

Code No. 29-880-000-78

DATE OF ISSUE 5/1981

SPECIFICATIONS

GENERAL	
Semiconductors:	16 ICs, 1 FET, 99 transistors, 68 diodes, 8 LED's, 1 LCD
Power source:	Batteries DC 13.5V (UM-1 $\times 9$)
	Back-up power supply (for tuner memory) DC 3V (UM-3, "AA" $\times 2$)
	H,HG model
	AC $110 \sim 120 \mathrm{~V} / 220 \sim 240 \mathrm{~V}$
	switchable $50 / 60 \mathrm{~Hz}$
	U,UC model
	AC 120V/220 ~ 240 V
	switchable, 60 Hz
	Car battery (thru car adaptor)
Power consumption:	H,HG model
	27W
	U,UC model
	39 W
Speakers:	140mmd $\times 2$ (Woofer)
	(5-5/8')
	$50 \mathrm{~mm} \mathrm{\phi} \times 2$ (Tweeter)
	(2')
	$170 \mathrm{~mm} \phi \times 1$ (Passive Radiator) (6-3/4")
Dimension:	$588(\mathrm{~W}) \times 325(\mathrm{H}) \times 163(\mathrm{D}) \mathrm{mm}$
	[23-1/4" $\left.\times 12-7 / 8^{\prime \prime} \times 6-1 / 2^{\prime \prime}\right]$
Weight:	8.6 kg (18.6 lbs.)
RADIO SECTION	
Frequency range:	AM $522 \sim 1.611 \mathrm{kHz}$
Intermediate frequency:	FM 10.7 MHz
	AM 450 kHz
Sensitivity: (IHF, THD 3\%)	FM (H,HG model)
	$13 \pm 6 \mathrm{~dB}$ (at 87.9 MHz)
	$12 \pm 6 \mathrm{~dB}$ (at 98.0 MHz)
	$13 \pm 6 \mathrm{~dB}$ (at 107.9 MHz)
	(U,UC model)
	$14 \pm 6 \mathrm{~dB}$ (at 87.9 MHz)
	$13 \pm 6 \mathrm{~dB}$ (at 98.0 MHz)
	$14 \pm 6 \mathrm{~dB}$ (at 107.9 MHz)
$(\mathrm{S} / \mathrm{N} 10 \mathrm{~dB})$	$47 \pm 5 \mathrm{~dB}$ (at 594 kHz)
	$45 \pm 5 \mathrm{~dB}$ (at $1,008 \mathrm{kHz}$)
	$42 \pm 5 \mathrm{~dB}$ (at $1,404 \mathrm{kHz}$)
Image rejection:	FM $45 \pm 5 \mathrm{~dB}$ (at 107.9 MHz)
	AM $41 \pm 5 \mathrm{~dB}$ (at $1,404 \mathrm{kHz}$)
IF rejection:	$F M 80 \pm 10 \mathrm{~dB}$ (at 87.9 MHz)
	AM $31 \pm 5 \mathrm{~dB}$ (at 594 kHz)
Total harmonic distortion:	FM Less than 1.5% (at 98 MHz)
	AM $1.7 \pm 1.0 \%$ (at $1,008 \mathrm{kHz}$)
FM stereo separation: Auto stop level:	$22 \pm 3 \mathrm{~dB}$ (at 1 kHz)
	FM $22 \pm 10 \mathrm{~dB}$ (at 98 MHz)
	AM $60 \pm 10 \mathrm{~dB}$ (at $1,008 \mathrm{kHz}$)

- Noise reduction system manufactured under license from Dolby Laboratories Licensing Corporation.
- Dolby and the 00 symbol are trademarks of Dolby Laboratories Licensing Corporation
- Specifications and external appearance are subject to change without notice due to product improvement.

DISASSEMBLING CHART OF MAIN PARTS

- To avoid troubles when disassembling or replacing the main parts, follow the chart diagram as below.

Radio chassis
(Including radio chassis, tuning, display MS, AF (pattern side) PC Boards)

MD-3 mechanism

DISASSEMBLY INSTRUCTIONS

Removing the Main Case

1) Remove 11 screws on the rear lid shown by arrows \leftarrow.

2) Remove 9 knobs.

Note 3) Open the cassette lid.
(It is not required to remove the cassette lid)

Installing the Main Case

1) Check that the fibre apper of the REC/PB PC Board (pattern die) is fixed properly.
Note: Firmly fix the fibre paper using two-sided tape, etc. because it is likely to lift up when it is peeled off once.
2) Lower all the lever switches in the direction of the arrow.

Note 3) Be sure to install in the order (1) - (3). Be careful: when it is mounted incorrectly, it may damage the dial plate and the display PC Boards, etc.

4) Match the knobs while performing item 3) and tapping the side.

1) Be sure to remove the level meter before starting work to prevent the pointer of the level meter from being damaged.

2)

Loosen the screw and lift up the hook.

3) Remove 3 screws and lift up the radio chassis in the direction of the arrow. The radio chassis, REC/PB, tuner, MS and display PC Boards are removed at that time.

Note: Installing the radio chassis

1) Hook the jack plate to the tab of the rear lid while paying attention not to pinch the wire. Compress the radio chassis against the direction of the arrow after checking that the tuner PC Board is inserted into the rib.

Removing Mechanism

1) Loosen the screw and remove the hook of the rod.
2) Remove 4 screws.

Cautions on Disassembling MD-3 Mechanism

Disassemble or repair the MD-3 mechanism while paying attention to the springs and levers, etc. shown in the figure below.

Be sure to hook the T-spring (PLAY lever) to the cam of the gear when installing the gear PLAY.
Hook it from the inside of the gear using a clock screwdriver as shown in the figure. Perform the same for the gear FR and cam gear PAUSE.

DESCRIPTION OF THE MD-3 MECHANISM

Description of the PLAY Operation

With the plate button pressed, the trigger lever (PLAY) moves in the direction of the arrow $\leftarrow(1)$, the gear (PLAY) is released from the boss of the trigger lever (PLAY) engages with the gear flywheel and rotates in the direction of the arrow $\leftarrow(2)$, the boss (A) of the gear (PLAY) touches the trigger lever (PLAY) and the gear stops rotating.

When the gear (PLAY) rotates, the lever (PLAY) moves in the direction of the arrow $\leftarrow(3)$ along the cam groove on the rear of the gear to push up the operation chassis in the direction of the arrow \leftarrow (4).
The PLAY button which has been locked is released by pressing the STOP button, the trigger lever (PLAY) moves in the direction of the arrow $\leftarrow(5)$, the boss (A) of the gear (PLAY) is released and the PLAY operation stops.

