Service Manual Reference No. : SM- GPDP421DAIA1LS-001 Revision : 0 Date : 2007. March Page : P.1 of 150 In House Model No. : PDP421D Customer Model No. : PDP42Z5TA **BOM No** : GPDP 421DAIA1LS-A01 Description : Service Manual for PDP42Z5TA_LG X3_USA Prepared By: 练沛珍 Checked By: **Electronic Engineer** Mechanical Engineer Approved By: **Engineering Manager** Received By: MK Department | DOC Rev
NO. | The Latest Revision Details | DATE | |----------------|-----------------------------|---------------| | 0 | Initial Release | 2007-March-15 | · | | | | | | - | | | | | | | | - | | | # **AKAI** # **SERVICE MANUAL** Model: PDP42Z5TA | 1. | Safety Precaution | 1~2 | |-----|--|---------| | 2. | Trouble Shooting manual of PDP | 3 | | 3. | Product Specification. | 4~6 | | 4. | Circuit Diagram | 7~22 | | 5. | Basic Operations & Circuit Description | 23~26 | | 6. | Main IC Information | 27~98 | | 7. | Panel Information | 99~133 | | 8. | Exploded View. | 134 | | 9. | Spare Part List | 135~138 | | 10. | If you forget your V-Chip Password | 139 | | 11. | Software Upgrade | 140~148 | This manual is the latest at the time of printing, and does not Include the modification which may be made after the printing, By the constant improvement of product. ## **Safety Precaution** #### CAUTION RISK OF ELECTRIC SHOCK DO NOT OPEN CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL ONLY. The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclo sure that may be of sufficient magnitude to constitute a risk of electric shock to persons. The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance. # PRECAUTIONS DURING SERVICING - In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements. - Examples: RF converters, tuner units, antenna selection switches, RF cables, noise-blocking capacitors, noise-blocking filters, etc. - 2. Use specified internal Wiring. Note especially: - 1) Wires covered with PVC tubing - 2) Double insulated wires - 3) High voltage leads - 3. Use specified insulating materials for hazardous live parts. Note especially: - 1) Insulating Tape - 2) PVC tubing - 3) Spacers (insulating barriers) - 4) Insulating sheets for transistors - 5) Plastic screws for fixing micro switches - 4. When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering. - 5. Make sure that wires do not contact heat generating parts (heat sinks, oxide metal film resistors, fusible resistors, etc.) - 6. Check if replaced wires do not contact sharply edged or pointed parts. - 7. Make sure that foreign objects (screws, solder droplets, etc.) do not remain inside the set. # MAKE YOUR CONTRIBUTION TO PROTECT THE ENVIRONMENT Used batteries with the ISO symbol for recycling as well as small accumulators (rechargeable batteries), mini-batteries (cells) and starter batteries should not be thrown into the garbage can. Please leave them at an appropriate depot. #### **WARNING:** Before servicing this TV receiver, read the SAFETY INSTRUCTION and PRODUCT SAFETY NOTICE. #### SAFETY INSTRUCTION The service should not be attempted by anyone unfamiliar with the necessary instructions on this apparatus. The following are the necessary instructions to be observed before servicing. - An isolation transformer should be connected in the power line between the receiver and the AC line when a service is performed on the primary of the converter transformer of the set. - Comply with all caution and safety related provided on the back of the cabinet, inside the cabinet, on the chassis or picture tube. - To avoid a shock hazard, always discharge the picture tube's anode to the chassis ground before removing the anode cap. - Completely discharge the high potential voltage of the picture tube before handling. The picture tube is a vacuum and if broken, the glass will explode. - When replacing a MAIN PCB in the cabinet, always be certain that all protective are installed properly such as control knobs, adjustment covers or shields, barriers, isolation resistor networks etc. - When servicing is required, observe the original lead dressing. Extra precaution should be given to assure correct lead dressing in the high voltage area. - 7. Keep wires away from high voltage or high tempera ture components. - 8. Before returning the set to the customer, always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, screwheads, metal overlay, control shafts, etc., to be sure the set is safe to operate without danger of electrical shock. Plug the AC line cord directly to the AC outlet (do not use a line isolation transformer during this check). Use an AC voltmeter having 5K ohms volt sensitivity or more in the following manner. Connect a 1.5K ohm 10 watt resistor paralleled by a 0.15µF AC type capacitor, between a good earth ground (water pipe, conductor etc.,) and the exposed metallic parts, one at a time. Measure the AC voltage across the combination of the 1.5K ohm resistor and 0.15 uF capacitor. Reverse the AC plug at the AC outlet and repeat the AC voltage measurements for each exposed metallic part. The measured voltage must not exceed 0.3V RMS. This corresponds to 0.5mA AC. Any value exceeding this limit constitutes a potential shock hazard and must be corrected immediately. The resistance measurement should be done between accessible exposed metal parts and power cord plug prongs with the power switch "ON". The resistance should be more than 6M ohms. **AC Leakage Current Check** #### PRODUCT SAFETY NOTICE Many electrical and mechanical parts in this apparatus have special safety-related characteristics. These characteristics are offer passed unnoticed by visual spection and the protection afforded by them cannot necessarily be obtained by using replacement components rates for a higher voltage, wattage, etc. The replacement parts which have these special safety characteristics are identified by Δ marks on the schematic diagram and on the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire, or other hazards. 9. Must be sure that the ground wire of the AC inlet is connected with the ground of the apparatus properly. #### Trouble Shooting Manual of PDP - 1 Do not power on - 1.1 Please check the AC cable if connect to AC plug.It is true that the connector doesn't connect to AC plug. Please connect it. - 1.2 Please check the AC cable if connect to AC power. It is true that the AC cable doesn't connect to AC power. Please connect it. - 1.3 Please check the power board of fuse if broken. If the F101 fuse is broken, firstly please pull out the AC cable from AC power. Secondly please check whether the AC L power and the AC N ground have shortened, the multimeter read number is infinite, and the fuse is broken. Then look over power board if the Output whether is normal. Please change the power board. #### 2 The LED (indicator light) is extinguished 2.1 The LED (indicator light) is green or red; to put the power switch when the indicator light is worked. It is true that the Power DC Output have somewhere short circuit. Please check the connector J2, J11. If not, please connect the direction whether is wrong, or the main board somewhere of power short circuit. - 3 The power is normal worked, but doesn't show screen - 3.1 The indicator light worked normal (green light). Please check the main board of transistor Q2 whether rights, if not, it doesn't have +5V voltage. It is true Q2 Collector haven't +5V, to check Q2 if fail. Or to check Q2 of base if not low (low is working, high doesn't working). Please refer to the attached sheet a circuit diagram. - 4 The remote control doesn't be control. - 4.1 To check the batteries of remote control if it runs out of. - 4.2 To check the main board of connector J3 of wire connects fastness and the connector if broken. Please refer to the attached sheet a circuit diagram. - 5 The sound doesn't output - 5.1 To check the main board +24V voltage of connector J2, it's not +24V voltage. Then to check the power main board +24V. - Please refer to the attached sheet a circuit diagram - 6 Picture abnormity Please change the PDP model panel when the picture displays horizontal or vertical level line or flash spots. ## **Product Specification** | Product Model | PDP42Z5TA | | | | | | |----------------------------|--|--|--|--|--|--| | | | | | | | | | TV System | NTSC M, ATSC | | | | | | | VIDEO System | NTSC | | | | | | | Screen Size | 42" diagonal | | | | | | | Display Area | 921.6mm(H) x 519.2mm(V) ± 0.5mm | | | | | | | Aspect Ratio | 16:9 | | | | | | | External Size (with stand) | 1039.8 mm (W) x 757 mm (H) x 275 mm (D) | | | | | | | Net Weight (with stand) | 35.5 kg | | | | | | | Display Resolution | 1024 (H) x 768 (V) pixels (Each pixel has R/G/B 3 color cells) | | | | | | | Pixel Dot Pitch | 0.900 (H) x 0.676 (V) mm | | | | | | | Color | 1073.7 millions of colors (R/G/B each 1024 scales) | | | | | | | Gray Scale | 1024 (R/G/B each 10-bit) | | | | | | | Brightness (Peak Value) | 1200cd/m ² | | | | | | | Contrast (Dark Room) | 10000:1 | | | | | | |
Sound Effect | Acoustic Cinema Enhancement | | | | | | | Power Supply | AC 120V, 60 Hz | | | | | | | Power Consumption | 350W | | | | | | | | Antenna Input (F Type) x 1 | | | | | | | | HDMI (Ver1.2) connector x2 | | | | | | | | VGA (D-Sub 15 Pin Type) x 1 | | | | | | | Input Terminal | Component Video - YPbPr x 2 RCA Terminals | | | | | | | | Video Input RCA Terminals x 1 | | | | | | | | S-Video Input Mini Din 4 Pin Terminal x 1 | | | | | | | | Stereo, Audio x 5 | | | | | | | Outrout Townsia at | 1 set of Audio Output terminals (RCA, L&R) | | | | | | | Output Terminal | SPDIF (Coaxial) x 1 | | | | | | | | • | | | | | | Note: The specifications shown above may be changed without notice for quality improvement. ## **Support the Signal Mode** #### A. VGA Mode | Resolution | Horizontal
Frequency
(KHz) | Vertical
Frequency
(Hz) | |------------|----------------------------------|-------------------------------| | 640 x 480 | 31.50 | 60.00 | | | 35.16 | 56.25 | | 800 x 600 | 37.90 | 60.32 | | | 48.08 | 72.19 | | 1024 x 768 | 48.40 | 60.00 | #### B. YPbPr Mode | Resolution | Horizontal
Frequency
(KHz) | Vertical
Frequency
(Hz) | |------------------|----------------------------------|-------------------------------| | 480i | 15.734 | 59.94 | | 480p(720x480) | 31.468 | 59.94 | | 720p(1280x720) | 45.00 | 60.00 | | 1080i(1920x1080) | 33.75 | 60.00 | #### C. HDMI Mode | Resolution | Horizontal
Frequency
(KHz) | Vertical
Frequency
(Hz) | |------------|----------------------------------|-------------------------------| | 480p | 31.468 | 59.94 | | 720p | 45.00 | 60.00 | | 1080i | 33.75 | 60.00 | ⁻When the signal received by the Display exceeds the allowed range, a warning message shall appear on the screen. -You can confirm the input signal format from the on-screen. #### **Remote Control** (Note: Details refer to AKAI TV Universal Remote Control Programming & Codes Guide.) 1 Standby(v): Press to turn on and off. - ② Mute(⋈): Press this button to quiet the sound. Press again to reactivate the sound. - 3) Press these buttons to select control of the TV, DVD, VCR or Set-top Box device. - 4 **P. Mode**: Press to cycle through picture modes: Cinema, Normal, Vivid, Hi-Bright and User. - **S. Mode**: Press to cycle through the sound modes: Normal, News, Cinema, Concert and User. - 6 **Sleep**: Press repeatedly until it displays the time in minutes (10, 20, 30, 40, 50, 60, 90, 120 and Off) that you want the TV to remain on before shutting off. To cancel sleep time, press **Sleep** button repeatedly until sleep Off appears. 7 F1: Press to cycle through the Stereo and Multi-channel TV sound options: Mono, Stereo and Bilingual. - 8 CCD: Press to select the Closed Caption mode. - Display: Press to display the channel information; this information disappears after 9 seconds. - 18 V-Chip: Select the child protect mode you want. - 110~9 Number Buttons: Press 0~9 to select a channel, and used to input the password; the channel changes after 4 seconds. - Teres: Press to freeze the picture, press again to restore the picture. (This button is inactive for VGA mode.) - 13 DTV: Press to choose TV/DTV (high definition channels) directly. - Press to display the (Digital TV Timetable) mode. Press again to exit. - 15 **DOT:** Press number buttons with it to select the channels directly in DTV. (i.e. channel 108-1 would need the dot button after the 8) - 18 Recall: Press to return to previous channel. - **Source**: Press to select the signal source, such as TV, AV, S-Video, YPbPr 1, YPbPr 2, VGA, HDMI 1 or HDMI 2. - 16 Enter: Press to enter or confirm. - 28 CH +/-: Press to select the channel forward or backward. - $21 \land$, \lor , \lt , \gt : Press \land , \lor , \lt , \gt to move the on-screen cursor. - 22 Menu: Press to enter into the on-screen setup menu, press again to exit. - 23 These buttons have no function. - 24 Exit: Press this button to exit. - [25] Favorite: Press repeatedly to cycle through the favorite channel list. - 28 Add/Erase: Press to add or delete favorite or dislike channels. - Pic Size: Press to change the screen size, such as Full, 4:3. (Note: When in VGA mode, it can only select "Full".) - 28 **Zoom:** Press repeatedly to zoom the image. - 29 Red: This is a special control function for the Digital tuner. - 30 Green: This is a special control function for the Digital tuner. - 31 Blue: This is a special control function for the Digital tuner. - 32 **Yellow**: This is a special control function for the Digital tuner. Standby 5V 24VA (For Class D) ## Parts position #### MT5372RAV6 #### MT5372 (PBGA) REFERENCE DESIGN - 4 LAYERS GPIO8: SPEAKER SWITCH(INTERNAL OR EXTERNAL ## **Basic Operations & Circuit Description** ## **MODULE** There are 1 pcs panel and 9 pcs PCB including 2 pcs X/Y Sustainer board, 1 pcs XBUS board, 1 pcs SDM-U board, 1 pcs SDM-D board, 2 pcs ABUS (L and R) board, 1 pcs Logic (Signal Input) board, and 1 pcs PSU board in the Module. ## SET There are 5 pcs PCBs including 1 pcs Main board, 1 pcs Keypad board, 1 pcs Remote Control Receiver board, 1 pcs L/R Speakers and 1 pcs Sub PSU board in the SET. ## **Basic operation of Plasma Display** - 1. After turning on power switch, PSU board sends 5Vst-by Volt to Main IC MT5371 waiting for ON signals from Key Switch or Remote Receiver. - 2. When the ON signal from Key Switch or Remote Receiver is detected, MT5371 will send ON Control signals to Power. Then Sub PSU sends 5Vsc, 9Vsc, 24V to PCBs working. This time Logic Board will send signals to Panel by X/Y SUS Board, OSD on the panel and display available signal. If the audio signals input, them will be amplified by Audio AMP and transmitted to Speakers. - 3. If some abnormal signals are detected (for example: over volts, over current, over temperature and under volts), the system will be shut down by Power off. ### **PCB** function - 1. PSU and Sub PSU: - (1). Input voltage: AC 120V, 60Hz. - (2). To provide power for PCBs. - 2. Main board: To converter S signals, AV signals, Y Pb/Cb Pr/Cr signals, HDMI signals and D-SUB signals to digital ones and to transmit to Control board. - 3. Logic board: Dealing with the digital signal for output to panel. - 4. Y-Sustainer / X-Sustainer board: - (1). Receiving the signals from Logic and high voltage supply. - (2). Output scanning waveform for Module. - 5. SDM-U and SDM-D board: Receive signal from Y sustainer, output horizontal scanning waveform to the panel. - 6. ABUS (L and R) extension board: Output addressing signals. ## PCB failure analysis 1. LOGIC: a. Abnormal noise on screen. b. No picture. 2. MAIN: a. Lacking color, Bad color scale. b. No voice. c. No picture but with signals output and OSD. d. Abnormal noise on screen. 3. PSU and Sub PSU: No picture, no power output. 4. X - Sustainer: a. No picture. b. Color not enough. c. Flash on screen. 5. Y - Sustainer: Darker picture with signals. 6. X/Y - Sustainer: The component working temperature is about 55°C. If the temperature rises abnormal, this may be a error point. ## **Main IC Specifications** - MT537x Application Note - MT5112BD - CE2836 24-bit, 192KHz. CODEC: 6 ch DAC, 5 Input Mux Stereo ADC - R2S15102NP Digital Power Amplifier R2S15102NP MT537x Application Note Specifications are subject to change without notice MT537x Application Note This document contains information that is proprietary to MediaTek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is prohibited. Specifications are subject to change without notice ## 1. Revision History | Date | Description | Version | |------------|---|---------| | 2006/05/18 | Initial Version (Draft) | V.Q.3\ | | 2006/05/27 | Updated Power Load Power On/Off Timing | V.0.4° | | 2006/06/06 | Update On/Off Timing | V9.5 | | | *************************************** | | 9 / 148 Specifications are subject to change without notice #### 2. MT537x Feature MediaTek MT537x is a highly integrated SOC which include DTV backend decoder and TV controller. MT537x support transport de-multiplexer, MPEG-2 video decoder, AC3 audio decoder, LVDS transmitter, TV decoder. The MT537x enables consumer, electronics manufactures to build high quality, feature-rich DTV. World-Leading Video Technology: MT537x embedded the MDDI deinter acer to generate very smooth picture quality for motion. 3D comb filter also recovery high detail for still picture. The special color processing technology provided avoirite and natural color for TV. Rich Features for High Value Product: To enrich the features of DTV MT537x support HDMI receiver, PIP/POP, memory card and DV decoding. Credible Analog Technology: The MT537x integrated with High speed VGA ADC, high resolution Video/Audio ADC, 90db Audio DAC and 12 pix Video DAC. It will provide very fine quality for TV. ## 3. DTV System Block (Reference Design) Specifications are subject to change without notice 4. DTV System Power Load (Based on Reference #### Specifications are subject to change without notice Specifications are subject to change without notice ## 5. MT537x Power Consumption Under Measurement | Power | Current (mA) | Power Consumption (mV | V) / (RS4) | |--------|--------------|-----------------------|--------------| | DV33 | 40 | 132 | | | AV33 | 320 | 1056 | 67 / 18 44 A | | DV26 | 180 | 468 | | | AV15 | 150 | 225 | | | DV12 | 1000 | 1200 | | | AV12 | 40 | 48 | | | DV33SB | 40 | 132 | (~~~\S\$) | #### Note: Due to We are Under Integration, the Power Consumption of Sumption ## 6. MT537x Power On / Off Timing | Description | Symbol | Min | TPY | Max | Units | PS | |--------------------|---------------------|-----|-----|-----|-------|----| | DV33SB Power Ready | T _{DV33SB} | 0 | | | ms | · | Specifications are subject to change without notice | | | * | | | | | |-----------------------|----------------------|----|----|---|----|------------------| | Power-on Reset Period | T _{RESET} | 10 | | | ms | | | MT537x Boot Ready | T _{READY} |
