Spectrum analyzer HM5011 HM5010

Alignment Procedure for HM 5010/HM 5011 5
A Control and Adjustment of Supply Voltages 5
B Final Alignment-Tuner 6
C Alignment-IF-Unit 6
D Linearity of Frequency Display 7
HM5010 XY-board 10
Tuner 11
Tracking-Generator 12
E Alignment of HM 5011 Tracking Generator 13
Tracking-Generator 15
Tuner RA-Board 16
Tuner RB-Board 17
IF-Amplifier 18
Main board 19
X-Y Board 20
FC-Board 21
PA-Board 22
CRT-Board 23
Power supply Board 24
RA-Board 25
Tracking-Generator 26
RB-Board 27
Main board 28
Main board 29
XY-Board 30
XY-Board 31
FC-Board 32
FC-Board 33
PA-Board 34
CRT-Board 35
PS-Board 36
PS-Board 37
PS-Board 38
Block Diagram HM 5010/HM 5011 39

Service Manual Adjustment Procedure Circuit Diagrams HM5010/5011

Specifications

Frequency

Frequency range: 0.15 MHz to $1050 \mathrm{MHz}(-3 \mathrm{~dB})$ Center frequency display accuracy: $\pm 100 \mathrm{kHz}$ Marker accuracy: $\pm(0.1 \%$ span +100 kHz)
Frequency display res.: 100 kHz ($41 / 2$ digit LED)
Frequency scanwidth: $100 \mathrm{kHz} /$ div. to 100 M Hz div. in 1-2-5 steps and $\mathrm{OHz} /$ div. (Zero Scan)
Frequency scanwidth accuracy: $\pm 10 \%$
Frequency stability: better than 150 kHz / hour
IF Bandwidth (-3dB): Resolution: 400 kHz and
20kHz; Video-Filter on: 4kHz
Sweep rate: 43 Hz

Amplitude

Amplitude range: -100 dBm to +13 dBm Screen display range: 80 dB (10dB / div.)
Reference level: -27 dBm to +13 dBm (in 10dB steps)
Reference level accuracy: $\pm 2 \mathrm{~dB}$
Average noise level: -99 dBm (20kHz BW)
Distortion: <-75dBc; 2nd and 3rd harmonic 3rd order intermod.: -70dBc (two signals $>3 \mathrm{MHz}$ apart)
Sensitivity: <5dB above average noise level Log scale fidelity: $\pm 2 \mathrm{~dB}$ (w ithout attn.) Ref.: 250 M Hz IF gain: 10dB adjustment range

Input

Input impedance: 50Ω
Input connector: BNC
Input attenuator: 0 to $40 \mathrm{~dB}(4 \times 10 \mathrm{~dB}$ steps)
Input attenuator accuracy: $\pm 1 \mathrm{~dB} / 10 \mathrm{~dB}$ step
Max. input level: $+10 \mathrm{dBm}, \pm 25 \mathrm{~V}$ D (0dB attenuation) +20 dBm (40dB attenuation)

Tracking Generator

Output level range: -50 dBm to +1 dBm (in 10dB steps and var.)
Output attenuator: 0 to 40 dB ($4 \times 10 \mathrm{~dB}$ steps)
Output attenuator accuracy: $\pm 1 \mathrm{~dB}$
Output impedance: 50Ω (BNC)
Frequency range: 0.15 M Hz to 1050 MHz
Frequency response: $\pm 1.5 \mathrm{~dB}$
Radio Frequency Interference (RFI): <20dBc

Divers

AM-Demodulator output for head-sets.
Permissible load impedance $>8 \Omega$

General

Display: CRT. 6 inch, 8×10 div. intern. graticule Trace rotation: Adjustable on front panel Line voltage: $115 / 230 \mathrm{~V} \pm 10 \%, 50-60 \mathrm{~Hz}$
Power consumption: approx. 20W
Operating ambienttemperature: $0^{\circ} \mathrm{C} . .+40^{\circ} \mathrm{C}$
Protective system: Safety Class I (IEC 1010-1)
Weight: approx. 7kg
Cabinet: W 285, H 125, D 380 mm
Subject to change without notice

Spectrum Analyzer HM5010 / HM5011

Frequency Range 0.15 MHz - 1050MHz.