Description of the FF Operation

When the FF button is pressed, the trigger lever FF moves in the direction of the arrow $\leftarrow(1)$, the boss of the gear FR cam is released and engages with the gear wheel to rotate in the direction of the arrow $\leftarrow(2)$, the boss (A) touches the boss of the trigger lever FF
and the gear FR cam stops. The FR lever B moves in the direction of the arrow $\leftarrow(3)$ along the groove of the gear FR cam, the FR lever B moves in the direction of the arrow $\leftarrow(3)$, the FR lever C compresses the gear of the FR lever Ase'y against the Take-up reel disc ass'y to perform the FF operation.

REW Operation

When the REW button is pressed, the trigger lever REW moves in the direction of the arrow $-(1)$ and pushes the lever REW in the direction of the arrow \leftarrow (2). The trigger lever $F F$ releases the boss A of the gear at that time, the gear FR engages with the gear flywheel, rotates in the direction of the arrow $\leftarrow(3)$, boss B touches the trigger lever FF and rotation stops.

Description of the PAUSE Operation

When the PAUSE button is pressed, the trigger lever PAUSE moves in the direction of the arrow $\leftarrow(1)$, the boss A of the gear PAUSE is released, enages with the gear flywheel and rotates in the direction of the arrow $\leftarrow(2)$, the boss B touches the trigger PAUSE and rotation stops.

The PAUSE lever moves in the direction of the arrow $\leftarrow(3)$ along the cam groove of the PAUSE gear at that time. The PLAY idler lever and the pinch lever ass'y is moved to perform the PAUSE operation at that time.
When the PAUSE button is pressed again, the button is released from locking and simultaneously the boss B of the gear PAUSE is released from the trigger lever PAUSE and the PAUSE operation

REC Operation

When the REC and PLAY buttons are pressed simultaneously, the trigger lever REC moves in the direction of the arrow \leftarrow (1).
The PLAY operation is performed simultaneously at that time, so the REC lever driver moves in the direction of the arrow \leftarrow (2), pushes the lever REC A, B in the direction of the arrow $\leftarrow(3)$, the interlocked slide REC plate pulls the rod, the slide switch is operated and the unit enters the REC mode.

When one of the STOP, FF and REW buttons is pressed, the REC trigger lever is released from the REC lever driver and only the REC operation is released.

Description of the Auto-stop Operation

The motor rotation is transmitted to the gear auto-kick of the MD-3 mechanism via the slip pulley FR ass'y.
The slip disk presses the lever auto A in the direction of the arrow $\leftarrow(1)$ when the Take-up reel disc ass' y is rotating, so the boss of the lever auto A moves along the cam (A) groove of the gear auto-kick.

When the reel discs (S , T sides) stop, the lever auto A stops in the condition being moves in the direction of the arrow $\leftarrow(2)$.
The cam (B) of the gear auto-kick moves the lever auto A in the direction of the arrow $\leftarrow(3)$, operates the plate auto-kick in the direction of the arrow - (4) to release the plate lock and performs the AUTO STOP operation.

SPRING APPLICATION POSITION

T-spring, Plate lock

- * mark in this part list shows exclusive part.

Ref. No.	Part No.	Part No. Changed to	Description	Common Model	O'ty	
3-1	82-585-325-01		Outsert chassis		1	
3-2	82-585-277-01		Plate button, FR	\cdots	3	
3-3	82-585-337-01		Plate button, REC		3	
3-4	82-585-279-01		Lever A, Eject		1	
3-5	82-585-255-01		REC blocking lever		1	
3-6	82-585-319-01		P-spring, Cassette pressure		1	
3-7	82-585-254-01		Slide plate, Eject		1	
3.8	82-585-311-01		E-spring, Lid lock		1	
3-9	82-585-290-01		C-spring, Back tension		1	
3-10	82-585-215-01		Supply reel platform ass'y		1	
3-11	82-585-292-01		C-spring, Slip disk		1	
3-12	82-585-272-01		Slip disk T		1	
3-13	82-585-210-01		Take-up reel platform ass'y		1	
3-14	82-585-294-01		T-spring, Center shift		1	
3-15	82-585-312-01		E-spring, Brake R		1	
3-16	82-585-253-01		Lever, Brake R		1	
3-17	82-585-286-01		Rubber cushion, Brake		2	
3-18	82-585-252-01		Lever, Brake L		1	
3-19	82-585-265-01		REV lever		1	
3-20	82-585-231-01		FR lever ass'y		1	
3-21	82-585-235-01		Gear A, REW		1	
3-22	82-585-223-01		Play idler lever ass'y		1	
3-23	82-585-313-01		F-spring, Play idler		1	
3-24	82-585-364-01		Pinch lever B ass'y		1	
3-25	82-585-296-01		T-spring, Pinch lever		1	
3-26	82-585-340-01		Plate lock ass'y		1	
3-27	82-585-338-01		Rubber cushion, Play lever		1	
$3-28$	82-585-295-01		T-spring, Actuating		1	
$3-29$	82-585-208-01		Actuating chassis		1	
$3-30$	82-585-209-01		Head base		1	
3-31	82-585-291-01		C-spring, RPH		1	
3-32	82-588-628-01		Shield plate	CS-770	1	
3-33	87-073-005-01		Steel ball 2ϕ		1	
$3-34$ $3-35$	82-585-284-01		P-spring, Actuating		1	
3-35	87-038-056-01		Wire binder		1	

