4-11. Printer Mechanism Removal

4.2.4.1 Removal of Platen Unit and Paper Guide

1. Remove the upper case (refer to Section 4.2.1.1).
2. Remove the cover of the paper tension unit.

Figure 4-12. Removal of Paper Tension Unit Cover
3. Remove the paper tension unit.
a. Lift up gently on the locking tabs at the rear left and right ends of the paper tension unit to release unit from the printer mechanism.
b. Roll paper tension unit toward printhead and lift straight up.

Figure 4-13. Paper Tension Unit Removal
4. Turn the shaft holders at the left and right sides of the platen unit as shown in Figure 4-14. Lift and remove the platen unit.
a. Use a screwdriver to push the shaft holder outward.
b. Turn the shaft holder counterclockwise.

Figure 4-14. Platen Unit Removal
5. Disconnect the cable from CN13 on the SAMA board.
6. Unlock the two notches of the paper guide by pushing them forward from the rear side of the printer mechanism. Remove the paper guide.

Figure 4-15. Rear View of Printer Mechanism

REQUIRED ADJUSTMENT

If, following the reinstallation or replacement of the platen unit, problems occur (such as non-uniformity of print density), adjust the platen gap. Platen gap adjustment is detailed in Section 4.3.1.

4.2.4.2 Removal of Printer Mechanism

1. Remove the platen unit and paper guide (see Section 4.2.4.1).
2. Disconnect the cables from the following connectors on the SAMA board: CN5 (red), CN6 (yellow), CN7 (white), CN8 (flexible flat cable, or "FFC"), CN9 (FFC), and CN12 (white). Refer to Figure 4-8.
3. Disconnect the cable at the base plate. This cable connects the SAMA board to the printer mechanism. Refer to Figure 4-6.
4. With a screwdriver, push and loosen the six tabs securing the printer mechanism to the lower case. For easiest removal, follow the procedure below.

WARNING

Be sure to push the tabs GENTLY, so not to damage the lower case or printer mechanism.

Figure 4-18. Printer Mechanism Removal
a. Loosen tabs 1 and 2, and lift the left side of the frame about half an inch (1 cm) above the lower case.
b. Loosen tab 3, and raise the left side farther, so that it is about 2.5 inches (6 cm) above the lower case.
c. Loosen tabs 4, 5, and 6, and remove the printer mechanism.

4.2.5 DISASSEMBLY OF PRINTER MECHANISM

This section details the removal of components from the printer mechanism. Figure A-32 shows an exploded diagram of the printer mechanism, illustrating the various components. Table A-22 lists the components by name.

4.2.5.1 Removal of the Paper-Feed Mechanism

1. Remove the printer mechanism (refer to Section 4.2.4).
2. Remove the three paper-feed rollers from the frame.

Figure 4-17. Removal of Paper-Feed Rollers
3. Loosen the two tabs securing the paper guide plate and spacer to the frame, and lift and remove the plate.

Figure 4-18. Removal of Paper Guide Plate

NOTES FOR REASSEMBLY
When remounting the paper guide plate and spacer to the frame, refer to Figure 4-19 for the mounting direction.

Figure 4-19. Mounting Direction for Paper Guide Plate

4.2.5.2 Removal of Paper-Feed Motor, Release Lever, and Release/Tractor Sensor

1. Remove the printer mechanism (refer to Section 4.2.4).
2. Disconnect the motor cable from the paper-feed motor.
3. Loosen the two bent tabs on the frame securing the paper-feed motor, and remove the paper-feed motor.

Figure 4-20. Removal of Paper-Feed Motor
4. Remove the tractor reduction gear spring, the tractor reduction gear, and the paper-feed reduction gear.

Figure 4-21. Spring and Gear Removal
5. From the inside of the frame, push the notch of the release lever outward. Remove the release lever.

Figure 4-22. Removal of the Release Lever
6. Push the two notches securing the release/tractor sensor, and remove the sensor.

Figure 4-23. Removal of Release/Tractor Sensor

4.2.5.3 Removal of Paper-End Sensor

1. Remove the platen unit and paper guide (refer to Section 4.2.4.1).
2. Loosen the tab securing the paper guide. Using point A (refer to the figure below) as a fulcrum, rotate the sensor in the direction indicated by the arrow, and remove it.

Figure 4-24. Removal of Paper-End Sensor

4.2.5.4 Disassembly of Platen Unit

1. Remove the platen unit (refer to Section 4.2.4.1).
2. Remove the left shaft holder.
3. Pull out the platen gear on the right side of the platen unit.
4. Remove the E-ring from the platen, and pull out the right shaft holder and the flat spring.

NOTES FOR REASSEMBLY

When reassembling the platen unit, refer to Figure 4-25 and be sure that the flat spring and shaft holder are installed correctly. Verify that the gap between the platen and the platen gear is adequate.

Figure 4-25. Platen Unit Reassembly

4.2.5.5 Removal of Carriage Unit

1. Remove the printer mechanism (refer to Section 4.2.4).
2. Remove the printhead and disconnect the head cable.
3. Turn the printer mechanism upside down, and manually move the carriage unit until it is at the cut-out section of the carriage motor frame, The joint of the carriage unit and timing belt should be visible through the cut-out.

Figure 4-26. Bottom View of Printer Mechanism
4. Using round-nose pliers, detach the timing belt from the carriage unit. Be careful not to cause any damage.
5. Lift portion A (see Figure 4-27) of the carriage guide shaft ground plate to free the plate from the notch on the carriage motor frame. Slide the plate so that it can be removed from the frame (through the cutout at portion B of the plate).

Figure 4-27. Removal of Carriage Guide Shaft Ground Plate
6. Turn the printer mechanism over so that it is again face up. Rotate the lever on the left side of the carriage guide shaft counterclockwise, and pull it out through cut-out A. Rotate the lever on the right side of the guide shaft clockwise, and remove it in the same way.

Figure 4-28. Removal of Carriage Guide Shaft
7. Push the notch on the frame that is securing the carriage guide plate, and slide the plate to remove it.

Figure 4-29. Removal of Carriage Guide Plate
8. Lift and remove the carriage unit, the carriage guide shaft, and the head adjust lever.

