BAND-PASS FILTER

MODEL 3500
SERIAL NO.

OPERATING AND MAINTENANCE MANUAL

KROHN-HITE CORPORATION

AVON INDUSTRIAL PARK / 255 BODWELL STREET / AVON, MA. 02322
TEL. (617) 580-1660 TWX 710-345-0831

CONTENTS

Section Page
GENERAL DESCRIPTION 1
OPERATION 7
CIRCUIT DESCRIPTION 9
INCOMING ACCEPTANCE AND INSPECTION 12
MAINT ENANCE 15
CALIBRATION AND ADJUSTMENT 19

ILLUSTRATIONS

Figure Page
Model 3500 Filter ii
1
Normalized Frequency
Normalized Frequency 3 3
2
2
Square Wave Response 4
Normalized Attenuation Characteristics 4
4
Normalized Phase Characteristics 5
6 Front and Rear Panels 6
7 Simplified Schematic Diagram 9
8 Test Point Voltages 16
9 Top and Side View of Chassis 18
10 Schematic Diagram Foldout
11

Foldout

Model 3500

Figure 1. Model 3500 Filter

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

The Model 3500 Filter, shown in Figure 1, is a variable, electronic band-pass filter that operates at frequencies from 20 Hz to 200 kHz . The filter consists basically of an input amplifier, a variable high-pass section, a variable low-pass section, and an output amplifier. The high-pass and low-pass sections are connected in series. The overall gain of the Filter is unity(0db). The cutoff frequencies of both the high -pass and low-pass sections can be adjusted independently over the full frequency range of 20 Hz to 200 kHz .

An optional rack-mounting kit, (Part No. RK-38) is available from Krohn-Hite, for installing the unit in a standard $19^{\prime \prime}$ rack spacing.

1.2 GENERAL SPECIFICATIONS

Frequency Range

Continuous coverage from 20 Hz to 200 kHz for both high cut-off and low cut-off frequencies independently. Frequency range is covered by separate calibrated dials and four-decade band switches. Center frequency and width of pass band in bandpass mode are continuously adjustable over the entire frequency range.

BAND	MULTIPLIER	FREQUENCY (Hz)
1	1	$20-200$
2	10	$200-2,000$
3	100	$2,000-20,000$
4	1 K	$20,000-200,000$

Frequency Dials

Each dial is engraved and individually hand-calibrated with a single logarithmic scale reading directly in cycles per second, from 19 to 210 . Dials are 2 inches in diameter with an effective scale length of 6 inches per band, giving a total effective scale leng th of 24 inches for the range of 20 Hz to 200 kHz .

Accuracy of Cut-off Frequency Calibration

$\pm 10 \%$ with "Response" switch in "max-flat" (Butterworth) position; less accurate in "Low $Q^{\prime \prime}$ position. Relative to mid-band level, the filter output is down 3db at cutoff in "max-flat" position, and approximately 12 db in "Low $\mathrm{Q}^{\prime \prime}$ position.

Bandwidth

Continuously variable within the cutoff frequency limits of 20 Hz and 200 kHz . For minimum pass-band (Butterworth response) the two cutoffs are set to the same frequency, resulting in an insertion loss of 6 db at that frequency, with 3 db points at factors of .8 below it and 1.25 above it.

Response Characteristics

Choice of 4 pole Butterworth (maximally flat response) for frequency domain operation and Low Q (damped response) for transient-free time domain operation, selected by means of a switch on rear of chassis.

Pass-Band Gain

Zero $\mathrm{db} \pm 1 \mathrm{db}$ in pass band.

Input Characteristics, Impedance
Approximately 10 megohms in parallel with 50 pf. Maximum input amplitude: 5 volts rms up to 2 MHz . Maximum de component: 100 volts.

Output Characteristics, Impedance

Approximately 50 ohms. Maximum Voltage +7 volts peak. Maximum Current +5 ma peak. Internally generated hum and noise: Less than 200 microvolts. (Slightly higher for 400 Hz operation.)

Attenuation Slope

Nominal 24 db per octave each side of pass-band.

Maximum Attenuation

Greater than 60 db .

Controls

Front panel; LOW CUT-OFF FREQUENCY dial and multiplier switch. HIGH CUTOFF FREQUENCY dial and multiplier switch. POWER OFF-ON switch. Rear panel; RESPONSE switch, GROUND switch, $115 / 230 \mathrm{~V}$ LINE switch.

