

Instuction Manuel

NOTE

This manual documents the Model 80268 and lis assemblles at the revision levels shown In Appendix A. If your Instrument contains assemblies with different revision letters, It will be necessary for you to elther update or backdate this manual. Refer to the supplemental change/errata sheet for newer assemblies, or the backdating sheet In Appendix A for older assembles.

8026B Digital Multimeter

Instruction Manual

Dear Customer:

Congratulations! We at Fluke are proud to present you with the Model 8026 B Multimeter. This instrument represents the very latest in integrated circuit and display technology. As a result, the end product is a rugged and reliable instrument whose performance and design exhibit the qualities of a finely engineered lab instrument.

To fully appreciate and protect your investment, we suggest you take a few moments to read the manual. As alvays, Fluke stands behind your 8026 B with a full 2-vear uarranty and a norlduide service organization. If the need arises, please don't hesitate to call on u s.

Thank you for your trust and confidence.

John Fluke Mfg. Co., Inc.

Table of Contents

SECTION TITLE PAGE
1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. INTRODUCTION 1-1
1-3. PREPARING FOR OPERATION I-2
1-4. Unpacking 1-2
1-7. Battery and 'or Fuse Installation/Replacement 1-2
I-9. PHYSICAL FEATURES 1-4
1-11. INITIAL CHECK-OUT PROCEDURE 1-4
1-13. ACCESSORIES $1-8$
1-15. SPECIFICATIONS I-8
2 OPERATING INSTRUCTIONS 2-1
2-I. INTRODUCTION 2-1
2-3. INPUT POWER 2-1
2-4. Battery life 2-1
2-6. Line Power Operation 2-1
2-8. OPERATING NOTES 2-1
2-10. Input Overload Protection 2-2
2-12. Input Connections to COMMON 2-3
2-14. Fuse Check 2-3
2-16. Fuse Replacement 2-3
2-18. The Display 2-3
2-22. OPERATION 2-4
2-24. MEASUREMENTT TECHNIQUES 2-4
2-26. AC Measurement 2-4
2-32. Voltage AC:DC 2-10
2-35. Current AC DC 2-10
2-39. Resistance 2-13
2-43. Continuity 2-15
2-46. Conductance 2-16
2-50. APPI.ICATIONS 2-16
2-52. Transistor Tester 2-16
2-57. $\quad 1$ eakage Tester 2-19
SECTION TITLE PAGE
3 THEORY OF OPERATION 3-1
3-1. INTRODUCTION 3-1
3-3. OVERAII. FUNCTIONAL DESCRIPTION 3-1
3-8. BLOCX DIAGRAM ANAI.YSIS 3-1
3-9. A/D Converter 3-1
3-18. Input Signal Conditioners 3-6
4 MAINTENANCE 4-1
4-I. INTRODUCTION 4-1
4-3. SERVICE INFORMATION 4-1
4-7. GENERAI. INFORMATION 4-2
4-8. Access Information 4-2
4-17. Cleaning 4-5
4-19. Battery/Backup Fuse Replacement 4-5
4-21. PERFORMANCE TESI 4-6
4-23. Initial Procedure 4-6
4-25. Display Test 4-6
4-27. Resistance/Conductance Test 4-7
4-29. Continuity Test 4-7
4-31. DC Voltage Test 4-8
4-33. AC Voltage Test 4-8
4-35. DC Current Test 4-9
4-37. CALIBRATION 4-10
4-40. TROUBLESHOOTING 4-1!
5 LIST OF REPLACEABLE PARTS 5-1
5-I. INTRODUCTION 5-I
5-4. HOW TO OBTAIN PARTS 5-I
6 ACCESSORY INFORMATION 6-1
6-1. INTRODUCTION 6-1
6-3. DELUXE CARRYING CASE (C-90) $6-1$
6-5. TEMPERATURE PROBE (80T-150C and 80T-150F) 6-1
6-6. Introduction 6-1
6-8. Specifications $6-1$
6-9. CURRENT TRANSFORMER (801-600) $6-4$
6-10. Introduction 6-4
6-12. Specifications 6-4
6-13. HIGH VOLTAGE PROBE ($80 \mathrm{~K}-6$) 6-4
6-14. Introduction 6-4
6-16. Specifications 6-4
6-17. HIGH VOLTAGE PROBE ($80 \mathrm{~K}-40$) 6-4
6-18. Introduction 6-4
6-20. Specifications 6-4
6-21. HIGH FREQUENCY PROBE (83RF) 6-5
TABLE OF CONTENTS, continued
SECTION TITLE PAGE
6-22. Introduction 6-5
6-24. Specifications 6-5
6-25. HIGH FREQUENCY PROBE (85RF) 6-5
6-26. Introduction 6-5
6-28. Specifications 6-5
6-29. BATTERY FI.IMINATOR (A81-115) 6-6
6-31. CURRENT SHUNT (80J-10) 6-6
6-32. Introduction 6-6
6-34. Specifications 6-7
6-35. AC:DC CURRENT PROBE (Y\&100) 6-7
6-36. Introduction $6-7$
6-39. Specifications 6-7
6-40. AC CURRENT TRANSFORMER (Y8101) 6-8
6-41 Introduction $6-8$
6-43. Specifications 6.8
6-44. SAFETY DESIGNED TEST LEAD SFT (Y8132) $6-8$
6-46. DEI.UXF TEST LEAD SET (Y8134) 6-8
6-48. SLIM Fl.EX TEST IEAD SET (Y8140) 6-8
7 SCHEMATIC DIAGRAMS 7.1
APPENDIX A A-1

List of Tables

TABLE TITLE PAGE
1-I. 8026B Controls, Indicators and Connectors $1-6$
I-2. 8026B Accessories 1-9
1-3. 8026B Specifications 1-9
2-1. Input Overload Limits 2-2
2-2. Voltage/Current Capability of Resistance Ranges 2-15
4-1. List of Recommended Test Equipment 4-2
4-2. Resistance/ Conductance Checks 4-7.
4-3. DC Voltage Checks 4-8.
4-4. AC Voltage Test 4-9.
4-5. DC Current (mA) Checks 4-10
4-6. Troubleshooting Guide 4-12
5-1. 8026B Final Assembly 5-3.
5-2. Al Main PCB Assembly 5-6.
5-3. A2 Annunciator PCB Assembly 5-10
5-4. Federal Supply Codes for Manufacturers 5-12
6-1. A81 Model Numbers and Input Power 6-6

List of Illustrations

FIGURETITLEPAGE
1-1. Removing the Battery Cover 1-3
1-2. Battery Removal 1-4
1-3. Controls, Indicators and Connectors 1-5
2-1. Volts Operation 2-5
2-2. Current Operation 2-6
2-3. Resistance Operation 2-7
2-4. Conductance Operation 2-8
2-5. Continuity Operation 2-9
2-6. Waveform Conversion 2-11
2-7. Voltage Measurement Error Calculations 2-12
2-8. Current Measurement Error Calculations 2-14
2-9. . Conductance-to-Resistance Conversion 2-17
2-10. Transistor Beta Test Fixture 2-18
3-1. Model 8026B Simplified Block Diagram 3-3
3-2. Dual Slope A/D Converter 3-4
3-3. Input Signal Conditioners 3-8
4-1. Calibration Adjustment Locations 4-3
4-2. LCD Display Assembly 4-4
5-1. 8026B Final Assembly 5-5
5-2. A1 Main PCB Assembly 5-9
5-3. $\quad \mathrm{A} 2$ Annunciator PCB Assembly 5-11
6-1. 8026B Accessories 6-2

Section 1
 Introduction and Specifications

1-1. INTRODUCTION

1-2. Your John Fluke Model 8026B is a pocket-size digital multimeter that is ideally suited for application in the field, lab, shop or home. Some of the features of your instrument are:

- All VOM functions plus conductance and continuity (8 in all) are included as standard.

```
DC Voltage - 100 \muV to 1000V
AC Voltage - 100 \muV to 750V
DC Current - I }\mu\textrm{A}\mathrm{ to }2000\textrm{mA
AC Current - 1 }\mu\textrm{A}\mathrm{ to 2000 mA
Resistance - 0.1\Omega-20 M \Omega
Diode Test
Conductance - 0.1 ns to 200 ns and .001 ms to 2 ms (S = siemens = 1/\Omega).
Continuity - Provides an immediate audible indication when continuity is
detected.
```

- True rms ac measurement for signals up to 10 kHz .
- CONDUCTANCE - Allows fast, accurate, noise-free resistance measurements up to $10,000 \mathrm{M} \Omega$.
- An easy-to-read high contrast 3 1/2 digit liquid crystal display.
- Each range has:
: Full auto-polarity operation
Overrange indication
Effective protection from overloads
- Dual slope integration measurement technique to ensure noise-free measurements.
- Easy calibration - few adjustments.
- Lightweight - $\mathbf{3 6 9}$ grams (13 ounces).
- Up to 200 hours of continuous operation can be expected from a single, inexpensive, 9 V , alkaline battery (transistor radio/calculator type).
- Low battery voltage automatically detected and displayed.
- Line operation is possible using a Model A81 Battery Eliminator (see Section 6 , Accessories).
- Protected test leads - finger guards on the probes and shrouded contacts on the connectors discourage accidental contact with circuit voltages.
- A full line of accessories that extend the range and scope of your instrument.

1-3. PREPARING FOR OPERATION

1-4. Unpacking
1-5. Your 8026B was packed and shipped in an especially designed protective container. This manual, the multimeter, one 9 V battery, and two test leads (one red and one black) should be packed in the shipping container. Check your shipment thoroughly. If anything is wrong with your shipment, contact the place of purchase immediately. If satisfaction is not obtained, contact the nearest John Fluke Service Center. A list of these service centers is located at the end of this manual.

1-6. If reshipment is necessary, please use the original shipping container. If the original container is not available, a new one can be obtained from the John Fluke Mfg. Co., Inc. Please state the instrument model number when requesting a new shipping container.

1-7. Battery arid/or Fuse Installation/Replacement

1-8. Your 8026B is designed to operate on a single, inexpensive, 9 V battery of the transistor radio/calculator variety (NEDA 1604). When you receive your 8026B the battery will not be installed in the DMM. Once the battery is installed, you can expect a typical operating life of up to 200 hours with an alkaline battery or 100 hours with a carbon-zinc battery. When the battery has exhausted about 80% of its useful life, the BT indicator will appear in the upper left corner of the display. Your 8026B will operate properly for at least 20 hours after BT appears. Use the following procedure to install or replace the battery and to replace the fuse.

WARNING

TO AVOID ELECTRICAL SHOCK HAZARDS REMOVE THE INPUT SIGNAL and the test leads from the input terminals, and set the POWER SWITCH TO OFF BEFORE OPENING THE BATTERY COMPARTMENT.
I. Set the 8026B power switch to OFF
2. Remove the test leads from external circuit connections and from the 8026B input terminals.
3. Open the battery compartment on the bottom of the 8026 B using the method shown in Figure 1-1.
4. Tilt the battery out as shown in Figure 1-2.
5. If fuse FI is to be replaced, use a pointed tool such as a probe tip or small screwdriver to pry F 1 from its holder. Replace the defective fuse with fuse type AGX2. (lnstruments that accomodate metric fuses use $5 \times 20 \mathrm{~mm} 2 \mathrm{~A} 250 \mathrm{~V}$ type F.)
6. Disconnect the battery clip from the battery.
7. Press the battery clip onto the replacement battery and return both to the battery compartment.
8. Make sure the battery leads are routed by the broad side of the battery and fully within the confines of the battery compartment before sliding the cover into place.

WARNING

DO NOT OPERATE THE 8026B UNTIL THE BATTERY COVER IS IN PLACE AND FULLY CLOSED.

Figure 1-1. Removing the Battery Cover

Flgure 1-2. Battery Removal

1-9. PHYSICAL FEATURES

1-10. Before using your 8026B we suggest that you take a few minutes to get acquainted with your instrument. All of the externally accessible physical features of the 8026 B are shown in Figure 1-3 and described in Table 1-1. Locate each feature on your 8026B as you read the description.

1-11. INITIAL CHECK-OUT PROCEDURE

1-12. Now that you have installed the battery, and know where everything is, let's make sure the unit is working properly. We'll run through a simple check-out procedure, starting with turn-on. No equipment other than the test leads will be required. If a problem is encountered, please recheck the battery, fuses, switch settings, and test lead connections before contacting your nearest authorized John Fluke Service Center.
NOTE

This procedure is intended to verify overall instrument operation, and is not meant as a substitute for the formal Performance Test given in Section 4. Limits shown exceed the specifications because the procedure uses one measurement to check another.

1. Set the power switch to OFF and all range and function switches to the released (out) position.
2. Set the power switch to $O N$ and observe the display. It should read 00.0 ± 0.1.
3. Connect the red test lead to the $\mathrm{V} / \mathrm{\Omega}$ input terminal.
4. Touch the red probe tip to the COMMON input terminal, and sequentially depress each of the six range switches starting at the top ($20 \mathrm{M} \Omega$). The display should read zero \pm one digit and the decimal point should be positioned as follows:
a. $20 \mathrm{M}-0.00$
b. $2000 \mathrm{k}-000$
c. $200 \mathrm{k}-00.0$
d. $20 \mathrm{k}-0.00$
e. $2 \mathrm{k}-.000$
f. 200-00.0
5. Press the 20 V range switch and remove the probe from the COMMON input terminal.
6. Look inside of the battery eliminator connector on the right side of the 8026B and locate the connector contacts (center post and side contact as shown in Figure 1-3).
7. Touch the red probe tip to the center post of the battery eliminator connector. The display should read approximately -6 V dc.
8. Touch the probe tip to the side contact of the battery eliminator connector. The display should read approximately 2.8 V dc. Notice that the difference between the two readings is equal to the battery voltage (typically 8 V to 9 V dc). Remove the probe from the battery jack.

Figure 1-3. Controls, Indicators and Connectors

Table 1-1. 8026B Controls, Indicators and Connectors

ITEM NO.	NAME	FUNCTION
1	Display	A 3-1/2 digit display (1999 max, with decimal point and minus polarity indication, used to indicate measuremet values, overrange conditions, and a low battery condition.
2	Power Switch	A slide switch used to turn the instrument off and on.
3	Tilt Bail	A removable fold-out stand which allows the instrument to be either tilted for bench-top applications or hung from a hook in the absence of a work surface.
4	Battery Eliminator and Connector	An external input power connector for use with the Model A81 Battery Eliminator accessory. (A81 is available in a variety of voltage and plug configurations. See Section 6.)
5	Battery Compartment and Cover	Cover for the 9V battery and the current-protection fuse. Refer to figure 1-1 for battery cover removal instructions.
6	V/ת/S Input Connector	Protected test lead connector used as the high input for all voltage, resistance, continuity and conductance measurements. Will accept banana plugs.
7	COMMON Input Connector	Protected test lead used as the low or common input for all measurements. Will accept banana plugs.
8	mA Input Connector	Protected test lead connector used as the high input for all current measurements. Will accept banana plugs.

Table 1-1. 8026B Controls, Indicators and Connectors (cont)

ITEM NO.	NA		FUNCTION
9	mA/V-s/S Switch		A push-push switch (push on - push off, do not pull to select function) which is operated in conjunction with the high input connectors to select either the mAN or Ω (conductance) measurement functions. When the switch is in or depressed Ω is selected. The mA or V function is selected in the out position depending upon the location of the high input lead.
10	Range Switches		Interlocked push-button switches for selecting ranges; i.e., press the desired range switch to select that range and cancel previous switch depressions. Do not pull the switches to select a range. Voltage: $\quad 200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}$ $1000 \mathrm{~V} \mathrm{dc} / 750 \mathrm{~V}$ ac
			Current: $\quad 2 \mathrm{~mA}, 20 \mathrm{~mA} .200 \mathrm{~mA}$.
			$\begin{array}{ll}\text { Resistance: } & 200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \\ & \mathrm{k} \Omega .2000 \mathrm{k} \Omega .20 \mathrm{M} \Omega\end{array}$
			Conductance: 100 nS or $2 \mathrm{mS}(\mathrm{S}=$ siemens $=1 / \Omega=$ international unit of conductance). Conductance requires simultaneous depression of two range switches.
11	DC/AC/ 1))	Switch	A push-push switch (push on - push off, do not pull to select function) used to select the ac or dc measurement function when measuring current or voltage. When in, or depressed, the ac function is selected. Output selects dc. When used with the Ω or S functions, the in position enables the audible continuity tone.

9. Depress the lower function button (Ω) and sequentially depress each of the six range switches. The display should read l as the most significant digit with no other numbers shown. This is the standard overrange indication. Notice that the decimal point changes position with the range switch settings just as it did in step 4 of this procedure.
10. Touch the red probe tip to the COMMON input terminal, and sequentially press each of the range buttons. The display should read zero at each range setting. Lead resistance may be sufficient to cause one or two tenths (0.1 or 0.2Ω) indication on the 200Ω range.
11. Touch the red probe tip to the mA input connector and press the 200Ω switch. The display should read 99.0 to 101.0 .
12. Press the $2 \mathrm{k} \Omega$ switch. The display should read .099 to .101 . Remove the probe from the mA input connector.
13. Simultaneously depress the $2000 \mathrm{k} \Omega$ and the $20 \mathrm{M} \Omega$ range switches. This selects the 200 nS range. The display should read 00.0 to 01.0 (minimum conductance, maximum resistance).
14. Touch the red probe tip to the COMMON input connector. An overrange indication should be displayed since conductance is the reciprocal of resistance.
15. Connect the black test lead to the COMMON input connector.
16. Depress both $\mathrm{AC} / \mathrm{DC}$ switch and the 750 V ac range switch. Set the $\mathrm{mA} / \mathrm{V}-\Omega$ switch to the voltage (out) position.