NOTES FOR REASSEMBLY

1. When reinstalling, position the carriage guide shaft and the head adjust lever as shown in Figure 4-30.

Figure 4-30. Carriage Guide Shaft and Head Adjust Lever
2. The lever for the left side of the guide shaft is gray; the lever for the right side is black. Slide each lever onto the appropriate side of the shaft.
3. When connecting the head cable, be sure to pass it correctly through the FFC guide on the frame.

REQUIRED ADJUSTMENT

Following reassembly of the carriage unit adjust the platen gap Platen gap adjustment is detailed in

4.2.5.6 Removal of Carriage Motor

1. Perform steps 1 to 5 of Section 4.2.5.4.
2. Disconnect the motor cable from the carriage motor. Disconnect the lead wire of the home-position sensor from the molded clip at the bottom of the frame. (Refer to Figure 4-31.)
3. With a screwdriver, loosen the four tabs securing the carriage motor frame to the chassis frame. Remove the carriage motor frame.

Figure 4-31. Carriage Motor Frame Removal
4. Remove the belt tension spring from the carriage motor frame. Remove the E-type (3.2) retaining ring on the carriage motor side; then remove the plain washer, belt pulley shaft holder, belt pulley, and timing belt.

Figure 4-32. Removal of Carriage Motor
5. Remove the carriage motor by moving it in the direction shown by the arrow above.

NOTES FOR REASSEMBLY

The following apply to E-ring reattachment:

- When attaching a ring to the left pulley shaft, place it so that its opening faces left.
- When attaching a ring to the right pulley shaft, place it so that its opening faces right.
- Use tweezers to check that the attached retaining rings are firmly in place and will not move.

4.2.5.7 Removal of Home-Position Sensor

1. Remove the carriage motor frame. Follow steps 1 to 3 of Section 4.2.5.6.
2. Push in the notch securing the home-position sensor, and remove the sensor from the carriage motor frame.

Figure 4-33. Removal of Home-Position Sensor

4.2.5.8 Disassembly of Ribbon-Feed Mechanism

1. Remove the printer mechanism (refer to Section 4.2.4.2).
2. Turn the printer mechanism upside down, and use a screwdriver to loosen the four bent tabs securing the ribbon gear cover slightly. Only loosen the tabs slightly, and do not yet remove the cover. If the cover is removed while the printer mechanism is upside down, the gears will scatter.

Figure 4-34. Removal of Ribbon Gear Cover
3. Turn the printer mechanism over so that it is again face up, then lift and remove the ribbon gear cover.

4.2.5.9 Disassembly of the Tractor Unit

1. Remove the E-ring on the tractor shaft.
2. Pull and remove the tractor shaft from the tractor frame.
3. Pull and remove the sprocket guide shaft from the tractor frame.

Figure 4-35. Removal of Tractor Frame L
4. Remove tractor set L, the paper support, and tractor set R from the tractor and sprocket guide shafts.

Figure 4-36. Removal of Tractor Set L, Paper Support, and Tractor Set R

DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT

NOTES FOR REASSEMBLY

When reassembling, align the phases as shown below.

Figure 4-37. Tractor Phase Alignment

4.3 ADJUSTMENT

This section describes the adjustment procedures necessary when the LQ-510 printer is reassembled or when parts are reinstalled or replaced. These procedures are necessary to ensure the correct operation of the printer.

4.3.1 PLATEN GAP ADJUSTMENT

Following the removal of the carriage guide shaft or carriage guide shaft levers, or if printing is abnormal, adjust the gap between the platen and the printhead.

1. Remove the printhead. Using tweezers, remove the ribbon mask by pulling it slightly forward, then lifting.

2. Reinstall the printhead.
3. Set the head adjust lever to the second position.
4. Set the release lever to the friction-feed position (back position).
5. Manually move the carriage to column 10.
6. M-5710 Mechanterm:

Adfust the platen so that the gap between the head and the platen allows unimpeded insertion of the 0.44 mm gap gauge, but does not allow insertion of the 0.47 mm gap gauge.

M-5711 Mechanism:

Adfust the platen so that the gap between the head and the platen allows unimpeded insertion of the 0.42 mm gap gauge, but does not allow insertion of the 0.45 mm gap gauge.

CAUTION

When positioning the carriage guide shaft lever, do not try to insert tabs A and B into the notch at the same time. The design allows only one of the tabs to enter.

Figure 4-39. Platen Gap

Figure 4-40. Carriage Guide Shaft Lever Movement

Carriage guide shaft (left):
Carriage guide shaft (right):

Clockwise rotation widens gap.
Counterclockwise rotation narrows gap.
Clockwise rotation narrows gap.
Counterclockwise rotation widens the gap.

Perform gap adjustment at the 10th and 70th column positions and also at the center of the platen. The gaps at all three positions should match.

Figure 4-41. Platen Gap Adjustment Position

4.3.2 ADJUSTMENT OF BIDIRECTIONAL PRINTING ALIGNMENT

This this type of adjustment must be performed when bidirectional printing results in misaligned lines or characters. This adjustment is also required following replacement of the SAMA board or of the printing mechanism.

4.3.2.1 Bidirectional Adjustment DIP Switch

Bidirectional printing alignment is adjusted using the bidirectional adjustment DIP switches on the SAMA board. DIP SWs 1-1, 1-2, 1-3, and 1-4 are for draft mode, and DIP SWs 1-5, 1-8, 1-7, and 1-8 are for LQ mode. Tables $4-5$ and $4-8$ show the specifications for DIP switch settings. Note that misalignment generally occurs when the carriage is moving from left to right.

Table 4-5. Draft Mode

NOTE: If all DIP switches are OFF, the control values will be set to the provisional test values.

Table 4-6. LQ Mode

NOTE: If all DIP switches are OFF, the control values will be set to the provisional test values.

4.3.4.2 Adjustment Procedures

Because the adjustment mode is incorporated into the unit, the following adjustment procedure requires no special equipment. All that is required is paper. The adjustment procedure is outlined in Figure 4-42. Note that the adjustment must be carried out twice - once for Draft mode (120 dpi) and once for LQ mode (360 dpi).