41⁄22 Digit Display (Center \& Marker Frequency, 0.1 MHz resolution) - 100 to +13 dBm Amplitude Range, 20kHz, 400kHz and Video-Filter Tracking-Generator (HM5011 only): Frequency range: $0.15 \mathrm{MHz}-1050 \mathrm{MHz}$.
Output Voltage: +1 dBm to -50 dBm (50)).
Evolution of the original HM 5005/HM 5006 has led to the new HM5010/ HM5011 Spectrum Analyzer/Tracking Generator which now extends operation over $\mathbf{1 ~ G H z}$ (frequency range 0.15 to 1050 MHz). Both fine and coarse center frequency controls, combined with a scanwidth selector provide simple frequency domain measurements from $100 \mathrm{kHz} / \mathrm{div}$. to 100 $\mathrm{MHz} /$ Div.. Both models include a $4 \frac{1}{2}$ digit numeric LED readout that can selectively display either the center or marker frequency. The HM5011 includes a tracking generator.
The HM5010/ $\mathbf{5 0 1 1}$ offer the same operation modes as the HM 5005/5006. The instruments are suitable for pre-compliance testing during development prior to third party testing. A near-field sniffer probe set, HZ530, can be used to locate cable and PC board emission "hot spots"and evaluate EMC problems at the breadboard and prototype level. The combination of HM5010/ 5011 with the HZ530 is an excellent solution for RF leakage/radiation detection, CATV/ MATV system troubleshooting, cellular telephone/pocket pager test and EMC diagnostics. There is an optional measurement output for a PC which makes documentation of results easy and affordable with the HO500 Interface.

Accessories supplied: Line Cord, Operators Manual. Optional accessories, 50, -feedthrough termination HZ22 Viewing Hood HZ47, Near Field Probe Set HZ530, Carrying Case HZ96-2, Transient Limiter HZ560

HO500 Computer Interface for HAMEG Spectrum Analyzer

This HO500 computer interface offers the facility to transfer a calibrated frequency spectrum from any HAMEG spectrum analyzer to a PC. The HO500 interface is a 8 bit ISA BUS card installed in the PC, which transfers data via an interface cable. The software supplied allows a hard copy print out (including parameters) of the frequency spectrum, in Windows Format. Signal aquisition occurs 2 to 3 times per second.
The picture consists of 10 bit vertical by approx 3600 point horizontal display. The PC monitor display is in SVGA Format with 800×600 pixels. For comparison measurements, a previosly stored reference curve can be recalled. The software supplied works under Windows 3.1, 3.11 and WIN95. A simple XY analog output is required to connect the HO500 to the spectrum analyzer.

Specifications

Frequency

Frequency range: 0.1 MHz to 1000 MHz (lower frequency limit depends on probe type)
Output impedance: 50Ω
Output connector: BNC-jack
Input capacitance: 2pF
(high imped. probe)
Max. Input Level: +10dBm
(without destruction)
1dB-compression point: -2 dBm
(frequency range dependent)
DC-input voltage: 20V max.
Supply Voltage: 6V DC
4 AA size batteries
Supply-power of HM5010/5011

Supply Current:
8mA (H-Field Probe) 15 mA (E-FieldProbe) 24mA(High imp.Probe)
Probe Dimensions: 40x19x195mm (WxDxL) Housing: Plastic; (electrically shielded internally)

Package contents: Carrying case
1 H-Field Probe
1 E-Field Probe
1 High Impedance Probe
1 BNC cable (1.5 m)
1 Power Supply Cable
(Batteries or Ni-Cads are not included)

Near Field Sniffer Probes HZ530

The HZ530 is the ideal toolkit for the investigation of RF electromagnetic fields. It is indispensable for EMI precompliance testing during product development, prior to third party testing. The set includes 3 hand-held probes with a built-in pre-amplifier covering the frequency range from $\mathbf{1 0 0 k H z}$ to over 1000 MHz.