WARNING

THE LOCAL LINE VOLTAGE IS MEASURED IN THE FOLLOWING STEP. BE CAREFUL NOT TO TOUCH THE PROBE TIPS WITH YOUR FINGERS, OR TO ALLOW THE PROBE TIPS TO CONTACT EACH OTHER.

17. Measure the local ac line voltage at a convenient output receptacle. The voltage should be displayed with 1 volt resolution.
18. If the 8026B has responded properly to this point, it is operational and ready for use.

1-13. ACCESSORIES

1-14. Table 1-2 lists the accessories available for use with the Model 8026B. Detailed information about each accessory is provided in Section 6.

1-15. SPECIFICATIONS

1-16. Table 1-3 lists the 8026B specifications.

Table 1-2. 8026B Accessorles

ACCESSORY	DESCRIPTION
A81	Battery Eliminator
C-90	Vinyl Carrying Case
$80 T-150 \mathrm{C}$	Temperature Probe ${ }^{\circ} \mathrm{C}$
$80 \mathrm{~T}-150 \mathrm{~F}$	Temperature Probe ${ }^{\circ} \mathrm{F}$
$801-600$	Current Transformer 2" jaws
$80 \mathrm{~K}-6$	High Voltage Probe
$80 \mathrm{~K}-40$	High Voltage Probe
$80 J-10$	Current Shunt
$83 R F$	High Frequency Probe
$85 R F$	High Frequency Probe
Y8100	AC/DC Current Probe
Y8101	Current Transformer 7/16" jaws
Y8132	Safety Designed Test Lead Set
Y8134	Deluxe Test Lead Set
Y8140	Slim Flex Test Lead Set

Table 1-3. 8026B Specifications
The following specifications assume a 1 -year calibration cycle and an operating temperature of $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64^{\circ} \mathrm{F}\right.$ to $\left.82^{\circ} \mathrm{F}\right)$ at a relative humidity up to 80% unless otherwise noted.

```
FUNCTIONS ................. DC Volts, AC Volts, DC Current, AC Current, Resistance, Conductance, and Continuity.
```

DC VOLTS

RANGE	RESOLUTION	ACCURACY
$\pm 200 \mathrm{mV}$	$100 \mu \mathrm{~V}$	
$\pm 2 \mathrm{~V}$	1 mV	
$\pm 20 \mathrm{~V}$	10 mV	$\pm(0.1 \%$ of reading +1 digit $)$
$\pm 200 \mathrm{~V}$	100 mV	
$\pm 1000 \mathrm{~V}$	1 V	

Overvoltage Protection $\ldots \ldots .1000 \mathrm{~V}$ dc or peak ac on all ranges.
Input Impedance $10 \mathrm{M} \Omega$, all ranges.
Normal Mode Rejection Ratio $>60 \mathrm{~dB}$ at 50 Hz and 60 Hz .
Common Mode Rejection
Ratio ($1 \mathrm{k} \Omega$ unbalance) $\ldots . .>100 \mathrm{~dB}$ at dc, 50 Hz and 60 Hz .
Response Time \ldots. Less than one second.

Table 1-3. 8026B Specifications (cont)

AC VOLTS (True RMS, AC-Coupled)

RANGE	RESOLUTION	ACCURACY*			
		$\begin{gathered} 45 \mathrm{~Hz} \\ \text { to } 1 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { to } 2 \mathrm{kHz} \\ \hline \end{gathered}$	$\begin{gathered} 2 \mathrm{kHz} \\ \text { to } 5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 5 \mathrm{kHz} \\ \text { to } 10 \mathrm{kHz} \end{gathered}$
200 mV	$100 \mu \mathrm{~V}$	\pm (0.5\% + 2 digits)			$\begin{aligned} & \pm(2 \% \\ & +3 \text { digits) } \end{aligned}$
2 V	1 mV			\pm (1\%	
20 V	10 mV			+ 3 digits)	
200V	0.1 V		$\begin{aligned} & \pm(1 \% \\ & +2 \text { digits }) \end{aligned}$	Not sp	cifled
750 V	1 V		Q\%\%	\bigcirc	\square

-Applicable from 5% of range to full range.

Overioad Protection	750 V rms or 1000 V peak continuous, except 200 mV ac ranges (15 seconds maximum above 300 V rms ac).
Common Mode Rejection	
Ratio (1 k Ω unbalance)	$>60 \mathrm{~dB}$ at 50 Hz and 60 Hz .
Voli-Hz Product	1×10 ${ }^{6}$ maximum (for example, 200V @ 5 kHz).
Input Impedance	$10 \mathrm{M} \Omega$ in parallel with <100 pF.
Crest Factor	3:1
DC CURRENT	

RANGE	RESOLUTION	ACCURACY	BURDEN VOLTAGE
2 mA	$1 \mu \mathrm{~A}$	$\begin{aligned} & \pm(0.75 \% \text { of reading } \\ & +1 \text { digit }) \end{aligned}$	0.3 V max.
20 mA	$10 \mu \mathrm{~A}$		
200 mA	$100 \mu \mathrm{~A}$		
2000 mA	1 mA		0.9V max.

Overload Protection
$2 \mathrm{~A} / 250 \mathrm{~V}$ fuse, in series with a $3 \mathrm{~A} / 600 \mathrm{~V}$ fuse

AC CURRENT

RANGE	RESOLUTION	ACCURACY*		BURDEN voltage
		45 Hz to 450 Hz	450 Hz to 1 kHz	
2 mA	$1 \mu \mathrm{~A}$	$\pm(3 \% \mathrm{rdg}+2 \mathrm{~d})$	Not Specified	0.3 Vrms max
20 mA	$10 \mu \mathrm{~A}$	\pm (1.5\% of reading +2 digits)		
200 mA	$100 \mu \mathrm{~A}$			
2000 mA	1 mA			0.9 V rms max

*Applicable from 5% of range to full range.
Overioad Protection
$2 A / 250 \mathrm{~V}$ fuse, in series with a $3 \mathrm{~A} / 600 \mathrm{~V}$ fuse.
Crest Factor
3:1

Table 1-3. 8026B Specifications (cont)

RESISTANCE

RANGE	RESOLUTION	ACCURACY	FULL- SCALE VOLTAGE	MAXIMUM TEST CURRENT
200Ω	0.1Ω	$\pm(0.2 \%$ of reading +3 digits)	$<0.25 \mathrm{~V}$. 35 mA
$2 \mathrm{k} \Omega \rightarrow+$	1Ω	$\pm(0.1 \%$ of reading +1 digit)	$>1.0 \mathrm{~V}$	1.1 mA
$20 \mathrm{k} \Omega$	10Ω		$\div 0.25 \mathrm{~V}$	$13 \mu \mathrm{~A}$
$200 \mathrm{k} \Omega$	100Ω		$>0.7 \mathrm{~V}$	$13 \mu \mathrm{~A}$
$2000 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	$\because(2 \%$ of reading + 1 digit)	$<0.25 \mathrm{~V}$	$0.13 \mu \mathrm{~A}$
$20 \mathrm{M} \Omega$	$10 \mathrm{k} \Omega$		$>.7 \mathrm{~V}$	$0.13 \mu \mathrm{~A}$

Overload Protection
500 V dc rms ac on all ranges. 15 seconds maximum above 300 volts.

Open Circuit Voltage
Less than 1.5 V on all ranges except $2 \mathrm{k} \Omega$ range is less than 3.5 V .
Diode Test (Hi-Lo Ohms) ... $2 \mathrm{k} \Omega, 200 \mathrm{k} \Omega$, and $20 \mathrm{M} \Omega$ ranges supply enough voltage to turn on junctions allowing a "Diode Test". The $2 \mathrm{k} \Omega$ range is preferred and is marked with a diode symbol. $200 \Omega, 20 \mathrm{k} \Omega$, and $2000 \mathrm{k} \Omega$ ranges can make in-circuit measurements without turning on silicon junctions.

CONDUCTANCE

RANGE	ACCURACY
2 mS	$\pm(0.2 \%$ of reading +1 digit $)$
200 nS	$\pm(2.0 \%$ of reading +10 digits $)$

Overload Protection	$500 \mathrm{~V} \mathrm{dc} / \mathrm{rms}$ ac on all ranges. 15 seconds max. above 300 V .
Open Circuit Voltage	$2 \mathrm{mS}<3.5 \mathrm{~V}$
	$200 \mathrm{nS}<1.5 \mathrm{~V}$
Diode Test	Both ranges will forward bias a typical PN junction.

CONTINUITY (for Passive Circult Testing)

Ranges	All resistance ranges. (2 k Ω range recommeded for lowest resistance threshold)
Indication	
CONTINUITY	Audible tone
OPEN CIRCUIT	No audible tone

Table 1-3. 8026B Specifications (cont)

Section 2

Operating Instructions

2-1. INTRODUCTION

2-2. To fully use the measurement capabilities of your 8026B, a basic understanding of its measurement techniques and limitations is required. This section of the manual provides that information, plus a few applications that may prove useful. For example, did you know your 8026B will provide direct-reading dc current gain (beta) measurements for both NPN and PNP transistors? Read this section of the manual, to find out how it's done.

2-3. INPUT POWER

2-4. Battery Life

$2-5$. The 8026 B is designed to operate on an single, inexpensive 9 V battery of the transistor radio/calulator variety (NEDA 1604). If an alkaline battery is used, a typical operating life of up to 200 hours can be expected. Carbon-zinc batteries will have a usefu! life of up to 100 hours. In either event, the 8026 B will display a BT (in upper, left-hand corner) when the battery has exhausted approximately 80% of its useful life. When BT first appears, the battery is capable of properly operating the 8026 B for at least another 20 hours.

CAUTION

To ensure multimeter operation within the accuracy specifications, the battery should be replaced when the voltage measured at the center of the battery eliminator connector falls below $\mathbf{- 3 . 0 0}$ volts (with respect to the COMMON input). If the battery voltage falls to a point where the "BT" is displayed and the digital display is inactive or no longer responds to an Input aignal, the battery should be replaced immediately to prevent damage to the LCD.

2-6. Line Power Operation

2-7. You can operate your 8026B from line power by using the A81 Battery Eliminator Accessory. Refer to Section 6 for additional information about the A 81 .

2-8. OPERATING NOTES

2-9. The following paragraphs will familiarize you with the capabilities and limitations of your Model 8026B and instruct you in routine operator maintenance.

2-10. Input Overload Protection

CAUTION

Exceeding the maximum input overload limits can damage your instrument. A transient overload protection clrcult is designed into the 8026B to protect it agalnat short duration high energy pulses. The components used limit the protection to approximatly five pulses per second for $\mathbf{6 K V}, \mathbf{1 0}$ mlcrosecond pulses, and about 0.6 watts average for lower amplitude pulses. Fast repettlion rate pulses, such as those from a TV sel, can damage the protection components; RJ1-RJ4, R1 and R2. If any of these components require replacement, use only Fluke parts to ensure product salety. (R2 is a special liameproof fusible resistor. Use exact replacement to ensure safety.)

2-11. Each measurement function and its associated ranges are equipped with input overload protection. The overload limits for each function and range are given in Table 21.

Table 2-1. Input Overload Limits

SELECTED FUNCTION	SELECTED RANGE	INPUT CONNECTIONS	MAX. INPUT OVERLOAD
Voltage	$\begin{aligned} & 200 \mathrm{mV}, 2 \mathrm{~V} . \\ & 20 \mathrm{~V}, 200 \mathrm{~V} . \\ & 750 \mathrm{~V} \text { ac. } \\ & 1000 \mathrm{Vdc} \end{aligned}$	$\mathrm{V} / \Omega / \mathrm{S}$ and COMMON	1000 V dc or peak ac on dc ranges. 1000 V dc or 750 V rms on ac range 15 seconds max. above 300 V on 200 mV ac range.
Current	$\begin{aligned} & 2 \mathrm{~mA} .20 \mathrm{~mA} \text {. } \\ & 200 \mathrm{~mA} \text {. } \\ & 2000 \mathrm{~mA} \end{aligned}$	mA and COMMON	2 A and $500 \mathrm{~V} \mathrm{dc} / \mathrm{rms}$ ac max. Fuse-protected by F1 (2A, 250V) in circuits with open circuit voltage $5250 \mathrm{~V} \mathrm{dc} / \mathrm{rms}$ ac. Fuse F2 (3A, 600V) provides protection from misuse - open circuit voltage $\leqslant 600 \mathrm{~V}$ $\mathrm{dc} / \mathrm{rms}$ ac.
Resistance Conductance, or Continuity	$\begin{aligned} & 200 \Omega, 2 \mathrm{k} \Omega, 20 \\ & \mathrm{k} \Omega, 200 \mathrm{k} \Omega . \\ & 2000 \mathrm{k} \Omega, 20 \mathrm{M} \Omega, \\ & 200 \mathrm{nS}, 2 \mathrm{mS} \end{aligned}$	V/ Ω / S and COMMON	500 V dc or rms ac. 15 seconds maximum above 300 volts.
ANY	ANY	COMMON	$500 \mathrm{~V} \mathrm{dc} / \mathrm{rms}$ ac with respect to earth ground.

2-12. Input Connections to COMMON

WARNING

TO AVOID ELECTRICAL SHOCK AND /OR INSTRUMENT DAMAGE DO NOT CONNECT THE COMMON INPUT TERMINAL TO ANY SOURCE OF MORE THAN 500 VOLTS DC OR RMS AC ABOVE EARTH GROUND.

2-13. The 8026 B may be operated with the COMMON input terminal at a potential of up to 500 V dc or 500 V rms ac above earth ground. If this limit is exceeded, instrument damage may occur. This, in turn, may result in a safety hazard for the operator.

2-14. Fuse Check

2-15. The current (mA) function contains two fuses. Check them as follows:

1. Complete the set up steps for the RESISTANCE (Ω) function and select the 2 $\mathrm{k} \Omega$ range.
2. Touch the red test probe to the $m A$ input jack so that the $V-\Omega$ input and $m A$ input are connected together.
3. If the display reads approximately $.100 \mathrm{k} \Omega$, both fuses are good.
4. If the display reads overrange (a I followed by blank digits), one or both fuses need replacement. See the following paragraph for replacement instructions.

2-16. Fuse Replacement

2-17. All ac and dc current ranges are fuse protected. Two series fuses are used:

1. F1, 2A@ 250 V , replaceable at the battery compartment (see section I "Battery or Fuse Installation/Replacement").
2. F2, 3A@600V backup fusc (see section 4, Battery/Backup Fuse Replacement).

2-18. The Display

2-19. The Front Panel Display on your 8026B is a 3-1/2 digit Liquid Crystal Display. The $1 / 2$ digit is the extreme left digit location. So, the displayed value can range from 000 through 1999. For convenience, in discussion, the 1999 is rounded to 2000 . The decimal point position is determined by selected range and is not affected by the measurement function selected. Polarity, on the other hand is only used for the dc voltage and current measurement functions. A minus sign indicates that the input signal is negative with respect to the COMMON input terminal. Positive inputs are indicated by the absence of the minus sign.

NOTE

The minus sign (-) may flash momentarily as the 8026 B comes out of an overrange condition. This will most likely be seen in the ohms mode as the open circuit test leads are applied to an in-range resistance value. If the minus sign remains on for in-range ohms readings, the circuit is live (a negative voltage is present at the input terminals due to charged capacitors, etc.), and incorrect resistance readings will he observed.

2-20. The Display has two abnormal status indicators, one for low battery power and one for instrument overrange. A "BT" is displayed when approximately 80% of the battery's life is exhausted (battery replacement is indicated). And, a "I" followed by three blanked digits is displayed (decimal point may be present) as an overrange indication. This does not necessarily mean that the instrument is being exposed to a damaging input condition. For example, when measuring resistance an open-input will cause an overrange indication.

NOTE
When the 8026 B is powered with the A81 Battery' Eliminator the "BT" indicator may come on. However, instrument operation will be normal.

2-21. The liquid crystal display used in the 8026B is a rugged and reliable unit which will give years of satisfactory service. Display life can be extended by observing the following practices:

1. Protect the display from extended exposure to bright sunlight.
2. Keep the voltmeter out of high temperature, high humidity environments, such as, the dash of a car on a hot, sunny day. Otherwise, the display may temporarily turn black. Recovery occurs at normal operating temperature.
3. Note that the display operation may be slowed in extremely low temperature environments. No damage will occur to the LCD, but response time is greatly increased. Recovery occurs at normal operating temperature.