| 20 | , | ms | | | LCD Power On | T _{LCD} on | | | | ms | Depend-on Panel | | LCD Lamp On | TLAMP ON | | | | ms | Depend-on Pañel) | | LCD Lamp Off | TLAMP OFF | | | | ms | Depend-oń-Panel | | LCD Power Off | T _{LCD_OFF} | | | | ms | Dependion Panel | ## 7. MT537x Diagnostic Program CLI Comma **Under Development** cd - change current directory ex. cd.av - change the directory to AV director do – repeat command do "number of times" ex. do read (r) - memory read r "address" "number of bytes" ex. $r 0x2000d068 8 \leftarrow read 8 bytes data from 0x2000d068 address$ write (w) - memory write w "address" "data" ex. w 0x2000d068 0x12345678 write 0x12345678 data to 0x2000d068 address basic (b) - basic command stop - stop RS282, if ansparent mode (set to normal mode) ex. b.stop ← set RS232 to normal mode sv – system mode detection ex. b.svi to detect the system mode reboot system reboot / restart b.reboot the system ## 7x Debug Flow Under Development ## 9. MT537x NOR Flash Supported Specifications are subject to change without notice | | | | <u> </u> | |----------|------------------|----------------------|-----------------------| | Brand | IC Order Number | Size | Description | | MXIC | MX29LV320ABTC-70 | 32MBits | Under Testing 🔍 🗘 | | MXIC | MX29LV320ABTC-90 | 32MBits | Under Testing | | MXIC | MX29LV320ATTC-70 | 32MBits | Under Testing | | MXIC | MX29LV320ATTC-90 | 32MBits | Under Testing | | MXIC | MX29LV320BBTC-70 | 32MBits | Under Testing | | MXIC | MX29LV320BBTC-90 | 32MBits | Under Testing | | MXIC | MX29LV320BTTC-70 | 32MBits | Under Testing | | MXIC | MX29LV320BTTC-90 | 32MBits | Under T esting | | MXIC | MX29LV320BTC-70 | 32MBits | Under Testing | | MXIC | MX29LV320BTC-90 | 32MBits 🔥 | lớn den Testing | | MXIC | MX29LV320TTC-70 | 32MBits ৣૠ૾૽ | Ùnder Testing | | MXIC | MX29LV320TTC-90 | 32MBits 🚉 | Under Testing | | Winbond | W19B320ABT7H | 32MBits | Under Testing | | ST | M29W320DT-90 | g2Mgifs 🔑 | Under Testing | | ST | M29W320DT-70 💢 🖏 | 32MBits | Under Testing | | ST | M29W320DB-70 💛 🦠 | [©] Ş2MBits | Under Testing | | Spansion | S29GL032-90T | 32MBits | Under Testing | | | | - | | # 10. MT537x DDR/2 Supported | | Qrder Number | DDR Type | Description | |-------------|--------------------|----------|-----------------------| | | MT5DS32M16BT-5T | DDR : | 32Mx16, Under Testing | | ProM@S(?) € | V58C2512164SB5 | DDR | 32Mx16, Under Testing | | Infinècho. | HYB25DC512160CE-5 | DDR | 32Mx16, Under Testing | | | HY5DU121622ALT-D43 | DDR | 32Mx16, Under Testing | | MIRA | P2S12D40CTP-G5 | DDR | 32Mx16, Under Testing | | ∫Micron • | MT46V32M16TG-5B | DDR | 32Mx16, Under Testing | | PSC | A2S56D40CTP-G5 | DDR | 16Mx16, Under Testing | | Nanya | NT5DS16M16CS-5T | DDR | 16Mx16, Under Testing | | ProMOS | V58C2256164SCI5 | DDR | 16Mx16, Under Testing | | Hynix | HY5DU561622CT-5 | DDR | 16Mx16, Under Testing | Specifications are subject to change without notice | ELPIDA | DD2516AKTA-6B-E | DDR | 16Mx16, Under Testing | |----------|--------------------|---------|----------------------------------| | Infineon | HYB25DC256160CE-5 | DDR | 16Mx16, Under Testing | | MIRA | P2S56D40CTP-G5 | DDR | 16Mx16, Under Testing 🔍 🤝 | | Micron | MT46V16M16TG-5B | DDR | 16Mx16, Under Testing. | | Samsung | K4D551638F-LC50 | GDDR | 16Mx16, Under Testing | | | | | 1 7 | | PSC | A3R12E4FDF-G6EA | DDR2 | 32Mx16, Under√Lesting. Ty | | Infinion | HYB18TC512160AF-3S | DDR2 | 32Mx16, Undet Testing | | ProMOS | V59C1512164QA-3 | DDR2 | 32Mx16, Under Testing | | Nanya | NT5TU32M16AG-3C | DDR2 | 32Mx16 Under Testing | | Hynix | HY5PS121621LF-Y5 | DDR2 | 32Mx16 Linder Testing | | Micron | MT47H32M16-3 | DDR2 | 320% 60 Under Testing | | Infinion | HYB18TC256160AF-3S | | 16Mx 15 Under Testing | | Hynix | HY5PS561621LF-Y5 | | ાહિંMx16, Under Testing | | Micron 9 | MT47H16M16-3 | DDR2 | ្សិស្ត្រីស្តិវិទី, Under Testing | | | | 3. 88 A | 0 | | | | | | ## 11. MT537x PCB Layout Guidelines - 4-layer PCB Design (TOP / END / POWER / BOTTOM) Power Arrangement - Power Arrangement - DV33 : Supply to Mit 537x Digital and Peripheral - AV33 : Supply to MT537x Analog DV25/DV18 Supply to MT537x and DDR/2 - AV15,--Supply to MF537x Video Front-end 1 (YPbPr/RGB) - AV15 DAC: Supply to MT537x Video DAC - D\412 Sapply to MT537x Digital - A 12: Supply to MT537x Analog - P@wer Plane - The Power has High Priority in Layer 3 The Power Line Should be Routed ୍ୟୁMider (Component Side Has High Priority)। - 3. Be Care the Power Return Path, Especially for Large Power - The Switching Power Should leave alone the Analog Portion - **Ground Plane** - In General, We Use Only One Ground (Don't Divided) in Layer 2 - You May Have Independent Ground if There are Large Power Consumption in Your Design, for Example - Digital Audio AMP. But You Should Note That the Specifications are subject to change without notice #### Signal Return Path - Please Flush the Copper both in Component and Solder Sides - The Bypass Cap. Should be Located as Close to IC's Power Pin as Possible - The VCXO or Crystal Should be Located as Close to IC as Possible - The Video Termination Resistor Should be Closed to Connector - The Video AC-couple Cap. Should be Closed to MT537x - Video Signal YPbPr and RGB Don't Cross with Other Signal (Must). - Video Signal CVBS and S-Video Don't Cross with Other Signal as Rossible Tailleed Please Add Ground Shielding (Guard Trace) on the Side of the Video Tailleed Video Signal CVBS and S-Video Don't Cross with Other Signal as Rossible Tailleed Please Add Ground Shielding (Guard Trace) on the Side of the Video Tailleed Output Description: - Audio Signal (Analog) Don't Cross with Other Signal as Possible of Need, Please Add Ground Shielding (Guard Trace) on the Side of the Audio - To Avoid Routing any Traces on the Ground or Power Plane - Digital Signal Width Please Use 6 mil - DDR/2 Layout Please Follow the Layout Guide Described Below or Copy from MTK's Library to Speed-up the Design Time If You had Re-layout the DDR/2, Please Provide the Layout File for DDR/2 SI Simulation (Familiar with PowerPCB Format) - HDMI / LVDS Layout Please Follow the Layout Guide Described Below ## 12. MT537x DDR/2 Layout Guide ## 12.1 4 Layer PCB Layout Constraints #### 12.1.1 Board Stack-up PCB Stackup – 4 Layers Specifications are subject to change without notice The outer layers of the PCB were designated to the mainly signal routings by default, and normally were chosen to have the 0.5 oz Cu foil with plated 0.5 oz copper, and the inner layers was designated to be 1.0 oz at the PCB manufacturing step. \wedge The dielectrics between conductors were as the isolators, which were used to separate the conductors. By the micro-strip line architecture of system memory signals, the target impedance was desired to have 55Ω +/- 10%. Please refer to the table below for your PCB design and recommendation. The default design was 6 mil trace width with 4.5 mil height dielectrics. #### 4 Layer PCB Stack-up Configurations | | | PCB Parameter | 1800 J. | |-------------------|---------|---------------------|---------------| | Trace Width (mil) | ∃ (mil) | Target Impedance (Q |) ~ Tolerance | | 5 4 | 4.5 | 56 🕵 🖔 | ₹ 10% | Please request the PCB manufactory to follow the FR4 stack-up as below | Description | Matéřial 📆 🎌 🏋 | Height (mil) | PS | |-------------|--------------------------|--------------|---| | Conductor | | 0.5 oz | | | Medium | ☐ No Assigned 🍇 Assigned | 4.5 | 2116 | | Conductor | | 1 oz | • | | Medium | ₩ ₩ | 47.6 | | | Conductor | | 1 oz | | | Medium , | | 4.5 | | | Conductor < | | 0.5 oz | | | | | | | ## 12.2 System DDR Memory Solution Space Refer to the diagrams below to the topologies of the DDR signals, and the actual dimension specifications were listed of the tables ້ຳ2.2. ້ຳ ປີປີ່R Signal Topology – 1 (DS / DQS / DQM) ## Specifications are subject to change without notice | | Signal | | DQ | POS. | DQM | |---------------|----------------|---------------------------------------|----------------|---------------------------------|------------| | T | race | Width (W) | 5 | * \$ 15 ° · | 5 | | | mil) | Spacing | 8 or Above 🚕 . | 🐎 🎖 Ror Above | 8 or Above | | | Α | Min. | 0.2 | _ሬ ^እ ኞ 0.2 | 0.2 | | Length (inch) | ^ | Max. | 1 📜 🥨 | 1 | 1 | | ≞ | В | Min. | 0,2 🔌 💘 | 0.2 | 0.2 | | ΙĘ | 6 | Max. | | 1.2 | 1.2 | | ≝` | С | Min. | A. 17 0.1 F | 0.1 | 0.1 | | | | Max. ۽ | 0.5 | 0.5 | 0.5 | | Тасе | A+B | Min. 🔗 | °, ~ °, Q,A | 0.4 | 0.4 | | - | | Max(📜 | 2 | 2 | 2 | | | R | $s(\Omega)\beta(\mathbb{C})^{r+\eta}$ | 47 | 47 | 47 | | | R [.] | t (Ω) 🖫 | 75 | 75 | 75 | ep the difference of the trace length of the same data signal groups within about 200 mils as possible. Keep the difference of the data signal groups within 200 mils as possible (The longest signal trace to the shortest signal trace). - Placing the damping resistor close to the MT537x. - 3. 4. Placing the termination resistor close to the memory as possible. - 5. Put an integrated plane as the return path to the signals beneath the data signals. - 6. When the signal need to change layers, and the reference paths beneath Specifications are subject to change without notice the signal are not continued, placing the bypass capacitors nearing to the vias where are the points to change layers and connecting the capacitors to the different reference paths. | | | | | CS# / CAS# | | |---|--------------|--|------------|------------|------------| | | Signal | | ≰ RA/BA | / RAS# / | CKE | | | a . | <u>(3) </u> | | WE# | | | | Trace (mil) | Width (W) | 5 | 5 | 5 | | | 11doc (IIII) | Spacing | 8 or Above | 8 or Above | 8 or Above | | | | Min. | 0.2 | 0.2 | 0.2 | | I _ | (80) | Max. | 1.2 | 1.2 | 1.2 | | (inch) | | Min. | 0.2 | 0.2 | 0.2 | | يَ إ | | Max. | 2 | 2 | 2 | | Æ | | Min. | 0 | 0 | 0 | | \\g\$\\. | | Max. | 0.5 | 0.5 | 0.5 | | | D/E | Min. |
0.2 | 0.2 | 0.2 | | , <u>, , , , , , , , , , , , , , , , , , </u> | P , D / L | Max. | 1.2 | 1.2 | 1.2 | | | A+B+D (or E) | Min. | 0.6 | 0.6 | 0.6 | | 17 | VIBID (OLE) | Max. | 4.2 | 4.2 | 4.2 | | | Rs (Ω) | | 22 | 22 | - 22 | | | Rt (Ω) | | 75 | 75 | 7 5 | Specifications are subject to change without notice #### Note: - 1. Keep the difference of the branches' length (D/E) of the dual loads signal within 100 mils. - 2. Placing the damping resistor close to the MT537x. - 3. Put the termination resistor close to the crossing point of the branchés, - 4. Reserving more spacing to the periodic signal (as clock) if signal was critical and there weren't the guard traces. - 5. Put an integrated plane as the return path to the signals beneath the address / command signals. - 6. When the signal need to change layers, and the reference paths beneath the signal are not continued, placing the bypass capacitors he are the points to change layers and connecting the capacitors to the different reference paths. ## 12.2.3 DDR Signal Topology - 3 (Clock Pair) | | Signal 🤻 Signal | | CLK / CLK# | | |-------------------|--------------------|---------|------------|---| | A | Tiraca (mil) | Width | 5 | | | | racowini) | Spacing | 8 or Above | • | | • 3 4() | λ [,] , Δ | Min. | 0.2 | | | | β → A
No. | Max. | . 1 | | | Ĵ₽̂\$ | В | Min. | 0.2 | | | ce Leng
(inch) | ٥ | Max. | 1 | | | 8 등 | D | Min. | 0.2 | | | Trace
(in | | Max. | 1.2 | | | | A+B+D | Min. | 0.6 | | Specifications are subject to change without notice | | | | • | |-----------------------------|------|------------------|-------| | $\operatorname{Rs}(\Omega)$ | Max. | 2.6
47
100 | - 69. | | | | | | #### Note: - 1. The trace length of A / A', B / B', D / D' should be as equal as possible. - 2. Keep the trace difference between CLK / CLK# in +/- 100 mils - 3. Keep the trace difference between DQ / DQS / DQM and CLK in 1/200 mils - 4. Keep the trace difference between RA / BA / CS# / CAS# / RAS# / WE# / CKE and CLK in +/- 1000 mils. # 12.3 System DDR2 Memory Solution Space Refer to the diagrams below to the topologies of the DDR2 signals, and the actual dimension specifications were listed of the tables. 12.3.1 DDR2 Signal Topology - 1 (DQ and Down) DDR2 Signal Topology - 1 | 50 | | |------------|------------| | DQ | DQM | | 5 | 5 | | 8 or Above | 8 or Above | | 0.2 | 0.2 | | 1 | 1 | | 0.2 | | | | | #### Specifications are subject to change without notice | | Max. | 1.2 | 1.2 | | |-----|--------|-----|-----|--------------| | A+E | Min. | 0.4 | 0.4 | | | 715 | Max. | 2 | 2 | <u>√</u> √45 | | | Rs (Ω) | 22 | 22 | Ta | #### Note: - 1. Keep the difference of the trace length of the same data signals. about 200 mils as possible. - Keep the difference of the data signal groups within 200 mills as possible 2. (The longest signal trace to the shortest signal trace) - 3. - Placing the damping resistor close to the MT537x Placing the termination resistor close to the memory as possible. 4. - Put an integrated plane as the return path to the signals beneath the data 5. signals. - When the signal need to change layers and the reference paths beneath the signal are not continued, placing the bypass capacitors nearing to the vias where are the points to change layers and connecting the capacitors to 6. the different reference paths. #### and Command) 12.3.2 DDR2 Signal Topology - DDR2 Signal Topology - 2 | Signal | | RA / BA | CS# / CAS#
/ RAS# / | CKE | |-------------|-----------|---------|------------------------|-----| | | | | WE# | | | Trace (mil) | Width (W) | 5 | 5 | 5 | #### Specifications are subject to change without notice | | | Spacing | 8 or Above | 8 or Above | 8 or Above | |---------------|--------------|---------|-------------|-----------------|--| | | А | Min. | 0.2 | 0.2 | 0.2 | | l 👝 . | ^ | Max. | 1.2 | 1.2 | 1.2 🔏 🧎 | | - 등 | D | Min. | 0.2 | 0.2 | 0.2 | | Length (inch) | В | Max. | 2 | 2 | 21 | | ₩ | С | Min. | 0 | 0 | 1 00 | | e. |) | Max. | 0.5 | 0.5 | × 105 00 | | | D/E | Min. | 0.2 | 0.2 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | Trace | D/ E | Max. | 1.2 | ئى <u>ي</u> 1.2 | 1.2 | | = | A+B+D (or E) | Min. | 0.6 | 0.6 | 50.6 | | | (OI L) | Max. | 4.2 | 4.2 | 4.2 | | | Rs (Ω) | | 22 | | 22 | | | Rt (Ω) | · | 75 <i>h</i> | 3 745 . | 75 | ### Note: - Keep the difference of the branches length E) of the dual loads signal 1. within 100 mils. - 2. - Placing the damping resistor classes to the transfer point of the branches. 3. - Reserving more spacing to the periodic signal (as clock) if signal was critical and there weren't the guard traces. - Put an integrated plane as the return path to the signals beneath the address 5. / command signals 🛴 - When the signaline and the reference paths beneath the signal are not continued, placing the bypass capacitors nearing to the vias where are the points to change layers and connecting the capacitors to the different feference paths. #### ighal Topology – 3 (Clock and DQS) Specifications are subject to change without notice | | Signal | | | DQS / DQS# | |---------------|----------------|-----------|--------------|---------------| | | Olgital | | | - ADGO / DGO# | | | Trace (mil) | Width (W) | ₹ | 5 | | | rrace (mir) | Spacing | 8 gr Above 🖈 | 8 or Above | | I _ | Α | Min. | ** | 0,2 | | <u></u> | ζ | Max. | 10 TO | 1 | | <u>;</u> | В | Min. 🎥 | \$ 0.02 | 0,2 | | <u> </u> ₩ | ם | Max. 🖧 | | 1 | | Length (inch) | D
A+B+D | Min 🔌 🤾 | 0.1 | NS | |] [| | Max, 🛼 | % 1.2 | NS | | Trace | | Min | 0.6 | 0.4 | | - | | Max. | 2.6 | 2 | | | Rs:(@) | | 22 | 22 | | | Ŗ <u>ŧ</u> (Ω) |)d_ | 100 | NS | Note: - 1. The trace ength of A / A`, B / B`, D / D` should be as equal as possible. - 2. Keep the trace difference between CLK / CLK# in +/- 100 mils. - 3. Reep the trace difference between DQ / DQS / DQM and CLK in +/- 200 mils. 4. Reep the trace difference between RA / BA / CS# / CAS# / RAS# / WE# / CKE and CLK in +/- 1000 mils. ## 13. MT537x HDMI / LVDS Layout Guide ## 13.1 HDMI / LVDS Signal PCB Layout Guideline Specifications are subject to change without notice For the other applications of the high-speed signal PCB design, below illustrated the topologies and constraints of the HDMI / LVDS or other differential signals that were achieved to the electrical requirements. Also refer to the form to the defail recommendations. ## 13.2 Multi-Layer PCB Design By the default multi-layers PCB architecture, the inner layers were assigned to be the reference plane to the signals. For the signal integrity issues, the integrate plane would held to hold a good signal qualities when signal were profeeding on the signal traces. Refer to the below shown the stack up and the topology of the differential signals of the 4-layer PCB where the signals were routed of the outer layers. HDMI LVDS Signal Topology - 4 Layer | Variable 🔨 🦋 | Nominal (mil) | Tolerance | Min. (mil) | Max. (mil) | |--------------------|---------------------|-------------|------------|------------| | Trace High (H) | □ 4.5 (2116) | | | _ | | Trace Width/(W) | - 5 | + / - 1 mil | 4 | 6 | | Spacing (5) | 8 (mil) | +/-1 mil | 9 | 7 | | Single Ended Trace | 56Ω | | 61.6Ω | 52.6Ω | | Differential Trace | 98Ω | | 109Ω | 89.9Ω | | Reference Plane | Ground | Ground | Ground | Ground | #### 13.2.2 Signals with Guard Traces The other application was used the coplanar ground copper and surrounded the Specifications are subject to change without notice signals to achieve the noise shielding purpose. The figure shows the signal topology. Differential Signal with Guard Trace | Variable | Nominal (mil) | Tolerance | ្រីស្នេ (ភាព | Max. (mil) | |---------------------------------|---------------|----------------|----------------|------------| | Trace High (H) | 4.5 (2116) | Á. | X | | | Trace Width (W) | -5 | +/- [[m]] | * <u>*</u> 4 | 6 | | Spacing (S) | 8 (mil) | +/﴿Timili 🔩 | ** ** 9 | 7 | | Spacing to GND(Sg) | 8 (mil) | +;-_mil _\ | 9 | 7 | | Single Ended Trace
Impedance | 55Ω | | 60Ω | 50.5Ω | | Differential Trace
Impedance | 97Ω√ | | 107Ω | 87Ω | | Reference Plane | Grálund. | Ground | Ground | Ground | #### Note: Keeping the spacing to the other signals as far as possible. Keeping the spacing to different ground planes (Sp) more than 30 mils as possible as the below Cross-Section of Plane Designated Specifications are subject to change without notice ## 14. MT537x BGA Soldering Information ## 14.1 MT537xAG is Lead-Free Process #### Element: - 1. Sn: 95.5 % - 2. Ag:4% - 3. Cu: 0.3 % - 4. Fusion Point: 228 °C. 14.2 Soldering Control (for Reference Only) - 2. 180 °C: 40 Sec - 3. 215 °C: 40 Sec - 4. 230 °C: 40 Sec - 5. 245 °C: 90 Sec Specifications are subject to change without notice # 15. US Terrestrial TV Channel Frequencies | US Terrestrial TV Channel Frequencies | | | | | | | | | | |---------------------------------------|---------------------------|---------------------------------|-------------|------------------------|---------------------------------|--|--|--|--| | Channe | TV Video
Freq
(MHz) | ATSC
Center
Freq
(MHz) | Channel | Video
Freq
(MHz) | ATSC
Center
Freq
(MHz) | | | | | | 2 | 55.25 | 57 | 36 | 603.25 £ | 605 | | | | | | 3 | 61.25 | 63 | 37 | 609:25 3 | 61°F | | | | | | 4 | 67.25 | 69 | 38 | 615.25 | [™] 3617 | | | | | | 5 | 77.25 | 79 | 39 . , | 621.25 | 5 623 | | | | | | 6 | 83.25 | 85 | 40 🚑 | _ .6 27.25 | 629 | | | | | | 7 | 175.25 | 177 | (41) | 633:25 | 635 | | | | | | 88 | 181.25 | 183 | 42 | 639.25 | 641 | | | | | | 9 | 187.25 | ىيە 189 | | 645.25 | 647 | | | | | | 10 | 193.25 | 195 | 44 | 651.25 | 653 | | | | | | 11 | 199.25 | 201 | 45 | 657.25 | 659 | | | | | | 12 | 205.25 | o 6 207 × . ` | 3 46 | 663.25 | 665 | | | | | | 13 | 211.25 | 2213 | 47 | 669.25 | 671 | | | | | | 14 | 471.25 | `` ` 473 | 48 | 675.25 | 677 | | | | | | 15 | <u>્477, 25,</u> | 479 | 49 |