The probes - one magnetic field probe, one electric field probe, and one high impedance probe - are all matched to the 50Ω inputs of spectrum analyzers or RFreceivers. The power can be supplied either from batteries, Ni-Cads or through a power cord directly connected to an HM 5010/HM5011 series spectrum analyzer.

Signal feed is via a 1.5 m BNC-cable. When used in conjuction with a spectrum analyzer or a measuring receiver, the probes can be used to locate and qualify EMI sources, as well as evaluate EMC problems at the breadboard and prototype level. They enable the user to evaluate radiated fields and perform shield effectiveness comparisons. Mechanical screening performance and immunity tests on cables and components are easily performed.

The H-Field Near-Field Probe

The H-Field probe provides a voltage to

the connected measurement system which is proportional to the magnetic radio frequency (RF) field strength existing at the probe location. With this probe, circuit RF sources may be localized in close proximity of each other. The H-field will decrease as the cube of the distance from the source. A doubling of the distance will reduce the H field by a factor of eight $\left(H=1 / d^{3}\right)$; where d is the distance.

In the actual use of the H -field sensor one observes therefore a rapid increase of the probe's output voltage as the interference source is approached. While investigating a circuit board, the sources are immediately obvious. It is easily noticed which component (i.e. IC) causes interference and which does not. In addition, by use of aspectrum analyzer, the maximum amplitude as a function of frequency is easily identified. Therefore, one can eliminate early in the development components which are not suitable for EMC purposes. The effectiveness of countermeasures can be judged easily. One can investigate shields for "leaking" areas and cables or wires for conducted interference.

The High-Impedance Probe

The high-impedance probe ($\mathrm{Hi}-\mathrm{Z}$) permits the determination of the radio frequency interference (RFI) on individual contacts or printed circuit traces. It is a direct-contact probe. The probe is of very high impedance

(near the insulation resistance of the printed circuit material) and is loading the test point with only 2 pF (80Ω at 1 GHz). Thereby one can measure directly in a circuit without significantly influencing the relationships in the circuit with the probe.

One can, for example, measure the quantitative effectiveness of filters or other blocking measures. Individual pins of ICs can be identified as RFI sources. On printed circuit boards, individual problem tracks can be identified. With this Hi-Z probe individual test points of a circuit can be connected to the 50Ω impedance of a spectrum analyzer.

The E-Field Monopole Probe

The E-field monopole probe has the highest sensitivity of the three probes. It is sensitive enough to be used as an antenna for radio or TV reception. With this probe the entire radiation from a circuit or an equipment can be measured. It is used, to determine the effectiveness of shielding measures. With this probe, the entire effectiveness of filters can be measured by measuring the RFI which is conducted along cables that leave the equipment and may influence the total radiation. In addition, the E-field probe may be used to perform relative measurements for certification tests. This makes it possible to apply remedial suppresion measures so that any requalification results will be positive. In addition, pre-testing for certification tests may be performed so that no surprises are encountered during the certification tests.

Alignment Procedure for HM5010/ HM 5011

Attention! The opening of covers or removal of parts is likely to expose live parts and accessible terminals which can be dangerous to life. Maintenance, service and alignment should be carried out by qualified personnel only, which is acquainted with the danger involved.

When aligning the HM 5010/5011 it is assumed that all sub-assemblies of the instrument are completely pretested and working correctly. The tuner, IF-unit, and tracking generator should be pre-aligned. When aligning aHM 5010, a separate tracking generator unit must be available and connected to the HM5010 for some specific adjustments.
Prior to the alignment procedure, the instrument must warm up for 60 minutes.
All adjustments are carried out by means of a plastic screw driver or a ceramic adjustment tool.
The alignment is divided into the following steps:

A Checking of supply voltages
B Alignment of the tuner
C Alignment of the IF-unit

D Linearity alignment
E Tracking generator alignment
F Check of overall adjustment