Ref. No.	Part No.	Part No. Changed to	Description	Common Model	Q'ty	
4-1	82-585-289-01		Shaft lock		1	
4-2	82-585-285-01		C-spring lock		1	
4-3	82-585-317-01		E-spring, Button lock	-	1	
4-4	82-585-306-01		T-spring, Play lever		1	
4-5	82-585-283-01		Slide plate, FR auto		1	
4-6	82-585-282-01		Slide plate, Motor switch		1	
4-7	82-585-327-01		Slide plate key ass'y		1	
4-8	82-585-268-01		Auto A lever		1	
4-9	82-585-269-01		Auto B lever		1	
4-10	82-585-270-01		Plate auto kick		1	
4-11	82-585-248-01		Lever, PAUSE		1	
4-12	82-585-264-01		FR lever D		1	
4-13	82-585-297-01		T-spring, FR lever A		1	
4-14	82-585-271-01		Auto eject lever		1	
4-15	82-585-299-01		T-spring, Auto eject		1	
4-16	82-585-262-01		FR lever B		1	
4-17	82-585-263-01		FR lever C		1	
4-18	82-585-298-01		T-spring, $F R$ lever B		1	
4-19	82-585-261-01		Trigger lever, REC		1	
4-20	82-585-260-01		Lever, REW		1	
4-21	82-585-303-01		T-spring, Trigger (REC)		1	
4-22	82-585-308-01		E-spring, REW lever		1	
4-23	82-585-341-01		E-spring, $F R$ lever		1	
4-24	82-585-300-01		T-spring, FR cam		1	
4-25	82-585-217-01		Slip pulley FR ass'y		1	
4-26	82-585-216-01		Drive gear		1	
4-27	82-585-244-01		Play cam gear		1	
4-28	82-585-245-01		FR cam gear		1	
4-29	82-585-256-01		Trigger lever, PAUSE		1	
4-30	82-585-304-01		T-spring, Trigger (PAUSE)		1	
4-31	82-585-246-01		Gear, PAUSE		1	
4-32	82-585-247-01		Gear, Auto kick		1	
4-33	82-585-249-01		PLAY lever		1	
4-34	82-585-250-01		Lever, REC drive		1	
4.35	82-585-307-01		T-spring, REC lever		1	
4-36	82-585-266-01		REC A lever		1	
4-37	82-585-267-01		REC B lever		1	
4-38	82-585-314-01		E-spring, REC		1	
4-39	82-585-258-01		Trigger lever, PLAY		1	
4-40	82-585-259-01		Trigger lever, REW		1	
4.41	82-585-308-01		T-spring, REW lever		1	
4-42	82-585-331-01		C-spring, REW lever		1	
4.43	82-585-257-01		FF trigger lever		1	
4-44	82-585-301-01		E-spring, Trigger PLAY		1	
4-45	82-585-321-01		T-spring, Auto kick		1	
4-46	82-585-203-01		Mechanism chassis B ass'y		1	
4-47	82-585-315-01		E-spring, Slide plate		1	
4-48	82-585-332-01		E-spring, REC lock		1	
4-49	82-585-229-01		Flywheel ass'y		1	
4-50	82-585-243-01		Gear, Flywheel		1	
4-51	82-585-324-01		C-spring, Flywheel		1	
4-52	82-585-336-01		Rubber belt FR B		1	
4-53	82-585-287-01		Rubber belt, Flywheel		1	
4.54	82-585-323-01		Holder, Pause switch		1	
4-55	82-585-281-01		Holder, Motor		1	
4-56	82-585-242-01		Motor pulley		1	
4-57	82-585-326-01		Thrust bearing B		1	
4-58	82-588-206-01		Rubber cushion, REC lever	cs-770	1	
4-59	87-038-039-01		Wire binder		1.	
4-60	82-587-241-01		E-spring, Slide plate	*	1	
4-61	82-587-228-01		Slide plate REC ass'y	*	1	
4-62	82-585-335-01		T-spring, Plate lock		1	
$4-63$	87-087-029-01		Rubber cushion		3	
$4-64$	87-081-483-01		Motor screw, M2.6		3	
4.65	82-585-342-01		Rubber cushion, PAUSE lock		1	
4.66	82-587-232-01		Holder, REC switch	*	1	

Description of Circuitry

1. Block Diagram of Synthesizer Tuner

Fig. 1
2. Outline of PLL Frequency Synthesizer

The PLL (phase-locked loop) requency synthesizer is a cirucit which uses the extremely stable frequency of a crystal oscillator as the reference signal to produce the frequencies desired. For instance, to pick up a station broadcasting on a frequency of 100 MHz , a local oscillation frequency (f_{0} : output frequency of voltage-controlled oscillator) supplied to the mixer of 110.7 MHz $(100+10.7)$ is required. This particular unit adopts a prescaler which employs a pulse swallow system to divide the frequency. and send it to the programmable counter inside the controller IC. The output frequency f_{n} then enters the phase comparator. The frequency of the extremely stable 4.5 MHz crystal oscillator is counted down $(1 / 180)$ at the same time and the reference frequency $f_{\text {ref }}$ of 25 kHz is sent to the phase comparator. The phases of f_{n} and $f_{r e f}$ are compared and the difference between the two is detected. If there is no difference, the loop is locked; if there is a difference, the control voltage passes through the low-pass filter, it is fed out to the VCO and the VCO is controlled until f_{n} is made equivalent to 25 kHz .
The reference frequency $f_{\text {ref }}$ for $A M$ reception is 9 kHz (or 10 $\mathrm{kHz})_{\text {. The }}$ VCO frequency signal is sent directly to the programmable counter.

2-1. Operation During FM Reception
The pulse swallow system is first outlined.
The relationship between $\mathrm{f}_{\text {osc }}$ and $\mathrm{f}_{\text {ref }}$ is expressed as: $\mathbf{f}_{\text {osc }}=\mathbf{N} \times \mathbf{f}_{\text {ref }}$
If N is assumed to be P notation:

$$
\begin{equation*}
f_{\text {osc }}=\left(n_{1}+p n_{2}+p^{2} n_{3}+\ldots .+p n^{1} n_{n}\right) f_{\text {ref }} \tag{1}
\end{equation*}
$$

$$
=P\left(n_{1} / P+n_{2}+P n_{3}+\ldots+P n^{2} n_{n}\right) f_{\text {ref }}
$$

If, now, the part including the second digit and above is made Np :
$\mathbf{f}_{\text {OsC }}=P\left(n_{1} / P+N p\right) f_{\text {ref }}$
This is modulated to become

$$
\begin{align*}
f_{\text {osc }} & =\left(n_{1}+P N p+P n_{1}-P n_{1}\right) f_{\text {ref }} \\
& =\left[\left(N p-n_{1}\right) P+n_{1}(P+1)\right] f_{\text {ref }} \tag{2}
\end{align*}
$$