681.25 | 683 | | | | | | 16 | 483,25 | 485 | 50 | 687.25 | 689 | | | | | | 17,40 | <u>``</u> `}¥89,25 | 491 | 51 | 693.25 | 695 | | | | | | . [88] | 495.25 | 497 | 52 | 699.25 | 701 | | | | | | <i>•</i> 195 | 501.25 | 503 | 53 | 705.25 | 707 | | | | | | 20 | 507.25 | 509 | 54 | 711.25 | 713 | | | | | | 24 | 513.25 | 515 | 55 | 717.25 | 719 | | | | | | 24
22
23 | 519.25 | 521 | 56 | 723.25 | 725 | | | | | | 23 | 525.25 | 527 | 57 | 729.25 | 731 . | | | | | | 24 | 531.25 | 533 | 58 | 735.25 | 737 | | | | | | 25 | 537.25 | 539 | 59 | 741.25 | 743 | | | | | | 26 | 543.25 | 545 | 60 | 747.25 | 749 | | | | | | 27 | 549.25 | 551 | 61 | 7 5 3.25 | 755 | | | | | Specifications are subject to change without notice | | | | _ | | | بالمر | |----|--------|------|----|----------|---------|------------------| | 28 | 555.25 | 557 | 62 | 759.25 | 761 | <i>ۆ</i> _ ا | | 29 | 561.25 | 563 | 63 | 765.25 | 767 | | | 30 | 567.25 | 569 | 64 | 771.25 | 773 | 1/2 | | 31 | 573.25 | 575 | 65 | 777.25 | 779 🙏 | <u> </u> | | 32 | 579.25 | ·581 | 66 | 783.25 | 785∜•€. | > | | 33 | 585.25 | 587 | 67 | 789.25 | 791 | & 1/2 | | 34 | 591.25 | 593 | 68 | 795.25 | ₹9₹3 | 3. V | | 35 | 597.25 | 599 | 69 | 801.25 🚜 | 803 | | | | | | | | | | # 16. US Cable TV Channel Frequencies ## 16.1 Standard TV Channel | | US Cable TV STD Changel Frequencies | | | | | | | | |---------|--|---------------------------------|---------|------------------------------|--------------------------------|--|--|--| | Channel | TV Video
Freq
(MHz) | QAM;
Center
Ered
(MHz) | Channel | TV
Video
Freq
(MHz) | QAM
Center
Freq
(MHz) | | | | | 2 | 55. 2 55 | ×3.57 | 64 | 463.25 | 465 | | | | | 3 | 61,25 | A . 63 | 65 | 469.25 | 471 | | | | | 4 , | 6725 | 🔏 69 | 66 | 475.25 | 477 | | | | | 1 3 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | · _ | 67 | 481.25 | 483 | | | | | 5_4 | 77.25 | 79 | 68 | 487.25 | 489 | | | | | CO' | *83.25 | 85 | 69 | 493.25 | 495 | | | | | • 95 | 91.25 | 93 | 70 | 499.25 | 501 | | | | | 96 | 97.25 | 99 | 71 | 505.25 | 507 | | | | | 970 | 103.25 | 105 | 72 | 511.25 | 513 | | | | | .98 | 109.25 | 111 | 73 | 517.25 | 519 | | | | | 99 | 115.25 | 117 | 74 | 523.25 | 525 | | | | | 14 | 121.25 | 123 | 75 | 529.25 | 531 | | | | | 15 | 127.25 | 129 | 76 | 535.25 | 537 | | | | | 16 | 133.25 | 135 | 77 | 541.25 | 543 | | | | | 17 | 139.25 | 141 | 78 | 547.25 | 549 | | | | | 18 | 145.25 | 147 | 79 | 553.25 | 555 | | | | | 19 | 151.25 | 153 | 80 | 559.25 | 561 | | | | | | | | | | | | | | ## Specifications are subject to change without notice | 20 | 157.25 | 159 | 81 | 565.25 | 567 | |-------|---------------------|---------------|-----------------|---------------------|-------------| | 21 | 163.25 | 165 | 82 | 571.25 | 573 | | 22 | 169.25 | 171 | 83 | 577.25 | 579 | | 7 | 175.25 | 177 | 84 | 583.25 | 585 | | 8 | 181.25 | 183 | 85 | 589.25 | 591 | | 9 | 187.25 | 189 | 86 | 595.25 | 59,7(| | 10 | 193.25 | 195 | 87 | 601.25 | 603 | | 11 | 199.25 | 201 | 88 | 607.25 | 5 09 | | 12 | 205.25 | 207 | 89 | 613.25 | 615 | | 13 | 211.25 | 213 | 90 | 619;25 ^c | ₹ 621°÷ | | 23 | 217.25 | 219 | 91 | 625.25 | 627 | | 24 | 223.25 | 225 | 92 | (631-25 | - 633 | | 25 | 229.25 | 231 | 93 🎉 | 637-25 | 639 | | 26 | 235.25 | 237 | .94/ * ` | 643,25 | 645 | | 27 | 241.25 | 243 | ¥(00°5, * | 649.25 | 651 | | 28 | 247.25 | 249 , | 3 2101 5 | 655.25 | 657 | | 29 | 253.25 | 255% | 102,5 | 661.25 | 663 | | 30 | 259.25 | 26% | - to3 | 667.25 | 669 | | 31 | 265.25 | 267 T | 104 | 673.25 | 675 | | 32 | 271.25 | Å 273 . 1 | <u></u> 105 | 679.25 | 681 | | 33 | 277.25 | *\279 | 106 | 685.25 | 687 | | 34 | 283 25 ⁷ | *% 285 | 107 | 691.25 | 693 | | 35 , | 289,25 | ₰ 291 | 108 | 697.25 | 699 | | 36 | . 295, 25 ° | 297 | 109 | 703.25 | 705 | | 37 1 | 301,25 | 303 | 110 | 709.25 | 711 | | (38) | 3 07.25 | 309 | 111 | 715.25 | 717 | | ·7,39 | 313.25 | 315 | 112 | 721.25 | 723 | | 40 | 319.25 | 321 | 113 | 727.25 | 729 | | 410 | 325.25 | 327 | 114 | 733.25 | 735 | | ₹42 | 331.25 | 333 | 115 | 739.25 | 741 | | 43 | 337.25 | 339 | 116 | 745.25 | 747 | | 44 | 343.25 | 345 | 117 | 751.25 | 753 | | 45 | 349.25 | . 351 | 118 | 757.25 | 759 | | 46 | 355.25 | 357 | 119 | 763.25 | 765 | | 47 | 361.25 | 363 | 120 | 769.25 | 771 | | 48 | 367.25 | 369 | 121 | 775.25 | 777 | | 49 | 373.25 | 375 | 122 | 781.25 | 783 | | | | | | | | - 53 ## Specifications are subject to change without notice | 5 0 | 379.25 | 381 | 123 | 787.25 | 789 | |------------|--------|-------|---------|------------------|----------------------| | 51 | 385,25 | . 387 | 124 | 793.25 | 795 | | 52 | 391.25 | 393 | 125 | 799.25 | 801 | | 53 | 397.25 | 399 | 126 | 805.25 | 807 | | 54 | 403.25 | 405 | 127 | 811.25 | 813 | | 55 | 409.25 | 411 | 128 | 817.25 | 819 | | 56 | 415.25 | 417 | 129 | 823,25 | 825 | | 57 | 421.25 | 423 | 130 | 829.25 | #831 ¹³ . | | 58 | 427.25 | 429 | 131 | 835.25 | 837 | | 59 | 433,25 | 435 | 132 | 84 <u>1</u> ;25° | 843 | | 6 0 | 439.25 | 441 | 133 | 847 25 | 849 | | 61 | 445.25 | 447 | 134 | (853-25) | 855 | | 62 | 451.25 | 453 | 135 🙀 | 859,25 | 861 | | 63 | 457.25 | 459 | ~ (Par | | | ## 16.2 IRC TV Channel | | US Cable ប្តីប្តីខ្ពស់ក្រឹម Channel Frequencies | | | | | | | | | | |-----|---|-----------------------------------|--------------------------------|-----------------|------------------------------|--------------------------------|--|--|--|--| | | Channel | TV-
Vjileo
S Freq
(MHz)- | QAM
Center
Freq
(MHz) | Channel | TV
Video
Freq
(MHz) | QAM
Center
Freq
(MHz) | | | | | | | 21 | 55,25 | 57 | 64 | 463.25 | 465 | | | | | | | (3) | 61.25 | 63 | 65 | 469.25 | 471 | | | | | | è | | 67.25 | 69 | 66 | 475.25 | 477 | | | | | | 1.0 | ,
Ž | 73.25 | 75 | 67 | 481.25 | 483 | | | | | | , | 5 | 79.25 | 81 | 68 | 487.25 | 489 | | | | | | | 6 | 85.25 | 87 | 69 | 493.25 | 495 | | | | | | • | 95 | 91.25 | 93 | - 70 | 499.25 | 501 | | | | | | İ | 96 | 97.25 | 99 | [*] 71 | 505.25 | 507 | | | | | | | 97 | 103.25 | .105 | 72 | 511.25 | 513 | | | | | | | 98 | _ | · | 73 | 517.25 | 519 | | | | | | | 99 | _ | | 74 | 523.25 | 525 | | | | | | | 14 | 121.15 | 122.9 | 75 | 529.25 | 531 | | | | | ## Specifications are subject to change without notice | | 15 | 127.15 | 128.9 | 76 | 535.25 | 537 | |-----|----------------|----------------------|---------------|-----------------|--------|------------------| | | 16 | 133.15 | 134.9 | 77 | 541.25 | 543 | | | 17 | 139.15 | 140.9 | . 78 | 547.25 | 549 | | | 18 | 145.15 | 146.9 | 79 | 553.25 | 555 | | | 19 | 151.15 | 152.9 | 80 | 559.25 | 561 | | | 20 | 157.15 | 158.9 | 81 | 565.25 | 567 | | | 21 | 163.15 | 164.9 | 82 | 571.25 | 573 | | | 22 | 169.15 | 170.9 | 83 | 577.25 | <i>,</i> 579′ | | | 7 | 175.25 | 177 | 84 | 583,25 | ₹₹ <u>5</u> 85 😘 | | | 8 | 181.25 | 183 | 85 | 589.25 | 594 | | | 9 | 187.25 | 189 | 86 | 595.25 | 5 ,597 | | | 10 | 193.25 | 195 | 87 🍂 | 601.25 | 603 | | 5 | 11 | 199.25 | 201 | .884(**) | 607,25 | 609 | | | 12 | 205.25 | 207 | ∱ 89) *₃ | 613.25 | 615 | | | 13 | 211.25 | 213, | | 619.25 | 621 | | | 23 | 217.25 | 219 | 74917 | 625.25 | 627 | | | 24 | 223.25 | ·225 | 92 | 631.25 | 633 | | | 25 | 229.25 | × 234. | ⊈ 93 | 637.25 | 639 | | | 26 | 235.25 | 237 | 94 | 643.25 | 645 | | | 27 | 241,25 | 243 | 100 | 649.25 | 651 | | | ىم 28 | -24 7 ,25 | , ₿249 | 101 | 655.25 | 657 | | | 29 🔨 | ,253 _, 25 | 2 55 | 102 | 661.25 | 663 | | | 30, 1 | 259,25 | 261 | 103 | 667.25 | 669 | | | (331 | 265.25 | 267 | 104 | 673.25 | 675 | | , t | 138 00. | 271.25 | 273 | 105 | 679.25 | 681 | | | ~ 3 3 | 277.25 | 279 | 106 | 685.25 | 687 | | | 34 | 283.25 | 285 | 107 | 691.25 | 693 | | _ | 35 | 289.25 | 291 | 108 | 697.25 | 699 | | • | 36 | 295.25 | 297 | 109 | 703.25 | 705 | | | 37 | 301.25 | 303 | 110 | 709.25 | 711 | | | 38 | 307.25 | 309 | 111 | 715.25 | 717 | | | 39 | 313.25 | 315 | 112 | 721.25 | 723 | | | 40 | 319.25 | 321 | 113 | 727.25 | 729 | | | 41 | 325.25 | 327 | 114 | 733.25 | 735 | | | | | | | | | ## Specifications are subject to change without notice | 42 | | | 115 | 739.25 | 741 | |-----------------|----------------------|---|-----------------|-----------------|----------------| | 43 | 337.25 | 339 | 116 | 745.25 | 747 | | 44 | 343.25 | 345 | 117 | 751.25 | 753 | | 45 | 349.25 | 351 | 118 | 757.25 | 759 | | 46 | 355.25 | 357 | 119 | 763.25 | 765 | | 47 | 361.25 | 363 | 120 | 769.25 | 771 | | 48 | 367.25 | 369 | 121 | 775.25 | <u>7</u> 777-3 | | 49 | 373.25 | 375 | 122 | 781.25 | , 78°, 7 | | 50 | 379.25 | 381 | 123 | 787,25 | 789 🔭 | | 51 | 385.25 | 387 | 124 | 793.25 | 795 | | 52 | 391.25 | 393 | 125 | <u>, 799-25</u> | % ,801 | | 53 | 397.25 | 399 | 126 🍂 | 805:25 | 807 | | 54 | 403.25 | 405 | 127(| 811,25 | 813 | | 55 | 409.25 | 411 | ₄ 128"*• | 8 47.25 | 819 | | 56 | 415.25 | 417, | i, 129 } | 823.25 | 825 | | 57 | 421.25 | 423 | | 829,25 | 831 | | 58 | 427.25 | 429.74 | 131 | 835,25 | 837 | | 59 | 433.25 | ≚ 43 5. | ្ន 132 | 841.25 | 843 | | 60 | 439.25(| \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 133 | 847.25 | 849 | | 61 | 445 25 | 447 | 134 | 853.25 | 855 | | 62 _ლ | _c ∕45†/25 | 453 , | 135 | 859.25 | 861 | | 63 | , 457,25° | 459 | | | | | EI W.L | | | | | | ## 16.3 HR@ TwChannel | | US Cable TV HRC Channel Frequencies | | | | | | | | |---|-------------------------------------|------------------------------|--------------------------------|---------|------------------------------|--------------------------------|--|--| | • | Channel | TV
Video
Freq
(MHz) | QAM
Center
Freq
(MHz) | Channel | TV
Video
Freq
(MHz) | QAM
Center
Freq
(MHz) | | | | | 2 | 54 | 55.75 | 64 | 462 | 463.75 | | | | | 3 | 60 | 61.75 | 65 | 468 | 469.75 | | | ## Specifications are subject to
change without notice | | | • | | | | | | |----|---------------|--------------|---------------------|---|---------------|----------------------|---| | | . 4 | 66 | 67.75 | 66 | 474 | 475.75 | | | | 1 | 72 | 73.75 | 67 | 480 | 481.75 | 1 | | | 5 | 78 | 79.75 | 68 | .486 | 487.75 | ١ | | | 6 | 84 | 85.75 | 69 | 492 | 493.75 | 1 | | | 95 | 90 | 91.75 | 70 | 498 | 499.75 | ŧ | | | 96 | 96 | 97.75 | 71 | 504 | 505.75 | | | | 97. | 102 | 103.75 | 72 | 510 | 511.75 | 7 | | | 98 | _ | | 73 | 516 | , 6 47:75 | ľ | | | 99 | _ | | 74 | 522 💸 | √523.75 [™] | | | | 14 | 120 | 121.75 | 75 | 528 | 52975 | | | | 15 | 126 | 127.75 | 76 | √ €3 4 | \$35.75 | | | | 16 | 132 | 133.75 | 77 🎉 | 540 | 541.75 | | | | 17 | 138 | 139.75 | <i>7</i> .8√€ | 54@ | 547.75 | | | | 18 | 144 | 145.75 | A79)** | ₹ 562 | 553.75 | | | | 19 | 150 | 151.75 | . go . | 558 | 559.75 | | | | 20 | 156 | 157.7 .5 * | ~~ *********************************** | 564 | 565.75 | | | | 21 | 162 | 163.76 | 82 | 570 | 571.75 | | | | 22 | 168 | 16975 | ្ន 83 | 576 | 577.75 | | | | 7 | 174 | \ [75.75 | 84 | 582 | 583.75 | | | | 8 | 180 | 18 1 75 | 85 | 588 | 589.75 | | | | 9 | ∱ 186 | 87.75 ڳ ر | 86 | 594 | 595.75 | | | | 10 | , ´192** | ⁷ 193.75 | 87 | 600 | 601.75 | | | | 11/ | 1,98 | 199.75 | 88 | 606 | 607.75 | | | | ()12' | 2 04 | 205.75 | 89 | 612 | 613.75 | | | • | `` ``` | 210 | 211.75 | 90 | 618 | 619.75 | | | - | , 3 3 | 216 | 217.75 | 91 | 624 | 625.75 | | | • | . 24 | 222 | 223.75 | 92 | 630 | 631.75 | | | k. | 25 | 228 | 229.75 | 93 | 636 | 637.75 | | | | 26 | 234 | 235.75 | 94 | 642 | 643.75 | | | | 27 | 240 | 241.75 | 100 | 648 | 649.75 | | | | 28 | 246 | 247.75 | 101 | 654 | 655.75 | | | | 29 | 252 | 253.75 | 102 | 660 | 661.75 | | | İ | 30 | 258 | 259.75 | 103 | 666 | 667.75 | | | | 31 | 264 | 265.75 | 104 | 672 | 673.75 | | ## Specifications are subject to change without notice | | 32 | 270 | 271.75 | 105 | 678 | 679.75 | | |---|--------------------|-------|------------------|-----------------|--------------|---------|-----------| | | 33 | 276 | 277.75 | 106 | 684 | 685.75 | | | | 34 | 282 | 283.75 | 107 | 690 | 691.75 | 1 | | | 35 | 288 | 289.75 | 108 | 696 | 697.75 | 1 | | | 36 | 294 | 295.75 | 109 | 702 | 703.75 | \
** | | | 37 | 300 | 301.75 | 110 | 708 | 709,75 | \
 | | | 38 | 306 | 307.75 | 111 | 714 | 715.75 | ٦ | | | 39 | 312 | 313.75 | 112 | 720 | .721.75 | K | | | 40 | 318 | 319.75 | 113 | 726 💸 | 27.75 | Ļ | | | 41 | 324 | 325.75 | 114 | 732 | 733,75 | | | | 42 | 330 | 331.75 | 115 | . √₹38 × | 739.75 | 1 | | | 43 | 336 | 337.75 | 116 🍂 | 744 | 745.75 | | | | 44 | 342 | 343.75 | 1-1.7(%) | 750 | 751.75 | 1 | | | 45 | 348 | 349.75 | 4 148** | 7 566 | 757.75 | 1 | | | 46 | 354 | 355.75 | <u>1,</u> 149 ₫ | 762 | 763.75 | 1 | | | 47 | 360 | 361,75 | 20° | 768 | 769.75 | | | | 48 | 366 | 367.760 | 121 | 774 | 775.75 | | | | 49 | 372 , | ×373.75° | 122 | 780 | 781.75 | 1 | | | 50 | 378 🕌 | \ 379.75. | 123 | 786 | 787.75 | 1 | | | 51 | 384 | 385.75 | 124 | 792 | 793.75 | | | | ى 52 _{ئى} | 390 | 3 91.75 | 125 | 798 | 799.75 | l | | | 53 | /396 | 397.75 | 126 | 804 | 805.75 | | | | 54 | 402 | 403.75 | 127 | 810 | 811.75 | | | | (₹65′ | 408 | 409.75 | 128 | 816 | 817.75 | | | • | 3 55 | 414 | 415.75 | 129 | 822 | 823.75 |), | | 4 | 57 | 420 | 421.75 | 130 | 828 | 829.75 | - | | 1 | 58 | 426 | 427.75 | 131 | 834 | 835.75 | | | | 59 | 432 | 433.75 | 132 | 840 | 841.75 | | | ٦ | 60 | 438 | 439.75 | 133 | 846 | 847.75 | | | | 61 | 444 | 445.75 | 134 | 852 | 853.75 | | | | 62 | 450 | 451.75 | 135 | 858 J. | 859.75 | | | | 63 | 456 | 457.75 | | | | | | | | | | | | | i | # MT5112BD Preliminary Datasheet - **FEATURES** - **■** GENERAL DESCRIPTION - **FUNCTIONAL BLOCK DIAGRAM** - **PIN ASSIGNMENT** - PIN DESCRIPTION - TIMING INFORMATION - **ELECTRICAL CHARACTERISTICS** - OUTLINE DIMENSION & TOP MARKING ## **FEATURES** - ♣ Compliant with ATSC digital television standard - ♣ Supports SCTE DVS-031 and ITU J.83 Annex B digital CATV standard - ♣ Accepts direct IF (44 MHz or 43.75MHz) and low IF (5.38MHz) - ♣ Differential IF input with programmable input signal level: 0.5Vpp to 2Vpp - NTSC interference rejection capability - ♣ Compensate echo up to -35 to +60us range for terrestrial HDTV reception - Pass all Brazil fading channel ensembles - ♣ Meet all ATSC/A74 requirement - ♣ On-chip programmable gain amplifier - ♣ 25MHz crystal for clock generation - Excellent adjacent and co-channel rejection capability, only single SAW is required - ♣ Full-digital timing recovery, no VCXO is required - Full-digital frequency offset recovery with wide acquisition range ±1MHz for ATSC and ±250kHz for CATV reception - Dual digital AGC controls for IF and RF respectively - ♣ MPEG-2 transport stream output in parallel or serial format - ♣ On-chip error rate estimators for TS packets, TCM decoder, and equalizer - ♣ EIA/CEA-909 antenna interface, both mode A and mode B are supported - Controlled by I²C interface - Supports sleep mode to save power consumption - & Core power supply: 1.8V, peripheral power supply: 3.3V - ♣ 100-TQFP with lead free package ### GENERAL DESCRIPTION DTV The MT5112BD is a highly integrated single-chip for digital terrestrial HDTV and digital cable TV demodulation. The chip is designed specifically for the digital terrestrial HDTV and CATV receivers, and is fully compliant with ATSC A/53, SCTE DVS-031, and ITU J.83 Annex B standards. #### 8-VSB and Clear-QAM Reception MT5112BD contains a 10-bit A/D converter, an 8-VSB/QAM demodulator, followed by a trellis-coded modulation (TCM) decoder and a Reed-Solomon forward error correction (FEC) decoder. Moreover, an embedded 8-bit microprocessor intelligently handles the acquisition and tracking to ensure the best receiving performance under various channel conditions. The microprocessor communicates with the external host controller via an I²C-compatible interface, and also provides direct control to the RF tuner via another I²C-compatible interface. MT5112BD accepts the tuner IF output centered at 44MHz or 43.75MHz, or the low IF signals from a down-converter. With good adjacent channel immunity, additional IF SAW filters for adjacent channel rejection can be saved. An on-chip programmable gain-controlled amplifier (PGA) is designed to provide extra signal gain when the tuner output level is low. The amplified IF signal is then sample and digitized for further demodulation process. MT5112BD keeps A/D input power level at a desired level so as to maximize the received SNR. It measures the power level of the digitized samples and provide two signals (both sigma-delta encoded; one delayed and one non-delayed) for front-end gain control purpose. The signals is low-pass filtered before connected to tuner or IF gain stages. For the 8-VSB reception, the carrier frequency offset is estimated and compensated by a fully digital synchronizer. It also controls the rate conversion in the digital re-sampling device by estimating the sampling frequency offset; hence no external VCXO is required. The digital synchronizer simultaneously offers very wide frequency acquisition range and stable tracking capability. This makes MT5112BD robust work under severe impairment conditions. The MT5112BD is equipped with a powerful equalizer for mitigating the multi-path effects due to terrestrial propagation of 8-VSB signals. The delicate equalizer design makes the MT5112BD boast its ability for strong echo cancellation. With this powerful equalizer, the MT5112BD can not only easily pass the tests of A74 equalization mask, ATTC channel ensembles, CRC channel ensembles, but also provide superior capability of live signal receptions. For cable signal reception, the MT5112BD adopts the fully digital modules for timing and carrier synchronization, with no external VCXO required. Specially designed carrier synchronization module enables the MT5112BD passing the OpenCable ATP burst and phase noise tests, while maintaining excellent reception performance under normal reception conditions. The MT5112BD also utilizes a powerful equalizer for performing channel equalization in cable environments. The MT5112BD equipped with this powerful equalizer can easily pass the SCTE channel tests and offer stable and excellent live signal receptions. The following FEC decoder corrects most of the errors by the concatenation of the TCM and Reed-Solomon decoders with an in-between de-interleaver. Specifically for the digital cable TV reception, the MT5112BD first detects and aligns de-puncturing timing of the received sequence before TCM decoding. Besides, two synchronization circuits are each inserted before the de-interleaver and after the Reed-Solomon decoder to automatically delineate the FEC frames and transport stream packets respectively. An on-chip error rate estimator can simultaneously monitor the receiving qualities at the three stages: the equalizer output, the TCM decoder, and the transport stream packets. At the last stage, the MT5112BD incorporates a buffer to smooth out the uneven arrival time of transport stream packets. The chip finally outputs the smoothed decoded MPEG-2 transport stream packets in either the serial or parallel transport stream format. In addition to the demodulation of HDTV signal, MT5112BD provides the capability to remove narrow-band interference such as the co-channel NTSC signal and CW tones which generally exists in broadcast environment. To achieve the best reception, an antenna control interface compliant with EIA/CEA-909 is equipped into the MT5112BD to configure the antenna parameters. Both the unidirectional mode A and the bi-directional mode B operation schemes are supported. #### **Power Saving Mode** The MT5112BD is designed with efficient mechanisms of power saving. When configured to enter the sleep mode by the system host, it can