Terminals

Front panel, two BNC connectors, one for INPUT and one for OUTPUT. Rear of chassis, two BNC connectors, one for input and one for output. An additional multipurpose binding post for CHASSIS GROUND is provided on the rear panel. An AC power receptacle with detachable line cord is also provided.

Power Requirements

105-125 or 210-250 volts, single phase; $50-400 \mathrm{~Hz}, 10$ watts. Hum and noise are increased by a factor of approximately two for 400 Hz operation.

Fuse Protection

1/8 ampere slow-blow for 115 volts, $1 / 16$ ampere slow-blow for 230 volts.

Dimensions and Weights

Model	Overall Dimensions (inches)			Weight (lbs.)	
3500	$81 / 2$ wide	$31 / 2$ high	13 deep	9 net	14 shipping

1.3 FILTER CHARACTERISTICS

Bandwidth Adjustment

The flexibility of adjustment of bandwidth is illustrated in Figure 2. Band-pass operation in the MAXimally FLAT or Butterworth mode for two different bandwidths is illustrated by curves A and B. Curve B shows the minimum pass-band width obtained by setting the two cutoff frequencies equal. In this condition the insertion loss is 6 db , and the -3 db cutoff frequencies occur at 0.8 and 1.25 times the mid-band frequency. The minimum pass-band for a 0 db insertion loss is shown by curve A with the cutoffs set at 0.5 and 2 times the mid-band frequency.

Figure 2. Normalized Frequency

Transient Response

The frequency response characteristic of this Filter closely approximates a fourthorder Butterworth with maximal flatness, ideal for filtering in the frequency domain. For pulse or transient signal filtering, a response switch is provided to change the frequency response to Low Q, optimum for transient-free filtering. Figure 3 shows a comparison of the Filter output response in these modes to a square wave input signal.

Figure 3. Square Wave Response

Cutoff Response

The attenuation characteristics of the Filter are shown in Figure 4. With the response switch in the MAXimally FLAT or Butterworth mode, the gain, as shown by the solicl curve, is virtually flat until the -3 db cutoff frequency. At approximately two times the cutoff frequency the attenuation rate coincides with the 24 db per octave straight line asymptote. In the Simple RC mode, optimum for tran-sient-free filtering, the dotted line shows that the gain is down approximately 12 db at cutoff and reaches 24 db per octave attenuation rate at five times the cutoff frequency. Beyond this frequency the filter attenuation rate and maximum attenuation, in either mode, are identical.

Figure 4. Normalized Attenuation Characteristics

Phase Response

The phase angle at any frequency is the sum of the angles due to the high-pass and low-pass sections of the Filter. Figure 5 gives the phase characteristic for either section in degrees lead (+) or lag (-), as a function of the ratio of the operating frequency f to low cut-off frequency f_{L} or high-cutoff frequency f_{H}.

The solid curve is for the maximally flat or Butterworth mode and the dotted curve is for Low Q.

Figure 5. Normalized Phase Characteristics

Example

Determine the phase shift through the filter, in the maximally flat or Butterworth mode with the low cutoff (f_{L}) at 200 Hz , the high cutoff (f_{H}) at 600 Hz and an input frequency (f) at 300 Hz .

Phase shift due to low cutoff (f_{L})

$$
\frac{f}{f_{L}}=\frac{300}{200}=1.5
$$

from Figure $6 \quad 1.5=+110^{\circ}$
Phase shift due to high cutoff (f_{L})

$$
\frac{f}{f_{\mathrm{H}}}=\frac{300}{600}=.5
$$

from Figure $6 \quad .5=-80^{\circ}$
Total phase shift

$$
=+110^{\circ}-80^{\circ}=+30^{\circ}
$$

REAR VIEW

FIGURE 6. FRONT AND REAR PANELS

POWER SWITCH (ON/OFF)(10) OUTPUT CONNECTOR (BNC TYPE)
(2) INDICATOR LIGHT
(11) INPUT CONNECTOR (BNC TYPE)
(3) INPUT CONNECTOR (BNC TYPE)
(4) OUTPUT CONNECTOR (BNC TYPE)
(5) MULTIPLIER SWITCH (HIGH PASS)
(6) MULTIPLIER SWITCH (LOW PASS)
(7) FREQUENCY DIAL (LOW CUTOFF)
(8) FREQUENCY DIAL (HIGH CUTOFF)
(9) $115 / 230 \mathrm{~V}$ LINE SWITCH
(12) FUSE $\begin{aligned} & 1 / 8 A \\ & 1 / 16 A \text { SLO-BLO } \operatorname{sLO} \text { - } 117 \mathrm{~V} \\ & 234 \mathrm{~V}\end{aligned}$
(13) POWER RECEPTACLE
(14) CHASSIS GROUND CONNECTOR (BINDING POST)
(15) GROUND SWITCH (FLOATING / CHASSIS)
(16) RESPONSE SWITCH (MAX FLAT / LOW Q)
(17) POWER TRANSFORMER
(18) NAMEPLATE