The numbering system is related to the respective pictures. Screen shots are designated as PIC
1 HF-Synthesizer 100 kHz to 1000 MHz , i.e. HM 8133
2 BNC cable, BNC T-connector, $2 \times 10 \mathrm{~dB}$ attenuator 50 ohm
1 Voltmeter i.e. HM 8011-3

A Control and Adjustment of Supply Voltages

adjust: adjust: adjust: adjust:

12 V to an accuracy of $\pm 0.1 \mathrm{~V}$ minimum brightness
check:
check:
check:
check:
-5 V tolerance $\pm 0.2 \mathrm{~V}$
tolerance $\pm 1 \mathrm{~V}$
check: $\quad+138 \mathrm{~V}$ tolerance $\pm 1 \mathrm{~V}$

The corresponding voltage test points to check direct voltage can be measured at the measuring connector strip (see PIC 2).

Basic adjustment:
When Y-pos. knob is snapped in on front board, adjust beam approx. 2 mm below bottom graticule line via R801.

B Final Adjustment - Tuner

The tuner is already aligned by the factory. When changing the 1st mixer, it might be necessary to realign cavity filter: Set signal to $500 \mathrm{MHz}-27 \mathrm{dBm}$ to input, center frequency to 500 M Hz , Scanwidth to 0.5 M Hz , turn all three M 3 screws to max. amplitude. In case curve is not uniform, coils L1, L2, and L3 can be adjusted to maximum uniformity (fig. 22) by slightly bending them.

In case signal in frequency range is shacky, 2nd local oscillator might not be snapped in correctly. The correct snapin of the PLL is visible via the lock detect LED (D2), which has to be lit constantly without flickering if PLL is snappedin correctly.
The oscillator signal has to be fixed (crystal dependent) at 1.32 GHz , it may not drift.
The PLL is snapped-in when the tuning voltage VT (measure at PAD1) is between 0.5 and 4.5 V . The alignment will bring the tuning voltage to the center of the tuning range. VT of the 2 nd LO has to be between 2 V and 2.5 V . Constantly check tuning voltage while aligning tuner.

Alignment is necessary in two cases: $\mathrm{VT}<2.0 \mathrm{~V}$ and $\mathrm{V} T>2.5 \mathrm{~V}$.

- Case 1 VT<2.0V

Correction:
a) Solder all adjustment areas to connect trace from C1 to C2.
b) Remove excess solder at center conductor of resonator pad.

- Case $2 V T>2.5 \mathrm{~V}$

Correction:
a) Adjustment areas may not be soldered to connect trace from C1 to C2 .
b) Add solder to resonator pad.

C Alignment of IF-Unit

fig. 22 for HM 5010

Measurement setup: Apply two different signals to the input of the HM 5011 via BNC T-connector and 10dB attenuators.
Adjust HM 5010/5011: Center frequency to 500 MHz ; all attenuators on (-40 dB) Bandwidth 400 kHz ; video filter off; scanwidth $0.5 \mathrm{MHz} /$ div.; marker off.
Adjust Tracking Generator: Attenuator -20dB; level max. (HM 5011 only) RF-generator: frequency 500 MHz ; level -5dBm

The output voltage of the tracking generator is visible on the screen by an overlay of the fixed frequency. A "zero" point is visible within the signal to the right or to the left of the 500 MHz spectral line (fig. 23) (5011 only).

IF Filter Curve at 400kHz Bandwidth

align: \quad Step 1 Align (with plastic screw driver) Coil L1 (PIC 5) to maximum output amplitude and symmetry to Y-axis.
align: \quad Step 2 Align (with plastic screw driver)Coils $\mathbf{3 + 4 + 1 3 + 1 4 (P I C 5)}$) to symmetrieto Y-axis. The "zero" point must be at the maximum (at 500 MHz) (fig. 23).
align: \quad Stept 3 if necessary, repeat step 1 and 2.

fig. 23 for HM 5011

PIC 5 IF-Amp Board

IF Filter Curve at 20kHz Bandwidth (HM5010)

align: \quad Step 1 Align (with plastic screw driver) Coils L7+8+9+10+11+12 until 'zero" point is exactly centered at 500 M Hz (as with 400 kHz Bandwidth). Watch for symmetry of Filter Curve.