The above represents the principle of the pulse swallow system.
In order to achieve the relationship expressed in formula (2) by physical means, this unit has a prescaler with two frequency division ratios, $1 / 16$ and $1 / 17$. In formula (1), this corresponds to $P=16$. Actual operation is as follows: when the signal produced by dividing $f_{\text {osc }}$ by $(P+1)$ is counted down n_{1} times at the first programmable divider digit and n_{1} becomes 0 , the P-divided signal is counted down ($N p-n_{1}$) times equivalent to the number of the first digit subtracted from the number of the second and higher digits of the programmable divider, and the cycle ends. This cycle is performed with $\mathrm{f}_{\text {ref }}$ equal to 25 kHz .
When $f_{S}=100 \mathrm{MHz}$ is received:
$f_{I F}$ is 10.7 MHz and so therefore $\mathrm{f}_{\text {osc }}=100+10.7=110.7 \mathrm{MHz}$
From formula (1): $\mathrm{N}=\frac{110.7 \mathrm{MHz}}{25 \mathrm{KHz}}=4428$
If this figure is reexpressed in the sexadecimal notation, and made to correspond with 114C formula (2):
$\mathrm{Np}=114, \mathrm{n}_{1}=\mathrm{C}$
Therefore, $\mathrm{f}_{\text {ref }} \times[(114-\mathrm{C}) \times 10+\mathrm{C} \times 11]=\mathrm{f}_{\mathrm{osc}}$
If this is re-expressed in the decimal notation:
$25 \mathrm{kHz} \times\left[\left(16^{2}+16^{1}+4-12\right) \times 16+12 \times 17\right]=110.7 \mathrm{MHz}$ What happens is that the prescaler divides the frequency by $1 / 17$ for the first 12 counts and then by $1 / 16$ until 264 counts, and this switching operation is repeated. The swallow counter is locked at 12 and the programmable counter is locked at 264.

2-2. Operation During AM Reception
When $f_{s}=594 \mathrm{kHz}$ is received:
$f_{s}=594 \mathrm{kHz}$ and $f_{1 F}=450 \mathrm{kHz}$
Therefore: fosc $=594+450=1044 \mathrm{kHz}$
Since $f_{\text {ref }}=9 \mathrm{kHz}$ (or 10 kHz), (at $L W f_{\text {ref }}=1 \mathrm{kHz}$) $4.5 \mathrm{MHz} \div 9 \mathrm{kHz}=500$
$f_{\text {osc }}(1044 \mathrm{kHz}) \div 9 \mathrm{kHz}=116$
Therefore, the crystal oscillator frequency division is locked at 500 and that of the programmable counter at 116.
3. Description of ICs Used

Fig. 3 is a block diagram of the ICs in the PLL frequency synthesizer section and LCD indicator section.

Fig. 3

3-1. Prescaler μ PB553AC

This IC is energized during FM reception, it selects either the $1 / 16$ or $1 / 17$ frequency division ratio in accordance with the command from the swallow counter inside the codntroller, and it sends the signal to the controller's programmable divider.

3-1-1. Pin Configuration

Fig. 4

Pin no.	Name	Function
1	V cc	Power supply
2	IN	VCO input pin
3	CHK	Check pin, connected to GND at all times
4	GND	Ground
5	OUT	Output pin
6	PSC	Frequency division ratio setting pin (frequency division setting input from controller)
7	NC	Not used
8	NC	Not used

3-2. Controller μ PD1 703C-515
Contained in this IC are the conventional programmable divider section and control section.

3-2-1. Pin Configuration

Fig. 5

Pin no.	Name	Function
1,2	EO1, E02	Charge pump output pins of phase detector; since signals are fed out during AM/FM re- ception, one or other is connected to LPF.
3	CE	High: Normal operation Low: Memory held, operation stops
4	PSC	Feeds out frequency division ratio switch- ing signal to prescaler.
5,6	X1, X2	Crystal oscillator pins
7	SD	High: Auto tuning stop mode Low: Auto tuning enable mode
8	MUTE	Feeds out high level signal during key operation. (Used for muting of signal system)
$9 \sim 13$	$\overline{\text { D1 } \sim \overline{D 5}}$	Display digit signal output pins Only D1 and D2 are used with this unit and are connected to LCD driver.
14	VDD	Power supply pin
$15 \sim 21$	Sa~S9	Key matrix key return signal source pins
$22 \sim 25$	K0~K3	Key matrix key return signal input pins
26	FM	Input pin for FM prescaler output
27	GND	Ground
28	AM	AM fosc input pin

3-2-2. Key Matrix Functions

- The function in parentheses is displayed by key operation based on a momentary switch (marked $\frac{1}{80}$).
- Manual/auto selection (*1)

Manual/auto selection is performed by a fixed switch but in this unit the key operations are carried out with momentary switches which, thanks to the flip-flop circuit, have the same functions as fixed switches.
When connected: Auto tuning
When disconnected: Manual tuning

- LCD static/dynamic selection (*2)

This determines whether the LCD display system should be static or dynamic. In this unit, static specifications apply and so the diode is shorted.

- IF frequency selection (*3, *4)

Alignment is made with the FM IF frequency by IF, and $I F_{0}$ shorting and open combinations. The IF frequencies used by this unit are $10.675 \mathrm{MHz}, 10.700 \mathrm{MHz}$ and 10.725 MHz and so the combinations appear as follows:

IF offset frequency	IF $_{1}$	IF $_{0}$
10.675 MHz (blue)	Open	Shorted
10.700 MHz (red)	Open	Open
10.725 MHz (orange)	Shorted	Shorted

Color of ceramic filter indicated in parentheses.

- Japan/US use selection (*5)

When connected: US specifications
When disconnected: Japan specifications

- AM frequency interval selection (*6)

The AM channel frequency intervals are selected to 10 kHz or 9 kHz .
When connected: 10 kHz
When disconnected: 9 kHz
3-3. LCD driver (MSM5829GS)
Indication is provided on the LCD by connecting the three serial output data from the controller (μ PD1703C-515)

Fig. 7

Pin no.	Name	Function
$\begin{aligned} & 8,9,10,4 \\ & 5,7,6, \\ & 56,1,2,52 \\ & 53,55,54 \\ & 31,32,33,27 \\ & 28,30,29 \\ & 47,48,50,43 \\ & 44,46,45 \\ & 12,13 \\ & 11,3,51, \\ & 42,34, \\ & 41 \end{aligned}$	SEGMENT OUT A1, B1, C1, D1 E1, F1, G1 A2, B2, C2, D2 E2, F2, G2 A5, B5, C5, D5 E5, F5, G5 AA, BA, CA, DA EA, FA, GA F1, F2 DP1, DP2, DP3, DP4, DP5 CH	LCD segment output pins (see Fig. 8*)
15	$V_{\text {SS }}$	Ground Pin
16	OSC	LCD AC drive frequency pin; with this unit, the circuit is configured as beiow.
17	SERIAL OUT	Not used
18	SERIAL IN	Data indicated with shift register data input pins are fed into this pin in synchronization with clock pulses. (Connected to pin 19 of controller IC)
19	CLOCK	Sync. input pin when data is fed into, or fed out of shift register. (Connected to pin 9 of control(ler IC)
20	LOAD	Input pin for latching shift register contents. High: Shift register contents are transmitted to decoder. Low: Final contents at high level are held (Connected to pin 10 of controller IC)
21,49	VDD	Power supply pin
22	BI/RBO	Not used
23	SELECT	This function is not used and so pin is always at high level or, in other words, it is connected to $V_{D D}$.
24	RBI	Pin for determining whether or not leftmost display digit is to indicate a numeral or not. In th is unit, it displays only significant figures and so it is used at the low level, or in other words, it is connected to $V_{S S}$ (ground).
25	RESET	Pin for switching display to segment or dot; since segment is used in this unit, it is set to high level or, in other words, it is connected to VDD.
26	COM	This pin feeds out an output with the reverse phase to that of COM. In this unit, it is not used for direct display but for AM and $F M+B$ selection as mentioned later.
14	COM	This pin feeds out a signal with the reverse phase to that of output and 7 segments for AC drive of the LCD; it drives the LCD common pin.
$\begin{aligned} & 35,36,37 \\ & 38,39,40 \end{aligned}$		Not used
$\begin{aligned} & \text { DP } 2\{\text { MEMO } \\ & \text { DP4 \{ FM } \\ & \text { DP3 } \mathrm{MW} \end{aligned}$		