SECTION 2

OPERATION

2.1 INTRODUCTION

The Filter is adjusted and checked carefully before shipment to insure that it meets all specifications. It is then aged and again tested to be sure that it is ready for use. The Filter is shipped complete, and after unpacking, is ready to be turned on and used.

Unpack the Filter carefully and inspect it for damage that may have occurred during shipment. Check the case for damage, and check for loose sub-assemblies and parts. Check all front panel controls for freedom of operation. The recommended operating procedure is described below.

The rms voltage of the input signal should not exceed 5 volts. The dc component of the input signal should not exceed 100 volts.

2.2 FRONT PANEL CONTROLS

The front panel controls consist of two identical frequency dials and associated multiplier switches used to set cut-off frequencies, a power on-off switch, and an indic̣ator light.

Each frequency dial is calibrated with a single logarithmic scale reading directly in cycles per second from 19 to 210 . The dials are two inches in diameter with an effective scale length of approximately six inches per band, giving total effective scale length of approximately 24 inches for the 20 Hz to 200 kHz frequency range. The left-hand dial (LOW CUT-OFF FREQUENCY) and band multiplier switch select the low cut-off frequency, and the right-hand dial (HIGH CUT-OFF FREQUENCY) and multiplier switch select the high cut-off frequency.

Each of the two multiplier switches has four positions, covering the frequency ranges as shown in Section 1.2.

2.3 REAR PANEL CONTROLS

The rear panel controls consist of a RESPONSE switch, a GROUND switch, and a $115 / 230 \mathrm{~V}$ LINE switch. The RESPONSE switch is used to select either a Butterworth (max-flat) or a Low Q response. The GROUND switch is provided to disconnect the signal ground from the chassis. The LINE switch is used when changing from 115 V to 230 V AC operation.

2.4 OPERATION

To operate the Filter, proceed as follows:
a. Make appropriate power connections as described in Section 2.6.
b. Make appropriate connections to INPUT and OUTPUT terminals of filter.
c. Set cut-off frequencies by means of the band multiplier switches (CUTOFF FREQUENCY) and the frequency dials.
d. Turn POWER switch to ON.

NOTE

The left-hand band multiplier switch and frequency dial are used to select the low cut-off frequency and the right-hand controls select the high cut-off frequency.

The minimum pass-band is obtained by setting the high cut-off frequency equal to the low cut-off frequency.

2.5 TERMINALS

INPUT - A BNC type connector is provided on the left side of the front panel. A parallel BNC coaxial connector is located on the rear of the chassis.

OUTPUT - A BNC type connector is provided on the right side of the front panel. A parallel BNC coaxial connector is located on the rear of the chassis.

CHASSIS GROUND - An additional combination-type binding post is provided on the rear panel.

AC INPUT - A power receptacle with detachable line cord is located on the rear panel.

2.6 LINE VOLTAGE AND FUSES

The Filter may be operated from an AC power source of either l05-125 volts, $50-400 \mathrm{~Hz}$, or $210-250$ volts, $50-400 \mathrm{~Hz}$. A $115 / 230 \mathrm{~V}$ LINE switch, located on the rear panel, selects the filter's mode of operation. When the AC line is 115 V , move the LINE switch to the 115 V position. In this mode, a $1 / 8$ ampere slo-blo fuse must be used. When the filter is to be operated from 230 VAC, move the LINE switch to the 230 V position, and replace the fuse with a $1 / 16$ ampere slo-blo type.