Figure 4-41. Procedure for Bidirectional Adjustment

Figure 4-42. Bidirectional Adjustment Pattern

CHAPTER 5
 TROUBLESHOOTING

5.1 GENERAL 5-1
5.2 UNIT REPLACEMENT 5-2
5.3 UNIT REPAIR 5-10
5.3.1 SANPS/SANPSE Power Board Unit Repair 5-10
5.3.2 SAMA Control Board Unit Repair 5-14
5.3.3 Printer Mechanism Unit Repair 5-21
LIST OF FIGURES
Figure 5-1. Printhead Resistance 5-6
LIST OF TABLES
Table 5-1. Unit Replacement Numbers 5-1
Table 5-2. Symptom and Reference Pages 5-2
Table 5-3. Troubleshooting Tools 5-10
Table 5-4. SANPS(E) Board Parts List 5-10
Table 5-5. \quad SANPS(E) Board Unit Repair 5-11
Table 5-6. SAMA Board Parts List 5-14
Table 5-7. SAMA Board Unit Repair 5-15
Table 5-8. Printer Mechanism Repair 5-21

5.1 GENERAL

Troubleshooting is based on the concept that error symptoms vary according to the defective component. Troubleshooting may involve either unit replacement or unit repair, each of which is treated separately below. First try to determine the defective unit by referring to Section 5.2. The flow charts in the section should help you isolate the defective unit. Then refer to Section 5.3 for instructions for further checking and for replacement. Section 5.3 lists, for various symptoms, the potentially defective units that may account for them. In addition, the section mentions the appropriate waveforms and resistance values that should be checked for. If trouble occurs in the printer mechanism, refer to Section 5.3.3, which specifies procedures for identifying defective components, and the replacements, adjustments, and lubrication which should be carried out.

5.2 UNIT REPLACEMENT

This section correlates symptoms with the potentially defective units that may be causing them. The unit numbers are listed in Table 5-1.

Table 5-1. Unit Replacement Numbers

Name of Unit	Description	Unit No.
SANPS Board	120 V Power Supply Board	Y567202000
SANPSE Board	$220 / 240$ V Power Supply Board	Y567204000
SAMA Board	Main Board	Y567201000
SANPNL-W	Control Panel Board	Y567502000
Model-5710 (TUV)	Printer Mechanism	Y567590200
Model-5710 (TUVter Mechanism	Y567590300	
Printhead		F423400000
Printhead (TUV)		F423500000
Fuse (SANPS)	ULTSC2.0 A-N1	X502061011
Fuse (SANPSE)	BET 1.25A	X502063040

Table 5-2. Symptom and Reference Pages

Symptom	Problem	Reference Page
Printer fails to operate with power switch on.	- Carriage does not move. - Control panel indicator lamp does not light.	$5-3$
Abnormal carriage operation.	- Carriage moves away from home position at power on. - The carriage correctly returns to the home position, but the printer then fails to enter ready mode.	$5-4$
Faulty printing during self-test, but carriage operation is normal.	- No printing at all. - Faulty printing - some of the dots are not printed.	$5-5$
Abnormal paper feed.	- No paper is fed. - Irregular paper feed and variation in the separations between lines.	$5-7$
Abnormal control panel operation.	- When the LF or FF switch is activated in off-line mode, no paper is fed. - No operation mode is set from the control panel. - On-line or offline mode cannot be activated.	$5-8$
- Carriage operates normally at power on, and self-test is ex-	$5-9$	
Faulty printing in on-line mode.	ecuted correctly.	

(1) Printer Fails to Operate with Power Switch on

Replace the SAMA

(2) Abnormal Carriage Operation

(3) Faulty Printing During Self-Test, but Carriage Operation is Normal

START

TEMP2 \#20 \#12 \#24) (12) (8), (6) (4) (2)
(17) (15) (13) (11)'(9) (7), (5) (3) (1)

TEMP1 \#4 \#8 \#16 С̄OM. \#21 \#13 \#5

< Terminal Assignment >

Figure 5-1. Printhead Resistance
(4) Abnormal Paper Feed (but Normal Printing)

(5) Abnormal Control Panel Operation

(6) Faulty Printing in ON-LINE Mode

NOTE: It is assumed here that the host computer is operating normally.

> Replace the connection cable from host to computer.

Replace the SAMA circuit board.

5.3 UNIT REPAIR

This section indicates the points to be checked in response to problems and the measures to be taken based on the result of the check. Utilize the checkpoints to determine and correct defective components. Tables $5-5,5-7$, and $5-9$ below are divided into the five following columns:

Problem: Indicates the difficulty.
Symptom: Indicates potential condition which may be underlying the problem. You must check to see which if any of the symptoms apply.
Cause:
Indicates the potential source of the problem.
Checkpoint: Perform this check to determine whether the problem is the result of the cause listed at left.
Solution: Indicates the repair that will correct the fault.

Table 5-3. Troubleshooting Tools

Item	Description	Part Number
Driver Circuit Checker E685	Check the driver circuit by reading the LED indication.	B765113101

5.3.1 SANPS/SANPSE POWER BOARD UNIT REPAIR

The following chart shows the main components used on the SANPSE board.

Table 5-4. SANPS(E) Board Parts List

Board Name	Location	Part Names	Description	Part No.
SANPS(E)	IC1	L5431-AA	Adjustable Precision Regulator	X440164319
	IC20	TL494CN	PWM Control	X440034940
	Q20	2SA1469	Transistor 60 V 5 A 20 W	X300146900
	Q3, 21	2SA1020	Transistor 50 V 2 A 900 mW	X300102009
	Q2	2SC3746	Transistor 60 V 5 A 20 W	X302374600
	R31, 32		Fusible resistor 2 ohms 1/4 W $\pm 5 \%$	X175400207
SANPS	Q1	2SC3831	Transistor 500 V 10 A	X302383100
	DB1	D3SBA40	Diode Bridge 400 V 4.0 A	X340330120
	F1	ULTSC 2.0A-N1	Fuse 125 V 2.0 A	X502061011
	T1	PT-P68A-NF	Transformer	Y567204003
	Q1	2SC3460	Transistor 800 V 6 A 100 W	X302346000
	DB1	RBV-406	Diode Bridge 600 V 4.0 A	X340400321
	F1	BET 1.25A	Fuse 1.25 A 250 V	X502063040
	T1	PT-P68E-NF	Transformer	Y567204002

Table 5-5. SANPS(E) Power Board Unit Repair

Table 5-5. SANPS(E) Power Board Unit Repair (Cont.)