2-22. OPERATION

2-23. The five figures, 2-1 through 2-5, each illustrate one of the measurement functions of the Model 8026B. Each figure has two parts. The top part shows your 8026B as it should look when ready to perform that type of measurement. The bottom part of the figure lists, in sequential order, the steps you should perform to make that type of measurement with your 8026 B . To operate your 8026B turn to the operation figure corresponding to the measurement function desired and perform the steps listed in the figure. Operate the Model 8026B in accordance with the Input Overload Protection and the Input Connections to COMMON portions of the Operating Notes presented earlier in this section.

2-24. MEASUREMENT TECHNIQUES

2-25. The following paragraphs offer you techniques that improve the measurement accuracy of your 8026B. While these techniques are in general use throughout the electronics industry, these paragraphs offer specifice information for use with your 8026B.

2-26. AC Measurement

2-27. The 8026 B employs a true rms ac converter for ac signal measurements. The true rms value of an ac signal may be defined as the equivalent dc value that dissipates the same amount of heat in a resistor as the relative ac signal. Consider the following example: a light bulb is energized with an ac signal and the brightness is measured. The ac source is then removed from the light bulb and replaced by a variable dc source. The level of the dc signal is adjusted so that the brightness of the light bulb is the same as it was for the ac signal. This de level is equivalent to the rms value of the ac signal. This cumbersome method is not practical for handheld multimeters, so an active log-antilog analog computation is continuously performed on the input signal.

*NOTE: The function switches are push-push type. Do not pull them to the out position.

- Connect the test leads as shown above.
- Depress the switch beside the range desired (20 V is shown selected).
- Set the $A C / D C$ switch out for $D C$ or in For $A C$ (DC is shown selected).
- Ensure that all other switches are at the out or off positions.

WARNING

TO AVOID ELECTRICAL SHOCK AND/OR INSTRUMENT DAMAGE, DO NOT CONNECT THE 8026B TERMINALS TO SOURCES THAT EXCEED THE FOLLOWING LIMITS WHEN MEASURING VOLTAGES:

COMMON: 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.
V- Ω-S: 1000V DC OR 750V RMS AC WITH RESPECT TO THE COMMON TERMINAL (INTHE AC FUNCTION, 200 mV RANGE, SOURCES GREATER THAN 300V DC OR RMS AC SHOULD NOT BE CONNECTED LONGER THAN 15 SECONDS).

- Connect the test leads to the circuit being measured.
- Read the measured value on the display. The minus sign will appear if the $V-\Omega-S$ terminal is negative with respect to the COMMON terminal.

Figure 2-1. Volts Operation

* NOTE: The function suitches are push-push type. Do not pull them to the out position.
- Connect the test leads as shown.
- Depress the switch beside the range desired (20 mA range shown selected).
- Set the AC/DC switch out for DC or in for AC.
- Ensure that all other switches are at the out or off positions.

WARNING
TO AVOID ELECTRICAL SHOCK AND/OR INSTRUMENT DAMAGE, DO NOT CONNECT THE BO26B TERMINALS TO SOURCES THAT EXCEED THE FOLLOWING LIMITS WHEN MEASURING CURRENT:

COMMON: 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.
mA: CURRENT OF 2 AMPS OR OPEN CIRCUIT VOLTAGE OF 600V DC/RMS AC. DO NOT ATTEMPT CURRENT MEASUREMENT WHERE THE POTENTIAL IS GREATER THAN 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.

- Connect the test leads to the circuit being measured.
- Read the measured value on the display. In DC the minus sign will appear if the MA terminal is negative with respect to the COMMON terminal. If unit fails to read properly, see Fuse Check located earlier in this section.

Figure 2-2. Current Operation

*NOTE: The function switches are push-push type. Do not pull them to the out position.

- Connect the test leads as shown.
- Depress the mA-V- $\Omega-S$ switch.
- Depress the switch beside the range desired (20k is shown selected).
- Ensure that all other switches are at the out or off positions.
- Make sure that the device being measured contains no electrical energy.

WARNING

TO AVOID ELECTRICAL SHOCK AND/OR INSTRUMENT DAMAGE, DO NOT CONNECT THE 8026B TERMINALS TO SOURCES THATEXCEED THE FOLLOWING LIMITS WHEN MEASURING RESISTANCE OR CONTINUITY:

COMMON: 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.

V- Ω-S: 500V DC OR RMS AC WITH RESPECT TO THE COMMON TERMINAL. (15 SECONDS MAXIMUM ABOVE 300V.)

- Connect the test leads across the device being measured
- Read the measured value on the display.

Figure 2-3. Resistance Operation

*NOTE: The function switches are push-push type. Do not pull them to the out position.

- Connect the test leads as shown.
- Depress the mA-V- Ω-S function switch.
- AT THE SAME TIME. depress both of the range switches.
(The 200 nS range is shown selected.)
- Ensure that all other switches are at the out or OFF positions.
- Ensure that the device being measured contains no electrical energy.

WARNING
TO AVOID ELECTRICAL SHOCK AND/OR INSTTRUMENT DAMAGE, DO NOT CONNECT THE 8026B TERMINALS TO SOURCES THAT EXCEED THE FOLLOWING LIMITS WHEN MEASURING VOLTAGES:

COMMON: 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.
V-ก-S: 500V DC OR RMS AC WITH RESPECT TO THE COMMON TERMINAL. (15 SEC MAX ABOVE 300V.)

- Connect the test leads across the device being measured.
- Read the measured value in the display.
- See Measurement Techniques section for Conductance-Resistance Conversion chart.

Figure 2-4. Conductance Operation

CONTINUITY

*NOTE: The function switches are push-push type. Do not pull them to the out
position. position.

- Connect the test leads as shown.
- Depress the mA-V- Ω-S function switch.
- Depress the $2 \mathrm{k} \Omega$ range switch.
- Depress the AC/DC function switch.
- Ensure that all other switches are at the out position.
- Ensure that the device being measured contains no electrical energy.

WARNING
TO AVOID ELECTRICAL SHOCK AND/OR INSTRUMENT DAMAGE, DO NOT CONNECT THE 80268 TERMINALS TO SOURCES THATEXCEED THE FOLLOWING LIMITS WHEN MEASURING CONDUCTANCE:

COMMON: 500V DC OR RMS AC WITH RESPECT TO EARTH GROUND.
V- Ω-S: 500V DC OR RMS AC WITH RESPECT TO THE COMMON TERMINAL. (15 SEC MAX ABOVE 300V.)

- Connect the leads to the circuit being measured.
- Continuity between the test leads will cause the audible tone to sound.

Figure 2-5. Continulty Operation

2-28. It should be noted that accurate measurements can only be guaranteed for ac input signals that have some reasonable limits with regard to the frequency and shape of the waveform. To help define what these reasonable limits are, a parameter known as "crest factor" has been developed. Crest factor is defined as the peak signal value divided by the rms value of the signal (with any dc component removed). For example, the crest factor of a 10% duty-cycle rectangular pulse train is 3.16 , and the crest factor of a sine wave is 1.41 .

2-29. It should also be noted that signals with high crest factors usually have wide bandwidth requirements which may be near the specified frequency limits for the selected range. Both crest factor and frequency response should be carefully considered when evaluating reading accuracies. Refer to Section 1 for the 8026 B specifications for ac measurements.

2-30. Most analog and digital multimeters use average-responding ac converters. The gain in an average-responding ac converter is adjusted so that the multimeter measures sinusoidal signals correctly. However, if a signal is not perfectly sinusoidal, the multimeter with the average-responding ac converter will not measure the signal correctly. Figure 2-6 shows how the 8026 B readings compare with average-responding multimeter readings for seven common waveforms.

2-31. You can also use the values in Figure 2-6 to calculate other waveform parameters from readings displayed on the 8026 B . For example, if a rectified full wave sine wave is being measured and the 8026B displays the value 0.435 (V ac), then the pk -pk voltage would be 1.414 V (the same as the 0 -pk voltage). The de component would be 0.900 V (this could be verified by switching to the dc volts function). For another example, suppose the 8026 B measures a rectified half wave sine wave and displays the value $1.000(\mathrm{~V} \mathrm{ac})$. The pk pk or 0 -pk voltage would be $1.000 \mathrm{~V} \times(2.000 \div 0.771)=2.594 \mathrm{~V}$. The dc component would be $1.000 \mathrm{~V} \times(0.636 \div 0.771)=0.825 \mathrm{~V}$. For this same signal, an average-responding multimeter would measure $1.000 \mathrm{~V} \times(0.764 \div 0.77 \mathrm{I})=0.991 \mathrm{~V}$, an error of 0.9%.

2-32. Voltage AC/DC

$2-33$. The 8026 B is equipped with five ac and five dc voltage ranges; $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, $200 \mathrm{~V}, 750 \mathrm{Vac} / 1000 \mathrm{~V} \mathrm{dc}$. All ranges present an input resistance of $10 \mathrm{M} \Omega$ shunted by less than 100 pF . When making measurements, be careful not to exceed the overload limits given earlier in Table 2-1.

2-34. Measurement errors. due to circuit loading, can result when making cither ac or dc voltage measurements on circuits with high source resistance. However, in most cases the error is negligible ($\leqslant 0.1 \%$) as long as the source resistance of the measurement circuit is 10 $\mathrm{k} \Omega$ or less. If circuit loading does present a problem, the percentage of error can be calculated using the appropriate formula in Figure 2-7.

2-35. Current AC/DC

WARNING

> WHEN MEASURING CURRENT, DO NOT EXCEED THE $500 V$ DC OR RMS AC MAXIMUM COMMON MODE VOLTAGE SPECIFICATION FOR THE INSTRUMENT. THE OPERATOR IS PROTECTED FROM POSSIBLE INJURY AND THE INSTRUMENT IS PROTECTED FROM POSSIBLE DAMAGE BY A 250V FUSE IN SERIES WITH A $600 V$ FUSE.

$\begin{aligned} & \text { AC.COUPLED } \\ & \text { INPUT } \\ & \text { WAVEFORM } \end{aligned}$	PEAK VOLTAGES		DISPLAY READINGS			DC AND AC TOTAL RMS TRUE RMS $=$ $\because a c^{2} \cdot d c^{2}$
	PK.PK	0.9K	AC COMPONENT ONLY		DC COMPONENT ONLY	
			AMS CAL AVE SENSING	RMS SENSING (8026B)		
	2878	1.414	1000	1.000	0000	1.000
RECTIFIED SINE (FULL WAVE)	1414	1414	0.421	0435	0900	1000
RECTIFIED SINE (HALF WAVE) ${ }_{0}^{\mathrm{PK}} \Omega \frac{\frac{1}{P K \cdot P K}}{\frac{1}{4}}$	2.000	2000	0764	0771	0636	1.000
SOUARE	2000	1.000	1111	1.000	0.000	1.000
RECTIFIED SQUARE	1414	1.414	0.785	0.707	0.707	1.000
	2.000	2.000	2221 K	2K	20	$2 \sqrt{6}$
TRIANGLE SAWTOOTH	3.464	1.732	0.960	1.000	0000	1000

NOTE: High Frequency waveforms with fairly abrupt transitions (such as a 5 kHz pulse with a 10% duty cycle) have spectral components that are beyond the specified frequency limits for the selected range. Be sure to take this into account when evaluating measurements.

Figure 2-6. Waveform Conversion

1. DC VOLTAGE MEASUREMENTS

> Loading Error in $\%=100 \times$ Rs $\div\left(\right.$ Rs $\left.+10^{\prime}\right)$
> Where: Rs $=$ Source resistance in ohms of circuit being measured.

2. AC VOLTAGE MEASUREMENTS

First, determine input impedance, as follows: *
Z in $=\frac{10^{7}}{\sqrt{1+(2 \pi F \cdot \operatorname{Rin} \cdot C)^{2}}}$
Where: $\mathrm{Zin}=$ effective input impedance Rin $=10^{\prime}$ ohms Cin $=100 \times 10^{-12}$ Farads $F=$ frequency in Hz

Then, determine source loading error as follows: *
Loading Error in $\%=\frac{100 \times \mathrm{Zs}}{\mathrm{Zs}+\mathrm{Zin}}$

Where: Zs = source impedance Zin = input impedance (calculated)
*Vector algebra required

Figure 2-7. Voltage Measurement Error Calculations

2-36. Four ac and four dc current ranges are included on the $8026 \mathrm{~B} ; 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200$ mA , and 2000 mA . Each range is diode protected to 2 amps and fuse protected above 2 amps. If either fuse blows, refer to fuse replacement information given earlier in this section.

2-37. In high electrical noise environments (near ignition switches, flourescent lights, relay switches, etc.) unstable or erroneous readings (exceeding specifications) may occur. The effect is most obvious when measuring low level current on the 2 mA range. If an
erratic or erroneous reading is suspected, temporarily jumper the V / Ω connector to the mA connector. This is recommended for the 2 mA and 20 mA ranges only.

CAUTION

To avoid possible instrument damage and/or erroneous measurements remove the temporary V / Ω-to-mA jumper before attempting voltage or reslatance measurements.

2-38. Full-scale burden voltage (voltage drop across the fuse and current shunt) for all ranges except 2000 mA is less than 300 mV . The 2000 mA range has a full-scale burden voltage of less than 900 mV . These voltage drops can affect the accuracy of a current measurement, if the current source is unregulated and the shunt plus fuse resistance represents a significant portion ($1 / 1000$ or more) of the source resistance. If burden voltage does present a problem, the percentage of error can be calculated using the formula in Figure 2-8. This error can be minimized by using the highest current range that gives the necessary resolution. For example, if 20 mA is measured on the 2000 mA range the burden voltage is approximately 5 mV .

2-39. Resistance

2-40. Six direct reading resistance scales are provided on the $8026 \mathrm{~B}: 20 \mathrm{M} \Omega, 2000 \mathrm{k} \Omega$, $200 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 2 \mathrm{k} \Omega$ and 200Ω. All scales employ a two-wire measurement technique. As a result, test lead resistance may influence measurement accuracy on the 200Ω range. To determine the error, short the test leads together and read the lead resistance. Correct the measurement by subtracting the lead resistance from the measurement reading. The error is generally on the order of 0.2 to 0.3 ohms for a standard pair of test leads.

2-41. In-circuit resistance measurements can be made using the $200 \Omega, 20 \mathrm{k} \Omega$ and 2000 $\mathrm{k} \Omega$ ranges. The full scale measurement voltage produced on these ranges is not sufficient to forward bias silicon diode/emitter-base junctions, and thus, enables resistance values to be measured without removing diodes and transistors from the circuit. Conversely, the 2 $\mathrm{k} \Omega, 200 \mathrm{k} \Omega$, and $20 \mathrm{M} \Omega$ ranges produce a measurement voltage sufficient to forward bias a P-N junction. These ranges enable both diode- and transistor-junction checks to be made conveniently. Full scale voltage and short circuit current for each resistance range is given in Table 2-2. All values shown are referenced to the COMMON input terminal; i.e., the $\mathrm{V} / \Omega / \mathrm{S}$ terminal is positive.

NOTE

Any change (greater than one or two digits) in apparent resistance when test leads are reversed may indicate either the presence of a diode junction or a voltage in the circuit.

CAUTION

Turn test clrcuil power off and discharge all capacitors belore attempting Incircull reskiance measurements.

$\mathrm{E}_{\mathrm{S}}=$ Source voltage
$R_{L}=$ Load resistance + Source resistance
$I_{M}=$ Measured current (display reading in mA)
$\mathrm{E}_{\mathrm{B}}=$ Burden voltage (calculated), i.e.. Display reading expressed as a $\%$ of full-scale ($100 \times \frac{\text { READING }}{\text { FULL-SCALE }}$)
times full-scale burden voltage for selected range. See Table.

MAXIMUM BURDEN VOLTAGE

RANGE	BURDEN VOLTAGE
2 mA to 200 mA	0.3 V
2000 mA	0.9 V

Maximum current error due to Burden Voltage:
Error in \% $\quad=100 \times \frac{E_{B}}{E_{S}-E_{B}}$
Error in mA $=\frac{E_{B} \times I_{M}}{E_{S}-E_{B}}$
Example: $E_{S}=14 \mathrm{~V}, R_{L}=9 \Omega, I_{M}=1497 \mathrm{~mA}$.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{B}}=100 \times \frac{1497}{2000} \times 0.9(\text { from Table })= \\
& 74.9 \% \times 0.9=0.674 \mathrm{~V}
\end{aligned}
$$

Error in $\%=100 \frac{.674}{14-.674}=100 \frac{.674}{13.326}=5.06 \%$
Increase displayed current by 5.06% to obtain true current.
Error in $\mathrm{mA}=\frac{.674 \times 1497}{14-.674}=\frac{1009}{13.326}=76 \mathrm{~mA}$
Increase displayed current by 76 mA to obtain true current.
Figure 2-8. Current Measurement Error Calculations

Table 2-2. Voltage/Current Capability of Resistance Ranges

RANGE	FULL-SCALE VOLTAGE (TYPICAL)	SHORT CIRCUIT CURRENT (TYPICAL)
$20 \mathrm{M} \Omega$	+800 mV	$+0.12 \mu \mathrm{~A}$
$2000 \mathrm{k} \Omega$	+200 mV	$+0.12 \mu \mathrm{~A}$
$200 \mathrm{k} \Omega$	+800 mV	$+12 \mu \mathrm{~A}$
$20 \mathrm{k} \Omega$	+200 mV	$+12 \mu \mathrm{~A}$
$2 \mathrm{k} \Omega \rightarrow$	+1.1 V	+1.0 mA
200Ω	+55 mV	+0.3 mA

2-42. Three of the 8026 B resistance ranges have a high enough open-circuit voltage to turn on a silicon junction. These ranges ($2 \mathrm{k} \Omega, 200 \mathrm{k} \Omega$, and $20 \mathrm{M} \Omega$) can be used to check silicon diodes and transistors. The $2 \mathrm{k} \Omega$ range is preferred for this function and is marked with a diode symbol. The open-circuit voltage of the three alternate ranges ($200 \Omega, 2 \mathrm{k} \Omega$, and $2 \mathrm{M} \Omega$) is not high enough to turn on a silicon junction. Use these three ranges to make in-circuit resistance measurements. For all resistance ranges, the $\mathrm{V} / \mathrm{\Omega} / \mathrm{S}$ input terminal is positive with respect to the COMMON input terminal.