IF Filter Curve at 20kHz Bandwidth (HM5011)

Pre-Alignment: Remove T-connector. Connect tracking generatormoduledirectly to the input of the HM 5011. Turn off attenuators on tracking generator module and on HM5011 (0 dB). The output voltage of the tracking generator module is now visible as horizontal line (with slight ripple).
adjust: \quad Step 1 Adjust (with plastic screw driver) Coils $\mathbf{7 + 8 + 9 + 1 0 + 1 1 + 1 2}$ to maximum screen height of displayed output voltage. Add attenuators of HM 5010/5011 as soon as "line"has reached the middle of the screen (-30 dB).
adjust: Step 2 This alignment has to be performed repeatedly in order to optimize settings.
Fine Alignment: Connect BNC-T-connector again as in the beginning of the IF alignment. Set attenuator of tracking generator module to -20dB, scanwidthto $0.5 \mathrm{M} \mathrm{Hz} / \mathrm{div}$. If necessary, re-adjust center frequency (adjust 500 MHz spectral line to screen center). "Zero" point is now visible to the right or to the left of screen center (amplitude maximum) (fig. 24).
adjust: \quad Step 1 Align (with plastic screw driver) Coils $\mathbf{L 7 + 8 + 9 + 1 0 + 1 1 + 1 2}$ until "zero" point reaches maximum. Watch for symmetry of Filter Curve.
adjust: \quad Step 2 This alignment has to be performed repeatedly in order to optimize settings.

fig. 24

IF Gain - Adjustment of different Bandwidths

Set scanwidth to $0.2 \mathrm{MHz} / \mathrm{div}$. Switch bandwidth repeatedly between 400 kHz and 20kHz. The distance between the output voltage (line) of the tracking generator and tge 400 M Hz amplitude may not vary. If the amplitude values do not match exactly, adjust by means of R-trimmer VR2 (PIC5).

Linearity of IF-Amplifier Gain

The linearity of the IF-amplifier gain has to be checked through the entire display range. Apply a $400 \mathrm{MHz}(-27 \mathrm{dBm})$ signal directly to the input of the HM 5010/5011. Adjust scanwidth to 5 MHz /div, release attenuator switched (0 dB), select filter bandwidth of 400 kHz . The spectral line should reach the upper screen edge. Use attenuators to reduce signal in 10db steps, whereby each individual attenuation step has to reduce the level by $10 \mathrm{~dB} \pm 1 \mathrm{~dB}$. In case deviation is as follows:

- A the drop of the individual attenuation steps is larger than $10 \mathrm{~dB} \pm 1 \mathrm{~dB}$, or
- B the drop of the individual attenuation steps is smaller than $10 \mathrm{~dB} \pm 1 \mathrm{~dB}$, the linearity of the attenuators has to be adjusted as follows:

Set attenuator to -40dB. Adjust spectral line exactly to -40dB (center line) via VR1, VR3, VR4. Then set attenuators back to 0dB und adjust spectral line by means of trimpots VR802A and VR801 (XY board) to zero point and base line to bottom graticule line. This procedure has to be repeated until the settings at -40dB and OdB are correct.

D Linearity of Frequency Display

Settings for HM 5010/5011: Center frequency at 500M Hz; all attenuator switches released; filter bandwidth 400 kHz ; video filter off; scanwidth to $100 \mathrm{M} \mathrm{Hz} /$ div.; marker off.

Measurement Setup: Apply signal of 500M Hz -27dBm to input of HM 5010/5011.
Check: Basic setting: The HM 5010/5011 has to be adjusted that the noise level touches the bottom graticule line. The spectral line of $500 \mathrm{M} \mathrm{Hz}-27 \mathrm{dBm}$ reaches the top graticule line and is situated in the center of the screen. Adjust 500 MHz spectral line exactly to screen center via X-pos knob (on front of the unit).
Check: Upper frequency limit: Check if frequency of minimum 1050 can be set as center frequency.