Table 5-5. SANPS(E) Power Board Unit Repair

Problem	Symptom	Cause	Checkpoint	Solution
Printer does not operate at all.	Voltage on the $\pm 12 \mathrm{~V}$ line is dead.	The +24 V power supply circuit is dead.	Check the +24 V line.	
	Fuse resistor R31 or R32 is open.	Measure the resistance values of R31 and R32.	Replace either R31 or R32.	
Transformer coils are open.	Measure the resistances of transformer coils 7-8, 8-11.	Replace T1.		

5.3.2 SAMA CONTROL BOARD UNIT REPAIR

The following chart shows the main components on the SAMA board.

Table 5-6. SAMA Board Parts List

Location	Part ID	Description	Part No.
5B	μ PD7810HG	CPU	X400078101
7A	E01A05	Gate Array	Y566800009
1A	E05A02	Gate Array	Y453800004
5A	HM65256BLSP-12	PSRAM	X400062565
4B	S-29401	EEPROM	X400029400
2B	SLA7020M	Stepper Motor Driver	X440070200
3B	74LS06	Hex Inverter	X420300060
$8 \mathrm{~A}, 8 \mathrm{~B}$	74LS07	Hex Buffer	X420300070
2A	74LS38	Quad 2-In NAND Buffer	X420380380
7B	74LS152	10-Step Real Cord	X420301520
6B	TL431CLPB	Adjustable Precision Shunt Regulator	X440034313
Q30, 31, 35	2SA1015-TPE2	Transistor 50 V 150 mA 400 mW	X300101509
Q34	2SA1020-TPE6	Transistor 50 V 2 A 900 mW	Х300102009
Q27	2SB1093-T	Transistor 80 V 1.5 A 1 W	X301109309
Q32, 33	2SC1815Y-TEP2	Transistor 50 V 150 mA 400 mW	X302181589
Q24, 26, 28, 29	2SD2010P-T105	Transistor $60 \mathrm{~V} \pm 2 \mathrm{~A} 1.2 \mathrm{~W}$	X303201039
Q1-23, 25	2SD1843L-T	Transistor 60 V 1 A 10 W	X303184329

Table 5-7. SAMA Board Unit Repair

Problem	Symptom	Cause	Checkpoint	Solution
Printer does operate at all.	CPU is not operating.	Vx voltage is not being output.	Check voltage waveforms for the Vx voltage and for the 24 V line.	Replace ZD1, Q33, or Q34.
		The reset circuit is not operating.	Check voltage waveforms at Vx voltage and for the RESET signal.	Replace IC7A.
		$\overline{\mathrm{N} T \mathrm{~T}}$ signal input circuit is dead.	Check voltage waveforms for the +24 V line and for he NMI interrupt signal.	Replace IC3B or Q32.

Table 5-7. SAMA Board Unit Repair (Cont.)

Table 5-7. SAMS Board Unit Repair (Cont.)

5.3.3 PRINTER MECHANISM REPAIR

For detailed procedures for replacing or adjusting parts, refer to Sections 4.3, Disassembly and Reassembly, and 4.4, Adjustment. If a problem or symptom recurs following an attempted repair, refer to the tables to try to find other potential causes.

Table 5-8. Printer Mechanism Repair

Problem	Symptom	Cause	Checkpoint	Solution
Carriage motor fails to operate.	Carriage motor completely fails to activate at power on.	Foreign substances are lodged in the gears or elsewhere in the mechanism. The carriage motor is defective.	Manually move the timing belt to see if this causes the motor to rotate. Measure the coil resistance of the motor. The resistance should be about 11 ohms.	Remove foreign substances. Replace the carriage motor.
Carriage does not operate normally at power on (when the carriage has been manually centered prior to power on).	Carriage motor rotates, but the carriage doe not move.	Belt pulley is defective.	Check for broken or worn pulley.	Replace the belt pulley.
		The timing belt is defective.	Check that the timing belt is correctly inserted into the bottom of the carriage.	Reinsert the timing belt.
			Check for a broken timing belt.	Replace the timing belt.
	Carriage moves slightly left, then stops.	Carriage movement is not smooth.	Check whether the carriage moves smoothly when moved imanually.	Clean and lubricate.
	Carriage moves to the left end, then stops.	Home-position sensor is defective.	Use a tester to check the home-position sensor.	Replace the home-position sensor.
Self-test printing does not execute.	Carriage moves, but no printing is performed.	Common wires of the printhead FFC are disconnected.	Check the connector for the common wires of the printhead FFC.	Replace the FFC.
	Printing stops before the page end.	Paper guide plate is not correctly positioned.	Check whether the paper guide plate is mounted in the right position.	Reset the paper guide plate.

Table 5-8. Printer Mechanism Repair (Cont.)

Problem	Symptom	Cause	Checkpoint	Solution
Self-test printing is abnormal.	A particular dot fails to print.	Printhead is defective.	Measure coil resistance of the printhead. The normal value is approx. 19.1 ohms.	Replace the printhead.
			Check whether the dot wire is broken.	Replace the printhead.
	Printing is too light, or the print density is not uniform.	Printhead is defective.	Check whether the tip of the dot wire is worn or not.	Replace the printhead.
		Platen gap is not properly adjusted.	Set the gap adjust lever to the second position, and check the gap between the tip of the printhead and the platen. The appropriate value is 0.45 mm .	Adjust the gap (refer to Section 4.3.1, Platen Gap Adjustment).
Paper feed is defective	Printing is performed, but the paper is not fed, or is not fed uniformly.	Foreign substances are lodged in the paper path.	Perform a visual check of the paper path.	Remove any foreign substances
		Paper-feed motor is not driving the gear correctly.	Check that no foreign substance is lodged between the gears, and that the gears are not broken or worn.	- Remove the foreign substance. - Replace the paperfeed reduction gear. - Replace the platen gear.
		Paper-feed motor is defective.	Measure coil resistance of the paper-feed motor. The appropriate value is approximately 40 ohms.	Replace the paper-feed motor.

Table 5-8. Printer Mechanism Repair (Cont.)