immediately turn off almost all embedded hardware except the on-chip microprocessor to reduce the power consumption. Resuming from sleep mode is also triggered by the system host. Upon returning to the operation mode, the chip will be ready to start a new acquisition. ## **FUNCTIONAL BLOCK DIAGRAM** ## **PIN ASSIGNMENT** ## PIN DESCRIPTION For FAT Applications | Pin Numbers | Symbol | Type | Description | |--|-------------|----------|---| | Transport Stream | | | | | 22, 23, 24, 25, 28, 29, 32, 33 | TSDATA[7:0] | 0 | TS data output | | 34 | TSSYNC | 0 | TS packet start signal | | 38 | TSVAL | 0 | TS output valid signal | | 37 | TSCLK | 0 . | TS output clock | | 39 | TSERR | 0 | TS packet error indicator | | Analog Signal | | | | | 82 | IN+ | , 1 | And and description of the same | | 81 | IN- | 1 | Analog differential IF input | | 88 | REFTOP | 0 | ADC reference top voltage. Decouple with a capacitor to AVSS | | 86 | REFBOT | 0 | ADC reference bottom voltage. Decouple with a capacitor to AVSS | | 87 | VCMEXT | 0 | ADC common mode voltage | | Antenna Interface | · | <u> </u> | | | 62 | ANT_TX | 0 | CEA-909 antenna control: transmit data | | 58 | ANT_DET | ı | CEA-909 antenna control: detection signal | | 59 | ANT_RX | ı | CEA-909 antenna control: receive data | | Clock Generation | | | | | 97 | XTAL1 | ı | | | 96 | XTAL2 | 1 | 25MHz crystal input | | Control Signals | | | | | 47 | HOST_CLK | T | Host processor serial clock input, 5 volt compatible | | 44 | HOST_DATA | 1/0 | Host processor serial data pin, 5 volt compatible | | 69 | TUNER_CLK | 0 | Tuner serial clock output, 5 volt compatible | | 68 | TUNER_DATA | 1/0 | Tuner serial data pin, 5 volt compatible | | 72 | IF_AGC | 0 | IF AGC output | | 73 | RF_AGC | 0 | RF AGC output | | 48 | RESET | 1 | Power reset pin, low active | | 66. | SA0 | I | Chip slave address selection pin, tie to VDD3.3 or DGND | | 67 | SA1 | 1 | Chip slave address selection pin, tie to VDD3.3 or DGND | | Power Supply | | | | | 17, 26, 35, 42, 52, 60, 70 | VDD3.3 | P | Digital power supply, tie to 3.3V | | 18, 30, 40, 45, 55, 64, 75 | VDD1.8 | Р | Digital power supply, tie to 1.8V | | 16, 19, 27, 31, 36, 41, 43, 46, 51, 56, 61, 63, 65, 71, 74 | DGND : | Р | Digital ground, tie to digital ground plane | | 3, 10, 12, 80, 83, 91, 92, 93, 99 | AVDD | P. | Analog power supply, tie to 3.3V | | 7, 11, 79, 85, 89, 94, 95, 98, 100 | AVSS | Р | Analog ground, tie to analog ground plane | | 15, 76 | ADVDD3.3 | Р | Digital power supply for analog component, tie to 3.3V | | 90 | AVDD1.8 | Р | Digital power supply for analog component, tie to 1.8V | | General-Purpose I/O | | | | | 57, 54, 49, 21 | GPIO[3:0] | 1/0 | General-Purpose I/Os | | | | | | ## **Microelectronics** ## 24-bit, 192 KHz. CODEC: 6 Ch DAC, 5 Input Mux Stereo ADC #### DESCRIPTION The CE2836 is a mixed signal CMOS monolithic audio Codec. It contains six multi-bit sigma delta DAC and a stereo ADC with 5 input multiplexer, Ideal for audio playback and recording applications. The DAC consists of 128-time interpolation filters, 3^{rd} order multi-bit $\Sigma\Delta$ modulators, switch capacitors and analog reconstruction filters. The $\Sigma\Delta$ converter offers superior differential linearity, with minimum distortion due to component mis-match. high tolerance to clock jitter. Additionally it includes separated digital volume control for each channel. The ADC utilizes cascaded $\Sigma\Delta$ architecture. The internal digital filter has a 20K bandwidth. It support sampling frequency up to 96K Hz. The ADC also includes a analog Automatic Level Control and Noise Gate function to ease the recording applications. #### **FEATURES** - · Six Channel Audio DAC. - 104 dB SNR (A Weighted). - -82 dB THD + N Ratio (A Weighted). - 32K 192 KHz. Sampling Rates. - On -chip Reconstruction Filters. - Independent Digital Volume Control. - · Stereo Audio ADC. - 5 Channel ADC inputs. - Up to 96K Sampling Rate. - With Automatic Level Control and Noise Gate. - Includes ALC and Noise Gate Functions. - I²S, Left and Right Justified Digital I/F Formats. - 2-wire Serial Control Interface. - 3.3 Volt Power Supply. #### **Applications** - Digital Surround Sound For Home Theatre - DVD or DVD Recordable. ## **CE2836 Performance** | Item | DAC PERFORMANCE SPECIFICATIONS | Spec. | |------|------------------------------------|------------| | 1 | Audio Output Level | 1 Vrms | | 2 | Audio Bandwidth 20Hz - 20 KHz | +/- 0.1 dB | | 3 | SNR (A-weight) | >104 dB | | 4 | THD + NOISE (A-weight, 0 dB input) | <-82 dB | | 5 | Dynamic Range | 94 dB | | 6 | Channel Separation | <-92 dB | | 7 | Nonlinear Distortion | < 0.25 dB | | 8 | Channel Gain Error | < 0.1 dB | | | | | | | ADC PERFORMANCE SPECIFICATIONS | | | 1 | Maximum Input Level | 4 Vpp | | 2 | 0 dB Audio Input Level | 1 Vrms | | 3 | Audio Bandwidth 20Hz - 20 KHz | +/- 0.5 dB | | 4 | SNR (A-weight) | >98 dB | | 5 | THD + NOISE (A-weight, 0 dB input) | <-88 dB | | 6 | Dynamic Range | 94 dB | | 7 | Channel Separation | <-96 dB | | 8 | Nonlinear Distortion | < 0.25 dB | | 9 | Channel Gain Error | < 0.5 dB | All Measurement were taken with only one channel active. #### **Description (continue)** The DAC support conversion rate from 32K to 192KHz while the ADC from 32K to 96K. The CE2836 support 32, 24, 20 and 16-bit input data. It also support multiple sampling frequency data. Each DAC has its own individual volume control. #### XCK REQUIREMENT The CE2836 supports 32K, 44.1K, 48K, 96K and 192K sampled audio in DAC operations and 32K, 44.1K, 48K and 96K sampled audio in ADC operations. The oversampled clock, XCK, requirements are listed in Table 1 and 2. The DAC and ADC PCM serial port can be configured as 'Master' or 'Slave' independently and each has separated over sampling clock input. In the 'Slave Mode' PCM serial port operation if the AUTODEC, CR1[7]==1,there is an clock frequency detection circuit to set up the system clock, the users don't need to set the SRC registers. However in the 'master mode' operation the users need to set the SCR registers for the serial audio clock generations Table 1. | Sampling
Rate | DAC XCK Requirement | | | | | | | | |------------------|---------------------|--------------|--------------|--------------|--------------|--|--|--| | | | DACD | IV==0 | DACDIV==1 | | | | | | | XCK Freq | 12.288 MHz | 8.192 Mhz. | 24.576 Mhz | 16.384 Mhz | | | | | 32 K | SRC[1:0] | [11], 384 fs | (#), 256 fs | [11], 768fs | (#), 512 fs | | | | | | XCK Freq | 16.934 Mhz | 11.29 Mhz. | 33.869 Mhz | 22.579 Mhz | | | | | 44.1K | SRC[1:0] | [11], 384fs | [10], 256 fs | [11], 768 fs | [10], 512fs | | | | | 10.77 | XCK Freq | 18.432 MHz | 12.288 Mhz | 36.864 MHz | 24.576 Mhz. | | | | | 48 K | SRC[1:0] | [11], 384 fs | [10], 256 fs | [11], 768fs | [10], 512 fs | | | | | 0.5.77 | XCK Freq | 18.432 MHz | 12.288 Mhz. | 36.864 MHz | 24.576 Mhz. | | | | | 96 K | SRC[1:0] | [01], 192 fs | [00], 128 fs | [01], 384 fs | [00], 256 fs | | | | | 102.77 | XCK Freq | 18.432 Mhz | 12.288 Mhz. | 36.864 MHz | 24.576 Mhz. | | | | | 192 K | SRC | (#), 96 fs | (#), 64 fs | (#), 192 fs | (#), 128 fs | | | | All the XCK clock rate listed are supported in the 'Slave Mode' SRC Registers are used in the 'Master Mode'. (#) are not supported in the in the 'Master Mode'. DAC AUTODET is CREG1[7], DAC SRC[1:0] are CREG1[6:5] and DACDIV is CREG1[4]. Table 2. | Sampling
Rate | ADC XCK Requirement | | | | | | | |------------------|---------------------|--------------|--------------|--------------|--------------|--|--| | | | DACD | IV==0 | DACD |)[V==1 | | | | 22.77 | XCK Freq | 12.288 MHz | 8.192 Mhz. | 24.576 Mhz | 16.384 Mhz | | | | 32 K | SRC[1:0] | [10], 384 fs | (#), 256 fs | [10], 768fs | (#), 512 fs | | | | | XCK Freq | 16.934 Mhz | 11.29 Mhz. | 33.869 Mhz | 22.579 Mhz | | | | 44.1K | SRC[1:0] | [10], 384fs | [00], 256 fs | [10], 768 fs | [00], 512fs | | | | 40.47 | XCK Freq | 18.432 MHz | 12.288 Mhz | 36.864 MHz | 24.576 Mhz. | | | | 48 K | SRC[1:0] | [10], 384 fs | [00], 256 fs | [10], 768fs | [00], 512 fs | | | | 06.17 | XCK Freq | 18.432 MHz | 12.288 Mhz. | 36.864 MHz | 24.576 Mhz. | | | | 96 K | SRC[1:0] | [11], 192 fs | [01], 128 fs | [11], 384 fs | [01], 256 fs | | | All the XCK clock rate listed are supported in the 'Slave Mode' . SRC Registers are used in the 'Master Mode'. (#) are not supported in the 'Master Mode'. ADC AUTODETis CREG9[7], DAC SRC[1:0]are CREG9[6:5] and DACDIV is CREG9[4]. #### **PIN ASSIGNMENT** #### PIN DESCRIPTION | Pin Name | Pin # | Type | Description | |----------|-------|------|---| | DIGITAL | | | | | N/C | 43 | | No connection. It can be tied to GND. | | SDA | 44 | I/O | Serial command port data line. | | SCL | 45 | I | Serial command port clock line. | | DAXCK | 46 | I | External master clock input for DAC. | | DABCK | 47 | I | DAC audio serial data clock Input pin (default) if DAC I/F is configured to be 'slave' else it is an Output. | | DAFS | 48 | I | DAC left/right channel clock pin. Please refer to Figure 1 PCM data format for its definition Input (default) if DAC I/F is configured to be 'slave' else it is an output | | DIN1 | 1 | I | DAC Channel 1 or TDM serial audio data input. | | DIN2 | 2 | I | DAC Channel 2 serial audio data input. | ## PIN DESCRIPTION (Continued) | Pin Name | Pin # | Туре | Description | |----------|-------|-------|---| | DIN3 | 3 | I | DAC Channel 3 serial audio data input. | | DOUT | 4 | 0 | Serial ADC output | | VDD | 5 | +3.3V | Digital power supply, 3.3 Volt. | | GND | 6 | GND | Digital ground | | ADFS | 7 |
I/O | ADC left/right channel clock pin. Please refer to Figure 1 PCM data format for its definition. Input (default) if ADC I/F is configured to be 'slave' else it is an output | | ADBCK | 8 | I/O | External master clock input for ADC. Input (default) if ADC I/F is configured to be 'slave' else it is an output | | ADXCK | 9 | I | ADC audio serial data clock input. | | GND | 10 | I | Digital ground | ### Analog | N/C | 11 | | No connection. It can be tied to AGND. | |-------|----|-------|--| | AINR5 | 12 | I | ADC channel 5 right input. Input resistance is 20K Ohm | | AINL5 | 13 | I | ADC channel 5 left input. Input resistance is 20K Ohm | | N/C | 14 | | No connection. It can be tied to AGND. | | AINR4 | 15 | I | ADC channel 4 right input. Input resistance is 20K Ohm | | AINL4 | 16 | I | ADC channel 4 left input. Input resistance is 20K Ohm | | AINR3 | 17 | I | ADC channel 3 right input. Input resistance is 20K Ohm | | AINL3 | 18 | I | ADC channel 3 left input. Input resistance is 20K Ohm | | AINR2 | 19 | I | ADC channel 2 right input. Input resistance is 20K Ohm | | AINL2 | 20 | I | ADC channel 2 left input. Input resistance is 20K Ohm | | AINR1 | 21 | I | ADC channel 1 right input. Input resistance is 20K Ohm | | AINL1 | 22 | I | ADC channel 1 left input. Input resistance is 20K Ohm | | AVDD | 23 | +3.3V | ADC power supply. | | N/C | 24 | | No connection. It can be tied to AGND. | | AGND | 25 | GND | Analog ground pin. | | ADVRF | 26 | О | ADC reference voltage. It should be decoupled to AGND with a 22 uF capacitor in parallel with a 0.1 uF. Its value should be AVDD/2 volt. | | AGND | 27 | GND | Analog ground pin. | | | | | | ### PIN DESCRIPTION (Continued) | Pin Name | Pin # | Type | Description | |----------|--------|-------|--| | ADVCM | 28 | О | ADC comment mode voltage. It should be decoupled to AGND with a 22 uF in parallel with a 0.1 uF. Signal level is AVDD/2. | | AGND | 29 | GND | Analog ground pin. | | AVDD | 30 | +3.3V | DAC power supply. | | AOL3 | 31 | 0 | Analog left channel 3 output | | AOR3 | 32 | О | Analog right channel 3 output | | AOL2 | 33 | 0 | Analog left channel 2 output | | AOR3 | 34 | О | Analog right channel 2 output | | AOL1 | 35 | 0 | Analog left channel 1 output | | AOR1 | 36 | О | Analog right channel 1 output | | DAVCM | 37 | О | DAC comment mode voltage. It should be connected to a 22 uF in parallel with a 0.1 uF decoupling capacitors to ground. Signal level is AVDD/2. | | DAVL | 38, 39 | GND | DAC negative reference voltage. It should be tied to AGND. | | DAVH | 40,41 | I | DAC positive reference voltage. It should be connected to AVDD via a 180 ohm serial resistor, and a 22 uF in parallel with a 0.1 uF decoupling capacitors to ground. | | N/C | 42 | | No connection. It can be tied to AGND. | #### DIGITAL AUDIO SERIAL INTERFACE There are two independent PCM serial ports, one for DAC and one for ADC. The DAC digital serial interface consists of 3 serial input pins, DIN1, DIN2, DIN3, one serial clock input/output pin, DABCK, and one left/right indicator input/output pin, DAFS. The ADC consists of a data output pin, DOUT and one serial clock input/output pin, ADBCK, and one left/right indicator input/output pin, ADFS. The BCK and FS are output pins when the respective port is configured as 'Master', and input pin when it is configured as 'Slave' port. The Master/Slave operations are setup via CREGA[7] and CREGA[3]. The data are 2's complement MSB first numbers. The CE2836 supports four resolution, which are selected programming the control register CREG0 and CRFEGA via the I²C serial control port. Table 3 describes these four resolution. Table (3): Audio Serial Data Input Resolution, | Format | NBIT[1:0] | DIN, DOUT | |--------|-----------|------------------| | 0 | 00 | 16-bit | | 1 | 01 | 20-bit | | 2 | 10 | 24-bit (default) | | 3 | 11 | 32-bit | The DIN and DOUT can be either 24-bit or 32-bit per frame as well as left justified, right justified or I2S. . **Table (4): Audio Serial Data Input Modes** | Mode | FMT[1:0] | DIN, DOUT | |------|----------|-----------------| | 0 | 00 | Right Justified | | 1 | 01 | Left Justified | | 2 | 10 | I2S (default) | | 3 | 11 | TDM | #### **TDM Input Format** The CE2836 support Time Division Multiplex data input. In this format only one data input pin is required. The six channel data are sent in serial order, channel 1 first, followed by channel 2 and so forth. The number of bits per channel is defined by CREG0[5:4]. Figure 1. Audio Serial Input Data Format #### DAC INFINITE ZERO DETECTION The CE2836 DAC has an Infinite Zero Detection circuit which detects zero in the Audio Serial Port that lasts for approximately 0.2 sec. By default, the zero detection circuit is on. ### **DAC Digital Attenuation** Each DAC contains an Digital Attenuation block. The attenuation values are hold in the Volume Control Registers. The Value 80H corresponds to Full Scale, 0dB. and each decrement correspond to -0.5 dB additional attenuation. #### **ADC** Gain and ALC Each channel of ADC input includes a Analog Gain. The Gain is controlled by CREGC, ADC Gain Selection, The gain range is from +6 dB to -9 dB. with 1 dB step. The GAIN = 9 corresponds to 0dB gain. The AUTOMATIC LEVEL CONTROL set the ADC maximum digital output to a prescribed value by automatic manipulating the analog gain. The ALC is controlled by CREG8, ADC PROC. REGISTER... Table (5): ALC Target Level | ALC[2:0] | Maximum Digital Output | |----------|------------------------| | 000 | -1 dB FS | | 001 | -2 dB FS | | 010 | -3 dB FS | | 011 | -4 dB FS | | 100 | -5 dB FS | | 101 | -6 dB FS | | 110 | -7 dB FS | | 111 | -8 dB FS | Table (6): ALC Hold Time | ALCHTM | Hold Time | Comment | |--------|-----------|--------------------| | 0 | 340 msec. | For music program | | 1 | 5.3 msec | For speech program | #### **ADC Noise Gate** Noise Gate remove hissing noise during silence period. It is useful for recording noisy program. While Noise Gate is enabled the ADC digital output will be zeroed if the signal level below a predetermined value for about 0.5 seconds. The noise Gate is controlled by the same ADC PROC. REGISTER. Table (7): Noise Gate Threshold | NGTH[1:0] | Threshold | |-----------|-----------| | 00 | -66 dB | | 01 | -72 dB | | 10 | -78 dB | | 11 | -84 dB | #### **Serial Command Port** The user can select the chip operation mode by programming the internal control registers through serial I²C port. The Chip Address for the CE2836 is 35H. The protocol for write operation consists of sending 3 byte data to CE2836, following each byte is the acknowledges generated by CE2836. The first byte is the 7-bit Chip Address followed by the read/write bit (read is high, write is low). The second byte is the control register address. The third byte is the control register data. Upon power up, all programmable registers are set to default values. Figure 2 describes the serial command port timing relationship. 12C Bus Control Register Write Example: second byte third byte SCL Example Set channel 1L volume to 30H: first byte: [CA R/W] = 6AH (Note: Chip adrress: CA<6:0> = 35H, RW =0.) second byte: register address: A<7:0> = 02H third byte: data D<7:0> = 30H Figure 2. Serial Command Port Timing ### SERIAL PORT CONTROL REGISTER ASSIGNMENT There are 8 registers dedicated to the CE2836 for chip functional programming, The register addresses assignments are | Address
(decimal) | Register | Default
Value | Register Function | |----------------------|------------|------------------|---| | 0 | CREG0[7:0] | A0 | DAC Control REG0: Data input format, de-emphasis filter selection | | 1 | CREG1[7:0] | 80 | DAC Control REG1: Input format and PLL output frequency selection | | 2 | CREG2[7:0] | 80 | Volume Control Register for DAC channel 1, left | | 3 | CREG3[7:0] | 80 | Volume Control Register for DAC channel 1, right | | 4 | CREG4[7:0] | 80 | Volume Control Registerl for DAC channel 2, left | | 5 | CREG5[7:0] | 80 | Volume Control Register for DAC channel 2, right | | 6 | CREG6[7:0] | 80 | Volume Control Register for DAC channel 3, left | | 7 | CREG7[7:0] | 80 | Volume Control Registerl for DAC channel 3, right | | 8 | CREG8[7:0] | 82 | ADC Proc REG: ALC and Noise Gate Control Registers | | 9 | CREG9[7:0] | A0 | ADC Control Register. | | 10 | CREGA[7:0] | 00 | CHIP Control Register. | | 11 | CREGB[7:0] | 01 | ADC MUX Select. | | 12 | CREGC[7:0] | 99 | ADC Input Gain Select | | 13 | CREGD[7:0] | 92 | Chip Soft Reset. | #### CONTROL REGISTERS DESCRIPTION ### CREG0, DAC Control Register 0 (ADRS=hex00, default=hexA0) | ADDR[3:0] | CREG0[7:0] | | | | | | | | | | |---------------|------------|-------|-----------|-------|-------|-------|-------|---------|--|--| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | | | Hex 00 | FMT[1:0] | | NBIT[1:0] | | AMUTE | DEEMP | FSMF | PL[1:0] | | | | Default Value | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | FMT[1:0] Digital Serial Bus Format Select 00: - Normal or Right Justified Format. 01: -Left Justified Format. 10: - I2S Format.(default) 11: - TDM, Multi-channel Time Division Multiplex Format NBIT[1:0]: - These two bits define the serial audio input resolution for right justified and TDM mode 00: - 16-bit resolution. 01: - 20-bit resolution. 10: - 24-bit resolution (default). 11: - 32-bit resolution. AMUTE: - Auto-mute detection enable. 0: - Auto-mute enabled. (default) 1: - No auto-mute. DEEMP: - Enable de-emphasis 0: - Normal. (default) 1: - enable de-emphasis. FSMPL: - Interpolation filter selection. These two bits are recognized only when "AUTODET" bit of the CREG1 is set to '0'. 0X: - 44.1 or 48K