Fig. 8

4. Other Circuits

Fig. 9

Switching is performed with a 4-NAND gate IC (IC2).

Fig. 10

When the FM band selector key is depressed, pulses with the same phase are fed out to IC3 (MSG5829G) DP4 and COM. As this output passes through the NAND gate IC (TC4011BP), a high level output is produced at NAND gate 1 output and this causes Q 20 to turn ON. As a result, Q19 turns ON and the FM $+B$ is obtained. With AM reception, no output appears at DP4, the NAND gate 1 output is set to the low level and with Q20 OFF, Q18 turns ON and the $A M+B$ is obtained.

4-2. Scan Auto Stop Circuit

4-2-1. Operation During FM Reception
The S-curve output pin 10 and meter output pin 15 of IF IC (IC2, HA12413) are used. If pin 10 has a voltage where $V(B)$ $<\mathrm{V}(10)<\mathrm{V}(\mathrm{A})$ with respect to the preset point A and point B voltages (about $\pm 0.5 \mathrm{~V}$ with respect to pin 10 voltage during tuning), no output appears at point (C) and when there is an output at pin 15, point (F) is set to a low level and no signal is fed out to point (C). A trigger pulse is produced at point (G) by the above two AND circuits, this is applied to the SD pin of the controller IC and the scanning is stopped.

4-2-2. Operation During AM Reception

The IF output from pin 12 is smoothed and point (F) is reduced to the low level by the output. As with FM reception, a trigger pulse is produced at point (G) and the scanning stops. [IC3 (NJM4558D) does not work during AM reception.]
5. Dynamic Super Loudness (DSL) Circuit

If the DSL circuit is compared with the loudness circuit, it is seen that both function to boost the low-range (bass) and highrange (treble) frequencies with respect to the midrange frequencies but there are the following major differences.

5-1. Characteristics

Fig. 12
The loudness system functions to boost the midrange frequencies too. However, the DSL system keeps this increase down to the bare minimum.
With the loudness system, the characteristics do not change with the strength of the signal entering the volume control for providing a tape in the control [normally scale unit 5 (center position)], and the volume control's tap position is mechanical,
meaning that the characteristics change. At a scale position lower than the volume control's tap position, the loudness characteristics are provided regardless of the strength of the sound level and, in contrast, even when the sound level is low, the effect is impaired by the control's scale position.
However, the DSL system judges the strength of the sound level by electrical means and features a configuration which produces dynamic super loudness characteristics.

5-2. DSL Circuit Configuration

The DSL circuit comprises the equalizer circuit which produces the DSL characteristics, the detector circuit which judges the strength of the sound level and the control circuit which suppresses the DSL characteristics when the sound is high.

5-2-1. Equalizer Circuit
An ordiany direct-coupled amplifier feedback circuit (T-type bridge circuit) is provided with time constants, and its characteristics generated.
Tow T-type bridge circuits are connected in series and the time constants are divided into the left side for bass [R361, 359, C359, 361] and right side for treble,
The characteristics of each of the twin filters connected to pins 3 and 8 of IC351 (TA7137P) are attenuated by frequency f_{1} determined by constants R1, R2 and C1.

5-2-2. Detector Circuit
The level of this circuit is set by the frequency division ratio of two resistors.
5-2-3. Control Circuit
This circuit is the same as an ALC circult used for normal recording although it differes in that its attack time and recovery time are extremely short.
Because of the boosted level, the output must be not distorted. When a signal exceeding a certain fixed level is fed out, it is taken out by the O49 emitter, the IC7 ALC circuit functions and the input of pin 2 is controlled.

Fig. 16

The DSL circuit with the above-mentioned configuration is mixed with a main amplifier. The ICI (AN7146) input has a differential amplifier configuration, and when a flat signal enters transistor Q1 at one side of the differential amplifier from the volume control, a flat signal also enters the DSL circuit simultaneously. Q 2 is basically a negative feedback pin but when the output (signal with DSL characteristics) of the DSL circuit is fed into the Q2 input, differential operation is provided by Q1 and 02.

The DSL block input transistor O 47 is used to invert the phase. As a result, the phase is inverted at the DSL block input and output sides and so the differential operation of Q1 and Q2 becomes a mixing operation. Meanwhile, the feedback from the output inside IC7 does not change and negative feedback operation results.
When the signal level is low in Fig. 13, there is a high degree of mixing ty Q1 and O2 inside IC1 so that the DSL feeds out a strong signal, and the bass nad treble are greatly boosted. However, when the signal level is high, the DSL block output is suppressed, the amount of mixing by Q1 and Q2 inside IC1 is reduced, and since the Q 2 input is reduced to a fraction, almost all of it becomes the signal fed in from $\mathrm{Q1}$.
The resistor inserted across the ground and OFF side pin of the DSL ON/OFF switch functions to compensate for the difference in the volume when the switch is selected.

Fig. 14

Fig. 15

AIWAco.,LTD.