SECTION 3

CIRCUIT DESCRIPTION

3.1 INTRODUCTION

As shown below in the simplified block diagram, Figure 7, the filter consists of an input amplifier, for isolation; a four pole low-pass section (high cutoff frequency), with four R. C. filter networks which are adjustable by means of a gauged potentionmeter assembly and bandswitch; and a four pole high pass section (low cutoff frequency), with four R.C. filter networks and a similar ganged potentionmeter assembly and bandswitch. Both cutoff frequencies are tuned continuously within each decade by the potentionmeter assemblies. The capacitors are tuned in decade steps by the bandswitch.

Figure 7. Simplified Schematic Diagram

3.2 DETAILED DESCRIPTION

3.2.1 Input Amplifier

The input signal is capacitor coupled through ClOl to the input amplifier consisting of Q101 and Q102. The input impedance determined by Rl0l is 10 megohms. The high input impedance of the F.E.T. Ql0l is negligible. The input amplifier is provided to isolate the input signal and supply a low impedance driving source for the first R. C. network.

3.2.2 High Pass Section

The high pass section consists of a pair of two pole filters, each adjusted to provide the proper Butterworth response characteristics when cascaded. Buffer amplifiers are used to isolate the two pole R. C. networks. The Buffer Amplifier, consisting of Q201 and Q202, following the first 2 pole network provides isolation and drives the next R. C. network. Q203 furnishes feedback to the emitter follower stage for corner frequency peaking. The signal then enters another Buffer Amplifier stage consisting of Q204 and Q205, again providing isolation and a low impedance source to drive the next R. C. network. Q206 and Q207 perform as a buffer amplifier between the high-pass and low-pass sections with Q208 providing enough feedback to Q204 to produce the correct Butterworth response. With switch S901 in the grounded position, the feedback is reduced to produce the Low Q (damped response) for transit free time domain operation.

3.2.3 Low Pass Section

The low pass section also consists of a pair of two pole filters each adjusted to provide the proper Butterworth response when cascaded.

The pair of two pole R.C. networks are isolated from each other with a buffer amplifier which is made up of two emitter followers.

The output from the high-pass section is fed into the first two-pole R. C. network before the buffer amplifier consisting of O301 and Q302. A portion of the output from Q302 is fed back to the R. C. network via Q303 to obtain the desired characteristics from this two pole section. The buffer amplifier also provides a low impedance source for driving the next pair of R. C. filters. Q304 and Q305 provide isolation and a low impedance source to drive the output. A portion of the output from Q305 is fedback through amplifier Q306 to obtain the proper Butterworth response characteristics. With switch S90l in the grounded position the feedback is reduced to a low Q (damped response) for transit free time domain operation. The output from Q305 passes through C303 and R411 to the output terminals.

3.2.4 RC/Butterworth Response

To prevent ringing and overshoot, caused by fast rise-time pulses, the filter may be operated in the low Q position. S 901 is provided to reduce the feedback to the second two pole filter in each section.

3.2.5 Power Supplies

A dual power supply is incorporated, providing plus and minus 15 volts. One full wave bridge rectifier (CR501, CR504, CR505, CR506) and filter capacitors C501 and C 502 provide the necessary unregulated d-c voltage levels.

The +15 V supply consists of Q502 (used as a Zener Reference), amplifier Q503, and series regulator Q501. A change in the regulated output is fed through Q502 and CR502 to the emitter of Q503, and, attenuated in the divider R51l and R501, R506, to the base of Q503. The resulting change in Q503 current drives the base of series transistor Q501 in the proper direction to restore the regulated voltage to +15 V . The -15 V supply works in the same manner.

Additional feedback is provided to both amplifiers via R 505 and R 508 to minimize power supply ripple.

SECTION 4

INCOMING ACCEPTANCE AND INSPECTION

4.1 INTRODUCTION

The following procedure should be used to verify the Filter operation within specifications. These checks may be used for incoming inspection and periodic specification checks. Tests must be made with all covers in place. If the instrument is not operating within specifications refer to Section 5 before attempting any detailed maintenance

4.2 TEST EQUIPMENT REQUIRED

The following test equipment is required to perform these adjustments:
a. RC Oscillator, with frequency range. 01 Hz to 1 MHz , frequency accuracy $+0.5 \%$ to 100 KHz , frequency response better than +.05 db and distortion less than. 02%, Krohn-Hite Model 4l00A or equivalent.
b. Oscilloscope, with DC to 50 MHz bandwidth, vertical input sensiti vity of $\mathrm{lmv} / \mathrm{cm}$, Tektronix type 544, with type 1A5 plug-in, or equivalent.
c. AC Voltmeter, capable of measuring 100 microvolts to 10 volts RMS, Ballantine Model 314A or equivalent.
d. DC Voltmeter, capable of measuring 1 millivolt to 20 volts, Fluke Model 8000 A or equivalent.
e. Variable auto-transformer for adjusting line voltage.