sampling.(default) 10: - 96K sampling. 11: - 192K sampling. ### CREG1, DAC Control Register 1(ADRS=hex01, default=hex80) | ADDR[3:0] | CREG1[7:0] | | | | | | | | | | | |---------------|------------|----------|-------|--------|-------|--------|--------|--------|--|--|--| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | | | | Hex 01 | AUTODET | SRC[1:0] | | CKDIV2 | Х | MUTE56 | MUTE34 | MUTE12 | | | | | Default Value | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | AUTODET Automatically detects the serial audio input data sampling rate clock frequency. 0: - do not use auto-detect 1: - automatically detects the serial audio input data sampling rate and clock frequency. SRC[1:0]: - DAC Sampling Rate Selection. It is used in the DAC Master Mode, CRA[7]==1, to generate DAFS and DABCK. 00: - Sampling Rate = XCK/128. 01: - Sampling Rate = XCK/192. 10: - Sampling Rate = XCK/256. 11: - Sampling Rate = XCK/384. CKDIV2: - Enable the ADXCK Clock divided by 2. 0: - DAC system clock is DAXCK (default) 1: - DAC system clock is DAXCK/2 MUTE56: Mute control for channels 5 and 6 0: do not mute channels 5 and 6 1: simultaneously mute channels 5 and 6 MUTE34: Mute control for channels 3 and 4 0: do not mute channels 3 and 4 1: simultaneously mute channels 3 and 4 MUTE12: Mute control for channels 1 and 2 0: do not mute channels 1 and 2 1: simultaneously mute channels1 and2 ### CREG2 - 7, DAC Volume Registers for channel 1 to 6, (ADRS=hex02 - hex07, default=hex80) | 4 DDD12.01 | Volume Registers | | | | | | | | | | | |---------------|------------------|--|--------------|----------|-------|-------|-------|-------|--|--|--| | ADDR[3:0] | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | | | | Hex 02 | Channel 1 le | Channel 1 left volume register, VOLREGL1[7:0] | | | | | | | | | | | Hex 03 | Channel 1 ri | Channel 1 right volume register, VOLREGR1[7:0] | | | | | | | | | | | Hex 04 | Channel 2 le | ft volume regis | ster, VOLREG | L2[7:0] | | | | | | | | | Hex 05 | Channel 2 ri | ght volume reg | ister, VOLRE | GR2[7:0] | | | | | | | | | Hex 06 | Channel 3 le | Channel 3 left volume register, VOLREGL3[7:0] | | | | | | | | | | | Hex 07 | Channel 3 ri | Channel 3 right volume register, VOLREGR3[7:0] | | | | | | | | | | | Default Value | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | VOLREG:- Control the volume of the 6 DAC's 80h corresponds to 0 dB and 02h to -64 dB. in -0.5 db step. Value should not be programmed greater than 80h. ### CREG 8, ADC Proc Register (ADRS=hex08, default=hex82) | ADDR[3:0] | CREG0[7:0] | | | | | | | | | | |---------------|------------|-----------|-------|--------|-------|----------|-------|-------|--|--| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | | | Hex 08 | NGATE | NGTH[1:0] | | ALCHTM | ALCEN | ALC[2:0] | | | | | | Default Value | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | NGATE: Noise Gate 0: - Noise Gate Disabled. 1: -Noise Gate Enable. When the signal level is lower than the level specified by the NGTH the ADC output will be zeroed. NGTH[1:0]: - Specified the Noise Gate Threshold. 00: **- -**66**d**B 01: - -72 dB. 10: - -78dB. 11: - -84 dB. ALCHTM: - Automatic Level Control Hold time. 0: - 340 ms. (default). For music program. 1: - 5.3 ms. This should be used for speech conversion. ALCEN: - Enable Automatic Level Control Function 0: - Disable ALC. (default) 1: - Enable ALC. ALC[2:0]: - ALC Target Level. 000: --1 dB. 001: -- 2 dB. 010: - - 3 dB. (default) 011: -- 4 dB. 100: -- 5 dB. 101: - -6 dB. 110: --7 dB. 111: -- 8 dB. ### CREG9, ADC Control Register (ADRS=hex09, default=hexA0) | ADDR[3:0] | CREG0[7:0] | | | | | | | | | | |---------------|------------|-------|-----------|-------|-------|-------|-------|--------|--|--| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | | | Hex 09 | FMT[1:0] | | NBIT[1:0] | | Х | SRC | [1:0] | CKDIV2 | | | | Default Value | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | MT[1:0] Digital Serial Bus Format Select for ADC. 00: - Normal or Right Justified Format. 01: -Left Justified Format. 10: - I2S Format.(default) 11: - TDM, Multi-channel Time Division Multiplex Format NBIT[1:0]: - These two bits define the ADC serial audio input resolution for right justified and TDM mode 00: - 16-bit resolution. 01: - 20-bit resolution. 10: - 24-bit resolution (default). 11: - 32-bit resolution. SRC[1:0]: - ADC Sampling Rate Selection. It is used in the ADC Master Mode, CRA[1]==1, to generate ADFS and ADBCK. 00: - Sampling Rate = XCK/256. 01: - Sampling Rate = XCK/128. 10: - Sampling Rate = XCK/384. 11: - Sampling Rate = XCK/192. CKDIV2: - Enable the ADXCK Clock divided by 2. 0: - ADC system clock is ADXCK (default) 1: - ADC system clock is ADXCK/2 ### CREGA, Chip Control Register (ADRS=hex0A, default=hex00) | ADDR[3:0] | | | | | CREG1[7:0] | | | | |---------------|--------|-------|-------|-------|------------|-------|-------|--------| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | Hex 0A | DAMSTR | DAPWD | Х | Х | ADMSTR | ADPWD | ZCBYP | HPFBYP | | Default Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | DAMSTR: Configure the DAC PCM Serial Port. 0: - Slave Mode 1: - Master Mode. DAPWD: DAC Power Down 0: DAC enabled 1: DAC Power Down. ADMSTR: Configure the ADC PCM Serial Port. 0: - Slave Mode 1: - Master Mode. ADPWD: ADC Power Down 0: ADC enabled 1: ADC Power Down. ZCBYP: Disable ADC Zero Crossing Detection 0: Zero crossing is enabled. 1: Zero crossing is bypassed. HPFBYP: Bypass ADC data path High Pass Filter 0: Enable high pass filter. 1: Disable high pass filter. ### **CREGB, ADC Input Enable (ADRS=hex0B, default=hex01)** | ADDR[3:0] | | | | | CREG1[7:0] | | | | |---------------|-------|-------|-------|-----------|------------|-------|-------|-------| | ADDR[5:0] | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | Hex 0B | Х | Х | Х | AMUX[4:0] | | | | | | Default Value | 1 | 0 | 0 | 0 0 0 1 | | | | | AMUX[4:0]: ADC Input Channel Enable. 00001: - AIN1 00010: - AIN2 00100: - AIN3 01000: - AIN4 10000: - AIN5 ### CREGC, ADC Input Gain Selection (ADRS=hex0C, default=hex99) | ADDR[3:0] | | | | | CREG1[7:0] | | | | |---------------|-------|-------|--------|-------|------------|-------|-------|-------| | | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | Нех 0С | | LGAIN | I[3:0] | | RGAIN[3:0] | | | | | Default Value | 1 | 0 | 0 | 1 | 1 0 0 | | | | LGAIN[3:0] is for ADC Left Channel Gain Select While RGAIN[3:0] is for Right Channel Gain Select 1111 corresponds to +6 dB and 0000 to -9 dB with -1dB step ### CREGD, Chip Soft Reset (ADRS=hex0D, default=hex92) | A DDD23-01 | | | | | CREG1[7:0] | | | | |---------------|-------|------------|-------|-------|------------|-------|-------|-------| | ADDR[3:0] | BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 | | Hex 0D | | RESET[7:0] | | | | | | | | Default Value | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Chip Soft Reset; A write of all zeros to this register will reset the chip except the Command Registers. Another write of hex92 is required to enable to chip again. #### **APPLICATION CONNECTION EXAMPLE:** #### SUGGESTED ANALOG RECONSTRUCTION FILTER A second Sallen Key low pass reconstruction filter is recommend to remove the high frequency sigma delta modulator noise. The filter's component values and characteristic are shown in the following figures. ### **ADC** The ADC converters have a input buffer. The buffers have a equivalent input resistance of 20K ohm. To ensure the performance it is recommended that the applications should have a simple low pass filter to remove the high frequency noise. ### TIMING DIAGRAM Figure 3. Audio Serial Interface Timing Requirement Figure 4. Serial Command Port Write Timing Requirement #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Characteristics | Min | Max | Units | |------------------|--|---------|----------------------|-------| | V _{DD} | Power Supply Voltage (Measured to GND) | -0.5 | +7.0 | V | | Vi | Digital Input Applied Voltage ² | GND-0.5 | | V | | A _i | Digital Input Forced Current ^{3,4} | -100 | 100 | mA | | V _o | Digital Output Applied Voltage ² | GND-0.5 | V _{DD} +0.5 | V | | A _o | Digital Output Forced Current ^{3,4} | -100 | 100 | mA | | TDsc | Digital Short Circuit Duration (single output high state to Vss) | | 1 | Sec | | TA _{SC} | Analog Short Circuit Duration (single output to VSS1) | | infinite | Sec | | T _a | Ambient Operating Temperature Range | -25 | +125 | ° C | | T _j | Junction Temperature (Plastic Package) | -65 | +150 | ° C | | Tsol | Lead Soldering Temperature (10 sec., 1/4" from pin) | | 280 | ° C | | Tvsol | Vapor Phase Soldering (1 minute) | | 220 | ° C | | Tstor | Storage Temperature | -65 | +150 | ° C | #### Notes: - 1. Absolute maximum ratings are limiting values applied individually, while all other parameters are within specified operating conditions. - 2. Applied voltage must be current limited to specified range, and measured with respect to VSS. - 3. Forcing voltage must be limited to specified range. - 4. Current is specified as conventional current, flowing into the device. ### **ELECTRICAL CHARACTERISTICS** | Parameter | Characteristics | Min | Тур | Max | Units | |-------------------|------------------------------|-----|-----|-----|-------| | Power Supply | | | | | | | AVDD | Analog power supply voltage | 2.8 | 3.3 | 4.0 | V | | DVDD | Digital power supply voltage | 2.8 | 3.3 | 4.0 | V | | I_{DA} | Analog Current | | 60 | | mA | | I _{DD} | Digital Current | | 20 | 18 | mA | ### **Audio DAC Characteristics** | | Full Scale Output Voltage to a 10K load | .98 | 1 | 1.02 | Vrms | |-----------|---|-----|-------|------|------| | V_{VCM} | Reference voltage | | VDD/2 | | V | ### **Digital Characteristics** | V _{IH} | Digital Input Voltage, Logic HIGH,
TTL Compatible Inputs. | 2.0 | V_{DD} | V
 |------------------|--|-----|-------------------|----| | I _{OZH} | Hi-Z Leakage Current, HIGH,
V _{DD} =Max, V _{IN} =3.3 Volt | | 33 | μА | | I_{OZL} | Hi-Z Leakage Current, LOW, V _{DD} =Max, V _{IN} =V _{SS)} | | -10 | μА | | C _I | Digital Input Capacitance (TA=25°C, f=1Mhz) | | 8 | pF | | Co | Digital Output Capacitance (TA=25°C, f=1Mhz) | | 10 | pF | ### **Audio Serial Interface Timing** | tbck | BCK Cycle Time | 80 | ns | |-------------------|--|----|----| | tbck _H | BCK Pulse Width, HIGH | 30 | ns | | tbckL | BCK Pulse Width, LOW | 30 | ns | | tkd _{su} | Audio Data Setup Time With Respect To Rising Edge of BCK | 10 | ns | | tkd _{hd} | Audio Data Hold Time With Respect to Rising Edge of BCK | 15 | ns | | tkr _{su} | Audio FS Setup Time With Respect To Rising Edge of BCK | 10 | ns | | Parameter | Characteristics | Min | Тур | Max | Units | |-------------------|--|-----|-----|-----|-------| | tkr _{hd} | Audio FS Hold Time With Respect To Rising
Edge of BCK | 15 | | | ns | ### **Serial Command Port** | fSCL | SCL Clock Frequency | | 100 | kHz | |---------|-----------------------------|-----|-----|-----| | tSU,sta | Start condition set up time | 4.7 | | us | | tHD,sta | Start condition hold time | 4.0 | | us | | tSU,stp | Stop condition set up time | 4.0 | | us | | tLOW | SCL Low time | 4.7 | | us | | tHIGH | SCL High time | 4.0 | | us | | tR | SCL & SDA rise time | | 1.0 | us | | tF | SCL & SDA fall time | | 0.3 | us | | tSU,DAT | Data set-up time | 250 | | ns | | tHD,DAT | Data hold time | 0 | | ns | | tBF | Bus Free time | 4.7 | | us | ### **PACKAGING INFORMATION (LQFP 48 PIN)** ### **Dimensions** | SYMBOLS | | mm. | | SYMBOLS | | mm. | | |----------|---------|---------|------|----------|---------|---------|------| | STRIBOLS | min | norm | max | STNIBOLS | min | norm | max | | A | | | 1.68 | Е | 9.0 BSC | | | | A1 | 0.05 | | 0.15 | E1 | 7.0 BSC | | | | A2 | 1.35 | 1.4 | 1.45 | e | 0.45 | 0.65 | 0.75 | | b | 0.17 | 0.22 | 0.27 | L | 0.63 | 0.6 | 1.03 | | С | 0.09 | | 0.20 | L1 | | 1.00 RE | F | | D | 9.0 BSC | | | | | | | | D1 | | 7.0 BS0 | C | | | | | # LQFP 48 (7 X 7 mm) # 10Wx2ch(SE)/20Wx1ch(BTL) Digital Audio Power Amplifier #### 1.Outline R2S15102NP is a Digital Power Amplifier IC developed for TV. R2S15102NP can realize maximum Power 10W \times 2ch (VD = 24V,THD = 10%, SE) at 8 Ω load. It is possible to replace from the conventional analog amplifier system to the digital amplifier system easily. ### 2.Feature ●High Output Power(THD=10%)without external Heat Sink (note) the thermal pad is soldered the thermal pad with the printed-circuit board directly. Recommanded Power Condition SE operation mode :10Wx2ch(VD=24V) at 8 Ω BTL operation mode: 20Wx1ch(VD=18V) at 8 Ω - The RENESAS original circuits realize high power efficiency, low noise and low distortion characteristics. - Pop sound Less - Built-in protection function (Over Current, Over Temperature and Under Voitage) - ●Built-in Mute and Stand-by function ### 3.Operating Condition - ●Recommanded Power supply voltage: from 11V to 25V - •Recommanded Speaker Impedance : from 4 to 8Ω ### 4.Block Diagram # 5. Pin Configuration(Table.1) | No. | NAME | I/O | Description | | | |-----|-------|-----|--|--|--| | 1 | OUT1 | 0 | Power Output pin #1 | | | | 2 | VD1 | _ | Power supply pin for power output stage #2 | | | | 3 | STBYL | I | Stand-by control pin. When this is "L", circuit current is reduced. There is the pull-down resistor: 50Kohm(typ.). | | | | 4 | PWM1 | I | PWM input pin #1 (for phase compensation) | | | | 5 | IN1 | I | Analog input #1. The gain is depended on the external resistance. | | | | 6 | CBIAS | I/O | A capacitor is connected so that it may not be influenced of power supply change(Ripple Filter). | | | | 7 | ROSC | I | Control pin for PWM carrier frequency | | | | 8 | GND | _ | GND pin for analog block | | | | 9 | VREF | I/O | Capacitor connection pin for analog block reference voltage source | | | | 10 | PROT | 0 | Protection Timer pin. At protection mode, the output becomes "L"-level. | | | | 11 | IN2 | I | (The timing capacitor is connected) SE operation Analog input #2(as same as IN1) | | | | 11 | 1142 | I | | When this is connected to DVDD pin via | | | | | 1 | DIL operation | the resister, Reversed signal of OUT1 is output to OUT2. | | | 12 | PWM2 | I | PWM input pin#2 (for phase compensation) | | | | 13 | MUTEL | I | Mute control pin. When this is "L", it becomes mute status. | | | | 14 | VD2 | | Power supply pin for power output stage #2 | | | | 15 | OUT2 | 0 | Power Output pin #2 | | | | 16 | VS2 | | Ground pin for power output stage #2 | | | | 17 | HB2 | I/O | Capacitor connection pin for bootstrap | | | | 18 | DVDD | 0 | Built-in power supply pin for internal digital block. | | | | 19 | HB1 | I/O | Capacitor connection pin for bootstrap #1 | | | | 20 | VS1 | | Ground pin for power output stage #1 | | | ### 6. Absolute Maximum Rating(Table.2) | Symbol | Parameter | Condition | Value | Unit | |-------------|-------------------------------|----------------------|------------------|------| | VD max | Maximum VD Voltage | VD1,VD2 pin voltage | 27 | V | | HB max | Maximum HB Voltage | HB1, HB2 pin voltage | 40 | V | | Pd | Power dispassion | Ta = 25°C :See Fig.3 | 4.2 | W | | θ ja | Thermal Resistance | See Fig.3 | 30 | °C/W | | Tj | Junction temperature | Maximum Temperature | 150 | ္ခင | | Та | Operating ambient temperature | Temperature range | -20 ~ 75 | ပ | | Tstg | Storage temperature | Temperature range | -40 ~ 150 | ್ದಿ | Fig.3 Thermal De-rating(on PCB: printed-circuit board): Size 75mm x 75mm ### (NOTE) ### PCB pattern design for high effective thermal conductivity (1) The exposed die pad is directly soldered with the printed-circuit board pattern. ### Consideration about the PCB design The Power dispassion at 10Wx2ch(SE) or 20Wx1ch(BTL) is estimated almost 2W. It has enough margin, designing the PCB at θ ja=30°C/W. ### (1)PCB basic design (copper plane) <PCB size estimation > 10Wx2ch: 75mm x 75mm The GND&Power line total area size is also equal to the above GND&Power line total area size of the 4layer PCB. <PCB size estimation > 10Wx2ch: $(75+\alpha)$ mm x $(75+\alpha)$ mm ### (2)PCB Thermal Pad The exposed die pad is directly soldered with the printed-circuit board pattern. ### 7. Recommended Operating condition(Table.3) | Symbol | Parameter | Condition | MIN | TYP | MAX | Unit | |--------|-------------------------------|---------------------|-----|-----|-----|------| | VD | Supply Voltage | VD1,VD2 pin voltage | 11 | - | 25 | V | | VH | Control voltage of high level | STBYL, MUTEL | 2 | - | 5 | V | | VL | Control voltage of low level | STBYL, MUTEL | 0 | 1 | 0.8 | V | | fosc | Carrier Frequency | R= 33kΩ | 300 | 400 | 600 | kHz | (note) - STBYL: High level:normal operation Low level:Stand-by - MUTEL:High level:normal operation Low level:Mute - The carrier frequency can be changed by the resistance at Pin#.7. ### 8. Electronic Characteristics(Table.4) (Unless otherwise noted, Ta=25°C, VD=24V, Carrier Frequency=400kHz, f=1kHz,SE operation) | Symbol | Parameter | | Condition | MIN | TYP | MA
X | Unit | |--------|----------------------------|--------|---------------------------|-----|-------|---------|-------------| | IVD | IVD Circuit Current | | No Signal | TBD | 28 | TBD | mA | | | | | MUTE | TBD | | TBD | mA | | | | | Stand-by | _ | - | 10 | uA | | VDPR | Detection Voltage | | VD under-voltage | TBD | 9.8 | TBD | V | | TPR | Protection
Temperature | | Thermal Shut-dawn | _ | 150 | - | ပ္ | | TRL | Release Temperature | | Thermal Shut-dawn | - | 120 | ı | ೧ | | IPR | Protection Current | | Output over-current | - | 6 | 1 | A | | Pomax | Maximum
output
power | at SE | THD=10%、VD=24V、
RL=8Ω | TBD | 10 | - | W/ch | | | | at BTL | THD=10%, VD=18V,
RL=8Ω | TBD | 20 | | W | | THD | Total Harmonic Distortion | | Po=1W | 1 | 0.1 | TBD | % | | No | Output Noise level | | A-Weighted filter | ı | (100) | TBD | uVrm
· s | | Eff | Power
Efficiency | at SE | Po=10+10W | TBD | 93 | 1 | % | | | | at BTL | Po=20W | TBD | 89 | | % | | Mute | Mute Attenuation | | | TBD | 80 | • | dB | | PSRR | Ripple Rejection
Ratio | | dVD=100mVrms,f=100
Hz | TBD | 50 | | dB | ## 9. Application Examples # Fig.4 SE operation mode(10Wx2ch) (note) "R for GND" 's are for the evaluation only and not needed actually. BTL operation mode (20W) Fig.5 Fig.7 BTL operation mode without output LPF coil ### 0. Warning and Cautions - 1) This product uses a high voltage (450 V max.). Do not touch the circuitry of this product with your hands when power is supplied to the product or immediately after turning off the power. Be sure to confirm that the voltage is dropped to a sufficiently low level. - 2) Do not supply a voltage higher than that specified to this product. This may damage the product and may cause a fire. - 3) Do not use this product in locations where the humidity is extremely high, where it may be splashed with water, or where flammable materials surround it. Do not install or use the product in a location that does no satisfy the specified environmental conditions. This may damage the product and may cause a fire. - 4) If a foreign substance (such as water, metal, or liquid) gets inside the product, immediately turn off the power. Continuing to use the products it may cause fire or electric shock. - 5) If the product emits smoke, an abnormal smell, or makes an abnormal sound, immediately turn off the power. If noting is displayed or if the display goes out during use, immediately turn off the power.