ELECTRICAL MAIN PART LIST

Symbol No.	Part No.	Description
< TUNER CIRCUIT BOARD SECTION》		
PCB-A	82-587-609-01	Tuner circuit board
CP1	82-587-626.01	FM front end
(4) 1 CP	87-027-752-01	IC, 535AC
1 C 2	87-027-734-01	IC. HA12413
1 C 3	87-027-235-01	IC, NJM4558D
1C4	87-027-430-11	IC, LA3361
Q1	89-319-233-01	Transistor, 2SC1923 (O)
Q2	89-303-803-01	Transistor, 2SC380 (O)
$\begin{aligned} & 03,4,5,7 \\ & 8,9,10,11 \\ & 13,14,15,16 \\ & 18,20,21 \end{aligned}$	89-318-154-01	Transistor, 2SC1815 (Y)
Q6	89-318-156-01	Transistor, 2SC1815 (BL)
Q12,19	89-110-154-01	Transistor, 2SA1015 (Y)
Q17	89-403-135-01	Transistor, 2SD313 (E)
D1,2	87-027-753-01	Diode, KV1236Z
$\begin{array}{r} \mathrm{D} 3,4,5,6 \\ 7,8,9,11 \end{array}$	87-027-097-01	Diode, 1S1555
D10	87-027-431-01	Zener diode, RD6.2EB2
L1,8,9	87-003-051-01	Choke coil, $470 \mu \mathrm{H}$
L2	87-008-227-01	FM coil
L3	82-587-609-01	AM bar antenna coil
L4	82-755-607-01	AM OSC coil
L5,6	87-005-126-01	Coil, 1 mH
L. 10	87-003-045-01	Choke coil, $22 \mu \mathrm{H}$
L11	87-003-064-01	Choke coil, $0.39 \mu \mathrm{H}$
TC1	87-011-108-01	Trimmer, 8pF
CF1,2	87-008-228-01	Ceramic filter SFE, 10.7 MA5H
CF2	87-008-235-01	Ceramic filter 10,7 (U,UC model only)
CF3	87-008-225-01	AM ceramic filter
IFT1	87-008-226-01	AM IFT
IFT2	87-008-223-01	AM IFT
SFR1	87-021-566-01	Semi-fixed resistor, $5 \mathrm{k} \Omega$-B
SFR2	87-021-567-01	Semi-fixed resistor, $10 \mathrm{k} \Omega$ - ${ }^{\text {c }}$
PIN-1	87-049-045-01	Pin, 12P
		< Resistor >
$R 50$	87-025-317-01	$47 \Omega \quad 1 / 2 \mathrm{~W} \quad \begin{aligned} & \text { Nonflammable } \\ & \text { resistor }\end{aligned}$
		< Capacitors >
C19	87-014-048-01	430pF PP
C48	87-014-057-01	1000pF PP
<REC/PB CIRCUIT BOARD SECTION》		
PCB-B	82-587-614-21	REC/PB circuit board (H, HG model only)
PCB-B	82-587-657-01	REC/PB circuit board (U,UC model only)
1C1,2	87-027-540-01	1C, AN7146
103.4	87-027-754.01	IC, LM1111C
IC5,9	87-027-539-01	IC, LA3161
Q1,2	89-322-405-01	Transistor, 2SC2240 (GR)
$03,4,5,6$	89-318-154-01	Transistor, 2SC1815 (Y)
$\begin{aligned} & 7,8,17 \\ & 18,19,20 \end{aligned}$		
$\begin{aligned} & 21,22,27 \\ & 28,29,30 \end{aligned}$		
31,32,33,		
34,35,36,		
$37,38,42$		
Q39,40	89-318-155-01	Transistor, 2SC1815 (GR)
Q41	89-318-464-01	Transistor, 2SC1846 (R)
Q43	89-322-364-01	Transistor, 2SC2236 (Y)

Symbol No．	Part No．	Description
《CONTROL CIRCUIT BOARD SECTION》		
PCB－C	82－587－604－01	Control circuit board
（3）IC1	87－027－749－01	IC，μ PD1703C515
（t）IC2	87－027－564－01	IC，TC4011BP
（1）IC3	87－027－751－01	IC，MSM5829GS
01，2，3，4	89－318－154－01	Transistor，2SC1815（Y）
05	89－500－303－01	FET，2SK30（0）
D1，2，3，4，	87－027－097－01	Diode，1\＄1555
9，10，11，12，		
13，14，15，16，		
17，18，19，20，		
21，22，23，24，		
25，26		
D27，29	87－027－716－01	LED，GL－9PR22
		（AUTO OPERATE／FM STEREO）
D28	87－027－758－01	LED，GL－9PG22（DOLBY－NR）
D30	82－587－603－01	LCD（FREQUENCY INDICATOR）
$\times 1$	87－030－083－01	Crystal resonator
$\begin{array}{r} \mathrm{S} 19,20,21, \\ 22,23,24, \end{array}$	87－031－498－01	Push－switch（TUNING，DOWN，UP， MEMORY，1，2，3，4，5，6，FM，AM）
$22,23,24$, $25,26,27$$\quad$ MEMORY， $1,2,3,4,5,6$, FM，AM）		
25,26,27,		
PL1，2	82－587－605－01	Pilot lamp
	82－587－606－01	Electric conduction rubber

《MS CIRCUIT BOARD SECTION》

Symbol No．	Part No．	Description	
		$<$ Capacitors $>$	
C361，362	$87-015-311-01$	$0.1 \mu \mathrm{~F} \quad$ 10V Aluminum solid	
C359，360	$87-015-313-01$	$0.33 \mu \mathrm{~F} \quad 10 \mathrm{~V}$ Aluminum solid	
§REC AMP CIRCUIT BOARD SECTION \gg			

PCB－F	82－588－617－11	REC amp circuit board
$\begin{aligned} & \mathrm{Q} 23,24,25, \\ & 26 \end{aligned}$	89－318－154－01	Transistor，2SC1815（Y）
L5，6	87－005－088－01	Micro inductor， 5.6 mH
SFR9，10	87－021－672．01	Semi－fixed resistor， $50 \mathrm{k} \Omega$－ B
		＜Capacitor＞
C81，82	87－015－317－01	$0.1 \mu \mathrm{~F} \quad 10 \mathrm{~V}$ Aluminum solid

《MONITOR CIRCUIT BOARD SECTION》

PCB－G	$82-588-633-11$	Monitor circuit board
Q9，10	$89-322-405-01$	Transistor，2SC2240（GR）
Q11，12，13，	$89-318-154-01$	Transistor，2SC1815（Y）

Symbol No．	
EH	87
SOL1	82
SP1，2	82
SP3，4	82
SP5	82
SP5	82
LM1，2	82
ECM1， 2	87
M1	87
S10，14	87.
S11	87.
S12	87.
S13	87.
S16	87.
CON－4	82.
CON－3	82.
CON－2	82.
CON－1	82
	87.
C1，2	82