Adjust HM 5010/5011 to basic setting (see above). Apply input signal of 100 M Hz , level +7 dBm Overriding the input allows for the harmonics of the input signal to become visible (fig. 7). This simplifies the adjustment of individual spectral lines in horizontal direction.
adjust: \quad Spectral line at 400 MHz
Turn X-ampl. knob on front of instrument to have the 4 spectral lines matched with the corresponding graticule lines on the screen(fig. 8).
adjust:
adjust:
Spectral line at 100 MHz With Trimpot RV171 align to match this spectral line with the corresponding graticule line on the screen (fig. 9).
adjust: Zero Peak
With Trimpot RV173 align to match this spectral line with the corresponding graticule line on the screen (fig. 9).
adjust: \quad Spectral line at $600-1000 \mathrm{M} \mathrm{Hz}$
With Trimpot RV186 adjust to match 700 MHz to the correct graticule line.
adjust: \quad Spectral line at 800 MHz ;
With Trimpots RV181 + RV183 for 900MHz and RV197 for 1000MHz (PIC 3) adjust to match this spectral line with the corresponding graticule line on the screen.

fig. 7

fig. 8

fig. 9

fig. 10

fig. 11

Set Trimpot RV113 that frequency will not display below 990M Hz when center frequency is set to lowest frequency

Adjust M arker.
Settings on HM 5010/5011: Center frequency to 500 MHz , all attenuators in off position, filter bandwidth to 400kHz, video filter off.
Scanwidth to 100 MHz , M arker on.
Signal 100M Hz +7dBm.
Adjust Marker to 500M Hz display and set to 500 MHz mark on screen via RV149 (PIC 4).
Tum Marker left to max. and adjust to 990M Hz via RV112.

PIC 3 - Main-Board

E Alignment of HM5011 Tracking Generator

1. Required Instruments:

1.1 Spectrum Analyzer - minimum 1000M Hz
1.2 Completely assembled HM 5011
1.3 Multimeter to measure DC voltage
1.4 Oscilloscope, i.e. HM 303
1.5 Coax cabel

2. Preparation:

2.1 Assemble Spectrum Analyzer completely (without case).
2.2 All sub-assemblies have to be pre-checked.
2.3 HM 5011 has to be warmed up.
2.4 Connect VCO output of RA board to VCO input (MCX connector).
2.5 Connect 12 M Hz reference clock of TG board to RCA connector ST1 on RB board.
3. Check Signalling Lines

Cable connection W1

Pin Nr.	Description	Signal
1	-12 V	Supply OP
2	+12 V	Supply
3	+5 V	Supply PLL

4. Check Supply and Bias Voltages

Comp.Nr.	Pin Nr.	Description	Voltage
C1	1	1. VCO Amp.	+5.8 V
C2	1	2. VCO Amp.	+5.8 V
C11	3	fix LO Amp.	+5.9 V
C6	5	Var. Amp.	+5.6 V
C9	3	1. Power Amp.	+3.6 V
C12	3	2. Power Amp.	+4.8 V

5. Alignment of fixed LO

5.1 The 2nd LO oscillates at a frequency of 1.35 GHz . The level at the mixer input IC3 Pin2 is -17 dBm . Oscillation of the 2nd LO can also be measured with the H or E-Field Probe (HZ530).
5.2 Lock-Detect LED (D4) will confirm the correct PLL lock when lighting up without flickering or going out. The oscillator signal has to remain fixed crystal dependent) at 1.35 GHz and may not drift. PLL is locked if tuning voltage VT (measure at PAD2) is between 0.5 and 4.5 V . Align tuning voltage to medium tuning range. VT of fixed LO should be between 2 and 2.5 V . The tuning volage has to be check constantly during alignment. Place coax resonator CR2 bottom side to the edge of soldermask next to center conductor, and solder on the left and the right side.
5.3 Alignment is necessary in two cases: $\mathrm{VT}<2.0 \mathrm{~V}$ and $\mathrm{VT}>2.5 \mathrm{~V}$.