Problem	Symptom	Cause	Checkpoint	Solution
Ribbon feed s defective.	Ribbon is not fed.	Ribbon cartridge is defective.	Dismount the ribbon cartridge, rotate its knob manually, and check whether the ribbon feeds normally.	Replace the ribbon cartridge.
		Foreign substances are caught in the gears.	Check whether the ribbon driving gear rotates when the carriage is moved manually.	Remove any foreign substance. Replace the ribbon-feed mechanism.
	Ribbon feeds properly only with the carriage moving in one direction (i.e., fails to feed when the carriage moves in the other direction).	Planetary lever is defective.	Move carriage manually, and check whether the planetary lever turns in reverse and engages the gear.	Replace the ribbon-feed mechanism.
Paper becomes stained.	Ink stains appear on areas where there is	Ribbon mask is not correctly positioned.	Check whether the ribbon mask is in the correct position.	Reset the ribbon mask.
	printing.	Platen gap is adjusted.	Set the gap to the second position, and check the gap between the tip of the printhead and the platen. The appropriate value is 0.45 mm .	Adjust the gap (refer to Section 4.3.1, Platen Gap Adjustment).
Printing continues past the end of paper, or when no paper is in place.	Printing continues past the end pf paper.	Paper-end sensor is defective.	Check paper-end sensor switch.	Replace the paper-end sensor.

CHAPTER 6 MAINTENANCE

6.1 PREVENTIVE MAINTENANCE 6-1
6.2 LUBRICATION AND ADHESIVE APPLICATION 6-1

LIST OF FIGURES

Figure 6-1. Correct Adhesive Application 6-2
Figure 6-2. GND Spring Lubrication Point 6-2
Figure 6-3. LQ-510 Lubrication Points 6-3
LIST OF TABLES
Table 6-1. Lubrication and Adhesive 6-1
Table 6-2. Lubrication Points 6-2
Table 6-3. Adhesive Application Point 6-2

Proper maintenance is essential to assuring optimal and long-term printer performance and to minimizing malfunction frequency.

6.1 PREVENTIVE MAINTENANCE

Clean the case exterior regularly with alcohol. Occasionally vacuum clean the mechanism's interior to remove accumulated dust and paper particles. After cleaning the unit, check that it is adequately lubricated (refer to Section 6.2) immediately below. Before returning the printer to the customer, inspect the springs, paperfeed rollers, and the basic operation of the unit.

WARNING

Be sure to disconnect the printer from the power supply before maintenance. Do not apply thinner, trichloroethylene, or ketone-based solvents to any of the printer's plastic components.

6.2 LUBRICATION AND ADHESIVE APPLICATION

Epson recommends lubrication at the points illustrated in Figure 6-3. Table 6-2 provides a list of these points, and the recommended lubricant to use for each. The lubricants - EPSON O-2, EPSON G-20, EPSON G-26, and EPSON G-37 - have all been thoroughly tested and fully meet the needs of this printer. (Table 6-1 lists details of these lubricants.) Before applying any lubricant, make sure that the part to be lubricated is clean. Do not apply excess lubrication, as this could potentially cause damage.

Following its disassembly or replacement, adhesive must be applied to the part indicated in Table 6-3. Epson recommends application of Neji lock \#2 (G) adhesive to the point illustrated in Figure 6-1. When applying the adhesive, be careful that no excess overflows onto nearby parts.

Table 6-1. Lubrication and Adhesive

Type	Name	Capacity	Availability	Part No.
Oil	O-2	40 cc	E	B710200001
Grease	G-20	40 gm	E	B702000001
Grease	G-26	40 gm	E	B702600001
Grease	G-37	40 gm	E	B703700001
Adhesive	Neji lock \#2 (G)		E	B730200200

E: Epson-exclusive product

Table 6-2. Lubrication Points (Refer to Figure 6-3)

Ref. No.	Lubrication Points	Lubricant
(1)	Shaft that holds paper-feed reduction	G-26
(2)	Contact portion of sub paper release lever and paper release lever	G-26
(3)	Oil pad	O-2
(4)	Carriage guide shaft (at both left and right sides of carriage)	G-26
(5)	Carriage guide plate (the portion that contacts the carriage)	G-26
(6)	Platen gear	G-26
(7)	Belt pulley gear	G-26
(8)	Ribbon transmission gear	G-26
(9)	Paper-tension roller shaft	G-26
(10)	Gear portion of the ribbon gear	G-26
(11)	Shaft that holds the ribbon gears	G-26
(12)	Paper-feed roller shaft	G-37
(13)	Contact portion of tractor frame L and tractor shaft .	G-26
(14)	GND spring on platen shaft	G-20

NOTE: Lubrication is necessary in the process of assembly.

Table 6-3. Adhesive Application Point (Refer to Figure 6-1)

Adhesive Application Point	No. of Points
Where the timing belt engages the carriage.	1

To Timing Belt

Figure 6-1. Correct Adhesive Application

Figure 6-2. GND Spring Lubrication Point

REV .-A

Figure 6-3. LQ-510 Lubrication Points

APPENDIX

A. 1 INTEGRATED CIRCUITS WITHIN THE LQ-510 A-1
A.1.1 SAMA Board Main Components A-1
A.1.1.1 CPU μ PD7810HG (5B) A-2
A.1.1.2 E01A05 (7A) A-7
A.1.1.3 E05A02 (1A) A-9
A.1.1.4 HM65256BLSP (5A) A-10
A.1.1.5 SLA7020M (2B) A-11
A.1.1.6 S-2940I (4B) A-12
A.1.1.7 TL431CLPB (6B) A-14
A.1.1.8 TTL A-15
A.1.2 SANPS/SANPSE Board Main Components A-16
A.1.2.1 TL494 (IC20) A-16
A. 2 EXPLODED DIAGRAMS AND SCHEMATICS A-17

LIST OF FIGURES

Figure A-1.	μ PD7810/7811 Pin Diagram.	A-2
Figure A-2.	$\mu \mathrm{PD} 7810 / 7811$ Block Diagram	A-3
Figure A-3.	OP Code Fetch Timing	A-6
Figure A-4.	Memory Read Timing	A-6
Figure A-5.	Memory Write Timing	A-6
Figure A-6.	E01A05 Pin Diagram	A-7
Figure A-7.	E01A05 Block Diagram	A-9
Figure A-8.	HM85256BLSP Pin Diagram	A-10
Figure A-9.	HM65256BLSP Block Diagram	A-10
Figure A-10.	SLA7020M Case Outline Drawing	A-11
Figure A-11.	SLA7020M Functional Equivalent Circuit	A-11
Figure A-12.	S-29401 Pin Diagram	A-12
Figure A-13.	S-29401 Block Diagram	A-12
Figure A-14.	Timing Chart (Read)	A-13
Figure A-15.	Timing Chart (Write)	A-13
Figure A-16.	TL431CLPB Pin Diagram	A-14
Figure A-17.	TL431CLPB Block Diagram	A-14
Figure A-18.	74LS06 Internal Circuit	A-15
Figure A-19.	74LS07 Internal Circuit	A-15
Figure A-20.	74LS38 Internal Circuit	A-15