A Safety compone
This symbol is giver to maintain the safe made to conform Therefore，when re symbol，make abso signated part．
C－MOS IC handlin The C－MOS IC＇s co damage by static E regard to following a
1．Need to be put c box and to be v tion and deposit．
2．To use solder in power consumpi more than 10 sec
3．Do not perform Refer to the circt
4．The iCs on the an C－MOS IC sym

Dessription	Symbol No．＂	Part No．	Descripion	Symbol No．	Part No．	Dessription	Symbol No．	Part No．	Description	Symbol No．	Part No．	Pescripion				
：TION＞		89－320－011－21 87－027－097－01	Transistor，2SC2001（K，L）	«CONTROL CIRCUIT BOARD SECTION》			C361，362C359360	87－015－311．01 87－015－313－01	$\begin{array}{ll} \text { <Capacitors }> & \\ 0.1 \mu \mathrm{~F} & 100 \\ 0.33 \mu \mathrm{~F} & \text { Aluminum solid } \\ 0.3 & \text { Aluminum solid } \end{array}$		－7－046－189．01	Erase head				
tr circuit board	01，2，5，${ }^{\text {，}}$		Diode， 1 S1 1555	PCB－C	82－587604．01	Control circuit boardIC， 4 PD1703C515					${ }_{8}^{82-585-601-21} \begin{aligned} & \text { 82587644－11 }\end{aligned}$	Solenoid－				
ront end $35 A C$	$7.89,10$ $11,12.13,5$ 12				87－027－564－01											
	${ }_{17}^{11,12,13,15,}$										82－587635－11	Passive radiator a				
UMM4558	D3，4	88－052－188－11	Diode， 1 S188（FM）	${ }_{0}^{01,2,3,4}$			$\stackrel{\text { PCBECF }}{ }$	｜ $\begin{aligned} & 82.588 .617 .11 \\ & 89.318-154-01\end{aligned}$	Transisto			${ }^{1+}, \mathrm{HG}$ mod				
A3361	D14	87－027－346－01	Zener diode HZ11A2L			${ }^{\text {cole }}$	${ }_{\text {O23，24，25 }}$ ，			SP5	82－587664．01	Passive radiator ass＇y				
	D16 L1， 1	87－027－199－01 $87008-173-01$	Zener dioded， $05 z-150$ Trap coil 10 mH	D^{5} ，23，4，		Diode， 11555	L5，6 SFR9，10	$87.005-088-01$$87021672-01$ 87．021．672－01	Microoinductor， 5.6 mH		82－588642－01	（U，UC model only）				
Sistor， $2 \mathrm{SC1815}$（Y）	L3，4	82487－65401	Coil， 10 mH	6，78	87－027：097－01					${ }_{\text {ECM1，}}^{\text {E }}$	－ $\begin{aligned} & 87.041 .04501 \\ & 87.045-13501\end{aligned}$	CM，ESM－10PB				
	L7，913	87－003－03	Choke coil， $36 \mu \mathrm{H}$Choke coil， $600 \mu \mathrm{H}$				c81，82	87－015－311－01	＜Capaitor＞O．1．F． 10 V Aluminum solid			otor DC EG				
	L8	82.401 .661 .01			17，18，19，20． 21， $2223,24$.					$\begin{aligned} & \text { si0,14 } \\ & \text { s11 } \end{aligned}$	87－031－548－01	Leat swith（MOTOR，SYNCRATE）				
－ 251815 （18）	L11，12	87－033．051．01	Choke coil， $600 \mu \mathrm{H}$		87－027－716．01							Micro switch（PLAY）				
	${ }_{\text {LPF1 }}$	$82-557-641-11$ $87-030-7000$	Low－pass filter	5，26		LED，GL－9PR22	$\underset{\text { PCB－G }}{ }$ ¢ MOITOR		Monitor circuit board Transistor，2SC2240（GR）	S13	$87.031-361.01$ 87031	Leat switch（MUSIC SENSO				
sistor，2SD313（E）	J1，2，3，	82－587．633．01		D27，29		（AUTO OPERATE／FM STEREO）	PCB－GQ9，10 $011,12,13$,				87．031466－01	Slide				
	${ }_{156.78}$	82－587632．01		$\begin{aligned} & \mathrm{D} 28 \\ & \text { D30 } \\ & \text { X10 } \end{aligned}$	87.027 .758 .01 82.58760301	LCD（FREOUENCY INDICATOR）		89．318－154－01	Tranistor， 2 SC1815（Y）	$\begin{aligned} & \text { CoN } 4 \\ & \text { con } \\ & \text { con } 3 \\ & \text { CON. } \end{aligned}$		VOLTAGE SE Connector ass＇）				
					82－587－603－01 87－030－083－01 87－031－498－01		$\begin{aligned} & 011,12,13, \\ & \text { O11,15,16, } \end{aligned}$				82.587623 .01 8258762201					
diode，RD6．2EB2	J5，6，7，8，533	82－587671－01		¢19，20，21，		Push switch ITUNING，down，up，	«REC MUTE CIRCUIT BOARD SECTION》				82－587－613－01	Connector ass $\mathrm{V}^{\text {c／4P }}$				
										Connector ass ${ }^{\text {s }}$ ， 12 l P Antenna terminal IEX						
jar antenna coil	ر9	87－049－043－01	Jack，6．3¢（PHONES）	$25,26,27$, $28,29,30$ PL1，2					Transistor，2SA1015（Y） Diode 151555				＜Capacitor＞			
3sc coil	VR1	87			$82-587-60501$$82-58760601$		072	87－027－097－01								
	VR2， 3	87－021668．01				Electric conduction rubber			Pushswith（REC MUTE）							
		－21	Volume，50\％R－A	«MS CIRCUIT BOARD SEC			《LED CIRCUIT BOARD SECTION》 PCB－I \mid 82－587－619－21 \mid LED circuit board			to maintain the safety of the product，and which are						
mer， 8 pFF	VR4	87.021 .699 .01	Volume， $100 \mathrm{k} \Omega$－W（BALAACE）VIVue，20k （VOLUME）		82－587－615－21 82－587－659－01	MS circuit board（H，HG model only） MS circuit board（U，UC model only） IC，TC9138P										
nic fiter SFE， 10.7 MA5H	$\mathrm{VR}_{\text {V1 }}$	$87-021-667.01$ $87-031-621-01$						$82-587-731-01$ $87-027-731$					LED circuit board LED，SR－535D（RECORD）	made to conform to special satety specifications．Therefore，when replacing a component with this		
	s2	82－588－622－11	Lever switch（FUNCTION） Slide swith（RECP） Levers swith（TAPE SELECTOR）		｜		«LIGHT SWITCH CIRCUIT BOARD SECTION》 PCB－J $\quad\|82-587-648-21\|$ Light switch circuit board			symbol，make absolutely sure that you use a de－ signated part．						