2-43. Continulty

2-44. Audibly confirmed continuity measurements may be made using any of the resistance or conductance ranges. The $2 \mathrm{k} \Omega$ range is recommended for this mode since it provides the lowest resistance threshold, approximately 110 ohms. On this range a measured resistance lower than 110 ohms initiates the audible tone. To determine the exact threshold, use a variable resistor and observe the display reading at which the tone switches on and/or off. Note that in this mode resistance or conductance readings are also displayed. However, high resistance ranges and the 200 nS range may exhibit noisy or drifting readings due to ambient signal noise.

2-45. Intermittent open or short circuits with a duration of at least 50μ s are detectable in the $2 \mathrm{k} \Omega$ range. A continuously intermittent connection is heard as a series of beeps. A series of beeps (due to environmental noise) is also encountered when a measurement is near the threshold of the selected range. The approximate thresholds for the continuity ranges are as follows:

RANGE	THRESHOLD
200 nS	900 kilohms
2 mS	110 ohms
$20 \mathrm{M} \Omega$	900 kilohms
$2000 \mathrm{k} \Omega$	900 kilohms
$200 \mathrm{k} \Omega$	9 kilohms
$20 \mathrm{k} \Omega$	9 kilohms
$2 \mathrm{k} \Omega$	110 ohms
200Ω	360 ohms

2-46. Conductance

$2-47$. The conductance ranges, (200 nS and 2 mS) are included on the 8026 B for making both conductance and resistance measurements. When either range is selected the display reads the measurement results in terms of conductance $(1 / \Omega)$. If resistance readings are required, refer to the conductance-to-resistance conversion information given in Figure 2-9.

2-48. The 200 nS range is intended for use in making fast, accurate, high-resistance measurements from $5 \mathrm{M} \Omega$ to $10,000 \mathrm{M} \Omega$. Ordinarily, resistance measurements within this range are plagued by noise pick-up and require careful shielding. However, by measuring the resistance in terms of conductance, standard test leads are adequate for the 8026B to make noise-free measurements up to $10,000 \mathrm{M} \Omega$. High value resistors, and low leakage components (i.e., diodes, etc.) are natural candidates for the 200 nS conductance range. Refer to applications later in this section for additional information.
$2-49$. The 2 mS range, in terms of resistance, starts at 500Ω and goes up to $1 \mathrm{M} \Omega$. It is intended for use in making either resistance measurements or direct-reading de current gain (beta) measurements on transistors. Beta measurements require the use of a special test fixture, and are discussed later in this section under applications.

2-50. APPLICATIONS

2-51. The applications described in the following paragraphs are suggested as useful extensions of the 8026B measurement capabilities. However, they are not intended as the equivalent of a manufacturer's recommended test methods. Rather, they are intended to provide repeatable and meaningful indications which will allow operator to make sound judgments concerning the condition of the device being tested; i.e., good, marginal, or defective.

2-52. Transistor Tester

NOTE

The transistor tester described in the following paragraphs provides approximate test information. Beta is measured using a VCE of about 2 V and an IC of about 200μ A. The test method is very useful for making comparative and matching measurements.

2-53. Select the 2 mS range, plug the fixture shown in Figure 2-10 into the $\mathrm{V} / \mathrm{\Omega} / \mathrm{S}$ and COMMON input terminals, and you have tranformed your 8026B into a transistor tester. Now, plug a transistor into the test socket and the 8026B will determine the following:

1. Transistor type (NPN or PNP).
2. Collector-to-emitter leakage (ICEs).
3. Beta from 1 to 1000 without changing range.

Conversion Scales

* $S=$ siemens $=1 / \Omega=$ International unit of conductance formerly known as the mho.

Find the approximate resistance value using one of the scales at left. Then, on the table below, locate the most significant digit of the display reading on the vertical NO. column, and the next digit on the horizontal NO. row. The number at the intersecting coordinates represents the unknown resistance value. For example, a reading of 52.0 nS is equal to 19.2 M Ω. Decimal point location is determined from the scale approximation.

Interpolation Table ($1 /$ no.)

NO.	0	.1	.2	.3	.4	5	.6	.7	.8	.9
1	1	.909	.833	.769	.714	667	625	.588	.556	.526
2	.500	.476	.455	.435	.417	.400	385	.370	.375	.345
3	.333	.323	.313	.303	.294	286	278	.270	.263	.256
4	.250	.244	.238	.233	.227	.222	.217	.213	.208	.204
5	.200	.196	.192	.187	.185	.182	.179	.175	.172	.169
6	.167	.164	.161	159	.156	.154	.152	.149	.147	.145
7	.143	.141	.139	137	.135	.133	.132	.130	.128	.127
8	.125	.123	.122	.121	.119	.118	.116	.115	.114	.112
9	.111	.110	.109	.108	.106	.105	.104	.103	.102	.101

2-54. Transistor type is determined by setting the switch on the fixture to BETA and observing the display. If a low reading ($\leqslant 0.010$) is obtained, reverse the test fixture at the input terminals. If the collector is now positioned at the COMMON input terminal, the transistor is a PNP type. An NPN type will have its collector positioned at the V/s/S input terminals. If the transistor is defective the indications will be as follows regardless of fixture position:

1. A shorted transistor will cause an overload indication.
2. An open transistor will read 0.001 or less.

2-55. After the transistor fixture is properly positioned, set the switch to ICEs for the leakage test. The transistor is turned off in this test (base shorted to emitter), and should appear as a very low conductance (high resistance) from collector-to-emitter. Therefore, the lower the reading, the lower the leakage. Silicon transistors that read more than 0.002 ($6 \mu \mathrm{~A}$) should be considered questionable.

2-56. Beta is determined by setting the fixture switch to BETA, and observing the display. Mentally shift the decimal point three places to the right and read beta directly. For example, a display reading of 0.127 indicates a dc current gain (beta) of 127 .

> NOTE:

Beta is a termperature' sensitive parameter. Therefore, repeatahle readings can only he obtained by' allowing the transistor to stabilize at the ambient temperature while being tested. Avoid touching the transistor's case nith your fingers.

2-57. Leakage Tester

2-58. The 200 nS conductance range effectively extends the resistance measurement capability of the 8026 B (up to $10,000 \mathrm{M} \Omega$) to the point where it can be used to provide useful leakage measurements on passive components. For example, you can detect leaky diodes, cables, connectors, printed circuit boards (pcbs), etc. In all cases, the test voltage is $<1.5 \mathrm{~V}$ dc.

2-59. RESISTIVE COMPONENTS

2-60. Leakage testing on purely resistive components such as cables and pcbs is straightforward. Select the 200 nS range, install the test leads in the $\mathrm{V} / \Omega / \mathrm{S}$ and COMMON input terminals, connect the leads to the desired test points on the unit-undertest, and read leakage in terms of conductance. If an overrange occurs, select a resistance range that provides an on-scale reading.

NOTE

Under high humidity conditions $>80 \%$) conductance measurements may he in error. To ensure accurate measurements connect clean test leads to the 8026 B and (with the leads open) read the residual leak age in nanosiemens. Correct subsequent measurements by suhtracting the residual from the readings. (Finger prints or other contamination on the peb may' also cause residual conductance readings.)

2-61. DIODES

2-62. Diode leakage (I_{R}) tests require that the diode junction be reverse biased when being measured. This is accomplished by connecting the anode of the diode to the COMMON input terminal and its cathode to the $V / \Omega / S$ input terminal. Leakage can then be read in terms of conductance. In the event of an overrange, select a resistance range that provides an on-scale reading.

NOTE

Like all general-purpose multimeters, the $8026 B$ generates and uses radio frequency energy. It is possible for radio frequency energy to interfere with radio or television reception. If interference does occur, try moving the 8026 B to a different location. plugging the radio or television into a different socket, or reorienting the antenna.

Section 3 Theory of Operation

3-1. INTRODUCTION

3-2. This section of the manual contains an overall functional description followed by a block diagram analysis of the 8026B. A detailed schematic of the 8026B appears in Section 7.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. The Model 8026 B as shown in Figure 3-1, is a hand-held 8 function digital multimeter. It features a total of 26 measurement ranges (de volts-five, ac volts-five, ohmssix, dc current-four, ac current-four, and conductance-two); with overload protection for all ranges.

3-5. Operation centers around a custom L.SI chip, UI, which contains a dual slope a/d converter and a display driver. Peripherals to Ul include range and function switches, input signal conditioners, and the display. When an input signal is applied to the 8026B it is routed through the range switches to one of four input signal conditioners as determined by the function switch setting. Each conditioner scales and converts the input to an acceptable dc input level $(-0.2$ to $+0.2 \mathrm{~V} \mathrm{dc})$ that is presented to the a/d converter.

3-6. Timing for the overall operation of the a/d converter is derived from an external quartz crystal whose frequency is a multiple of the local line frequency. This allows the conditioned dc input data to be integrated over an integral number of power line cycles, thus optimizing both common mode and normal mode rejection.

3-7. Digitized measurement data is presented to the display as four decoded digits (seven segments) plus polarity. Decimal point position on the display is determined by the range switch settings.

3-8. BLOCK DIAGRAM ANALYSIS

3-9. A/D Converter
3-10. The entire analog-to-digital conversion process is accomplished by a single custom A/D Converter and Display Driver IC, U1. The IC employs the dual slope method of a/d conversion, and requires a series of external components to establish the basic timing and referenece levels required for operation. These include an integrating capacitor, an autozero capacitor, and a flying capacitor (for applying a reference level of cither
polarity). Since the power consumed for display operation is very low, the IC also contains the latches, decoders, and drivers required for the display.

3-11. The digital control portion of the a/d conversion process is an internal function of U 1 , and is keved to the external crystal frequency. As a result. the conversion process is continuously repeated, and the display is updated at the end of every conversion cycle.

3-12. A simplified circuit diagram of the analog portion of the a/d converter is shown in Figure 3-2. Each of the switches shown represent analog gates which are operated by the digital section of the a/d converter. Basic timing for switch operation and, therefore. a complete measurement cycle is also included in the figure.

3-13. Any given measurement cycle performed by the a/d converter can be divided into three consecutive time periods, autozero ($A Z$), integrate (INTEG), and read. Both autozero and integrate are fixed time periods whose lengths are multiples of the clock frequency. A counter determines the length of both time periods by providing an overflow at the end of every 10.000 clock pulses. The read period is a variable time which is proportional to the unknown input voltage. The value of the voltage is determined by counting the number of clock pulses that occur during the read period.

3-14. During autozero a ground reference is applied as an input to the a/d converter. Under ideal conditions the output of the comparator would also go to zero. However. input-offset-voltage errors accumulate in the amplifier loop, and appear at the comparator output as an error voltage. This error is impressed across the AZ capacitor where it is stored for the remainder of the measurement cycle. The stored level is used to provide offset voltage correction during the integrate and read periods.

3-15. The integrate period begins at the end of the autozero period. As the period begins, the AZ switch opens and the INTEG switch closes. This applies the unk nown input voltage to the input of the a / d converter. The voltage is buffered and passed on to the integrator to determine the charge rate (slope) on the INTEG capacitor. By the end of the fixed integrate period the capacitor is charged to a level proportional to the unknown input voltage. This voltage is translated to a digital indication by discharging the capacitor at a fixed rate during the read period, and counting the number of clock pulses that occur before it returns to the original autozero level.

3-16. As the read period begins, the INTEG switch opens and the read switch closes. This applies a known reference voltage to the input of the a/d converter. The polarity of this voltage is automatically selected to be opposite that of the unknown input voltage, thus, causing the INTEG capacitor to discharge at a fixed rate (slope). When the charge is equal to the initial starting point (autorero level), the read period is ended. Since the discharge slope is fixed during the read period, the time required for discharge is proportional to the unknown input voltage.

3-17. The autozero period and, thus, a new measurement cycle begins at the end of the read period. At the same time the counter is released for operation by transferring its contents (previous measurement value) to a series of latches. This stored data is then decoded and buffered before being used for driving the liquid crystal display.

3-18. Input Signal Conditioners

3-19. The a/d converter requires two externally supplied input voltages to complete a measurement cycle. One is reference voltage and the other is an unknown de voltage within the range of -0.2 to +0.2 Vdc . If the function being measured is other than a dc voltage within the ± 0.2 range, it must be scaled and/or conditioned before being presented to the a/d converter. for example, higher de levels must be divided: ac inputs must be divided, rectified, and filtered; and resistance and current inputs must be scaled and converted to dc voltlage levels. The following paragraphs describe the input signal conditioners used for each of the 8026 B measurement functions.

3-20. VOLTAGE MEASUREMENT

3-21. Both the ac and dc voltage ranges use an over-voltage-protected, $10 \mathrm{M} \Omega$ input divider as shown in Figure 3-3A. Under normal conditions, assuming a de input level on the proper range, the divider output is a 0.2 to +0.2 V dc signal, and is an exact (power-of10) ratio of the input signal. If the VAC function is selected, the divider output is ac coupled to an rms ac converter whose de output is equivalent to the rms level of the ac inputs. The conditiored signal for the selected function (V ac or V dc) is then passed through a filter before being presented to the a/d converter as the unknown input.

3-22. CURRENT MEASUREMENT

3-23. Current measurements are made using a fuse protected, switchable, four-terminal current shunt ($0.1 \Omega, 1 \Omega, 10 \Omega$, or 100Ω) to perform the current-to-voltage conversion required by the a/d converter. See Figure 3-3B. The voltage (I R) drop produced across the selected shunt may be either ac or de depending upon the selected function, mA AC or mA DC. If the input current is dc and the dc function is selected, the $I R$ drop is passed through a low-pass filter, and presented as the unknown input to the a/d converter. However, if the input current is ac and the AC function is selected, the I R drop is processed by the ac converter before going to the low-pass filter. In either event the a/d converter receives a dc input voltage proportional to the current passing through the selected shunt.

3-24. RESISTANCE MEASUREMENTS

3-25. Resistance measurements are made using a ratio technique as shown in Figure 33 C . When the Ω function is selected, a simple series circuit is formed by the internal reference voltage, a reference resistor from the voltage divider (selected by range switches). and the external unknown resistor. The ratio of the two resistor values is equal to the ratio of their respective voltage drops. Therefore, since the value of one resistor is known, the value of the second can be determined by using the voltage drop across the known resistor as a reference. This determination is made directly by the a/d converter.

3-26. Overall operation of the a/d converter during a resistance measurement is basically as described earlier in this section, with one exception. The reference voltage present during a voltage measurement is replaced by the voltage drop across the reference resistor. This allows the voltage across the unknown resistor to be read during the integrate period, and compared against the reference resistor during the read period. As before, the length of the read period is a direct indication of the value of the unknown.

3-27. CONDUCTANCE MEASUREMENTS

3-28. Conductance measurements are made using a ratio technique similar to that used in making resistance measurements. See Figure 3-3C. The main difference is that only two
ranges are provided (200 nS and 2 mS), and the function of the range and unknown resistors in the measurement cycle is reversed. That is, the voltage drop across the range resistor is used as the unknown input during the integrate period, and the voltage across the unknown resistor is used for the reference input during the read period. As a result the display provides a reading that is the reciprocal $(1 / \Omega)$ of the unknown input resistance, i.e., the higher the input resistance the lower the display reading.

3-29. CONTINUITY MEASUREMENTS

3-30. Continuity is a measurement feature that supplements the resistance and conductance measurement functions. The feature is enabled when the $\mathrm{V} / \Omega \Omega$ and the $\mathrm{AC} / \mathrm{DC}$ function switches are both pressed in. When a measurement is made, continuity is indicated by an audible tone. No tone indicates an open circuit or the equivalent of an open circuit.

3-31. The continuity circuit consists of a comparator, a one-shot, and a tone generator. See Figure 3-3D. During a measurement, R pull-up and V source develop a voltage across the measured resistance. The comparator compares this voltage against an internal 100 mV threshold reference. If the input voltage is greater than the 100 mV reference, the tone generator is not enabled, a no-continuity indication. Conversely, an indication of less than 100 mV causes the comparator to enable the tone generator which emits an audible continuity indication.