4.3 DIAL ACCURACY

a. Set high cutoff to 200 KHz . Set response switch to max flat position. Set low cutoff dial to $20,40,100,200$ on each of the multiplier positions. At each point, set oscillator to frequency corresponding to dial and multiplier setting. With l volt input, output should read between 0.6 V and $0.8 \mathrm{~V}(-3 \mathrm{db} \pm 1.5 \mathrm{db})$ at all frequencies except 200 KHz will read approximately 0.5 volts (-6 db) due to interaction of high cutoff setting.
b. Repeat measurements with response switch in low Q position. Output read ing should be approximately 0.25 volts (-12 db) at all frequencies except 200 KHz .
c. Set low cutoff to 20 Hz . Set response switch to max flat position. Set high cut off dial to $20,40,100,200$ on each of the multiplier positions. At each point, set oscillator to frequency corresponding to dial and multiplier setting. With l volt input, output should read between 0.6 V and $0.8 \mathrm{~V}(-3 \mathrm{db} \pm \mathrm{l} .5 \mathrm{db})$ at all frequencies except 20 Hz . 20 Hz will read approximately $0.5 \mathrm{~V}(-6 \mathrm{db})$ due to interaction of low cutoff frequency.
d. Repeat measurements with response switch in Low Q position. Output reading should be approximately $0.25 \mathrm{~V}(-12 \mathrm{db})$ at all frequencies except 20 Hz .

4.4 ATTENUATION SLOPE

a. Set high cutoff to 200 KHz and response switch to max flat position. Set low cutoff dial to 60. On each low cutoff multiplier position set oscillator to one half the frequency indicated by the low cutoff dial and multiplier setting. Output should read $-24 \mathrm{db} \pm 3 \mathrm{db}$ from input at each frequency.
b. Set low cutoff to 20 Hz . Set high cutoff dial to 60 . On each high cutoff multiplier position, set oscillator to twice the frequency indicated by the high cutoff dial and multiplier setting. Output should read $-24 \mathrm{db} \pm 3 \mathrm{db}$ from input at each frequency.

4.5 PASS-BAND GAIN

Set low cutoff to 20 Hz and high cutoff to 200 KHz . Set oscillator to 1 volt. At 50 Hz , $500 \mathrm{~Hz}, 5 \mathrm{KHz}$ and 50 KHz the output should be $1 \pm .1$ volt ($0 \mathrm{db} \pm 1 \mathrm{db}$).

4.6 MAXIMUM ATTENUATION

a. Set both cutoff frequencies to 200 KHz . Set oscillator input to filter at 5 volts, 20 KHz . Output of filter should measure less than 5 millivolts (-60 db).
b. Set both cutoff frequencies to 20 KHz . Set input to filter to 5 volts, 200 KHz . Output of filter should measure less than 5 millivolts (-60 db).

4.7 OUTPUT CHARACTERISTICS

a. Maximum Voltage:

Set low cutoff to 20 Hz and high cutoff to 200 KHz . Set input frequency to 1 KHz and increase input voltage until clipping is observed on output. Output should measure greater than 14 volts peak to peak before clipping is observed.
b. Maximum Current:

Connect 50 ohm resistor across output. Adjust input to obtain 0.5 volts peak to peak across 50 ohm resistor. Output should show no observable distortion.
c. Impedance:

Set output to 0.1 volt rms open circuit. Connect 50 ohm resistor to output. Voltage should drop to 0.05 volts.

4.8 HUM AND NOISE

Remove oscillator. Short input to filter. Output should measure less than 200 microvolts rms.

SECTION 5

MAINTENANCE

5.1 INTRODUCTION

If the Filter is not functioning properly and requires service, the following procedure may facilitate locating the source of trouble. Access to the interior of the filter is accomplished by removing the four screws centered at the rear of each cover; sliding off the side covers will unlock the top and bottom covers.

The general layout of major components, test points, screwdriver controls and adjustments is shown in Figure 9. Detailed component layout of the printed circuit card, Figure ll, is located on foldout attached to the inside rear cover. Various check points and voltages are shown on the Schematic Diagram and are also marked on the printed circuit card.