Figure A-21. 74LS152 Internal Circuit A-15
Figure A-22. TL494 Block Diagram A-16
Figure A-23. SANPS Board Component Layout. A-17
Figure A-24. SANPS Board Circuit Diagram. A-18
Figure A-25. SANPSE Board Component Layout A-19
Figure A-26. SANPSE Board Circuit Diagram. A-20
Figure A-27. SANPNL-W Board Circuit Diagram A-21
Figure A-26. TOM4 Board Circuit Diagram. A-22
Figure A-29. SAMA Board Component Layout A-23
Figure A-30. SAMA Board Circuit Diagram A-25
Figure A-31. LQ-510 Exploded Diagram A-28
Figure A-32. Model 5710 Printer Mechanism Exploded Diagram. A-29
Figure A-33. C80006 Pull Tractor Exploded Diagram A-30
Figure A-34. C80612 Cut-Sheet Feeder Exploded Diagram. A-31
Figure A-35. LQ-510 (Printer Cover A) Case Outline Drawing A-32
Figure A-36. LQ-510 (Printer Cover B) Case Outline Drawing A-33
LIST OF TABLES

Table A-1.	SAMA Board ICs	A-1
Table A-2.	μ PD7810 Mode Setting.	A-4
Table A-3.	μ PD7811 PF Operation	A-4
Table A-4.	μ PD7810 PF Operation..	A-4
Table A-5.	μ PD7810/7811 Port Functions	A-5
Table A-6.	E01A05 Pin Functions	A-8
Table A-7.	E01A02 Pin Functions	A-9
Table A-8.	S-2940I Commands	A-12
Table A-9.	SANPS/SANPSE Board ICs	A-16
Table A-10.	CN2 Connector	A-27
Table A-11.	CN3 Connector	A-27
Table A-12.	CN4 Connector	A-27
Table A-13.	CN5 Connector	A-27
Table A-14.	CN6 Connector	A-27
Table A-15.	CN7 Connector	A-27
Table A-16.	CN8 Connector	A-27
Table A-17.	CN9 Connector	A-27
Table A-18.	CN10 Connector	A-27
Table A-19.	CN11 Connector.	A-27
Table A-20.	CN12 Connector.	A-27
Table A-21.	CN13 Connector.	A-27
Table A-22.	Parts Reference Table	A-34

This appendix provides detailed information about the integrated circuits, signal functions, capabilities, and other aspects of the components of the LQ-510 printer.

A. 1 INTEGRATED CIRCUITS WITHIN THE LQ-510

This section describes the integrated circuits in the LQ-510.

A.1.1 SAMA BOARD MAIN COMPONENTS

Table A-I shows SAMA board ICs.

Table A-1. SAMA Board ICs

Location	Name of IC	Type
5B	μ PD7810HG	15 MHz CPU
7A	E01A05	
1A	E05A02	
5A	HM65256BLSP	PSRAM 32 K x 8 bit
2B	SLA7020M	Stepper motor driver
4B	S-2940I	EEPROM
6B	TL431CLPB	Adjustable precision shunt regulator
3B	74LS06	Hex. OC inverters
8A, 8B	74LS07	Hex. OC buffers
2A	74LS38	Quad 2-in NAND buffers
7B	74LS152	lo-step real cord

A.1.1.1 CPU μ PD7810HG (5B)

The μ PD7810/7811HG is comprised of an 8-bit timer counter, an 8-bit A/D converter, 256 bytes of RAM, and a serial interface. A system can be constructed easily with this IC, whose main features are listed below.

- 256 bytes of built-in RAM (addresses FF00-FFFF hex.)
- 4096 bytes mask ROM (addresses 0-0FFF hex.) for the 7811 CPU
- Direct addressing of up to 64K
- 8-bit A/D converter
- 158 instructions
- $0.8 \mu \mathrm{~s}$ instruction cycle (15 MHz)
- 16 -bit event counter
- Two 8-bit timer counters
- 3 external and 8 internal interrupts (6 priority levels and 6 interrupt addresses)
- General-purpose serial interface (asynchronous, synchronous, and I/O modes)
- I/O line (7811: 40-bit I/O port; 7810: 24bit edge detection, 4 inputs)
- Zero cross detection
- Standby function
- Built-in clock pulse circuit
. NMOS
Figures A-1 and A-2 illustrate the 7810/7811HG microprocessor; Tables A-2 through A-5 describe its functions.

Figure A-I. μ PD7810/7811 Pin Diagram

Table A-2. μ PD7810 Mode Setting

Mode 1	Mode 0	External Memory
0	0	4 K, addresses 0 to 0FFF
0	1 (Note)	16 K, addresses 0 to 3FFF
1 (Note)	1 (Note)	64 K, addresses 0 to 0FFF

Table A-3. μ PD7811 PF Operation

PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	External Memory
Port	256 bytes (max.)							
Port	Port	Port	Port	AB11	AB10	AB9	AB8	4 K (max.)
Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	16K (max.)
AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	$60 \mathrm{~K} \mathrm{(max)}$.

Table A-4. μ PD7810 PF Operation

Mode 1	Mode 0	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PFO	External Memory
0	0	Port	Port	Port	Port	AB11	AB10	AB9	AB8	4K bytes (max.)
0	1	Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	16K bytes (max.)
1	1	AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	64K bytes (max.)