3-32. Since the values of V source and R pull-up vary with the selected range, it is convenient to think of the 100 mV threshold as a resistance threshold. The resistance threshold and the V source/ R pull-up valucs for each continuity range are given in the following list:

RANGE	R pull-up	V source (VOLTS)	THRESHOLD RESISTANCE
200Ω	4 kilohms	1.2 volts	360 ohms
$2 \mathrm{k} \Omega$	3 kilohms	2.8 volts	110 ohms
2 mS	3 kilohms	2.8 volts	110 ohms
$20 \mathrm{k} \Omega$	100 kilohms	1.2 volts	9 kilohms
$200 \mathrm{k} \Omega$	100 kilohms	1.2 volts	9 kilohms
$2000 \mathrm{k} \Omega$	10 megohms	1.2 volts	900 kilohms
$20 \mathrm{M} \Omega$	10 megohms	1.2 volts	900 kilohms
200 nS	10 megohms	1.2 volts	900 kilohms

3-33. Extremely short changes in a continuity condition (intermittent open or short circuits) are detected by the one-shot and maintained for approximately 200 ms . This pulse stretching effect ensures that a reliable audio tone is generated for continuity changes as short as $50 \mu \mathrm{~s}$ in the $2 \mathrm{k} \Omega$ range.

(8) static awareness
 A Message From
 John Fluke Mfg. Co., Inc.

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:
1 Knowing that there is a probiem
2. Learning the guidelines for handling them.
3. Using the procedures, and packaging and bench techniques that are recommended

The Statıc Sensitive (S.S.) devices are identified in the Fluke technical manual parts list with the symbol
*
The following practices should be followed to minimize damage to $\mathrm{S} . \mathrm{S}$. devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOA USE.

3. HANDLE S.S. DEVICES BY THE BODY

5 USE ANTI-STATIC CONTAINERS FOR HANDLING AND TRANSPORT

6. DO NOT SLIDE S.S. DEVICES OVER ANY SUAFACE

7. AVOID PLASTIC, VINYL AND STYROFOAMIN WORK AREA

```
PORTIONS REPRINTED
WITH PERMISSION FROM TEKTRONIX, INC
AND GENERAL DYNAMICS. POMONA DIV.
```


8. WHEN REMOVING PLUG-IN ASSEMBLIES HANDLE ONL.Y BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION PLACING SHORTING STRIPS ON EDGE CONNECTOR USUALLY PROVIDES COMPLETE PROTECTION TO INSTALLED SS DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION

10 ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED
11. ONLY GROUNDED TIP SOLDERING IRONS SHOULD BE USED.

Anti-static bags. for storing S S. devices or pcbs with these devices on them, can be ordered from the John Fluke Mig. Co., Inc.. See section 5 in any Fluke technical manual for ordering instructions. Use the following part numbers when ordering these special bags.

John Fluke Part No
453522
Description
$6^{\prime \prime} \times 8^{\prime \prime}$ Bag $8^{\prime \prime} \times 12^{\prime} \mathrm{Bag}$ $16^{\prime \prime} \times 24^{\prime \prime}$ Bag $12^{\prime \prime} \times 15^{\prime \prime} \mathrm{Bag}$ Wirst Stials P/N TL6-60 $\$ 1.00$
$453530 \quad 8^{\prime \prime} \times 12^{\prime}$
453548
454025
Pink Poly Shere:
$30^{\prime \prime} \times 60^{\prime \prime} \times 60 \mathrm{Mil}$
P:N RC. AS 1200
$\$ 2000$
J00898-07U7810 SE EN Litho in USA

Section 4 Maintenance

Abstract

WARNING these servicing instructions are for use by qualified PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT PERFORM any servicing other than that contained in the operating INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO 30.

4-1. INTRODUCTION

4-2. This section of the manual contains maintenance information for the Model 8026B. This includes service information, general maintenance, performance test, calibration and troubleshooting. The performance test is recommended as an acceptance test when the unit is first received, and later as a preventive maintenance tool to verify proper instrument operation. A 1 -year calibration cycle is recommended to maintain the specifications given in Section 1 of this manual. The test equipment required for both the performance test and calibration is listed in Table 4-1. If the recommended equipment is not available, instruments having equivalent specifications may be used.

4-3. SERVICE INFORMATION

4-4. The $\mathbf{8 0 2 6 B}$ is warranted for a period of two years upon delivery to the original purchaser. Conditions of the warranty are given at the rear of this manual.

4-5. Malfunctions that occur within the limits of the warranty will be corrected at no cost to the purchaser. For in-warranty repair, call (toll-tree) $800426-0361$ for the address of the nearest Fluke Technical Service Center designated to service your instrument. (In Alaska, Hawaii, Washington or Canada call 206 356-5400.) Ship the instrument postpaid in the original shipping container (if available). Dated proof-of-purchase will be required for all in-warranty repairs.

4-6. Fluke Technical Service Centers are also available for calibration and/or repair of instruments that are beyond the warranty period. Call the number listed above for shipping information. Ship the instrument and remittance in accordance with instructions received.

Table 4-1. List of Recommended Test Equipment

INSTRUMENT TYPE	REQUIRED CHARACTERISTICS	RECOMMENDED
PREFERRED		
OMM Calibrator	John Fluke 5100A family	John Fluke Models 5100B, 5101B, 5102B
ALTERNATE		
AC Calibrator	Voltage Range: 0 to 750 V ac Frequency Range: 100 to 450 Hz : $\pm 0.25 \%$ Voltage Accuracy: 100 to 450 Hz : $\pm 0.1 \%$	John Fluke Models 5200A and 5215A/5205
DC Calibrator	Voltage Range: 0 to 1000 V dc Accuracy: $\pm 0.025 \%$	John Fluke Model 343A
DC Current Calibrator	Current Range: 2 mA to 2A Accuracy: $\pm 0.2 \%$	John Fluke Model 382A
Decade Resistor or Individual Resistors	Resistance Values: $190 \Omega, 1.9 \mathrm{k} \Omega .19$ $\mathrm{k} \Omega, 190 \mathrm{k} \Omega, 1.9 \mathrm{M} \Omega$, and $10 \mathrm{M} \Omega$ Accuracy: $\pm 0.025 \%$ Power Rating: $\geqslant 1 / 8$ watt	ESI Model DB62

4-7. GENERAL INFORMATION

4-8. Access Information

NOTE

To avoid contaminating the pcb with oil from the fingers, handle it by the edges or wear gloves. If the pcb does become contaminated, refer to the cleaning procedure given later in this section.

4-9. . BACKUP FUSE (F2) AND CALIBRATION ACCESS

4-10. Use the following procedure to access the 8026B calibration adjustments.

1. Set the power switch to OFF.
2. Disconnect test leads and battery eliminator, if attached.
3. Open the battery compartment and disconnect the battery.
4. Remove the three phillips-head screws from the bottom of the case.
5. Turn the instrument face-up and grasp the top cover at both sides of the input connectors. Then, pull the top cover from the unit.
6. Backup Fuse (F2) and all adjustments necessary to complete the calibration procedure are now accessible (see Figure 4-1).

4-11. COMPONENT/PCB ACCESS

4-12. Use the following procedure to remove the Main PCB Assembly from the case:

1. complete the calibration access procedure.
2. Remove the screw from shield.
3. Using your index finger, lift the lower right-hand corner of the pcb. When the pcb is freed, pull it to the right until it clears the shelf under the buttons, and then lift up. Handle the PCB by its edges to prevent surface contamination.
4. To reassemble the 8026 B logically reverse this procedure.

Figure 4-1. Callbration Adjustment Locations

NOTE

When installing the pcb, route the battery-clip wires behind the post on the left-hand side of the bottom case, and thread the battery-clip through the battery-cover opening. Also make sure that the removable plastic lip that resides beneath the range switch pushbuttons is property installed in the boltom case. The green power switch cap should also be mounted on the роwer switch.

4-13. DISPLAY ACCESS
4-14. Refer to Figure 4-2 and the following procedure to remove/replace the LCD assembly.

1. Remove the Main PCB Assembly using the PCB access procedure.
2. Place your thumbs on either side of the display lens and carefully slide the lens out of the LCD bracket.
3. Turn the LCD bracket upside down, gently tap it against your palm. The LCD should fall out.

NOTE

When installing the LCD make certain that its flat surface is facing out and its connector pattern is on top of and makes contact with, the flexible layered connector. All of the parts indicated in figure 4-2 must be thoroughly cleaned and free of particles to assure proper display operation.

Figure 4-2. LCD Display Assembly

4-15. LSI (U1) ACCESS
4-16. Use the following procedure to remove/ replace the A/D Converter and Display Driver IC, UI.

1. Remove the pcb assembly using the component/pcb access procedure.
2. On the bottom of the pcb locate and remove the two phillips-head screws from the display assembly.
3. Lift the display assembly from the pcb to expose UI.

CAUTION

U1 is a MOS device and ls subject to damage by static discharge. Observe the precautions given later in this section under troubleshoooting before attempting to remove or replace $\mathbf{U 1}$.
4. Use a screw driver or a reasonable substitute to rock (by prying up on each end of the IC) the IC out of it socket.
5. When installing U1 make sure all pins are lined up in the socket, and then carefully press it into place.

4-17. Cleaning

CAUTION

Do not use aromatic hydrocarbons or chiorinated solvents for cleaning. These solutions will react with the plastic materials used in the instrument.

CAUTION

Do not allow the liquid crystal display to get wet. Remove the Display Assembly belore washing the pcb and do not Install H untll the pcb has been fully dried.

4-18. Clean the front panel and case with a mild solution of detergent and water. Clean dust from the circuit board with low pressure ($<20 \mathrm{psi}$) dry air. Contaminates can be removed from the circuit board with demineralized water and a soft brush (remove the Display Assembly before washing, and avoid getting excessive amounts of water on the switches). Dry with clean, dry air at low pressure, and then bake at 50 to $60^{\circ} \mathrm{C}\left(124-140^{\circ} \mathrm{F}\right)$ for 24 hours.

4-19. Battery/Backup Fuse Replacement

WARNING

BATTERY/FUSE REPLACEMENT SHOULD ONLY BE PERFORMED AFTER THE TEST LEADS HAVE BEEN REMOVED FROM THE INPUT JACKS, AND THE POWER SWITCH IS SET TO OFF. BACKUP FUSE REPLACEMENT PROCEDURES MUST BE PERFORMED BY QUALIFIED SERVICE PERSONNEL ONLY. USE ONLY THE RECOMMENDED FUSE TYPE FOR REPLACEMENT.

4-20. Refer to Section I of this manual for battery and main fuse (FI) replacement procedure. Use the following procedure to replace the backup fuse (F2).

1. Complete the Backup Fuse and Calibraion Access procedure located earlier in this section.
2. Using a pointed tool such as a probe tip, pry the backup fuse from its holder.
3. Replace the defective backup fuse with a $3 \mathrm{~A}, 600 \mathrm{~V}$ type BBS-3 only.

4-21. PERFORMANCE TEST

4-22. The performance test is used to compare the 8026 B performance with the list of specifications given in Section 1 of this manual. It is recommended for incoming inspection, periodic maintenance, and to verify specifications. If the instrument fails any part of the test, calibration and/or repair is indicated.

4-23. Initial Procedure

4-24. Establish the following test conditions before continuing with the Performance Test:

1. Allow the unit to stabilize at an ambient temperature of $23 \pm 5^{\circ} \mathrm{C}\left(73 \pm 9^{\circ} \mathrm{F}\right)$.
2. Check and, if necessary, replace the fuses and battery.
3. Set the power switch to ON.

4-25. Display Test

4-26. The following procedure is used to test the operation of all display digits and segments:

1. Select the Ω function and the $20 \mathrm{k} \Omega$ range. The display should be blanked with the exception of the overrange indicator (1) in the left hand column and a decimal point in the center of the display.
2. Connect a Decade Resistor between the $\mathrm{V} / \Omega / \mathrm{S}$ and COMMON input terminals.
3. Set the Decade Resistor to $10 \mathrm{k} \Omega$ and verify a display of 10.00 ± 3 digits.
4. Sequentially increase the resistance in $1.11 \mathrm{k} \Omega$ steps and verify the operation of each digit and its segments.
5. Disconnect the Decade Resistor at the input terminals, and select the $2000 \mathrm{k} \Omega$ range. A decimal point should not be displayed.
6. Sequentially select the 200,20 and $2 \mathrm{k} \Omega$ range. The decimal point should appear in the tenths, hundredths, and thousandths position, respectively.

4-27. Resistance/Conductance Test

4-28. The operation and accuracy of the resistance and conductance ranges are tested in the following procedure:

1. Connect the Decade Resistor between the $\mathrm{V} / \Omega / \mathrm{S}$ and COMMON input terminals.
2. Refer to Table 4-2, and select the range and input conditions specified in step I. Verify that the display reading is within the limits shown.
3. Execute and verify steps 2 through 8 of Table $4-2$, using the procedure described in step 2.

4-29. Continulty Test

4-30. Use the following procedure to verify proper operation of the continuity function:

1. Select the Ω function and $2 \mathrm{k} \Omega$ range.
2. Connect the test leads to the COMMON and V / Ω terminals.
3. Depress the $\mathrm{AC} / \mathrm{DC}$ switch to activate the audible tone.
4. Momentarily short the test leads together and observe that the tone sounds.

WARNING
the local line voltage is used in the following step. be CAREFUL NOT TO TOUCH THE PROBE TIPS WITH YOUR FINGERS OR TO allow the 120V AC RECEPTACLE TO BECOME SHORTED.

Table 4-2. Resistance/Conductance Checks

$\stackrel{\stackrel{a}{\mathbf{\omega}}}{\boldsymbol{\omega}}$	RANGE	DECADE RESISTOR		JOHN FLUKE 5100B/5101B/5102B	
		INPUT RESISTANCE	DISPLAY READING	INPUT RESISTANCE	DISPLAY READINGS
1	200Ω	Short	00.0 to 00.2	Short	00.0 to 00.2
2	$2 \mathrm{k} \Omega$	Short	0.000 to 0.001	Short	. 000 to 0.001
3	200	190Ω	189.3 to 190.7	100Ω	99.5 to 100.5
4	$2 \mathrm{k} \Omega$	$1.9 \mathrm{k} \Omega$	1.897 to 1.903	$1 \mathrm{k} \Omega$	998 to 1.002
5	$20 \mathrm{k} \Omega$	$19 \mathrm{k} \Omega$	18.97 to 19.03	$10 \mathrm{k} \Omega$	9.98 to 10.02
6	$200 \mathrm{k} \Omega$	$190 \mathrm{k} \Omega$	189.7 to 190.3	$100 \mathrm{k} \Omega$	99.8 to 100.2
7	$2000 \mathrm{k} \Omega$	$1900 \mathrm{k} \Omega$	1861 to 1939	$1000 \mathrm{k} \Omega$	980 to 1020
8	$20 \mathrm{M} \Omega$	$10 \mathrm{M} \Omega$	9.80 to 10.20	$10 \mathrm{M} \Omega$	9.80 to 10.20
9	200 nS	$10 \mathrm{M} \Omega$	97.0 to 103.0	$10 \mathrm{M} \Omega$	97.0 to 103.0
10	200 nS	Open	01.0 to 00.0	Open	01.0 to 00.0

5. At a convenient 120 V ac receptacle, insert the test leads as if to measure the line voltage. A series of beeps at a rate of approximately 5 to 10 per second indicates proper operation of the pulse stretcher circuit.

4-31. DC Voltage Test

4-32. Use the following procedure to check the accuracy and overall operation of the dc voltage ranges:

WARNING

CONNECT THE GROUND/COMMON/LOW SIDE OF THE VOLTAGE CALIBRATOR TO COMMON ON THE BO26B.

1. Set the DC Calibrator for a zero volt output.
2. Connect the DC Calibrator output to the $\mathrm{V} / \Omega / \mathrm{S}$ and COMMON input terminals of the 8026 B (calibrator ground/common/low to 8026B COMMON.
3. With reference to Table 4-3, select the 8026 B voltage range given in step 1 , and set the DC Calibrator output to the corresponding 8026 B input voltage. Verify that the display reading is within the limits shown.
4. Execute and verify steps 2 through 7 of 「able 4-3, using the procedure described in step 3.

4-33. AC Voltage Test

4-34. The ac voltage ranges are checked for accuracy and operation using the following procedure:

WARNING

CONNECT THE GROUND/COMMON/LOW SIDE OF THE AC CALIBRATOR TO COMMON ON THE MODEL 8026B.

1. Set the AC Calibrator for a zero volt ac output.

Table 4-3. DC Voltage Checks

STEP	VOLTAGE RANGE	INPUT VOLTAGE, DC	DISPLAY READING
1	200 mV	+190.0 mV	189.7 to 190.3
2	200 mV	-190.0 mV	-189.7 to -190.3
3	2 V	0.0 V	-.001 to 001
4	2 V	+1.9 V	1.897 to 1.903
5	20 V	+19 V	18.97 to 19.03
6	200 V	+190 V	189.7 to 190.3
7	1000 V	+1000 V	998 to 1002

2. Connect the $A C$ Calibrator output to the $V / \Omega / S$ and COMMON input terminals for the 8026B (calibrator ground/common/low to 8026B COMMON).
3. With reference to Table 4-4, select the 8026B voltage range given in step 1 , and set the AC Calibrator output to the corresponding 8026 B input voltage and frequency. Verify that the display reading is within the limits shown.
4. Execute and verify steps 2 through 12 of Table 4-4, using the procedure described in step 3.