Continuing to use the product as it is may cause fire or electric shock. - Do not disconnect or connect the connector while power to the product is on. It takes some time for the voltage to drop to a sufficiently low level after the power has been turned off. Confirm that the voltage has dropped to a safe level before disconnecting or connecting the connector. Otherwise, this may cause fire, electric shock, or malfunction. - 7) Do not pull out or insert the power cable from/to an outlet with wet hands. It may cause electric shock. - 8) Do not damage or modify the power cable. It may cause fire or electric shock. - 9) If the power cable is damaged, or if the connector is loose, do not use the product; otherwise, this can lead to fire or electric shock. - 10) If the power connector or the connector of the power cable becomes dirty or dusty, wipe it with a dry cloth. Otherwise, this can lead to fire. #### □ General - 1) Do not place this product in a location that is subject to heavy vibration, or on an unstable surface such as an inclined surface. The product may fall off or fall over, causing injuries. - 2) When moving the product, be sure to turn off the power and disconnect all the cables. While moving the product, watch your step. The product may be dropped or fall, leading to injuries of electric shock. - 3) Do not place this product in a location that is subject to heavy vibration, or on an unstable surface such as an inclined surface. The product may fall off or fall over, causing injuries. - 4) Before disconnecting cable from the product, be sure to turn off the power. Be sure to hold the connector when disconnecting cables. Pulling a cable with excessive force may cause the core of the cable to be exposed or break the cable, and this can lead to fire or electric shock. - 5) This product should be moved by two or more persons. If one person attempts to carry this product alone, he/she may be injured. - 6) This product contains glass. The glass may break, causing injuries, if shock, vibration, heat, or distortion is applied to the product. - 7) The temperature of the glass surface of the display may rise to 80°C or more depending on the conditions of use. If you touch the glass inadvertently, you may be burned. - 8) Do not poke or strike the glass surface of the display with a hard object. The glass may break or be scratched. If the glass breaks, you may be injured. - 9) If you glass surface of the display breaks or is scratched, do not touch the broken pieces or the scratches with bare hands. You may be injured. - 10) Do not place an object on the glass surface of the display. The glass may break or be scratched. #### □ Design - 1) This product may be damaged if it is subject to excessive stresses (such as excessive voltage, current, or temperature). The absolute maximum ratings specify the limits of these stresses, and system design must ensure that none of the absolute maximum ratings are exceeded. - 2) The materials which contain sulfur are forbidden to use, because they may damage PDP module. - The recommended operating conditions are conditions in which the normal operation of this product is guaranteed. All the rated values of the electrical specifications are guaranteed within these conditions. Always use the product within the range of the recommended operating conditions. Otherwise, the reliability of the product may be degraded. Use of the product with a combination of parameters, conditions, or logic not specified in the specifications of this product is not guaranteed. If intending to use the product in such a way, be sure to consult LGE in advance. - 4) This product emits near infrared rays (800 to 1000nm) that may cause the remote controllers of other electric products to malfunction. To avoid this, use an infrared absorption filter and thoroughly evaluate the system and environment. ### □ **Design** (continued) - 5) This product uses high-voltage switching and a high –speed clock. A system using this product should be designed so that it does not affect the other systems, and should be thoroughly evaluated. - This product has a glass display surface. Design your system so that excessive shock and load are not applied to the glass. Exercise care that the vent at the corner of the glass panel is not damaged. If the glass panel or vent is damaged, the product is inoperable. - 7) There are some exposed components on the rear panel of this product. Touching these components may cause an electric shock. - 8) This product uses a high voltage. Design your system so that any residual voltage in this product is dissipated quickly when power is turned off, observing the specifications. - 9) This product uses heat-emitting components. Take the heat emitted by these components into consideration when designing your system. If the product is used outside the specified temperature range, it may malfunction. - This product uses a high voltage and, because of its compact design, components are densely mounted on the circuit board. If dust collects on these components, it can cause short-circuiting between the pins of the components and moisture can cause the insulation between the components to break down, causing the product to malfunction. - 11) Regulations and standards on safety and electromagnetic interference differ depending on the country. Design your system in compliance with the regulations and standards of the country for which your system is intended. - To obtain approval under certain safety standards (such as UL and EN), a filter that passes a shock test must be fitted over the glass surface of the finished product. In addition, it must be confirmed that the level of UV emissions is within the range specified by such standards. - If this product is used as a display board to display a static image, "image sticking" occurs. This means that the luminance of areas of the display that remain lit for a long time drops compared with the luminance of areas that are lit for a shorter time, causing uneven luminance across the display. The degree to which this occurs is in proportion to the luminance at which the display is used. To prevent this phenomenon, therefore, avoid static images as much as possible and design your system so that it is used at a low luminance, by reducing signal level difference between bright area and less bright area through signal processing. - 14) Within the warranty period, general faults that occur due to defects in components such as ICs will be rectified by LGE without charge. However, IMAGE STICKING is not included in the warranty. Repairs due to the other faults may be charged for depending on responsibility for the faults. - In case of AC PDP driving mechanism, Because the brightness of output is not always proportional to input signals. Therefore the non-linearity of gray can occasionally be observed in certain gray levels as well as Contour and Error Diffusion Noise can be appeared when a dark picture is on the screen especially. These are phenomena that can be observed on the PDP driving mechanism. With simple adjustment to picture brightness control, these can be reduced considerably. - Because of the need to control the power consumption on the PDP driving mechanism, the APL(Average Picture Level) mode was equipped. Thus, as the picture on the screen changes, there can be slightly switched in brightness. This also is a phenomenon that can be observed on the PDP driving mechanism. - 17) This product is designed to LGE's "Standard" quality grade. If you wish to use the product for applications outside the scope of the "Standard" quality grade, be sure to consult LGE in advance to assess the technological feasibility before starting to design your system. #### **□** USE - 1) Because this product uses a high voltage, connecting or disconnecting the connectors while power is supplied to the product may cause malfunctioning. Never connect or disconnect the connectors while the power is on. Immediately after power has been turned off, a residual voltage remains in the product. Be sure to confirm that the voltage has dropped to a sufficiently low level. - 2) Watching the display for a long time can tire the eyes. Take a break at appropriate intervals. - 3) PDP 's brightness and contrast ratio is lower than that of the CRT. The picture is dimmer with surrounding light and better for viewing in dark condition. - 4) Do not cover or wrap the product with a cloth or other covering while power is supplied to the product. - 5) Before turning on power to the product, check the wiring of the product and confirm that the supply voltage is within the rated voltage range. If the wiring is wrong or if a voltage outside the rated range is applied, the product may malfunction or be damaged. - 6) Do not store this product in a location where temperature and humidity are high. This may cause the product to malfunction. - 7) If the glass surface of the display becomes dirty, wipe it with a soft cloth moistened with a neutral detergent. Do not use acidic or alkaline liquids, or organic solvents. - 8) Do not tilt or turn upside down while the module package is carried, the product may be damaged. - 9) This product is made from various materials such as glass, metal, and plastic. When discarding it, be sure to contact a professional waste disposal operator. ### □ Repair and Maintenance Because this product combines the display panel and driver circuits in a single module, it cannot be repaired or maintained at user's office or plant. Arrangements for maintenance and repair will be determined later #### □ Others - 1) If your system requires the user to observe any particular precautions, in addition to the above warnings and cautions, include such caution and warning statements in the manual for your system. - 2) If you have any questions concerning design, such as on housing, storage, or operating environment, consult LGE in advance. ### 1. GENERAL DESCRIPTION ### **□ DESCRIPTION** The
PDP42X2##2# 42-inch 16:9 color plasma display module with resolution of 1024(H) \times 768(V) pixels. This is the display device which offers vivid colors with adopting AC plasma technology by LG Electronics Inc. #### **□** FEARURES High peak brightness (1,000cd/m² Typical) and high contrast ratio (5,000:1 Typical) enables user to create high performance PDP SETs. ### **□** APPLICATIONS - ✓ Public information display - √ Video conference systems - ✓ Education and training systems ### **□ ELECTRICAL INTERFACE OF PLASMA DISPLAY** The PDP42X2#### requires 8bits or 10bits of digital video signals for each RGB color. This is the display device which offers vivid colors with adopting AC plasma technology by LG Electronics Inc. #### □ GENERAL SPECFICATIONS ✓ Model Name : PDP42X2#### (42X2A Model) ✓ Number of Pixels : $1024(H) \times 768(V)$ (1pixel=3 RGB cells) ✓ Pixel Pitch : $900 \mu m$ (H) × $676 \mu m$ (V) ✓ Cell Pitch : $300 \mu \text{m}$ (H) × $676 \mu \text{m}$ (V) (Green Cell basis) ✓ Display Area : 920.1(H) \times 518.4(V) \pm 0.5mm ✓ Outline Dimension : 1005(H) \times 597(V) \times 60.7(D) \pm 1mm ✓ Pixel Type : RGB Closed type \checkmark Number of Gradations: (R)1024 \times (G)1024 \times (B)1024 \checkmark Weight : 15.3 Kg \pm 0.5 Kg (Net 1EA) 113.5 Kg \pm 5 Kg (5EA/1BOX) ✓ Aspect Ratio : 16:9 ✓ Peak Brightness : Typical 1000cd/m² (1/100 White Window) ✓ Contrast Ratio : Typical 50:1 (In a bright room with 150Lux at center) : Typical 5000:1 (In a dark room 1/100 White Window pattern at center) ✓ Power Consumption : Typical 280 W (Full White), Max.330W ✓ Expected Life-time : more than 60,000 Hours of continuous operation □ Life-time is defined as the time when the brightness level becomes half of its initial value. #### ✓ Display Dot Diagram ### Confidential | Item | Symbol | Condition | Min. | Max. | Unit | Remarks | |-----------------|--------|-----------|------|------|------|---------| | Logic Voltage | Vcc | 25°C | 4.5 | 6 | ٧ | | | Address Voltage | Va | 25°C | - | 70 | ٧ | | | Sustain Voltage | Vs | 25°C | - | 220 | ٧ | | | Item | Condition | Min. | Тур. | Max. | Unit | |-------------------|-----------|------|------|------|-------------------| | Adjustable Range | - | 4.75 | 5.0 | 5.25 | V | | Voltage Stability | - | 1 | 1 | ±3.0 | % | | Average Current | - | 1 | 4.5 | 5.5 | A _{mean} | | Peak Current | - | 1 | 1 | 8.5 | Α | | Ripple | - | ı | - | 30 | mV _{p-p} | | Noise | - | - | - | 300 | mV _{p-p} | | Item | Condition & Remarks | Min. | Тур. | Max. | Unit | |------|---------------------|------|------|------|------| # ➤ Sustain Power Supply(Vs) | Item | Condition | Min. | Тур. | Max. | Unit | |--------------------|--|------|------|------|-------------------| | Adjustable Range | Dependent on the characteristics of each PDP | 190 | ı | 200 | V | | Voltage Stability | - | ı | - | ±1.0 | % | | Peak Current | - | ı | ı | 20 | Α | | Average Current | Dependent on the characteristics of each PDP | 0.1 | ı | 1.5 | A_{mean} | | Voltage Regulation | At the peak current | ı | 1 | 3 | V | | Ripple & Noise | - | - | - | 500 | mV _{p-p} | [☞] Voltage should be set to a specified value which is indicated on the label attached to the module. | □ Insulation | |---| | In order to use information technology equipment, the end-user product should satisfy the insulation
and material requirements on Safety Standards of IEC 60950, EN 60950, UL60950 and CSA C22.2 No
60950, or IEC 60065, EN 60065, UL 6500 and CSA C22.2 No 60065 | | - The screen filter(Black mask filter) of end-user products should satisfy the supplementary insulation. | | □ Additional requirements | | Proper fire enclosure Proper mechanical enclosure Safety test including Power Supply Board should be performed as a part of the end-user product investigation. | Symbol | Description | Min. | Max. | unit | |-------------------|--|------|------|------| | T_{On} | Time interval between 90% of Vcc and 10% of Vs
when Power On | | ı | sec | | ${ m T}_{ m Off}$ | Time interval between 10% of Vs and 90% of Vcc
when Power Off | 300 | - | ms | | $T_{ m VaR}$ | Rising Time of Va (10% to 90%) | 100 | 300 | ms | | ${ m T_{VaF}}$ | Falling Time of Va (90% to 10%) | 100 | 300 | ms | | $T_{ m VsR}$ | Rising Time of Vs (10% to 90%) | 150 | 800 | ms | | ${ m T_{VsF}}$ | Falling Time of Vs (90% to 10%) | 150 | 500 | ms | [☞] If power sequence does not meet to above sequence diagram, PDP drivers may be damaged permanently. Even when AC input power supply is switched ON/OFF, above sequence should be observed strictly. 1) We recommend that it will be used this data (Min.2 frame) because of reducing image-sticking. # □ LVDS Signal # > Definitions and Functions of LVDS Signal | Symbol | Definition and Function | Related Output Signal | |--------|-------------------------------|--| | RA+ | Channel-A Pos. Receiver Input | R4, R5, R6, R7, R8, R9, G4 | | RA- | Channel-A Neg. Receiver Input | K+, K3, K0, K7, K6, K9, G+ | | RB+ | Channel-B Pos. Receiver Input | G5, G6, G7, G8, G9, B4, B5 | | RB- | Channel-B Neg. Receiver Input | G3, G0, G7, G0, G3, B4, B3 | | RC+ | Channel-C Pos. Receiver Input | B6, B7, B8, B9, Hsync, Vsync, BLANK | | RC- | Channel-C Neg. Receiver Input | BO, B7, B0, B3, FISHIC, VSYIIC, BLAINK | | RD+ | Channel-D Pos. Receiver Input | R2, R3, G2, G3, B2, B3 | | RD- | Channel-D Neg. Receiver Input | R2, R3, G2, G3, B2, B3 | | RE + | Channel-E Pos. Receiver Input | R0, R1, G0, G1, B0, B1 | | RE - | Channel-E Neg. Receiver Input | NO, N1, G0, G1, B0, B1 | | RCLK+ | Clock Pos. Receiver Input | PIX_CLK | | RCLK- | Clock Neg. Receiver Input | FIA_CLK | # ➤ Video Input Connector (P31) | Pin No. | Symbol | Pin No. | Symbol | Pin No. | Symbol | | |---------|--------|---------|--------|---------|--------|--------------| | 1 | GND | 11 | RD- | 21 | nc | | | 2 | RA- | 12 | RD+ | 22 | nc | | | 3 | RA+ | 13 | GND | 23 | nc | | | 4 | RB- | 14 | GND | 24 | RE- | | | 5 | RB+ | 15 | nc | 25 | RE+ | | | 6 | GND | 16 | nc | 26 | | | | 7 | RC- | 17 | nc | 27 | | h | | 8 | RC+ | 18 | nc | 28 | | > 3.3V level | | 9 | RCLK- | 19 | GND | 29 | | J | | 10 | RCLK+ | 20 | nc | 30 | | | | | | | | 31 | | | ^{*} DISPEN need to be set to "LOW" when power is ON and OFF, need to be set to "HIGH" when normal operation. - According to the PDP Module Gamma Mode, the RGB video sginal can be changed. - Twisted pair cable must be used for LVDS signal - ☞ Default 8 bit input (For 10 bit input, ROM should be changed) LG Cable, GT121-31P-TD pin number (Top view) # □ LVDS Signal (continued) > Signal Input sequence of LVDS Receiver ₩ DE : BLANK, VS : Vsync, HS : Hsync #### > 8bit application ** To use (only) 8bit video signal, "TE+" is to be tied to ground signal and "TE-" is to be tied to 3.3V signal. (to set the 2 LSB of 10 bits video signal to '0') # ➤ 10bit application Default 8 bit input (For 10 bit input, it need to discuss with PDP Division) # ☐ Input Signal Timing Specification ## ➤ 60Hz Mode | No. | Symbol | Min. | Тур. | Max. | Unit | Remark | |-----|--------------------|-------------------|------------------|------------------|---------------|---| | 1 | T _{vsync} | 16.604
(803H) | 16.666
(806H) | 16.728
(809H) | ms (H) | 1 frame =
59.8Hz ~ 60.2Hz | | 2 | t _{wv} | 84 (4H) | 124 (6H) | 168 (8H) | μs (H) | | | 3 | t vh | 357 (17H) | 413(20H) | 483(23H) | μs (H) | | | 4 | t hv | - | 372(18H) | - | μs (H) | | | 5 | Thsync | 20.62 (1340D) | 20.68 (1344D) | 20.74 (1348D) | μs (D) | | | 6 | twh | 2.03(132D) | 2.09(136D) | 2.15(140D) | μs (D) | | | 7 | t hc | 4.49 (292D) | 4.55(296D) | 4.62(300D) | μs (D) | | | 8 | t ch | - | 0.37(24D) | - | μs (D) | | | 9 | t clk | 15.2
(65.8MHz) | 15.4
(65MHz) | 15.6
(64MHz) | ns | t _{clk} = t _{wclk1+} t _{wclk2} | | 10 | ^t wclk1 | - | 7.7 | - | ns | | | 11 | t wclk2 | ı | 7.7 | - | ns | | | 12 | t sub | ı | 7.7 | - | ns | t _{sub} ≤thc | | 13 | ^t hb | - | 7.7 | - | ns | t _{hb} ≤ tch | | 14 | t sud | - | 7.7 | - | ns | | | 15 | ^t hd | - | 7.7 | - | ns | | Note ^{1.} Min. & Max. of each signal is measured value when other signal is Typ. 2. When changing V_{SYNC} & H_{SYNC} Timing, it is recommended to vary it with even multiple of H & D. 3. T_{WB} must be larger than 4.6 μ s. # ☐ Input Signal Timing Specification (Continued) #### > 50Hz Mode | No. | Symbol | Min. | Тур. | Max. | Unit | Remark | |-----|--------------------|-------------------|------------------|------------------|---------------|---| | 1 | T _{vsync} | 19.850
(960H) | 19.995
(967H) | 20.139
(974H) | ms (H) | 1 frame =
49.65Hz ~ 50.38Hz | | 2 | t _{wv} | 84 (4H) | 124 (6H) | 168 (8H) | μs (H) | | | 3 | t vh | 357 (17H) | 413(20H) | 483(23H) | μs (H) | | | 4 | t hv | ı | 3759(179H) | - | μs (H) | | | 5 | T _{hsync} | 20.62 (1340D) | 20.68 (1344D) | 20.74 (1348D) | μs (D) | | | 6 | twh | 2.03(132D) | 2.09(136D) | 2.15(140D) | μs (D) | | | 7 | t hc | 4.49 (292D) | 4.55(296D) | 4.62(300D) | μs (D) | | | 8 | t ch | 1 | 0.37(24D) | - | μs (D) | | | 9 | t clk | 15.2
(65.8MHz) | 15.4
(65MHz) | 15.6
(64MHz) | ns | t _{clk} = t _{wclk1+} t _{wclk2} | | 10 | t wclk1 | ı | 7.7 | - | ns | | | 11 | t wclk2 | - | 7.7 | - | ns | | | 12 | t sub | - | 7.7 | - | ns | t _{sub} ≤thc |
| 13 | ^t hb | - | 7.7 | - | ns | t _{hb} < t _{ch} | | 14 | t sud | - | 7.7 | - | ns | | | 15 | ^t hd | - | 7.7 | - | ns | | #### Note ^{1.} Min. & Max. of each signal is measured value when other signal is Typ. 2. When changing V_{SYNC} & H_{SYNC} Timing, it is recommended to vary it with even-multiple of H & D. 3. T_{WB} must be larger than 4.6 μ s. | | | STANDARD-MODE | | FAST-MODE | | | |--|---------------------|--------------------|--------------|----------------------|--------|----------| | PARAMETER | SYMBOL | MIN. | MAX. | MIN. | MAX. | UNIT | | SCL alock frequency | fscL | D | 100 | a | 400 | kHz | | Hold time (repeated) START condition.