Table A-5. μ PD7810/7811 Port Functions

Pins	Signal	Direction	Descriptions
1-8	PA0-7	In/Out	Port A: 8-bit I/O with output latch. I/O possible with mode A (MA) register. Output HIGH.
9-16	PB0-7	In/Out	Port B: 8-bit I/O with output latch. I/O possible with mode B (MB) register. Output HIGH.
17-24	PC0-7	In/Out	Port C: 8-bit I/O with output latch. Port control mode can be set by mode control C (MCC) register. Output HIGH.
25	NMI	In	Non-maskable interrupt of the edge trigger (trailing edge).
26	INT 1	In	Maskable interrupt input of the edge trigger (leading edge). Also used as the AC input zero cross detecting terminal.
27, 29	MODE1,0	In/Out	7611: $0=$ LOW and $1=$ HIGH. 7810 modes set according to external memory (see Table A-2).
28	RESET	In	LOW reset.
30, 31	X2, X1	-	Crystal connection for built-in clock pulse. When clock pulses are supplied externally, input must be to XI.
32	Vss	-	Supply voltage, Vss, OV.
33	AVss	-	Analog Vss.
34-41	ANO-7	In	8 analog inputs of the A/D converter. AN7-4 can be used as the input terminals to detect the leading edge and to set the test flag upon detection of the trailing edge.
42	VAref	In	Reference voltage.
43	AVcc	-	Analog Vcc.
44	RD	out	Read strobe. LOW at the read machine cycle and at reset, HIGH at other times.
45	WR	out	Write strobe. LOW during the write machine cycle and at reset, HIGH at other times.
46	ALE	out	Address latch enable. Latches the lower B address bits to access external memory.
47-54	PF0-7		Port F: 7611: Port bit-by-bit I/O possible by mode F register. In extension mode gradual address output assignment is possible in accordance with the size of external memory. See Table A-3. 7810: By setting mode 0 and 1, assignment to the address bus (AB15-8) can be made in accordance with the size of the external memory. The remaining terminals can be used as I/O ports. See Table A-4.
55-62	PD0-7		Port D: 7811: Port bit-by-bit I/O possible. In extension mode, PD7-0 acts as the multiplexed address/data bus (AD7-0). 7810: Multiplexed address/data bus to access external memory.
63	VDD	-	Supply voltage, VDD +5 V .
64	Vcc	-	Supply voltage, VCC +5 V.

CPU Timing

Refer to Figures A-3 through A-5 for CPU timing diagrams. Three oscillations define one state. The OP code fetch requires four states. During T1 to T3, program memory is read, and instructions are interpreted during T4. Address bus lines 15-8 are output from T1 to T4. Address bus lines 7-0 (PD7-0) are used in the multiplex mode. The address is latched during T1 at the ALE signal.

Since the memory addressed is enabled after disengaging the driver (AD7-0), RD is output from $\mathrm{T} 1-\mathrm{T} 3$, fetched at T3, and processed internally at T4. The ALE and RD signals are executed from T1-T3, and the OP code fetch for these two signals is performed at T4. The WR signal is output from the middle of T1 to the beginning of T3. The address and ALE timing is the same as that for memory read; however, following address output, AD7-0 (PD7-0) are not disabled, and write data is output at AD7-0 at the beginning of T1 and at the end of T3.

NOTE: When PD7-0 are set to the multiplexed address/data bus (AD7-0) and PF7-0 to the address bus (AB7-0), the RD and WR signals in the machine cycle are HIGH when memory is not being accessed.

Figure A-3. OP Code Fetch Timing

Figure A-4. Memory Read Timing

Figure A-5. Memory Write Timing

A.1.1.2 E01A05 (7A)

This gate array was newly developed for this printer. Its functions are as follows:

1. Parallel I / F
2. Address decoder
3. Bank register
4. Data address multiplexer
5. Reset
6. CR motor control

Figure A-6 shows the E01A05 pin diagram; Table A-6 shows pin functions for the E01A05.

Figure A-6. E01A05 Pin Diagram

Table A-6. E01A05 Pin Functions

Pin No.	Signal	$1 / 0$	Function
2-7, 58	$\overline{\mathrm{CSO}} \mathbf{6}$	0	Chip-select signal
8-3	BK0-7	0	Bank line
14-21	AB0-7	0	Lower address latched by ALE
22-29	DB0-7	1/0	Multiplex address/data bus
30	ALE	1	Address latch enable
31	PINT	0	STRB signal step-down monitor signal
32	GND	-	GND
34	STRB	1	DIN0-7 signal latch signal
35-42	DINO-7	1	Parallel I/F input data
43	$\overline{\text { ACK }}$	0	Parallel I/F $\overline{\text { ACK }}$ signal
44	BUSY	0	Parallel I/F BUSY signal
45	PE	0	Parallel I/F PE signal
46	EER	0	Parallel I/F ERR signal
47	INIT	1	Parallel I/F $\overline{\text { INIT }}$ signal
48	CAR	1	Cartridge reset
49	THLD	1	Power reset
50	$\overline{\text { DISC }}$	0	Reset circuit condenser discharge
51	$\overline{\text { ROUT }}$	0	RESET signal
52-55	AB12-15	1	Address decoding by AB12-15
56	$\overline{W R}$	1	Write enable
57	$\overline{\mathrm{RD}}$	1	Read enable
59	TM	1	CR motor phase changed by TM pulse
60-63	CRA-D	0	CR motor control port
64	Vcc	-	Power supply
1, 33	NC	-	Not connected

A.1.1.3 E05A02 (1A)

This gate array was developed for 24 -pin dot-matrix printers and is used to simplify the interface between the CPU and the printhead. Figure A-7 shows the E05A02 pin diagram; Table A-7 shows the pin functions.

Figure A-7. E05A02 Pin Diagram
Table A-7. E05A02 Pin Functions

Pin No.	Signal	$\mathbf{I I O}$	
$1-8$	H1-8	0	Head data $1-8$ output
9	$\overline{\text { Vss }}$	-	GND
10	$\overline{\text { WR }}$	1	Write enable
11	$\overline{\text { AO }}$	1	Address bit 0
12	$\overline{\text { CE }}$	1	Chip enable
$13-20$	H9-16	0	Head data $9-16$ output
21	Vss	-	GND
$22-29$	D0-7	1	Data/command input
30	RST	1	Reset
31	HPW	1	Head-driving pulse width
32	$\overline{\text { REDY }}$	1	
33	Vss	-	GND
$34-41$	H17-24	0	Head data 17-24 output
42	VDD	-	+5 V

A. 1.1.4 HM65256BLSP (5A)

The HM65256BLSP is a 32K-word x 8-bit pseudo-static RAM (PSRAM) which features low power consumption (because CMOS peripheral circuits are used) and high speed and capacity (because a single transistor memory cell is used). The pin diagram of the HM65256BLSP is provided in Figure A-8, and a block diagram in Figure A-9.