Many troubles may easily be found by visual inspection. When a malfunction is detected, make a quick check of the unit for such things as broken wires, burnt or loose components, or similar conditions which could be a cause of trouble. Any trouble-shooting of the Filter will be greatly simplified if there is an understanding of the operation of the circuit. Before any detailed troubleshooting is attempted, reference should be made to Circuit Description, Section 3, to obtain this understanding.

5.2 POWER SUPPLY

If the filter does not seem to be working properly the two power supplies should be checked first. If the plus 15 and minus 15 volt supplies appear to be correct refer to signal tracing analysis, Section 4.3.

Any malfunction of the power supplies will generally cause a large error in the plus or minus 15 volt supplies. Small errors of the plus or minus supplies may be corrected by adjusting R506 and R509 respectively. If the minus 15 volt supply is correct and the plus 15 volt supply is incorrect, check the reference voltage from the emitter of Q503 to the collector of Q502. If this reference voltage is $8.4 \pm .5$ and the plus 15 volt supply is high, the base to emitter voltage of $Q 503$ will be reduced, decreasing its collector current lowering the emitter to base voltage and turning off Q501. This will increase the emitter to collector voltage of Q501, correcting the plus 15 volt supply. The failure will be found where this action is blocked. If the plus 15 volt supply is low, the current in Q503 will be increased, turning on $Q 501$. If the supply voltage is low and Q503 and Q50l appear to be operating properly, the cause is most likely excessive current in the main filter section. An incorrect minus 15 volt supply may be traced in a similar manner.

5.3 SIGNAL TRACING ANALYSIS

If the power supplies appear to be correct but the Filter is not working, the following signal tracing analysis should locate the area of malfunction:

Set response switch to low Q position. Set both the low and high cutoff frequencies to 1 KHz . Connect a 1 KHz 5 volt rms sine wave signal to the input terminals. If the test signal does not appear correctly at the output, the area of the malfunction may be localized by determining where in the Filter the signal first deviates from normal.

Figure 8 shows various test points with their correct signal levels. If a test point is found whose signal level differs appreciably from the correct value, the circuitry immediately preceding that test point should be carefully checked.

5.4 TUNING CIRCUITS

If signal tracing shows one of the tuning circuits to be faulty, it should be determined if the trouble is in the resistive or capacitive element. If the trouble is in a capacitive element associated with the lowest or highest multiplier range, the malfunction will appear only on these positions. Any other defective tuning capacitors will introduce an error in adjacent bands. If there is a problem in a resistant element, the trouble will be of a general nature and will show up on all multiplier bands.

The range-determining capacitors as-

	CORRECT SIGNAL LEVEL (RMS VOLTS)
1	5.0
2	4.9
3	2.8
4	2.8
5	2.6
6	1.6
7	1.6
10	1.3
13	. .3
14	.73
15	.67
16	.18
17	.31
18	.30
20	.14

Figure 8. Test Point Voltages sociated with the band multiplier switches S701 and S702 are specially selected for close capacitance tolerance. All capacitor values fall within $\pm 5 \%$ of the specified value, but in order to maintain accurate frequency calibration over the entire dial range and also between decade ranges, the capacitors are matched within $\pm 2 \%$ of each other and generally within $\pm 2 \%$ in decade ratios.

The values of capacitance used on the highest band is selected to compensate for stray capacitance and are therefore not completely in decade ratios of those used on the lower bands.

For replacement purposes, a capacitor within $\pm 1 \%$ of the specified value can be used with negligible effect on the overall calibration accuracy. If more than one capacitor on a particular range is to be changed, it is recommended that several other capacitors on the switch be carefully measured on a capacitance bridge to determine the average percentage deviation from the nominal value. Any capacitors except those used on the two highest frequency ranges may be measured to determine
this tolerance. Replacement can then be made with capacitors of the exact value, and calibration will not be impaired.

Each of the variable resistance elements consists of four potentiometers ganged together with a gear assembly. Each potentiometer has series and shunt trims to insure proper tracking. The trims and the angular orientation of the potentiometers are carefully adjusted at the factory. If it becomes necessary to change one of these potentiometers in the field, it should be replaced only with a unit supplied by the factory complete with proper trims. The angular orientation should then be carefully adjusted following the procedure supplied with the parts.