4-35. DC Current Test

4-36. The following procedure is used to check the operation and accuracy of the dc current ranges.

1. Set the output of the DC Current Calibrator to zero mA.
2. Connect the output of the DC Current Calibrator to the (A) and COMMON input terminals on the 8026B.
3. With reference to Table 4-5, select the 8026 B current range indicated in step 1 , and set the calibrator output to provide the corresponding 8026 B input current. Verify that the display reading is within the limits shown.
4. Execute and verify steps 2 through 4 of Table 4-5, using the procedure described in step 3.

Table 4-4. AC Voltage Test

STEP	VOLTAGE RANGE	INPUT		DISPLAY READING
		VOLTAGE	FREQUENCY	
1	200 mV	Short	$d \mathrm{dc}$	00.0 to 00.2
2	200 mV	190.0 mV	50 Hz	188.9 to 191.2
3	200 mV	10.0 mV	50 Hz	9.7 to 10.3
4	200 mV	10.0 mV	10 kHz	9.5 to 10.5
5	2 V	1.900 V	10 kHz	1.859 to 1.941
6	2 V	1.900 V	5 kHz	1.878 to 1.922
7	2 V	1.900 V	2 kHz	1.889 to 1.912
8	2 V	1.900 V	50 Hz	1.889 to 1.912
9	20 V	19.00 V	50 Hz	18.89 to 19.12
10	20 V	19.00 V	2 kHz	18.89 to 19.12
11	20 V	19.00 V	5 kHz	18.78 to 19.22
12	20 V	19.00 V	10 kHz	18.59 to 19.41
13	200 V	110.0 V	2 kHz	108.7 to 111.3
14	200 V	110.0 V	50 Hz	109.3 to 110.8
15	750 V	750 V	50 Hz	744 to 756
16	750 V	750 V	1 kHz	744 to 756

Table 4-5. DC Current (mA) Checks

STEP	CURRENT RANGE	INPUT CURRENT, DC	DISPLAY READING
1	2 mA	+1.9 mA	1.885 to 1.915
2	20 mA	-19 mA	-18.85 to -19.15
3	200 mA	+190 mA	188.5 to 191.5
4	2000 mA	+1900 mA	1885 to 1915

4-37. CALIBRATION

4-38. Under normal operating conditions, the 8026B should be calibrated once a year to maintain the specifications given in Section 1 of this manual. If instrument repairs have been made or if the unit fails the performance test, immediate calibration is required. Equipment required for calibration is listed in Table 4-I. If the necessary equipment is not available, your nearest authorized Fluke Technical Service Center will be happy to help. A list of these service centers, as well as shipping information, is given at the back of this manual.

4-39. Use the following procedure to calibrate the 8026B.
NOTE

This procedure assumes an ambient temperature of $23 \pm 2^{\circ} \mathrm{C}\left(70\right.$ to $\left.77^{\circ} \mathrm{F}\right)$ and a relative humidity of less than 80%. The temperature of the unit should be allowed to stabilize for at least 30 minutes before calibration begins.

1. Remove the top cover from the 8026B using the access procedure given earlier in this section.
2. Set the 8026 B power switch to ON and select the 200 mV DC range.
3. Set the output of the DC Calibrator to +190.0 mV and connect it to the 8026 B input terminals; + to $\mathrm{V} / \Omega / \mathrm{S}$, and - to COMMON.
4. Adjust the DC CAL pot (R5), as shown in Figure 4-1, for a display of 190.0 or 190.1. (Use a plastic adjustment tool or a plastic screw driver for all ajustments.)
5. Disconnect the DC Calibrator from the 8026 B input terminals.
6. Select the 200 mV AC range on the 8026 B .
7. Set the output of the AC Calibrator to 190 mV at 100 Hz , and connect it to the 8026B input terminals: $\mathrm{V} / \Omega / \mathrm{S}$ and COMMON .
NOTE

The calibration adjustment tool will need to be tilted slightly to gain access to R17 and R19 as required in the next two steps.
8. On the 8026 B , adjust the AC CAL potentiometer marked " F " (fine adjust R19) so that it is at mid-range.
9. Adjust the AC CAL potentiometer marked "C" (coarse-adjust - R17) so that the 8026 B displays 190.0 ± 3 digits. Then adjust R 19 (" F " - fine adjust) so that the 8026 B displays 190.0 (an occasional flash of ± 1 digit is acceptable).
10. Select the 20 V ac range on the 8026 B .
11. Set the output of the AC Calibrator to 19.00 V at 7 kHz .
12. Adjust the HF CAL 20V capacitor (C9) for a display of 18.98 to 19.02 .
13. Select the 2 V ac range on the $\mathbf{8 0 2 6 \mathrm { B }}$.
14. Set the output of the AC Calibrator to 1.900 V at 10 kHz .
15. Adjust the HF CAL 2V capacitor (C2) for a display of 1.898 to 1.902 .
16. Reinstall the 8026B top cover. Execute the performance test given earlier in this manual to ensure that all fixed range resistors and other non-adjustable components are operating within their specified limits.

NOTE

The HF CAL adjustments performed in Steps 12 and 15 nill be slightly affected when the $8026 B$ top cover is reinstalled. If the high frequency ac performance is slightly outside the specified limits, remove the top cover and readjust C9 and C2 accordingly.

4-40. TROUBLESHOOTING

CAUTION

 Static discharge can damage MOS components contained in the 8026B.4-41. When troubleshooting or repairing the 8026 B use the precautions listed on the Static Awareness sheet to prevent damage from static discharge. Never remove, install or otherwise connect or disconnect components without first setting the 8026 B power switch to OFF.

4-42. A troubleshooting guide for the 8026 B is given in Table 4-6. To properly use the guide complete the performance test given earlier in this section and note any discrepancies. Then locate the heading of the procedure in question in the Test and Symptom column (Table 4-6). Under that heading isolate the symptom that approximates the observed malfunction. Possible causes are listed to the right of the selected symptom. Details necessary to isolate a particular cause can be derived from the theory of operation in Section 3 and the schematic diagram in Section 7.

Table 4-6. Troubleshooting Guide

TEST AND SYMPTOM	POSSIBLE CAUSE
INITIAL PROCEDURE BT is displayed when unit is turned on. Display blank.	Low battery, Q3, U2, U1. (See also operating note for A81 accessory.) Dead battery, power switch, VR2 shorted, U1, J4, battery connector.
DISPLAY TEST One or more segments will not light through entire test.	Defective or contaminated display interconnect, display, or A/D Converter U1.
Decade inoperative or one or more segments always lit.	U1.
Improper decimal point indication.	Range switches, Z6, U2, or display. (Check signals at U2 to isolate.)
Minus sign improperly displayed.	U1.
Display lit but does not respond to changes in input.	Reference VR1. crystal Y1. A/D Converter U1.
RESISTANCE/CONDUCTANCE TEST	
Displayed reading is out of tolerance on at least one but not all ranges.	Range resistor $\mathbf{Z 1}$.
Readings are noiṣy on all ranges.	Thermistor RT1, R2 open.
Readings are out of tolerance on high ohms.	RJ1, RJ2, RJ3, RJ4 damaged from severe overload.
Residual reading with test leads open	PCB is contaminated (see cleaning procedure, Section 4.)
DC VOLTAGE TEST Display reading is out of tolerance on 200 mV range.	Out of calibration (DC), Vref (VR1) in error, Z2, U1, S1.
All ranges read 000.	R2-fusible resistor open.
Readings are out of tolerance on all ranges except 200 mV .	Range resistor $\mathbf{Z 1 , ~ Z 3 , ~ Z 4 . ~}$

Table 4-6. Troubleshooting Guide (cont)

TEST AND SYMPTOM	POSSIBLE CAUSE
AC VOLTAGE TEST	
Displayed reading is out of tolerance in 200 mV range.	Out of calibration (AC), AC converter defective U4.
All ranges read 000.	R2 - fusible resistor open.
Negative overload displayed.	Q5, Q4, VR3.
Readings are out of tolerance on some or all ranges except 200 mV at 45 Hz to approximately 500 Hz .	Z1, Z3, Z4, U4.
One or more ranges other than 200 mV out of tolerance above approximately 1 KHz .	C 2 out of cal (2V range only), C9 out of cal, C12, C14, foam input divider support missing, shield screw missing, negative regulator to $\mathrm{U4}$ is 'full-on.' Q5, Q4, VR3. (Predominantly affects 2 V range at 10 kHz as battery voltage drops). Instruments that have received mechanical abuse may need to be recalibrated for ac performance.
DC CURRENT TEST Input does not affect display.	Fuse F1 and/or F2 open, CR6, U5
Displayed reading is out of tolerance on one or more ranges.	If 2000 mA and 200 mA ranges are okay, $\mathrm{Z3}$ is defective. Otherwise $\mathrm{Z4}$ is defective.
CONTINUITY TEST Tone doesn't sound when test leads are shorted.	S1G, S8B, AR20, U20, LS1, Board interconnection, defective test lead, test lead in mA jack.
CALIBRATION	
DC CAL pot at limit.	VR1, $\mathrm{Z2}$, or R5.
AC CAL pot at limit.	Z5, CR3, CR4, R9, AR1, dc calibration incorrect.
HF adjust at limit.	S3D, Z1, C2, shield not installed.

Section 5 List of Replaceable Parts

5-1. INTRODUCTION

5-2. This section contains an illustrated parts breakdown of the instrument. A similar parts listing for each of the Options will be found in Section 6. Components are listed alphanumerically by assembly. Both electrical and mechanical components are listed by reference designation. Each listed part is shown in an accompanying illustration.

5-3. Parts lists include the following information:

1. Reference Designation
2. Description of each part
3. FLUKE Stock Number
4. Federal Supply Code for Manufacturers (See Table 5-5 for Code-to-Name list)
5. Manufacturer's Part Number
6. Total Quantity per assembly or component
7. Recommended Quantity: This entry indicates the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one of each assembly in the instrument be stocked. In the case of optional subassemblies, plug-ins, etc., that are not always part of the instrument, or are deviations from the basic instrument model, the REC QTY column lists the recommended quantity of the item in that particular assembly.

5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions if necessary.

8026B

5-6. To ensure prompt and efficient handling of your order, include the following information.

1. Quantity
2. FLUKE Stock Number
3. Description
4. Reference Designation
5. Printed Circuit Board Part Number
6. Instrument Model and Serial Number

Indicated devices are subject to damage by static discharge.

$\begin{aligned} & \text { AEF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	FLUKE 8TOCK NO.	MFB 8PLY CODE	MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { AEC } \\ & \text { QTY } \end{aligned}\right.$	H 0 E
MP11	FLANGE, SWITCH	455881	89536	455881	1		
MP12	FOOT, NON-SKID	604397	89536	604397	4	4	
MP13	LENS, DISPLAY	606848	89536	606848	1		
MiP14	Plate, lcd mtG. Bracket	531665	89536	531665	1		
MP15	RETAINER, SHIELD	654459	89536	654459	1		
HP 16	SH IEL D	604389	89536	604389	1		
MP 17	SHOCK ABSORBER	428441	89536	428441	,		
MP 18	SPACER, CASE.	458588	89536	458588	2		
MP19	SUPPORT, INPUT DIV.	65586 C	89536	65586 C	1		
MP2 0	TEST LEADS \& PROBE (NOT SHOWN)	516666	89536	516666	1	2	
TM1	INSTRUCTION MANU AL, 8026 E	646414	89536	646414			
TM2	OPERATOR CARD, 8026 E	646422	89536	646422	1		
U18)	IC, C-MOS, A-D CONVERTER	429100	89536	429100	1	1	
U3	LCD, SCREENED RECOMIENDED SPARE FARTS KIT, 8026E	$\begin{aligned} & 504324 \\ & 653360 \end{aligned}$	$\begin{aligned} & 89536 \\ & 89536 \end{aligned}$	$\begin{aligned} & 504324 \\ & 653360 \end{aligned}$	1	1	

Flgure 5-1. 8026B Final Assembly

$\begin{aligned} & \text { AEF } \\ & \text { DES } \end{aligned}$	OESCAIPTION	FLUKE STOCK NO.	MF6 8PLY CODE	MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { REC } \\ & \text { OTY } \end{aligned}\right.$	N 0 T E
A10	MAIN PCB ASSEMBLY FIGURE 5-2 (80260-4001)	646406	29536	646406	FEF		
C 1	CAP, CER, $500 \mathrm{PF}+/-10 \%, 1 \mathrm{KV}$	105692	71590	2DDH6 CIS 01 K	3		
C 2	CAP, VAR, 1.5 PF-0.25 PF, 2000 V	218206	72982	$530-000$	2		
C3	CAP, AL. ELECT, $22 \mathrm{UF}+/-20 \%, 16 \mathrm{~V}$	614750	89536	614750	1		
C4	CAP, MYLAR, $0.047 \mathrm{UF}+/-10 \%, 100 \mathrm{~V}$	446773	89536	446773	2		
C5	CAP, POLY, $0.1 \mathrm{UF}+/-10 \%, 100 \mathrm{~V}$	446781	89536	446781	1		
C6	CAP, POLY, 0.22 UF +/-10\%, 100 V	436113	73445	C2 8011AH \dagger A22 OR.	1		
C7	CAP, MYLAR, $0.047 \mathrm{UF}+/-10 \%, 100 \mathrm{~V}$	446773	89536	446773	REF		
C8	CAP, POLY, $0.022 \mathrm{UF}+/-10 \%, 1000 \mathrm{~V}$	448183	55:12	0.022/10/1000-7	1		
C9	CAP, VAR, 1.5 PF-0.25 PF, 2000V	218206	72982	530-000	REF		
C12	CAP, CER, $150 \mathrm{PF}+/-5 \%$, 100V, NPO	512988	89536	512988	1		
C 14	CAP, CER, $1800 \mathrm{PF}+/-5 \%, 50 \mathrm{~V}$, NPO	528547	89536	528547	1		
C 15	CAP, CER, $500 \mathrm{PF}+/-10 \%, 1 \mathrm{KV}$	105692	71590	20DH6 ON5 51 K	REF		
C 16	CAP, AL. ELECT, $47 \mathrm{UF}+/-20 \%$, 10 V	602334	89536	602334	1		
C 17	CAP, TA, $39 \mathrm{UF}+/-20 \%$, 6V	163915	56289	$196 \mathrm{D} 396 \times 0006 \mathrm{KA} 1$	1		
C18	CAP, CER, $500 \mathrm{PF}+/-10 \%$, 1 KV	105692	71590	2DDH6 ON501K	REF		
C19	CAP, CER, 0.22 PF +/-20\%, 50V	519157	51406	RPE $11125 \mathrm{U} 224 \mathrm{M5} 0 \mathrm{~V}$	1		
CR6	DIODE, SI, RECT. 2A, 50 V	347559	05277	1N5400	1		
CR7	DIODE, SI, HI-SPEED SWITCHING	203323	07910	154448	2		
CR8	DIODE, SI, HI-SPEED SWITCHING	203323	07910	1N4448	REF		
J1-J3	RECEPTACLE, INPUT	508606	89536	508606	3		
J4	JACK, DC POWER, PCB MOUNTING	423897	89536	423897	1	1	
J5	CONTACT ASSEMBLY	651653	89536	651653	1		

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	FLUKE STOCK NO.	MFG 8PLY CODE	MFG PART MO.	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\|\begin{array}{l} \text { REC } \\ \text { QTY } \end{array}\right\|$	H 0 E
MP1	FUSE CAP	540716	- 89536	540716	1		
MP2	FUSE CLIP	534925	89536	534925	1		
MP3	FUSE CLIP	535203	89536	535203	1		
MP4	FUSE SPRING (NOT SHOWN)	535211	89536	535211	1		
MP5	SPACER	604371	89536	604371	1		
P1-P5	POST, CONNECTOR	603910	89536	603910	6		
Q1-Q3	TRANSISTOR, SI, NPN	218396	89536	218396	3	1	
Q4	TRANSISTOR, SI, PNP	195974	04713	2N3 906	1	1	
05	TRANSISTOR, J-FET, P-CHANNEL	413690	89536	413690	1	1	
R1	RES, COMP, $100 \mathrm{~K}+1-10 \%$, 1W	109397	01121	CB1 031	2		
R2	RES, WW, FUSIBLE, $1 \mathrm{~K} \mathrm{+/-10} \mathrm{\%}, \mathrm{2W}$ EXACT REPLACEMENT ONLY.	474080	01121	HB1021	1	2	
R3	RES, DEP. CAR, $200 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	441485	80031	CR251-4-5P200K	2		
R4	RES, DEP. CAR, $220 \mathrm{~K}+/-5 \%$, $1 / 4 \mathrm{~W}$	348953	80031	CR251-4-5P220K	1		
R5	RES, VAR, $500+/-20 \%, 0.3 \mathrm{~W}$	603746	51406	RVS0707-V-100-3-501M	1		
R6	RES, COMP, $1 \mathrm{M}+/-10 \%, 1 \mathrm{~W}$	109793	01121	GB1051	1		
R7	RES, DEP. CAR, $200 \mathrm{~K}+/-5 \%, 1 / 4 W$	441485	80031	CR251-4-5P200K	REF		
R8	RES, COMP, $100 \mathrm{~K}+/-10 \%$, 1 W	109397	01121	CB1031	REF		
R9	RES, DEP. CAR, $4.3 \mathrm{~K}+/-5 \%, 1 / 4 W$	441576	80031	CR251-4-5P4R3	1		
R10	RES, DEP. CAR, $100 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348920	80031	CR251-4-5P100K	4		
R11	RES, COMP, $10 \mathrm{M}+/-5 \%, 1 / 4 \mathrm{~W}$	194944	01121	CB1065	1		
R12	RES, MTL. FILM, $4.22 \mathrm{~K}+/-1 \%, 1 / 8 \mathrm{~W}$	168245	91637	CMF554221F	1		
F13	RES, MTL. FILM, $3.74 \mathrm{~K}+/-1 \%, 1 / 8 \mathrm{~W}$	272096	91637	CMF553741F	1		
R14	RES, DEP. CAR, $1 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	343426	80031	CR251-4-5P1K	1		
R15	RES, DEP. CAR, $6.8+/-5 \%, 1 / 4 \mathrm{~W}$	442251	80031	CR251-4-5P6E8	1		