	¢4	87.031631 .01 $87-31620.01$	Lever swith（RECORD）SlideSwitch（PHONO／LINE IN）													
FTT	s5	82－563．60901		$412,413,414,$ $415,416$						The C－MOS IC＇s construction makes this part susceptible to damage by static electricity and so take sufficient care in regard to following articles．						
	$\stackrel{\text { s6 }}{\text { s7，15 }}$	$87.031-622-01$ $87-03161901$	Lever swith（MODE）	0406 0407，409	89－111－154－51 89－313－834－01 89－106－834－51 87－027－756－01 87－027－365－01 $87-027-332-01$$87-027-097-01$ 37－027－097－01	Transistor，2SA1115（E，F） Transistor，2SC1383（S） Transistor，2SA683（RS） LED，SL－1160L（MS PROGRAM） Diode，S5277B Zener diode，HZ6B1L Diode，1S1555	«POWER CIRCUIT BOARD $\triangle \mathrm{PCB}$－K 82－551－672．21		SECTION $>$							
			POWER，DSL）						Power circuit board							
		82431604.01	（e）	0408 D401 D402 D40			РсВ－к	82－587670．01	Power circuit board	Sox	be wrapped by	Juminium foil for transporta				
1／w Nonflammable	${ }_{\text {SFR3 }}^{\text {SFR1，}}$	｜ 87					Св－к	－	（U，UC model only）							
resistor	${ }_{\text {SFR4 }}$	$87-021.6420 .01$ $87-02151401$	Semi．fited resistor， $50 \mathrm{k} \Omega$－B Semi i ieded resistor， $200 \mathrm{k} \Omega$－					87－027－609－01 87－032－929－01 87．031－466－01	Encapsulated diode AC－DC jack	To use solder iron less than 40 W （less than $260^{\circ} \mathrm{C}$ ）of power consumption for soldering．But do not overheat power consumption Do not perform a conductivity test with a tester，etc．						
$\underset{\text { pactiors＞}}{\substack{\text { p }}}$	SFR5，6	82.55763401	Semi－fixed resistor，100 2 －BEarth terminal	D404，405， 406，407， 410，411，			$\frac{\Delta \mathrm{Jn1}, 1}{\Delta \mathrm{~s} 16}$									
		82－588634－01							（VOLTAGE SELECTOR） Fuse，＂T＂＇4A（H，HG model only							
		87－025－20．01	${ }_{\text {＜Resistors }}$＞		87－027－332－01 87－027－097．01		$\triangle{ }^{1}$	$87-035-192-01$ $87-098-022-01$		3．Do not perform a conductivity test with a tester，etc． Refer to the circuit voltages of each part． 4．The ICs on the electrical parts which are indicated by						
PPB circuit	R153，154，	87－025－313．01	4.78		01	LEd，GL－9PR22（PEAK 0，＋3，＋7）			（ H, HG model only）							
G model oniy）	${ }^{220,245,}$			$\begin{aligned} & 414 \\ & \text { D416 } \\ & \text { S171.18 } \\ & \text { SFR401,402 } \end{aligned}$	87－027－228－01 $87.031-496.01$87.02162401 87．021624－01		$\triangle{ }^{\text {F }}$	－87－035－302．01	Fuse，3．15A（U，UC model oniv） Fuse label， 3.15 A （U，UC model							
／PB circuit board C model only）	R164	25－316－01	100Ω 1／2w Nonflam				\triangle F2	${ }^{87} 7$								
${ }_{\text {c }}{ }_{\text {N7146 }}$			resistor			Semi－fixed resistor， $50 \mathrm{k} \Omega$－${ }^{\text {b }}$			（H，HG model only）							
M1111C	－ $\mathrm{R}^{2} 202$	87－029－108－01	${ }^{152} \quad 1 / \mathrm{w}$ Fuse resis			＜Capacitors＞										
	A172 $^{\text {R }}$	87－029－060．01		${ }_{\text {C4407 }}^{\text {C412 }}$	$87-015-318-01$ $87-015-425-01$		\triangle F2	87．035－293－01	Fuse，400ma（U，UC model only）							
istor， 2 SC 1815 （Y）			＜Capacitors＞					87－098－036－01	Fuse labe， 400 mA							
	C49，50，89， 90	87－014－053－01	680pF PP	＜DSLCl PCB－E	${ }^{\text {UIT BOARD SE }}$	ON \gg	\triangle	－033－14	$\begin{aligned} & \text { iU,UC mode } \\ & \text { Fuse clamp } \end{aligned}$							
	C17，18		820pF Pp	1 C 7.8	87－027－17601	IC，TA－7137P Stere			＜Resistoo							
	C13，14，75，	87－015－311－01	0．1 $20 \mathrm{~F} \quad 10 \mathrm{~V}$	Q47，48，49，	89－318－154．01	Tra	R501	37－025－194．01	$220 \Omega 2 \mathrm{w}$ Meta film resista							
	C115，116 C107，108，	$87.015 \cdot 367.01$ $87.015-312.01$	$\begin{array}{lll}0.15 \mathrm{uF} & 10 \mathrm{~V} & \text { Aluminum solid } \\ 0.22 \mathrm{~F} & 10 \mathrm{~V} & \text { Aluminum solid }\end{array}$	${ }^{\text {D351 }}$	87－027－097－01	Diode， 151555		82－587650．01	Power transtormer							
				L10	82－587．610．01				（ H, HG model only）							
Or， $2 \mathrm{SC1} 1846$（R）		87－015－313．01	0．334F fov Aluminum solid	${ }_{\text {PIN－2 }}$	8248164701				（U，UC model only							
2SC2336（Y）				PIN－3	87－049．034．01	Pin， 4 P	RPH	87－046－159．01	RECCPB head							

AIWA)

NOTES (1) B(t) Pattern Others pattern
(2) The voltage is the reference value measured with a tester ($20 \mathrm{Kohms} / \mathrm{VC}$) when there are no signals.

An asterisk (${ }^{*}$) indicates that the value was measured with a vacuum-tube voltmeter during recording.

AíwA
NOTES (1) ${ }^{(1)}(+)$ Pattern Component side pattern Others pattern
WIRING-2
(2) The voltage is the reference value measured with a tester (20 K ohms $/ \mathrm{VDC}$) when there are no signals.

NOTES (1) B(t) Pattern Component side pattern Others pattern