SECTION 6 CALIBRATION AND ADJUSTMENT

6.1 INTRODUCTION

Before attempting any adjustments the procedure in Section 4 should be followed to determine if adjustments are necessary. The following procedure is provided for the purpose of facilitating the adjustment and calibration of the filter in the field, and adherence to this procedure should restore the filter to its original specifications. If any difficulties are encountered, please refer to Maintenance, Section 5. If any questions arise which are not covered by this procedure, please contact our factory service department. The location of all major components, modular subassemblies, test points, screw driver controls and adjustments are shown in Figure 9.

Access to the interior of the filter is accomplished easily by removing the four screws centered at the rear of each cover; sliding off the side covers will unlock the top and bottom covers.

6.2 TEST EQUIPMENT REQUIRED

AS LISTED IN SECTION 4. 2 .

6.3 INITIAL SETUP

a. Set low cutoff dial to 60 , multiplier to $\times 10$.
b. Set high cutoff dial to 200 , multiplier to x 1 K .

6.4 POWER SUPPLY

a. Short filter input. Connect d-c voltmeter between signal ground and plus 15 volts. (positive end, C505)
b. Adjust R 506 for 15 ± 0.2 volts.
c. Connect $d-c$ voltmeter between signal ground and minus 15 volts. (negative end of C506)
d. Adjust R509 for $15+0.2$ volts.
e. Remove short.

6.5 LOW-CUTOFF SECTION RESPONSE

a. Connect oscillator output to filter input.
b. Set oscillator to 6 KHz and adjust amplitude for l volt at filter input.
c. Connect AC voltmeter to point " 10 ".
d. Adjust R 226 for reading of $1 \mathrm{~V}, \pm .02 \mathrm{~V}$
e. Set oscillator to 600 Hz .
f. Adjust R 225 for a reading of .7 volts at point " 10 ".

6.6 LOW-CUTOFF DIAL SETTING

a. Set oscillator frequency to 3 KHz .
b. Adjust voltage for 1 volt at point " 10 ".
c. Set oscillator to 300 Hz .
d. Adjust low cutoff dial for .063 volts (-24 db from 1 volt) at point " 10 " .
e. If necessary, loosen dial set screws and set dial at 60.

6.7 LOW CUTOFF X1K MULTIPLIER CALIBRATION

6.7.1 Step 1

a. Set low cutoff dial to 20 , multiplier to xlK .
b. Set oscillator to 100 KHz and connect AC voltmeter to point " 4 ".
c. Adjust voltage at point " 4 " for 1 V rms.
d. Switch oscillator to 5 KHz .
e. Adjust C 707 for .06 volts (-24.5 db from 1 volt) at point " 4 ".
f. Repeat steps b through f until no additional adjustment is required.

6.7.2 Step 2

a. Set oscillator to 100 KHz and connect AC voltmeter to point "10".
b。 Adjust voltage at point " 10 " for 1 volt rms.
c. Switch oscillator to 10 KHz .
d. Adjust C717 for . 063 volts (-24 db from 1 volt) at point " 10 ".
e. Repeat steps a through e until no additional adjustment is required.

6.8 200KHZ CALIBRATION

a. Set low cutoff dial to 200 , multiplier to xlK .
b. Set oscillator to 600 KHz .
c. Adjust oscillator for 1 volt at point "10".
d. Switch oscillator to 200 KHz .
e. Trim C741 for $0.7 \pm .05$ volts at point " 10 ".

6.9 HIGH CUTOFF DIAL SETTING

a. Set low cutoff dial to 20 , multiplier to xl .
b. Set high cutoff dial to 60 , multiplier to xl 10 .
c. Set oscillator frequency to 100 Hz .
d. Adjust oscillator voltage for l volt at filter output.
e. Switch oscillator to 1.2 KHz .
f. Adjust high cutoff dial for .063 volts (-24 db from 1 volt) at output.
g. If necessary, loosen dial set screws and set dial at 60.

6.10 HIGH CUTOFF X1K MULTIPLIER CALIBRATION

a. Set high cutoff dial to 60 , multiplier to $x 1 K$.
b. Set oscillator to 6 KHz .
c. Adjust oscillator voltage for 1 volt at filter output.
d. Switch oscillator to 48 KHz .
e. Adjust C727 for a reading of . 94 volts at filter output.
f. Switch oscillator to 60 KHz .
g. Adjust C 737 for a reading of $0.7 \pm .05$ volts at filter output.
h. Repeat steps d through g until no further adjustment is required.