After this period, the first clock pulse is
generated | 1 но,ата | 4.0 | - | G.6 | - | με | | LOW period of the SCL clock | Low | 4.7 | - | 1.3 | _ | μs | | HIGH period of the SCL clock | 1 н он | 4.0 | - | C.6 | _ | μs | | Set-up time for a repeated START condition | [†] SU;STA | 4.7 | - | G.6 | - | μιs | | Data hold time:
for CBUS compatible masters (see NOTE,
Section 10.1.3)
for I ² C-bus devices | [‡] HD,DAT | 5.D
0(2) | -
3,45(3) | | 0.9(3) | μs
μs | | Data set-up time | t _{su;pat} | 250 | _ | 10D ⁽⁴⁾ | _ | ns | | Rise time of both SDA and SCL signals | ţ, | - | 1000 | $20 + 0.1C_b^{(5)}$ | 30D | ns | | Fall time of both SDA and SCL signals | tr | - | 300 | $20 + 0.1 C_b^{(5)}$ | 3DD | ns | | Set-up time for STOP condition | ¹su;sto | 4.0 | - | C.6 | _ | μs | | Bus free time between a STOP and START condition | 1 _{BUF} | 4.7 | - | 1.3 | - | μ15 | | Capacitive load for each bus line | Сь | _ | 400 | _ | 400 | pF | | Noise margin at the LOW level for each connected device (including hysteresis) | V _{nL} | 0.1V _{CD} | - | C.1V _{DD} | - | V | | Noise margin at the HIGH level for each connected device (including hysteresis) | V_{nH} | D.2V _{CD} | - | 0.2V _{DO} | - | V | #### Notes - 1. All values referred to V_{IHmin} and V_{ILmax} levels (see Table 4). - A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmIn} of the SCL signal) to bridge the undefined region of the falling edge of SCL. - 3. The maximum t_{HD;DAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. - 4. A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement t_{SUDAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SUDAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. - C_p = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall-times according to Table 6 are allowed. n/a = not applicable | DADAMETER | OVERDOL | STANDARD-MODE | | FAST-N | | | |---|--------------------------------------|---------------------------|---------------------------|---|--|--------| | PARAMETER | SYMBOL | MIN. | MAX. | MIN. | MAX. | UNIT | | LOW level input voltage:
fixed input levels
V _{CC} -related input levels | VIL | -0.5
-0.5 | 1.5
0.3V _{DD} | n/a
-0.5 | n/a
0.3V _{DD} ⁽¹⁾ | V
V | | HIGH level input voltage:
fxed input levels
Vpp-related input levels | V _{IH} | 3.0
0.7V _{CD} | (Z)
(Z) | n/a
0.7V _{DD} ⁽¹⁾ | n/a
(2) | V
V | | Hysteresis of Schmitt trigger inputs:
V _{CC} > 2 V
V _{CC} < 2 V | V _{hys} . | n/a
n/a | n/a
n/a | 0.05V _{DD}
0.1V _{DD} | _ | V
V | | LOW level output voltage (open drain or open collector) at 3 mA sink current: V _{CC} > 2 V V _{CC} < 2 V | V _{OL1}
V _{OL3} | 0
n/a | 0.4
n/a | 0 | 0.4
0.2V _{po} | V
V | | Output fall time from V _{IHmin} to V _{ILmax} with a bus capacitance from 10 pF to 400 pF | tor | _ | 250(4) | 20 + 0.1C _b ⁽³⁾ | 250 ⁽⁴⁾ | пѕ | | Pulse width of spikes which must be
suppressed by the input filter | tse | n/a | n/a | C | 5D | ns | | Input current each I/O pin with an input voltage between G.1V _{DD} and D.8V _{DDmax} | l _l | -10 | 10 | -10 ⁽⁵⁾ | 10 ⁽⁵⁾ | μA | | Capacitance for each I/O pin | Cı | _ | 10 | _ | 1D | pF | #### Notes - Devices that use non-standard supply voltages which do not conform to the intended I²C-bus system levels must relate their input levels to the V_{DD} voltage to which the pull-up resistors R_p are connected. - 2. Maximum $V_{IH} = V_{CDmax} + 0.5 V$. - 3. C_b = capacitance of one bus line in pF. - 4. The maximum t_i for the SDA and SCL bus lines quoted in Table 5 (300 ns) is longer than the specified maximum t_i for the output stages (250 ns). This allows series protection resistors (R_i) to be connected between the SDA/SCL pins and the SDA/SCL bus lines as shown in Fig.36 without exceeding the maximum specified t_i. - 5. I/O pins of Fast-mode devices must not obstruct the SDA and SCL lines if V_{OD} is switched off. n/a = not applicable First 1byte data must be 0001 1100 (0x1C) \leftarrow last 1bit is 0(write mode). # ☐ I²C Register Description ➤ I²C Register Brief R : Reserved(don't care) | I ² C | | | | I ² C | Data | | | | | | | |------------------|-------------------------------------|---------------------------|-----------------|------------------|---------------|-----------|---|---------------|--|--|--| | Addr. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | 0x01 | | | | Sync Mode | e Registers | | | | | | | | 0.01 | R | R | R R R | | R | sync_auto | 0 | hz_select | | | | | 0x08 | | | | Bright Mod | e Registers | | | | | | | | 0.00 | br_mode | 2_50(1:0) | br_mode | 0 | 0 | 0 | | | | | | | 0x09 | | Power Save Mode Registers | | | | | | | | | | | 0,03 | R R ps_mode_50(2:0) ps_mode_60(2:0) | | | | | | | | | | | | 0x0B | Gamma Mode Registers | | | | | | | | | | | | OXOD | gamma_ | _50(1:0) | gamma_60(1:0) 0 | | 0 | 0 | 0 | 0 | | | | | | | , | | Color Invers | ion Registers | | | , | | | | | 0x10 | R | R | R | R | R | R | R | Bw_inv
sw | | | | | | | | | Scroll F | Register | | | | | | | | 0x11 | R R R R Scroll scroll_mode(1:0) | | | | | | | ode(1:0) | | | | | 0x18 | | | | ISM Mode | Registers | | | | | | | | 0.10 | R | R | R | R | R | ism_mode | R | R | | | | # ☐ I²C Register Description # Sync Mode Registers | I ² C | I ² C Data | | | | | | | | | | |------------------|-------------------------------|---|---|---|---|---|---|---|--|--| | Addr. | 7 6 5 4 3 2 1 0 | | | | | | | | | | | 0x01 | Sync Mode Registers | | | | | | | | | | | 0X01 | R R R R Sync_auto 0 hz_select | | | | | | | | | | | Default | R | R | R | R | R | 1 | 0 | 0 | | | • sync_auto : Sync automatic / manual mode selection 1:auto, 0:manual • hz_select : Frequency mode selection 0:50Hz, 1:60Hz When the sync_auto is "high", hz_select is ignored. Manual Mode(sync_auto = 0) Auto Mode (sync_auto = 1) | hz_select | Function | hz_select | Function | | | |-----------|-------------------|------------|----------------------|--|--| | 0 | Display only 50Hz | Don't care | 50Hz, 60Hz | | | | 1 | Display only 60Hz | | automatic conversion | | | ## Bright Mode Registers | I ² C | I ² C Data | | | | | | | | | | | |------------------|-----------------------|---------------|------------------|--|---|---|---|---|--|--|--| | Addr. | 7 6 5 4 3 2 1 | | | | | | | | | | | | 0x08 | Bright Mode Registers | | | | | | | | | | | | 0,000 | 1 | _50av(1:0) | br_mode60av(1:0) | | R | R | R | R | | | | | Default | 0 | 0 0 0 0 R R R | | | | | | R | | | | • br_mode_50(1:0) : Bright mode for 50Hz • br_mode_60(1:0) : Bright mode for 60Hz #### Power Save Mode Registers | I ² C
Addr. | | | | I ² C | | | | | | | |---------------------------|--------------------------|---------------------------|---|------------------|---|---|-----------------|---|--|--| | Addr. | 7 6 5 4 3 2 1 0 | | | | | | | | | | | 0,400 | | Power Save Mode Registers | | | | | | | | | | 0809 | 0x09 R R ps_mode_50(2:0) | | | | | | ps_mode_60(2:0) | | | | | Default | R | R | 0 | 0 | 0 | 0 | 0 | 0 | | | - \bullet ps_mode_50(2:0) : Power save mode for 50Hz - ps_mode_60(2:0) : Power save mode for 60Hz | Power save
Bright | 100% | 87.5% | 75% | 50% | |----------------------|------|-------|-----|-----| | 100% | • | • | Δ | Δ | | 63% | • | • | • | Δ | | 40% | • | • | • | • | \bullet - recommneded, \triangle - not recommended In case of "Not Recommended", there are no problems related reliability but it may cause a flicker on the screen because of sudden change of sustain number. # Gamma Mode Registers | I ² C | I ² C Data | | | | | | | | | | | |------------------|---------------------------------|----------------------|--|--|--|--|--|--|--|--|--| | Addr. | 7 | 7 6 5 4 3 2 1 0 | | | | | | | | | | | 0x0B | | Gamma Mode Registers | | | | | | | | | | | UXUD | gamma_50(1:0) gamma_60(1:0) R R | | | | | | | | | | | | Default | 0 | 0 0 0 0 R R | | | | | | | | | | • gamma_50(1:0) : Gamma mode for 50Hz • gamma_60(1:0) : Gamma mode for 60Hz | Value | Table# | Contents of table | |-------|---------|--------------------------------------| | 00 | Gamma A | $\Gamma = N 2.2 \text{ for R, G, B}$ | | 01 | Gamma B | $\Gamma = N 1.0 \text{ for R, G, B}$ | | 10 | Gamma C | Γ = reserved | | 11 | Gamma D | Γ = Reserved | ## Color Inversion Registers | I ² C | | I ² C Data | | | | | | | | | | | |------------------|---------------------------|-----------------------|---|---|---|---|---|-----------|--|--|--|--| | Addr. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | 0x10 | Color Inversion Registers | | | | | | | | | | | | | 0X10 | R | R | R | R | R | R | R | Bw_inv_sw | | | | |
| Default | R | R | R | R | R | R | R | 0 | | | | | - Image inversion enable signal for preventing image sticking. bw_inv_sw : picture Color Inversion (1:ON, 0:OFF) → default : 0 #### Scroll Registers | I ² C
Addr. | | | | | Data | | | | | |---------------------------|-----------------|---|---|---|------|----------------------------------|---|---|--| | Addr. | 7 6 5 4 3 2 1 0 | | | | | | | | | | | Scroll Register | | | | | | | | | | 0x11 | R | R | R | R | R | scroll_
mode_sw scroll_mode(1 | | | | | Default | R | R | R | R | R | 0 | 1 | 1 | | - Picture scrolling enable signal for preventing image sticking. - scroll_mode_sw : Scroll mode switch (1:ON, 0:OFF) → default : 0 - scroll_mode[1]: horizontal scroll ON/OFF (1:ON, 0:OFF) → default: 1 - scroll_mode[0] : vertical scroll ON/OFF (1:ON, 0:OFF) → default : 1 * Scroll procedure - When "scroll" is OFF during scrolling, SCROLL operation is stopped after the screen is returned to the original position(center). # ISM Mode Registers | I ² C | | I ² C Data | | | | | | | | | | | |------------------|--------------------|-----------------------|---|---|---|----------|---|---|--|--|--|--| | Addr. | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | 0x18 | ISM Mode Registers | | | | | | | | | | | | | 0,110 | R | R | R | R | R | Ism_mode | 1 | 1 | | | | | | Default | R | R R R R 1 1 1 | | | | | | | | | | | • ims_mode : ISM mode switch (1: ON, 0:OFF) # 3. ELECTRO OPTICAL SPECIFICATIONS # ☐ Electro Optical characteristic Specifications (60Hz) | | ITEM | | Symbol | Condition ☞1) | Min | Тур | Max | Unit | |---------------------------|-----------------------------|----------------|---------------------|-----------------|--------|---------|-------|------------------------| | Peak Whi | te Brightn | ess* | B _{WP} | 1% white window | 700 | 1,000 | ı | cd/m ² 🐷 2) | | Average White Brightness* | | B _W | | 160 | 200 | ı | cd/m² | | | Brightne | Brightness Uniformity | | B _U | | -10 | 0 | +10 | | | Color | | | X _w | Full White | 0.280 | 0.300 | 0.320 | | | Coordinat White e | | Y | Y _W | | 0.290 | 0.310 | 0.330 | | | Color Coord | Color Coordinate Uniformity | | C _U | | -0.01 | average | +0.01 | | | Contrast | | ight
oom | CR _{BR} | 150Lx at center | ı | 50:1 | ı | J) | | Ratio* | | Room
₹3) | CR _{DR} | 1% white window | 3000:1 | 5,000:1 | ı | ☞2) | | Brightness Difference | | Bd | Test pattern for Bd | | | 25 | cd/m2 | | | Power (| Consumpti
☞4) | on | P _W | Full White | - | 280 | 330 | | - *) Peak brightness & contrast ratio at 50Hz is about 80% level of 60Hz data. - 1) All characteristics are measured in the normal temperature in the normal ambient temperature. - The brightness of the white peak position is measured while the 1%-window pattern is "ON" state. And then, it should be measured in 10 seconds after 1%-window is "ON" state. - → For the measurement position, refer to the following figure. - 3) The brightness of dark room should be less than 1 lux. - Total Power Consumption can be upto 350W according to the displayed pattern. # **☐** Cell Defect Specifications | | Specification | | | | | |--|---|---|---|--|--| | Defect | Number of Cell Defects (N) | | Distance between two defects (D) | | | | Non-Ignition Dot ^{**1)} + Unstable Dot **2) | A-zone | ▶ Total N ≤ 4[cells / full screen] ▶ N ≤ 2 [cells / each R,G,B screen] ▶ N = 0 [adjacency of 2-cells / full-white screen] | ► A-Zone : ≥ 100mm | | | | | B-zone | ▶ Total N ≤ 11 [cells / full screen] ▶ N ≤ 5 [cells / each R,G,B screen] ▶ N ≤ 2 [adjacency of 2-cells / full-white screen] = 0 [adjacency of 3-cells / full-white screen] | ► B-Zone: N≤2 (100mm Circle/screen:2points allowed) | | | | Uncontrollable | A-zone | ▶ $N \le 1$ [cells / cells/each R,G,B screen] | ► A, B Zone overlap:N≤2 | | | | Dot ***3) | B-zone | ► Total $N \le 3$ [cells / full screen] | (100mm
Circle/screen:2points | | | | Non-Extinguishing | A-zone | ▶ N = 0 | allowed) | | | | Dot ***4) | B-zone | ▶ N = 0 | | | | | ► Total sum of all de | ▶ Total sum of all defects $N \le 17$ [cells / full-white screen] | | | | | | Stain ^{∞5)} | N ≤ 6, for the stain of which longer-axis length is 5mm or shorter. N = 0, for the stain of which longer-axis length is longer than 5mm. | | ▶ D ≥ 50 mm | | | - **☞1) Non-Ignition Dot**(Dark Defect) is defined as "A cell of which more than 50% area is not ignited" - **☞2) Unstable Dot** (Flickering) is defined as "A cell which repeats On and Off" - **3) Uncontrollable Dot** is defined as "A cell which is distinctly brighter or darker than other cells around it" and/or "A cell of which color is distinctly different from that of other cells around it" - **Solution** Non-Extinguishing Dot (brightness defect) is defined as "A cell of which more than 50% area is always ON" - **5) Stain** is defined as "A blob due to local color contamination in white or simple color pattern" - * The decision distance is 3H away from the panel, intensity of illumination is between 100 Lux and 200 Lux. # 4. MECHANICAL & ENVIRONMENTAL SPECIFICATIONS # **☐** Mechanical Characteristic Specifications | Item | | Spec. | Unit | Remark | |--------------------|-------|---|------|-----------------------| | Outline Dimensions | | 1,005(H) $ imes$ 597(V) $ imes$ 61.2(D) \pm 1 | mm | Coo "Outling Drawing" | | Display Area | | 920.1 (H) x 518.4 (V) \pm 0.5 | mm | See "Outline Drawing" | | Moight | Net | 15.3 \pm 0.5 (1EA) | kg | | | Weight | Gross | 113.5 \pm 5 (5EA/1BOX) | kg | | # $\ \square$ Vibration and Drop Specifications | Item | Condition | Remark | |-----------------------|------------------------------------|---| | Vibration | Non-Operational (5ea Packed state) | 1.25G, 5 to 55Hz (Sweep time : 2Min) Y direction, 60minutes | | Drop | Bottom | Free Falling: 30cm | | (5ea Packed
state) | The rest (Front, Backside) | Inclined: 20-25cm | ## **☐** Recommended Environmental Conditions | Item | | Condition | Remark | |------------------------|-----------|-------------------|--| | Ambient
Temperature | Operation | 0℃ to 40 ℃ | Panel surface temperature
must be kept less than 70 °C for
normal operation. | | · | Storage | -20℃ to 60℃ | | | Humidity | Operation | 20 to 80% RH | No condensation | | Humidity | Storage | 10 to 90% RH | NO CONGENSATION | | Air Pressure | Operation | 800 to 1,100 hPa | 0~2000m above the sea level | | | Storage | 700 to 1,100 hPa | 0~3000m above the sea level | | 5. IMAGE STICKING CHARACTERISTICS | |--| | ☐ Image Sticking | | The fluorescent substance used in the plasma module loses its brightness with the lapse of lighting time. This deterioration in brightness appears to be a difference in brightness in relation to the surroundings, and comes to be recognized as image sticking. | | In other words, the image sticking is defined as follows: when the same pattern (of the fixed display) is displayed for a long time, a difference in brightness is caused around the lighting area and non-lighting area due to deterioration in the fluorescent substance. | | When the present pattern is changed over to another one, the boundary comes to be seen between the lighting area and non-lighting area due to difference in brightness in the pattern shown shortly before changeover. If this conditions is accumulated, the boundary or image sticking comes to be seen with the naked eyes. | | ☐ Secular change in brightness | | The life of brightness, defined as the reduction to half the initial level, is more than 25 thousand hours on average. | | Conditions: All white (100% white) input at an ambient temperature of 25°C. | | However, this lifetime is not a guarantee value for life and brightness. It should be recognized simply as the data for reference. | | □ Warranty | | Image sticking and faults in brightness and picture elements are excluded from the warranty objects. | | ☐ Cause of deterioration in brightness | | A major possible cause of deterioration in brightness is damage in the fluorescent substance due to impact caused by ions generated at the time of plasma discharges. | | ☐ Practical value for Image sticking | | The relationship between integrated lighting time and brightness in this plasma module is described in the attached material. In particular, the deterioration in brightness tends to be accelerated up to 100 hours in the initial period. In the initial period, the fixed display of patterns particularly tends to cause image sticking. The practical value for image sticking is difficult in concrete numerals. As described below, you are advised to take proper measures to make the occurrence of image sticking as slow as possible. | | | | | | | | | | | | | #### □ Proposed measures taken to relieve image sticking So long as