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	FLUKE STOCK NO.	MFG SPLY CODE	MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	REC OTY	N 0
R16	RES, DEP. CAR, $100 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348920	80037	CR251-4-5P100K	REF		
R17	RES, VAR, $1 \mathrm{~K}+/-20 \%, 0.3 \mathrm{~W}$	614065	51406	RVS07 07-V-100-3-102M	1		
F19	RES, VAR, $100+/-20 \%, 0.3 \mathrm{~W}$	614057	51406	RVS07 07-V-100-3-1011:	1		
R31	RES, DEP. CAR, $22 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348870	80031	CR251-4-5P22K	1		
R32	RES, DEP. CAR, $100 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348920	80031	CR251-4-5P100K	REF		
R33	RES, DEP. CAR, $100 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348920	80031	CR251-4-5P100K	REF		
RJ 1-RJ4	VARISTOR, $430 \mathrm{~V}+/-10 \%$	447672	09214	$V 430 \mathrm{MA} \mathrm{7B}$	4	8	
RT1	THERMISTOR, P.T.C., $1 \mathrm{~K}+/-40 \%$, e25 DEG C	446849	50157	180010200	1	1	
S1-S8	SWITCH ASSEMBLY	453647	89536	453647	1		
S9	SWITCH, SLIDE	453365	34828	G1-116-0001-G20-52	1		
U2 8	IC, C-MOS, QUAD XOR GATE	355222	02735	CD403 OAE	1		
U4	IC, RMS, SELECTED	637801	89536	637801	1	1	
U5	IC, RECTIFIER BRIDGE, 1 AMP	418582	83003	VM08	1	1	
VR1	DIODE, BAND GAP REF.	508259	32293	ITS 6935-2	1	1	
VR2	DIODE, ZENER, 12V	113456	04713	1N963A	1		
VR3	DIODE, ZENER, 5.4V UNCOMPENSATED	683730	89536	683730	1	1	
W1	POST, CONNECTOR	603910	89536	603910	REF		
XU 1	SOCKET, IC, 40-PIN	429282	09922	DILB40P- 108	1		
Y 1	CRYSTAL, QUARTZ, 3.2 MHZ (50 HZ)	513937	89536	513937	1	1	
Z1	RESISTOR NETWORK	515874	89536	515874	1	1	
22	RESISTOR NETWORK	447680	89536	447680	1		
23	RESISTOR NETWORK	447706	89536	447706	1		
24	RESISTOR NETWORK	435727	89536	435727	1		
26	RESISTOR NETWORK	447714	89536	447714	1		

Figure 5-2. A1 Main PCB Assembly

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	QESCRIPTION	FLUKE STOCK NO.	MFG SPLY CODE	MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	$\left\|\begin{array}{l} \text { REC } \\ \text { QTY } \end{array}\right\|$	N 0 E
A2 8	ANNUNCIATOR PCB ASSEMBLY FIGURE 5-3 (8020B-4002T)	613943	89536	613943	REF		
AR20	IC, LO PWR J-FET INPUT OP AMP	604363	89536	604363	1	1	
C20	CAP, CER, $0.22 \mathrm{UF}+/-20 \%, 50 \mathrm{~V}$	519157	51406	RPE11125U224M50V	1		
C21	CAP, CER, $150 \mathrm{PF}+/-10 \%$, 50 V	614032	89536	614032	1		
J20	RECEPTACLE, SINGLE	614396	22526	75377-001	1		
J21	SOCKET, 4-PIN	417311	30035	SS-109-1-04	1		
LS1	TRANSDUCER, AUDIO	602490	51406	EFB-RD24C01	1		
R2 1	RES, DEP. CAR, 200K +/-5\%, 1/4W	441485	80031	CR251-4-5P200K	4		
$\mathrm{R22}$	RES, DEP. CAR, $18 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348862	80031	CR251-4-5P18R	9		
R23	RES, DEP. CAR, $200 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	441485	80031	.CR251-4-5P200K	REF		
R24	RES, DEP. CAR, $100 \mathrm{~K}+/-5 \%, 1 / 4 \mathrm{~W}$	348920	80031	CR251-4-5P100K	1		
H25	RES, DEP. CAR, $200 \mathrm{~K}+/-5 \%$, $1 / 4 \mathrm{~W}$	441485	80031	CR251-4-5P200K	REF		
R26	RES, DEP. CAR, $200 \mathrm{~K}+/-5 \%$, $1 / 4 \mathrm{~W}$	441485	80031	CR251-4-5P200K	REF		
R27	RES, COMP, $10 \mathrm{M}+/-5 \%, 1 / 4 \mathrm{~W}$	194944	01121	CB1065	1		
R28	RES, DEP. CAR, $1 \mathrm{M}+/-5 \%$, $1 / 4 \mathrm{~W}$	348987	80031	CR251-4-5P1M	1		
U20 ${ }^{\text {d }}$	IC, C-MOS, QUAD 2-INPUT NAND GATE	418509	12040	MM74COON	1	1	

8026B-1602

Flgure 5-3. A2 Annunclator PCB Assembly

Table 5-4. Federal Supply Codes for Manufacturers

01121
Allen-Bradley Co.
Milwaukee, Wisconsin

02735
Replaces 18725
RCA - Solid State Div.
Somerville, New Jersey
04713
Motorola Inc
Semiconductor Group
Phoenix. Arizona

05277
Westinghouse Electric Corp.
Semiconductor Division
Youngwood, Pennsylvania
07263
Fairchild Camera \& Instrument Corp.
Semiconductor Division
Mountain View, California
07910
Replaced by 15818
09214
General Electric Co.
Semiconductor Products
Power Component Operation
Auburn, New York

09922
Burndy Corp
Norwalk, Connecticut
12040
National Semiconductor Corp.
Danbury, Connecticut
14099
Serntech Corp
Newbury Park, California
15818
Teledyne Semiconductors
Formerly Amelco Semiconductor
Mountain View, California
18736
Voltronics Corp.
Hanover, New Jersey
19647
Caddock Electronics Inc
Riverside, California

22526
DuPont, El DeNemours \& Co. Inc.
Berg Electronics Div.
New Cumberland, Pennsylvania
30035
Jol Industries Inc
Garden Grove. California
50157
Midwest Components Inc.
Muskegon, Mississippi
51404
Corning Glass Works
Medical \& Scientific Instruments
Medfield, Maryland
51406
Murata Corporation of America Marietta, Georgia

52763
Stettner-Trush Inc
Cazenovia, New York

56289
Sprague Electric Co.
North Adams, Massachusetts

71400
Bussman Manufacturing
Div. of McGraw-Edison Co.

St. Louis, Missouri
71590
Centrelab Electronics
Div. of Globe Union Inc.

Milwaukee. Wisconsin

72136
Electro Motive Mfg. Co
Florence, South Carolina
72982
Erie Technical Products Inc.
Erie, Pennsylvania
73445
Amperex Electronic Corp.
Hicksville, New York
75915
Littlefuse Inc.
Des Plaines, Illinois

Table 5-4. Federal Supply Codes for Manufacturers (cont)

79727	84411
C - W Industries	TRW Electronic Components
Warminster, Pennsylvania	TRW Capacitors
	Ogallala, Nebraska
80031	
Mepco/Electra Corp.	89536
Morristown, New Jersey	John Fluke Manufacturing Co., Inc.
	Everett, Washington

C - W Industries
Warminster, Pennsylvania
80031
Mepco/Electra Corp. Morristown, New Jersey

84411
Electronic Components
ThW Capators

89536
John Fluke Manufacturing Co., Inc. Everett, Washington

Section 6 Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information concerning the accessories available for use with the Model 8026B I)igital Multimeter. Each accessory, as shown in Figure 6-1, is described in general terms under a separate major heading containing the accessory model number. The depth of detail is intended to give the prospective user an adequate first acquaintance with the features and capabilities of each accessory. Additional information, when necessary, is supplied with the accessory.

6-3. DELUXE CARRYING CASE (C90)

6-4. The C90 Deluxe Carrying Case is a pliable, vinyl, zipper-closed pouch that provides in-field-transport protection for the 8026 B as well as convenient storage locations for test leads, operator guide and other small accessorics. A finger- or belt-loop is included on the case as a carrying convenience.

6-5. TEMPERATURE PROBES (80T-150C and 80T-150F)

6-6. Introduction
6-7. The 807-150 Temperature Probe converts the instrument into a direct-reading (1 $\left.\mathrm{mV} \mathrm{dc} /{ }^{\circ}\right)^{\circ} \mathrm{C}(80 \mathrm{~T}-150 \mathrm{C})$ or ${ }^{\circ} \mathrm{F}(80 \mathrm{I}-150 \mathrm{~F})$ thermometer. It is ideally suited for surface. ambient, and liquid measurements and lends itself easily to a wide range of design, troubleshooting, and evaluation applications. A rugged, fast-responding probe-tip with a 350 V de standoff makes the $80 \mathrm{I}-150$ one of the most versatile and easy-to-use temperature probes available.

6-8. Specifications

RANGF: ($\left.{ }^{\circ} \mathrm{C} ;{ }^{\circ} \mathrm{F}\right)$ (field selectable by
internal jumpers) $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ or $-58^{\circ} \mathrm{F}$ to $302^{\circ} \mathrm{F}$
ACCURACY $\pm 1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$ from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, decreasing linearly to $\pm 3^{\circ} \mathrm{C} \cdot\left(5.4^{\circ} \mathrm{F}\right)$ at $-50^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.
RESOIUTION $0.1^{\circ} \mathrm{C}$ on 200 mV range
VOLTACIE STANDOFF 350 V de or peak ac
POWFR Internal disposable battery; 1,000 hours of continuous use

Figure 6-1. 8026B Accessories

Figure 6-1. 8026B Accessories (cont)

6-9. CURRENT TRANSFORMER (80I-600)

6-10. Introduction

6-11. The Model 801-600 extends the maximum 2A ac current measuring capability of the instrument up to a maximum of 600 amps . A clamp-on transformer designed into the probe allows measurements to be made without breaking the circuit under test. In use, the current carrying conductor being measured serves as the transformer's primary, while the 801-600 serves as the secondary. Because of a high efficiency, quadrature type of winding, wire size and location of the conductor within the transformer jaws do not affect the accuracy of the current measurement.

6-12. Specifications

6-13. HIGH VOLTAGE PROBE (80K-6)

6-14. Introduction
6-15. The $80 \mathrm{~K}-6$ is a high voltage probe designed to extend the voltage measuring capability of an ac dc voltmeter to 6000 volts. A 1000 : I voltage divider provides the probe with a high input impedance. The divider also provides high accuracy when used with a voltmeter having a 10 megohm input impedance. A molded plastic body houses the divider and protects the user from the voltage being measured.

6-16. Specifications

VOITAGI: RANGE	0 to 6 kV , dc or peak ac
INPUT IMPEIDANCE	75 megohms nominal
DIVISION RATIO	1000:1
ACCURACY	
DC 01000 Hz	$\pm 1 \%$
500) Hz to 1 kHz	$\pm 2 \%$
Above 1 kHz	Output reading falls. Typically, -30% at 10 kHz .

6-17. HIGH VOLTAGE PROBE (80K-40)

6-18. Introduction

6-19. The Model $80 \mathrm{~K}-40$ extends the voltage measurement capability of the instrument up to 40 kV . Internally, the probe contains a special 1000 : 1 resistive divider. Metal-film resistors with matched temperature coefficients comprise the divider, and provide the probe with its excellent accuracy and stability characteristics. Also, an unusually high input impedance ($1000 \mathrm{M} \Omega$) minimizes circuit loading, and thereby contributes to measurement accuracy.

6-20. Specifications

VOLTAGE RANGE I kV to 40 kV dc or peak ac, 28 kV rms ac
INPUT RESISTANCE $1000 \mathrm{M} \Omega$
DIVISION RATIO 1000:1
ACCURACY DC (OVERALL) .. 20 kV to $30 \mathrm{kV} \pm 2 \%$ (calibrated at 25 kV)
UPPER LIMIT Changes linearly from 2% at 30 kV to 4% at 40 kV

LOWER LIMIT Changes linearly from 2% at 20 kV to 4% at I kV ACCURACY AC (OVERALL) $\pm 5 \%$ at 60 Hz

6-21. HIGH FREQUENCY PROBE (83RF)

6-22. Introduction
6-23. The 83RF Probe extends the frequency range of the DMMs voltage measurement capability to include 100 kHz to 100 MHzinputs from 0.25 to 30 V rms. The probe operates in conjunction with the 8026B dc voltage ranges, and provides a dc output that is calibrated to be equivalent to the rms value of a sinewave input.

6-24. Specifications FREQUENCY RESPONSE	$\pm 1 \mathrm{~dB}$ from 100 kHz to 100 MHz (relative to ac/dc transfer ratio)	
AC-TO-DC TRANSFER RATIO		
	RMS Input (100 kHz)	DC Output
	0.25-0.5V	0.25-0.5V $\pm 1.5 \mathrm{~dB}$
	0.5-2.0V	$0.5-2.0 \mathrm{~V} \pm 0.5 \mathrm{~dB}$
	2.0-30V	$2.0-30 \mathrm{~V} \pm 1.0 \mathrm{~dB}$
EXTENDED FREQUENCY		
RESPONSE	$\mathrm{MH} \text {. }$	
RESPONSE	Responds to peak value of input; calibrated to read the rms value of a sine wave.	
Voltage range	0.25 to 30 V dc	
MAXIMUM DC INPUT	200 V dc	
TEMPERATURE COEFFICIENT		
(0 to $18^{\circ} \mathrm{C}, 28$ to $50^{\circ} \mathrm{F}$)	± 0.1 of ac-to-de transfer ratio specifications per	
INPUT CAPACITANCE:	$<5 \mathrm{pF}$	

6-25. HIGH FREQUENCY PROBE (85RF)

6-26. Introduction
6-27. The Model 85RF High Frequency Probe allows measurements over a frequency range of 100 kHz to 500 MHz from .25 V to 30 V rms. It operates in conjunction with the instruments de voltage ranges and provides a dc output that is calibrated to be equivalent to the rms value of a sinewave input.

```
6-28. Specificatlons
FREQUENCY RESPONSE
    100 kHz to 100 MHz
        \pm0.5 dB
    100 MHz to 200 MHz .......... }\pm1.0\textrm{dB
    200 MHz to 500 MHz ......... }\pm3.0\textrm{dB
EXTENDED FREQUENCY
RESPONSE
        Useful for relative readings from 20 kHz to 700
        MHz.
RESPONSE ...................... Responds to peak value of input; calibrated to
    read rms value of a sine wave.
VOLTAGE RANGE .............0.25V dc to 30V rms
```

8026B

```
MAXIMUM DC INPUT ......... 200V dc
INPUT CAPACITANCE ......... <S pF
AC-TO-DC TRANSFER RATIO . I:I
RATIO ACCURACY ............ 0.5 dB at 10 MHz
```


6-29. BATTERY ELIMINATOR (A81-115)

6-30. The A81 Battery Eliminator converts the 8026B from battery to ac-line operation. It is available in a variety of line-power configurations, as shown in Table 6-1. When connected to the 8026B it effectively removes and replaces the output of the battery. The battery does not need to be removed from the circuit.

WARNING

DO NOT SUBSTITUTE A CALCULATOR TYPE BATTERY ELIMINATOR FOR THE A81. THESE UNITS DO NOT PROVIDE THE PROTECTION NECESSARY FOR COMMON MODE MEASUREMENTS UP TO 500V DC. ALWAYS USE THE MODEL A81 FOR AC-LINE OPERATION.

NOTE

The "BT" indicator may come on when using the A81. This does not affect the operation of the 8026 B.

6-31. CURRENT SHUNT (80J-10)

6-32. Introduction
6.33. The Model $80 \mathrm{~J}-10$ Current Shunt extends the current measuring capability of the DMM to 10 amps continuous (20 amps for periods not exceeding one minute) dc to 10 $\mathbf{k H z}$ at an accuracy of $\pm 0.25 \%$ in excess of the voltmeter accuracy.