- Case 1 VT<2.0V

Correction:
a) Solder all adjustment areas to connect trace from C 1 to C 2 .
b) Remove excess solder at center conductor of resonator pad.

- Case 2 VT>2.5V

Correction:
a) Adjustment areas may not be soldered to connect trace from C1 to C2.
b) Add solder to resonator pad.

6. Control of fixed LO-Level

6.1 To check 2nd LO-level, cap C20 (22pF) has to be removed and 500hm Coax-cable has to be connected to 13dB attenuator of output. Connect other end of coax cable with adequate test analyzer.
6.2 Adjust test analyzer to 1.35 GHz center frequency; the LO-level to be measured has to be $-17 \mathrm{dBm}(\pm 1 \mathrm{~dB}$) (consider attenuation of cable).
6.3 If cap is not removed and coax cable is connected parallel to mixer to the VCO-branch, a level of approx. -24 $\mathrm{dBm}(\pm 1 \mathrm{~dB})$ should be measured due to decreased load resistance.

7. Check of VCO

7.1 Adjust HM 5011 to Zero Scan, center frequency to 500 MHz .
7.2 Remove Cap C14 (22pF), connect one side to attenuator output, other side stand up in the air.
7.3 Connect Cap side sticking up in the air to center conductor of 50 Ohm cable. Solder shielding of cable directly next to Cap to ground. Connect other end of Cap to Analyzer input (i.e. Advantest R3361A). Start 1.35GHz Stop 2.35 GHz reference level: 0 dBm .
7.4 VCO signal which can be observed on the test analyzer has to shift according to center frequency (tuning voltage). Tuning range has to be at least from 1350 to 2350 Mhz . continuously and without interruption. It should not go under absolute level of +7 dBm (coax cable of 1 mtr . has 1-2 dB of attenuation at 2GHz). Level has to be between +7 dBm and +10 dBm .
7.5 Connect coax cable parallel to 1st mixer to VCO-branch. A level of +5 dBm to +8 dBm due to decreased load resistance over frequency band.

8. Check of Attenuators:

8.1 Set -30dB attenuation to Tuner and to 0 dB attenuation to TG.
8.2 Set Center Frequency to $500 \mathrm{MHz}, 100 \mathrm{MHz} /$ Div. span.
8.3 Connect tracking generator to tuner input.
8.4 TG-line has to be visible.
8.5 Switch on additional attenuators. Attenuation for each attenuator switch has to be $10 \mathrm{~dB}(\pm 1 \mathrm{~dB}$)

9. TG Level Adjustment:

9.1 Connect TG to reference analyzer.
9.2 Set HM 5011 to Zero Scan and 500 MHz Center Frequency.
9.3 Release all attenuator buttons of TG ($0-\mathrm{dBm}$) and turn TG-level to maximum.
9.4 Adjust amplitude to +1 dBm with Pot RV4 on TG.
9.5 tum TG-level to minimum.
9.6 Adjust amplitude to -10dBm with Pot RV3 on TG.
9.7 Amplitude has to be adjustable now between +1 dB and -10 dB .

10. Final Check

10.1 Position of TG-level has to align in both bandwidths (400 kHz and 20 kHz). If necessary, align with IF-Amp.
10.2 TG-level knob has to be adjustable from +1 to -10 dBm .

MB PCB

FC-Board

-IMMEEB

Instruments

Oscilloscopes

Multimeters

Counters

Frequency Synthesizers

Generators

R- and LC-Meters

Spectrum Analyzers

Power Supplies

Curve Tracers

Time Standards

HAMEG GmbH

Industriestraße 6
D-63533 Mainhausen
Telefon: +49 (0) 6182 / 800-0
Telefax: +49 (0) 6182 / 800-100
E-mail: sales@hameg.de
service@hameg.de