Figure A-8. HM65256BLSP Pin Diagram

A.1 .1.5 SLA7020M (2B)

The SLA7020M is a two-circuit, 4-phase stepper motor driver for unipolar, constant current driving.

Figure A-10. SLA7020M Case Outline Drawing

Figure A-11. SLA7020M Functional Equivalent Circuit

A.1.1.6 S-2940I (4B)

The S-2940I is a 16×8-bit EEPROM. The pin diagram is given in Figure A-12, and the block diagram in Figure A-13; Table A-8 lists and describes the commands.

Figure A-12. S-2940I Pin Diagram

Figure A-13. S-2940I Block Diagram

Table A-8. S-2940I Commands

Command	Opcode	Command Set		Function
		Address	Data	
READ	$\mathbf{1 0 0 1}$	AAAA	D0-D7	READ ADDRESS
PROGRAM	0110	AAAA	D0-D7	PROGRAM ADDRESS
PEN	$\mathbf{0 0 0 0}$	0000	-	PROGRAM ENABLE
PDS	1111	0000	-	PROGRAM DISABLE
ERAL	1100	0000	-	ERASE ALL ADDRESS
WRAL	$\mathbf{0 0 1 1}$	0000	-	PROGRAM ALL ADDRESS

Figure A-14. Timing Chart (Read)
C E

D 1 \qquad $0 \longdiv { 1 }$ 11 $0 \triangle A X A X A X A X D 0 \times 1 \times 2$ $3 \times 4 \times 5 \times 6 \times 7$

Figure A-15. Timing Chart (Write)

A.1.1.7 TL431CLPB (6B)

The TL431 is a high-accuracy, temperature-compensated shunt regulator. The output voltage can be set anywhere between 2.5 V and 36 V through addition of two external resistors. The TL431 is highly stable and outputs a large current, so that it is capable of replacing various Zener diodes. The TL431 is especially suitable for driving the photodiode in the photocoupler section of the feedback circuit used in the RCC system switching regulator.

- Temperature-compensated reference voltage (50 ppm C typical)
- High response speed
- Low noise

Figure A-16. TL431CLPB Pin Diagram

Figure A-17. TL431CLPB Internal Circuit

A.1.1.8 TTL

The internal circuitry of the TTLs is shown below.

Figure A-18. 74LS06 Internal Circuit

Figure A-20. 74LS38 Internal Circuit

Figure A-19. 74LS07 Internal Circuit

Figure A-21. 74LS152 Internal Circuit

A.1.2 SANPS/SANPSE Board Main Components

Table A-9 shows SANPS/SANPSE board ICs.

Table A-9. SANPS/SANPSE Board ICs

Location	Name of IC	Type
IC1	L5431	Adjustable precision shunt regulator
IC20	TL494	Pulse-width modulation control

4.1.2.1 TL494 (IC20)

The TL494 provides pulse-width modulation control. Its block diagram is shown in Figure A-22.

Figure A-22. TL494 Block Diagram

A. 2 EXPLODED DIAGRAMS AND SCHEMATICS

The exploded and schematic diagrams shown in Figures A-23 to A-38 are provided as additional reference.

Figure A-23. SANPS Board Component Layout
$8 L-\forall$

Figure A-25. SANPSE Board Component Layout

Figure A-26. SANPSE Board Circuit Diagram

Figure A-27. SANPNL-W Board Circuit Diagram

Figure A-28. TOM4 Board Circuit Diagram

Y45420900000

Figure A-29. SAMA Board Component Layout

Table A-16. CN8 Connector

Pin No.	Signal	110	Function
1	HD5	1	Head Data 5
2	HD1	I	Head Data 1
3	HD13	1	Head Data 13
4	HD9	1	Head Data 9
5	HD21	1	Head Data 21
6	HD17	1	Head Data 17
7	COM	-	Common
8	COM	-	Common
9	COM	-	Common
10	HD24	1	Head Data 24
11	HD16	1	Head Data 16
12	HDD2	1	Head Data 12
13	HD8	1	Head Data 8
14	HD20	1	Head Data 20
15	HD4	1	Head Data 4
16	TEMP2	1	TEMP Signal
17	TEMP1	1	TEMP Signal

Table A-17. CN9 Connector

Pin No.	Signal	I/O	Function
1	HD3	1	Head Data 3
2	HD11	1	Head Data 11
3	HD2	1	Head Data 2
4	HD19	1	Head Data 19
5	HD7	1	Head Data 7
6	COM	-	Common
7	COM	-	Common
8	COM	-	Common
9	HD22	1	Head Data 22
10	HD15	1	Head Data 15
11	HD18	1	Head Data 18
12	HD23	1	Head Data 23
13	HD10		Head Data 10
14	HD14	1	Head Data 14
15	HD6	I	Head Data 6

Table A-19. CN10 Connector

Pin No.	Signal	I/O	Function
1	GL	-	GND Logic
2	GL	-	GND Logic
3	+5 V	-	+5 VDC
4	+5 V	-	+5 VDC
5	+12 V	-	+12 VDC
6	-12 V	-	-12 VDC

Figure 14.32. Model 5710 Printer Mechanism Exploded Diagram

Figure A-33. C80006 Pull Tractor Exploded Diagram

Figure A-35. LQ-510 Printer Cover A Case Outline Drawing

Figure A-36. LQ-510 Printer Cover B Case Outline Drawing

Table A-22. Part No. Reference Table
(Refer to the exploded diagrams in Figures A-31 through A-34.)

[^0]: Epson is a registered trademark of Seiko Epson Corporation ActionPrinter is a trademark of Epson America, Inc.

[^1]:

 Sane Sarif 10

 ,-/O123456789:; < = > ? ?

 Roman 10
 O123456789: ; < $=$? ? AABCDEFGHIJKLMNOPQRSTUVWXYZ! \]^'abcdefghijklenopqratuvwxyz\{;\}

 3456789 : ; < = ? ? ABCDEFGHIJKLMNOPGRSTUVWXYZ[\] - abcdefghijklenopqratuvwxyz(!\}, ! $456789:$; < $2>$?

 789:; <
 Sane Serif 10

 ? $\left.\begin{array}{l}\text { RabcDEFG } \\ \text { Roman } 10\end{array}\right]$