there is the reduction of brightness in the fluorescent substance, it is impossible to avoid the occurrence of image sticking. Therefore, to relieve image sticking, we offer you a method of entering an image input that may ensure reluctance to the generation of the difference in brightness reduction among the displayed dots. The images from TV broadcasting involve a high rate of motion picture displays. Therefore, there is less chance of being a cause of difference in brightness reduction among the cells. Even when the fixed patterns are displayed, they generally last for a few minutes. Since the same pattern is less liable to be displayed, there is almost no influence toward image sticking. If the fixed patterns tend to be displayed for a long time, however, there occurs a substantial imbalance between the lighting and non-lighting areas, thus causing a difference in brightness as a result. In this document, we offer you some proposals of installation, paying attentions to the two points: the reduction of difference in brightness achieved by integrated lighting time leveling and the method of edge smearing to make image sticking hard to be discerned. The result from these proposals can, however, greatly depend on the contents of images and the operating environment. Therefore, we consider that it is essential to take the suitable measures in consideration of the customer's operating environment. Example of Proposal 1: The display position is moved while the fixed display pattern is changed over, or it is scrolled during the display. Example of Proposal 2: If possible, a pattern of complementary color is incorporated (for integrated time leveling). Example of Proposal 3: The fixed pattern and the motion picture display are reciprocally exchanged, in order to minimize display period of the fixed pattern. Example of Proposal 4: During operation, the brightness of screen is suppressed as low as possible. For the display patterns, characters are indicated not on the black ground (non-picture area) but on the colored ground (mixture of R, G, B recommended). Confidential # 7. CONNECTORS and CONNECTIONS # **☐** Power Input Connector Connector P2002 Pin Assignment(Y SUS Board) | Pin No. | Symbol | Pin No. | Symbol | |---------|--------|---------|--------| | 1 | +5V | 7 | NC | | 2 | GND | 8 | Vs | | 3 | Va | 9 | Vs | | 4-6 | GND | | | 1-1123723-9 Pin numbers (view from the pin connection side) Module side connector: 1-1123723-9 (Header) Mating Connector: 1-1123722-9 (Housing) Connector Supplier : AMP # Connector P3001 Pin Assignment (Z SUS Board) | Pin No. | Symbol | Pin No. | Symbol | |---------|--------|---------|--------| | 1 | Vs | 5 | GND | | 2 | Vs | 6 | Va | | 3 | N.C | 7 | GND | | 4 | GND | 8 | +5V | 1-1123723-8 Pin numbers (View from the pin connection side) Module side connector: 1-1123723-8 (Header) Mating Connector: 1-1123722-8 (Housing) Connector Supplier : AMP #### Connector P1300 Pin Assignment (Control Board) | Pin No. | Symbol | Pin No. | Symbol | |---------|--------|---------|--------| | 1 | +5V | 5 | GND | | 2 | +5V | 6 | GND | | 3 | +5V | 7 | GND | | 4 | +5V | 8 | GND | GT200-8P-SS-A Pin numbers (View from the pin connection side) Connector: GT200-8P-SS-A Housing: GIL-S-8S-S2C2-S Mkaer: LG Cable # 8. LG OEM panel parts list ***Same panel as the panel in an LG 42PC3D*** These parts are regular LG panel parts and can be ordered from any distributor of LG parts. Please make sure to fax or email a copy of the invoice the service dept so an adjustment can be made to the claim for in-warranty claims. ## ☐ LABEL ①: Identification Label - ① Model Name - ② Bar Code (Code 128, Contains the manufacture No.) - ③ Manufacture No. - 4 The trade name of LG Electronics - ⑤ Manufactured date (Year & Month) - 6 The place Origin - 7 Model Suffix # ☐ LABEL ②: Warning Label (High Voltage) # ☐ LABEL ③: Warning Label (Hot Surface) ☐ LABEL ④: Caution Label (Mechanical Hazard) ☐ LABEL ③: Voltage Label (Model Name & Operational Voltage) ☐ LABEL ⑥: Safety Approval Label - ① Model Name - 2 Max. Watt - 3 Max. Volts - 4 Max. Amps - 5 The Trade Name of LG Electronics - **6** TUV Approval Mark - 7 Safety Approval Mark - 8 Safety Approval No. # 9. PACKING # ☐ Box packing (5 modules per each Box) #### 1. Prepare to Module & Packing sheet (Grid) - -Put the Module on the printed surface as four holes at the sheet locate to down of the module like the picture below. - It has to use some supporter of 10cm height in the bottom of the module. #### 2. Wrapping Packing sheet - Fold the packing sheet, align 4 holes of the sheet with support sides of the module and then tapping. - -Do not fold the right/left side of the sheet. #### 3. Connect Cover Plate - -Connect M4 screw(6 positions) - -Screw torque: 17~20kgf.cm - -The shape of Cover Plate is same (Top/Bottom, Right/Left) #### 4. Prepare bottom Box for Packing -The arrow direction at the bottom packing Should be front side. #### 5. Insert wrapped modules with top packings - -Insert wrapped modules arrow direction of the bottom packing in the bottom box. - -Top packings should be inserted front side like the picture below. #### 6. Put Box, Tapping and Banding - -Put Box on Module(the direction of Box should be same direction as front side of Module. - -Box Tapping should be down to 10cm at right/left side like picture as shown below. - Box banding by using the location of Banding guide. | Item | Part Number | Part Description | Usage / unit | Unit | Key/Spare | |------|-------------------------|---|--------------|--------|-----------| | item | GPDP421DAIA1LS-A01 | ROHS AKAI PDP421D(PDP42Z5TA) S- | Osage / unit | Olik | Reyropare | | | 01 01 42 10/1/(120 /101 | MT5371 LGX3A AC120V/60HZ USA | | | | | | | HORIZONTAL BLACK | | | | | 1> | G510-421D02-02ALA | ROHS CARTON BOX AKAI PDP42Z5TA | 1.000000 | Piece | K | | ' | | (S-MT5371) LGX3 USA L | | | | | | | | | | | | 2> | G580-421D3C-01APA | ROHS IB E FOR AKAI PDP42XXX TV | 1.000000 | Piece | K | | | | +DTV NO PIP LGX3A MT5371 USA(RS) | | | | | | | (CHENG YI) | | | | | 3> | G580-K00201-01APA | ROHS IB E FOR AKAI K002 | 1.000000 | Piece | K | | | | (OMNIPOTENCE) REMOTE CONTROL | | | | | 4. | OF7504 062002A | USA(QIAN SE) ROHS REMOTE CONTROL AKAI K002 | 1.000000 | CET | 1/ | | 4> | GE7501-063002A | COMBO 60KEYS BLACK(COMMON) | 1.000000 | SET | K | | | | (CHUAN QI SHENG) | | | | | | G771E421D04-01 | ROHS MAIN PCB ASS'Y S-MT5371 | 1.000000 | SET | K | | 5> | G771E421D04-01 | ROPS WAIN FOR ASS 1 3-W13371 | 1.000000 | SEI | , r | | | | | | | | | 6> | G200-42D102-03AAA | ROHS FRONT CABINET 421D(B) | 1.000000 | Piece | S | | 0- | | BLACK (P320-605871K-00) AKAI A(AKAI | | | | | | | ` PLASTIC) ´ | | | | | 7> | G277-46SD01-06ASA | ROHS FUNCTION KNOB BLACK(P320- | 1.000000 | Piece | S | | ' | | 605871K-00) S(AKAI PLASTIČ) | | | | | | | | | | | | 8> | G300-421D03-07NA | ROHS POLYFOAM BOTTOM FOR 421D | 1.000000 | Piece | S | | | | HORIZONTAL PACKING LAN DO WANG | | | | | | | | | | | | 9> | G300-421D04-07NA | ROHS POLYFOAM TOP FOR 421D | 1.000000 | Piece | S | | | | HORIZONTAL PACKING LAN DO WANG | | | | | 10> | G300-421D05-01NA | ROHS POLYFOAM LEFT SIDE 421D | 1.000000 | Piece | S | | 10- | 3300-421B03-0114/A | HORIZONTAL PACKING LAN DO WANG | 1.000000 | 1 1000 | | | | | | | | | | 11> | G300-421D06-01NA | ROHS POLYFOAM RIGHT SIDE FOR | 1.000000 | Piece | S | | ' ' | | 421D HORIZONTAL PACKING | | | | | | | | | | | | 12> | G310-111404-07VA | ROHS POLYBAG 11"X14"X0.04 FV (AO | 1.000000 | Piece | S | | | | LANG) | | | | | 10 | 0040 404504 6474 | DOLLO DOLLYDA O MANAGERIA | 4.000000 |
 | | | 13> | G310-421D01-01TA | ROHS POLYBAG W/NUTI LANGUAGE | 1.000000 | Piece | S | | | | WARNING&RECYCLE&HOLE (FOR 421D HORIZOTAL) PENG KUN | | | | | 11- | G329-053010-70A | ROHS SPONGE 530X10X7.0MM W/ | 2.000000 | Piece | S | | 14> | G329-033010-70A | ADHESIVE | ∠.000000 | Fiece | | | | | ADITICOTVE | | | | | 15> | G329-095510-70A | ROHS SPONGE 955X10X7.0MM W/ | 2.000000 | Piece | S | | '0' | | ADHESIVE | 50050 | | | | | | | | | | | 16> | G361-150208-01A | ROHS CABINET TIE 150X2.0X0.8MM | 2.000000 | Piece | S | | • • | | AO LANG | | | | | | | | | | | | 17> | G367-42D103-01A | ROHS HOLDER YONG RONG | 2.000000 | Piece | S | | | | | | | | | 10 | 0004 404504 044114 | DOLLO DI /O FLINICTIONI TEDMINA | 4 000000 | Di | | | 18> | G384-421D01-04AHA | ROHS PVC FUNCTION TERMINAL | 1.000000 | Piece | S | | | | (NITTO.GLUE) 421D(S-MT5371) W/SPK
TER H jia li | | | | | | | I LIX I I Jia ii | | 1 | <u> </u> | | 19> | G387-421D01-07AHA | ROHS MODEL PLATE (NITTO GLUE) AKAI PDP42Z5TA(S-MT5371) LGX3 USA H JIA LI | 1.000000 | Piece | S | |-----|--------------------|--|----------|-------|---| | 20> | G388-42D103-01HA | ROHS CAUTION PLATE ENG 42D1 H
(JIA LI) | 1.000000 | Piece | S | | 21> | G388-42SD01-01A | ROHS PC SHEET FOR KEY PCB (JIA LI) | 1.000000 | Piece | S | | 22> | G388-P42HA01-01AHA | ROHS FCC STATEMENT PLATE
77X20MM H JIA LI | 1.000000 | Piece | S | | 23> | G402-42D10B-01SA | ROHS BACK COVER 42HMD BLACK S
(JIE QI) | 1.000000 | Piece | S | | 24> | G426-421D01-01SA | ROHS PATCH FOR LGE 421D(TOMEI) | 4.000000 | Piece | S | | 25> | G436-421D0C-01SA | ROHS TERMINAL SHEET 5371(TOMEI) | 1.000000 | Piece | S | | 26> | G481-421D03-01SA | ROHS SHIELD BOX 5371(TOMEI) | 1.000000 | Piece | S | | 27> | G512-421D0B-01A | ROHS PROTECT CONER FOR 421D
HORIZONTAL PACKING LAN DO WANG | 2.000000 | Piece | S | | 28> | G553-002007-25BB | ROHS AL SHIELD GASKET
20X7X2.5MM W/CONDUCTIVE
ADHESIVE(SHI KE FA) | 6.000000 | Piece | S | | 29> | G553-005007-10BB | ROHS AL SHIELD GASKET 50X7X1.0MM W/CONDUCTIVE ADHESIVE(SHI KE FA) | 1.000000 | Piece | S | | 30> | G553-006007-25BB | ROHS AL SHIELD GASKET
60X7X2.5MM W/CONDUCTIVE
ADHESIVE(SHI KE FA) | 4.000000 | Piece | S | | 31> | G553-007007-10BA | ROHS AL SHIELD GASKET 70X7X1.0 W/
CONDUCTIVE ADHESIVE | 2.000000 |
Piece | S | | 32> | G553-007007-10BB | ROHS AL SHIELD GASKET 70X7X1.0 W/
CONDUCTIVE ADHESIVE(SHI KE FA) | 1.000000 | Piece | S | | 33> | G553-008007-10BA | ROHS AL SHIELD GASKET 80X7X1.0 W/
CONDUCTIVE ADHESIVE | 8.000000 | Piece | S | | 34> | G553-009507-10BA | ROHS AL SHIELD GASKET 95X7X1.0 W/
CONDUCTIVE ADHESIVE | 2.000000 | Piece | S | | 35> | G553-009507-10BB | ROHS AL SHIELD GASKET 95X7X1.0 W/
CONDUCTIVE ADHESIVE(SHI KE FA) | 1.000000 | Piece | S | | 36> | G553-011007-25BB | ROHS AL SHIELD GASKET 110X7X2.5MM W/CONDUCTIVE ADHESIVE(SHI KE FA) | 4.000000 | Piece | S | | 37> | G553-012507-25BB | ROHS AL SHIELD GASKET 125X7X2.5MM W/CONDUCTIVE ADHESIVE(SHI KE FA) | 8.000000 | Piece | S | | 38> | | ROHS AL SHIELD GASKET 135X7X1.0 | 1.000000 | Piece | S | |-----|-------------------|--|----------|--------|---| | 307 | G330-013307-10DA | W/CONDUCTIVE ADHESIVE | 1.000000 | 1 lece | 3 | | 39> | G553-013507-10BB | ROHS AL SHIELD GASKET 135X7X1.0
W/CONDUCTIVE ADHESIVE(SHI KE FA) | 1.000000 | Piece | S | | 40> | G553-020007-25BB | ROHS AL SHIELD GASKET
200X7X2.5MM W/CONDUCTIVE
ADHESIVE(SHI KE FA) | 4.000000 | Piece | S | | 41> | G553-056009-35BB | ROHS AL SHIELD GASKET 560X9X3.5
W/CONDUCTIVE ADHESIVE(SHI KE FA) | 2.000000 | Piece | S | | 42> | G553-095009-35BB | ROHS AL SHIELD GASKET 950X9X3.5
W/CONDUCTIVE ADHESIVE(SHI KE FA) | 2.000000 | Piece | S | | 43> | G554-030030-01BB | ROHS AL SHIELD PLATE 30X30MM W/
CONDUCTIVE ADHESIVE | 1.000000 | Piece | S | | 44> | G563-119-A | ROHS SERIAL NO. LABEL | 1.000000 | Piece | S | | 45> | G568-P46T02-02A | ROHS WARNING LB ENG 42SF NIL | 1.000000 | Piece | S | | 46> | G579-421D01-10APA | ROHS BAR CODE LABEL (W/SERIAL NO.) PDP42Z5TA USA P(QIAN SE) | 2.000000 | Piece | S | | 47> | G579-42D102-09A | ROHS SERIAL NO/BAR CODE LABEL
42D1 | 1.000000 | Piece | S | | 48> | G579-42D105-01A | ROHS PROTECTIVE EARTH LABEL
FOR ESA 42TD1 | 1.000000 | Piece | S | | 49> | G590-421D01-11APA | ROHS WARRANTY CARD AKAI
PDP42Z5TA USA P(QIAN SE) | 1.000000 | Piece | S | | 50> | G593-421D01-15APA | ROHS INSERTION CARD ENG
PDP42Z5TA (MT5371) USA P(QIAN SE) | 1.000000 | Piece | S | | 51> | G599-421D02-01APA | ROHS IB SHEET E FOR PDP42Z5TA
MT5371 INITAL SETUD USA(QIAN SE) | 1.000000 | Piece | S | | 52> | G900-420204-01A | ROHS DISPLAY FILTER 42" SSC FOR LG 972X560X3.2 (L6-COATING TYPE) | 1.000000 | Piece | S | | 53> | GE3404-157004A | ROHS AC CORD UL 1.88M (YY-3/ST3
YUNBIAO) (YUN HUAN) | 1.000000 | Piece | S | | 54> | GE3421-925268A | ROHS WIRE ASSY 1H2.5-2H2.5 AG
L300/250 8+12/4+7+2+12P 42PDP
MT5371 (HU GUANG) | 1.000000 | Piece | S | | 55> | GE3421-926177A | ROHS WIRE ASSY 1H2.5-2H2.5 L360
AG 4/3+3P PDP42 MT5371 SPK (HU
GUANG) | 1.000000 | Piece | S | | 56> | GE3471-000134A | ROHS WIRE ASSY 1H2.0-2H2.0
L400/100 DI 13/9+5P PDP42 MT5371
KEY EMI (HU GUANG) | 1.000000 | Piece | S | | 57> | GE3471-004005A | ROHS WIRE WS SHIELD ASSY LVDS
P1.25 30P/31P L=300 FOR 42LGX3
MT8202 W/EMI (PCB-4) (HU GUANG) | 1.000000 | Piece | S | |-----|----------------|--|----------|-------|---| | 58> | GE3701-058040A | ROHS PCB VO 50X19 REMOTE
CONNECTER MT8202 COSTDOWN
(LUEN SENG) | 1.000000 | Piece | S | | 59> | GE6205-42LD03 | ROHS DISPLAY PDP42" LG-42X3/X3A
(XGA) | 1.000000 | Piece | S | | 60> | GE7301-010002A | ROHS BATTERY AAA R03P1.5V <2>
(CHAO YANG) | 2.000000 | Piece | S | | 61> | G734-BP0401-03 | ROHS PLASTIC STAND FOR PDP421D
CD=460MM W/O PACKING BLACK
(605870) | 1.000000 | SET | S | | 62> | G771B421D03-01 | ROHS IR RECEIVE PCB ASS'Y S-
MT5371 FOR PDP42" | .000000 | SET | S | | 63> | G771J421D03-01 | ROHS SPK JACK PCB ASS'Y 4PIN S-
MT5371 | 1.000000 | SET | S | | 64> | G771K421D03-01 | ROHS KEY PCB ASS'Y S-MT5371 FOR
PDP421D | 1.000000 | SET | S | | 65> | G786-421D10-01 | ROHS EXTERNAL SPK ASS'Y FOR W/
WINDOW BLACK(605870K) 6 OHM 12W
S-MT5371 | 1.000000 | SET | S | # If you forget your V-Chip Password: - ◆ Using the "U.S. Movie Ratings" item - 1 After entering the "Program Block" menu, press ▲ or ▼ button to highlight the "U.S. Movie Ratings" item. - 2 Press ▶ or Enter button to enter. - 3 Press ▲ or ▼ button to select an item, then press the **Enter** button to lock (display "□") or unlock (display "□"). For Movie previously shown in theaters: - G (general audience) - PG (parental guidance suggested) - PG-13 (13 years and older) - R (Restricted) - NC-17 (18 years and older) - X (Adult) If you set PG-13: G and PG movies be available, PG-13, R, NC-17, and X will be blocked. - 4 Press the **Menu** button to exit the sub-menu. - Unlocking programs temporarily - 1 If you try to watch a program that exceeds the TV Guideline you set, the system enters program lock mode. You can either unlock the program temporarily or select a non-locked program to watch. 2 To temporarily unlock the program, press the Number buttons (0~9) to enter your 4-digit password. If the correct code is entered, the program lock mode is released and the normal picture appears.