Table 6-1. A81 Model Numbers and Input Power

MODEL NO.	INPUT POWER
A81-100	$100 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48$ to 62 Hz
A81-115	$115 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48$ to 62 Hz
A81-230-1	$230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48$ to $62 \mathrm{~Hz} \quad$ (U.S. type plug)
A81-230	$230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48$ to $62 \mathrm{~Hz} \quad$ (European type plug)

6-34. Specifications

SHUNT 10 amps at 100 mV	
ACCURACY ($18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$)	
DC to 10 kHz	$\pm 0.25 \%$
$10 \mathrm{kHz}-100 \mathrm{kHz}$	Rising to 1 dB at 100 kHz typical
TEMPERATURE COEFFICIENT	$0.005 \% /{ }^{\circ} \mathrm{C}$
INDUCTANCE	8.3 nH in series $w / 0.01 \Omega$ shunt
OVERLOAD	Up to one minute at 20A with a $1 / 4$ duty cycle for recovery after currents between 10A and 20A
CONNECTS TO	3/4 inch center banana jacks
CONNECTORS	5-way binding posts (red and black)

6-35. AC/DC CURRENT PROBE (Y8100)

6-36. Introduction

6-37. The Fluke Y8100 AC/DC Current Probe is a clamp-on probe that is used with a voltmeter, multimeter, or oscilloscope to read dc, ac. or composite (ac on dc) current measurements. The jaws on the Y8100 are designed to clamp around conductors up to $3 / 4$ inch in diameter. The pistol shape allows safe, easy, one-hand operation when making current measurements.

6-38. The Model Y8100 probe is battery powered with size AA cells. It measures current to 200A dc or ac rms using most any voltmeter. Two ranges, 20A and 200A, produce a 2 V output at full-range current.

6-39. Specificatlons	
RANGES	20A ac or dc
	200A ac or dc
RATED OUTPUT	2 V at full range
ACCURACY	
DC to 200 Hz	$\pm 2 \%$ of range
200 Hz to 1 kHz	$<100 \mathrm{~A}$ add $\pm 3 \%$ reading
	$>100 \mathrm{~A}$ add $\pm 6 \%$ reading
CALIBRATION CYCLE	1 year
FREQUENCY RESPONSE	dc to 1.0 kHz
RECOMMENDED LOAD	$\geqslant 3.0 \mathrm{k} \Omega$
TEMPERATURE RANGE	$+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$; for specified accuracy $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; storage and operation at reduced accuracy.
HEATING LIMITATION	Prolonged operation above 200 A ac or 1 kHz can cause damage to the Y8100.
WORKING VOLTAGE RATING	Core to output: 600 V dc or 480 V ac maximum output to ground; 42 V dc or 30 V ac
APERTURE SIZE	$3 / 4^{\prime \prime}(19 \mathrm{~mm})$ diameter
SIZE-OVERALL	$9^{\prime \prime} \times 4-1 / 2^{\prime \prime} \times 1-7 / 16^{\prime \prime}(230 \mathrm{~mm} \times 115 \mathrm{~mm} \times 37 \mathrm{~mm})$
WEIGHT	14 ounces (0.4 kg). with batteries
POWER	Battery, four AA cells
BATTERY LIFE	Alkaline-20 hours continuous

6-40. AC CURRENT TRANSFORMER (Y8101)

6-41. Introduction

6-42. The Model Y8101 (Figure 6-I) is a small clamp-on current transformer designed to extend the current measuring capability of an ac current meter up to 150 amperes. A clamp-on coil designed into the probe allows measurements to be made without breaking the circuit under test. This coil serves as the secondary of a $1: 1000$ transformer. The current-carrying conductor being measured serves as the primary.

6-43. Specifications

CURRENT RANGE
2A to 150A
$\pm 2 \%, 10 \mathrm{~A}$ to 150 A
ACCURACY, $(48 \mathrm{~Hz}$ TO 10 kHz) . $\pm 8 \%$. 2A to 10 A
DIVISION RATIO 1000:1
WORKING VOLTAGE 300V ac rms maximum
INSULATION DIELECTRIC
WITHSTAND VOI.TAGE
3 kV rms
MAXIMUM CONDUCTOR SIZE $7 / 16^{\prime \prime}(1.11 \mathrm{~cm})$

6-44. SAFETY DESIGNED TEST LEAD SET (Y8132)

6-45. This test lead set is equivalent to the set originally supplied with the 8026B multimeter. The set includes one red and one black test lead. Each probe has an anti-slip shoulder near the test tip and is connected to the multimeter via a safety-designed shrouded banana connector. This set will fit John Fluke instruments with safety-designed input jacks.

6-46. DELUXE TEST LEAD SET (Y8134)

6-47. The Y8134 is a deluxe test lead set. The attachments provided allow interconnection with a wide variety of leads and electronic components. Included in the kit are:

1. Two test leads (one red and one black). The Y8134 leads have a shrouded banana connectors on each end.
2. Two test probes
3. Two insulated alligator clips
4. Two spade lugs
5. One squeeze hook
6. One test lead pouch
7. One instruction sheet

6-48. SLIM FLEX TEST LEAD SET (Y8140)

6-49. The Y8140 Test Lead Set (Figure 6-1) consists of one red and one black 60 -inch (1.52 meter) test lead, each with a standard banana plug on one end and an extendable tip probe on the other end. This flexible metallic tip conductor may be extended up to 2.5 inches and is insulated to within $0: 1$ inch of its tip. This insulation reduces the chance of creating an inadvertent short circuit while using the probes in their extended configuration. Intended primarily for measuring voltages, the Y8140 leads may also be used for measuring modest currents.

Section 7
 Schematic Diagrams

TABLE OF CONTENTS

FIGURE TITLE PAGE
7-I. 8026B 7-2
7-2. UI and U3, A/D Converter and Display 7-6
7-3. AC Converter 7.7

Figure 7-1. 8026B

Figure 7-1. 8026B (cont)

Flgure 7-1. 8026B (cont)

Figure 7-2. U1 and U3, AD Converter and Display

Manual Change and Backdating Information

INTRODUCTION

This appendix contains information necessary to backdate the manual to conform with earlier peb configuations. To identify the configuration of the pebs used in your instrument, refer to the revision letter (marked in ink) on the component side of each peb assembly. Table A-I defines the assembly revision levels documented in this manual.

NEWER INSTRUMENTS

As changes and improvements are made to the instrument. they are identified by incrementing the revision letter marked on the affected peb assembly. These changes are documented on a supplemental change /errata sheet which, when applicable, is inserted at the front of the manual.

OLDER INSTRUMENTS

To backdate this manual to conform with an earlier assembly revision level. perform the changes indicated in Table A-1.

CHANGES

There are no backdating changes at this printing. All pcb assemblies are documented at their original revision level.

Table A-1. Manual Status and Backdating Information

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:
The JOHN FLUKE MFG. CO. INC.. warrants each instrument is manufactures to be free from defects in material and workmanship under normal use and service for the period of 2 years from date of purchase This warranty extends only to the original purchaser. This warranty shall not apply to fuses. disposable batteries (rechargable type batteries are warranted for 90 days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations

In the event of failure of a product covered by this warranty. John Fluke Mlg. Co Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 2 years from date of purchase: provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may. at its option, replace the product in lieu of repair. With regard to any instrument returned within 2 years of the original purchase, said repairs or replacement will be made without charge. It the failure has been caused by misuse. neglect. accident. or abnormal conditions of operations. repairs will be billed at a nominal cost. In such case. an estımate will be substituted betore work is started. if requested

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED INCLUDING BUT NOT LIMITTED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY. FITNESS. OR ADEOUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO INC.. SHALL NOT BE LIABLE FOR ANY SPECIAL. INCIDENTAL. OR CONSEQUENTIAL DAMAGES. WHETHER IN CONTRACT. TORT, OR OTHERWISE.

It any fallure occurs, the following steps should be taken:

1. Notity the JOHN FLUKE MFG. CO. INC., or nearest Servicetacility, giving full details of the ditficulty, and include the model number, type number. and serial number On receipt of this information, service data. or shipping instructions will be forwarded to you.
2. On receipt of the shipping instructions, forward the instrument. transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO INC., instruments should be made via United Parcel Service or "'Best Way" prepaid. The instrument should be shipped in the original packing carton; or if it is not available. use any suitable container that is rigid and of adequate size and surrounded with at least four inches of excelsior or simitiar shockabsorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notitied immediately. It the instrument is demaged in any way a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage. contact the nearest Fluke Technical Center) Final claım and negotiations with the carrier must be completed by the customer

The JOHN FLUKE MFG. CO. INC., will be happy to answer all applications or use questions. which will enhance your use of this instrument Please address your requests or correspondence to: JOHN FLUKE MFG. CO. INC., P.O. BOX C9090. EVERETT. WASHINGTON 98206, ATTN: Sales Dept. For European Cusiomers. Fluke (Holland)B.V.P O Box 5053, 5004 EB. Tilburg. The Netherlands.
-For European customers, Air Freight prepaid.
John Fiuke Mig. Co. Inc., P.O. Box C9090, Everett, Washington 98206
Rev 6/81

U.S. SALES AREAS for all Fluke products

AK, Anchortage
Harry Lang a Associates
1371 Hillcrest Orive ${ }^{3} 303$
Anchorape. AK 89503
(907) 27-5741

A1. Hunteville
John Fluke Mitg Co.. Inc.
3322 S. Memorial Parkway
Surte 98
Huntsville. AL 35801
(205) $881-6220$

AZ, Tompe
John Fluke Mig. Co., Inc
2125 S. 4Bth Street
Sulte 104
Tempe, AZ 85282
(602) 867-8724

Tucion
(602) 790-9881

CA. Loa Angeles
John Fluke Mig. Co. Inc
20902 South Bonita St
Carson, CA 90746
(213) 539-3900
or (714) 761-2449
8m Olego
John Fluke MIg. Co , Inc. 9601 Aero Drwo. Suite 290 San Diego. CA 92123
(714) 226-1254

Senta CImra

John Fiuke Mig. Co., Inc. 2300 Waish Ave., Blag. K Santa Ciara. CA 95051
(408) 727-0513

Tuatin

John Fluke Mig. Co . Inc.
15445 Red Hill Ave . Suite F
Tustin, CA 92690
(714) 838-8863

CO, Denver

John Fluke Mig. Co . Inc.
1980 South Quebec St. .44
Denver. CO 80231
(303) 750-1222

CT, Mertiord

John Fluke Mtg. Co , Inc.
Glen Locken East
41-C Now London Turnpike
Giastonbury. CT 08033
(203) 659-3541

FL. Oriando

John Fluke MIg. Co. Inc
940 N. Fern Creek Ave.

- Orlando, FL 32803
(305) 696-4881

OA, Atimita

John Ftuke Mig. Co . Inc.
2700 Deik Rd. Suite 250
Marrette, GA 30067
(404) 953-4747

HI, Honohbun
EMC Corporation
2979 Ualena St
Honolulu, HI 96818
(808) 836 - 1138
in. lown City
(318) 354-2811

IL, Chicego
John Fluke Mig. Co., Inc.
3740 Industrial Ave.
Roliling Meadows. IL 80000
(312) 398-0850

IN. Indiegepots
John Fluke Mtg Co. Inc.
877 Purdue
Sulte 101
Indianapolis, IN 46268
(317) 675-7870

K8, Kanasas Ciry
John Fluke Mig. Co. Inc
4550 W. 109 th St., Suite 130
Shawree Mrsayon, KA 66211
(813) 381-9800

LA, Now Oriement

(504) 455-0814

MA, Burlington
John Fluke Mig. Co., Inc
$25{ }^{-8}$ - Sireet
Burlington MA 01803
(617) 273-4674

MD, Beftimore

(301) 782-7060

flockitile

Jonn Fluke Mtg Co., Inc.
5640 Fishers Lane
Rockville, MD 20052
(301) 770-1570

MI, Detrolt

John Fluke M/g Co. Inc.
13955 Farmington Rd.
Livonia, MI 48154
(313) 522 -8140

MN, Bloomington
John Fluke Mig Co. Inc 1801 E. 79th SI., Sulte 9 Bloomington. MN 55420 (812) 854-5526

MO, 84. Lout
John Fiukz Mitg. Co., Inc. 2029 Woodland Parkway Suite 105
St. Louls. MO 63141
(314) 983-3805

NC. Gremabioro
John Fluke Mig. Co.. Inc.
1310 Beaman Place
Greensboro, NC 27408
(919) 273-1918

NJ. Paremue
John Fluke Mig. Co., Inc.
P.O. Box 930

West 75 Contury Road
Paramus. NJ 07652
(201) 262-8550

NM, Albuquerque
John Fluke Mig. Co , Inc 1100 Alvarado Drva N.E Albuquerque. NM 87110
(505) 881-3550

NY, Rocheeter
John Fluke Mig. Co., Inc
4515 Culvar Road
Rochester, NY 14622
(718) 323-1400

OH, Cl welenad

John Fluke Mig. Co . Inc
7830 Freeway Circle
Middeburg Heights, OH 44130
(216) 234.4540

Cotumbus

(614) 889-5715

Dsyton

John Fluke Mig Co., Inc.
4756 Fishourg Ra.
Dayton, OH 45424
(513) 233-2238

OR, Portiend

John Fluke Mig. Co., Inc
18380 S W. Springfield Lane
Aloha. OR 97007
(503) 642.1342

Pa, Phulemenphta
John Fluke Mig. Co.. Inc
1010 West Bth Ave. Suite H
King of Prussia, PA 19406
(215) 285-4040

Plutaburgh
(412) 281-5171

TX, Ausatin

John Fluke Mig. Co.. Inc. Creek Gardens. Suite 103 8705 Snoal Creek Blvd.
Austin. TX 78758
(512) 459-3344

Dallas

John Fluke Mfo. Co., Inc
14400 Midway Road
Dalles, TX 75234
(214) 233-8990

Houston

John Fluke Mig. Co , Inc. 4240 Blue Bonner D
Statford. TX 77477
(713) 481-5995

Sen Antorio
John Fluke Mig. Co., Inc. 10417 Gultdato
San Antonio. TX 78216
(512) 340-2621

UT, seat Lake CHy

John Fiuke MPg Co., Inc. 5228 So. 300 West. Sulte ${ }^{2}$? Sall Lake City. UT 84107 (801) 288-9331

WA. 8entic

John Fluke Mig Co. Inc.
5020 148th Avo. N E.
Suite 1110
Redmond. WA 980se
(206) 881 -8966

Service Conter Areas

CA, Burberin (213) 649-4641
CA, Santa Clare (400) 727-0121
CO, Denwer (303) 750-1228
FL, Orlando (306) 890-2296
IL. Chlicege (312) 380-5800
MA, Burlington (817) 273-4878
MD, Rockulte (301) 770-1576
NJ, Peratmus (201) 262-9550
TX. Dullas (214) 233-9945
WA. Evereth (206) 356-5560

The following low-cost instruments. . .
are stocked locally and sold by the authorized Distributors listed on the other side of this sheot, as will as by the sales offices shown,

Portabla DMM'z: 80004, 80104. 8012A, 80304, 80404. 80504
Digltel Countert 19004, 1910A. 1811A. 1912A
Dloftal Thermemeters: 2160 - and 2170 - Series
All other instrumonts are sold by the sales offices only.

For more Information on Fluke products or Sales Ofices you may diaf (800) 428-0381 ton-free in most of the U.S.A.
From Alaka, Hawall, or Washington, phone (206) 356-5400. From Canada and other countriet phone (208) 356-5500.

FLLKE
John Fluke Mfg. Co.. Inc.. P.O. Box C9090. Evarett. WA 98206
Fluke (Holland) E.V., P O. Box 5053, 5004 EB. Tilburg. The Netherlands. Phone (013) 673973
Litho in U.S.A.

INTERNATIONAL SALES OFFICES

Arparitione

Coamin. SA
Virrey del Pino 4071
Buenet Ares, Argemina
Ter 552-5248, TLX 22284

Auntrile 0

Eimesteo intruments Pty Lid po. Box 30. Concora NSW Australu 2138
Tet (2) 730-2808. TLX (7901 2588)
Eimestico ingtruments Ply Lid
21-23 Anthony Drive
Mi Wavely VIC 3149

Australia

Tor 233-4044, TLX (790) 36200
Etmenetco Instrumenis Pty Lid
Prolessional Surtos Elag
GPO Box 2300
Brabimet. 4001. Austraha
Tor (07) 229-3161
Elmaesco inatruments Ply Lid GPO Box 1240. Adelade South Auntralu 5001
Tel (08) 271-1839
Eimeasco Instruments Piy Lito PO Box 85 Gosmalls Weit Australia 6110
Ter (08) 300-3362
Ausutrta
Waller Rekitsch
Elektronache Oqrate GmbH \& Co
vertriet KG
Oberngeyas 28
Vienna. Augula
Ter (0222) 23555s. TLX 134759
Axapledeen -
Motharland Corporation
24 Hatherela Ro. Tikalula
Dacca 3. Banglacosh
Tol 257249 or 255776

Baman -

Fluke (Beigium) SANV
6. Rue de Geneve

1140 Bruseats. Bolgium
Ter (2) 2164090. TLX: 26312
Boltule
Cossin Bolivia SAL
Camia 729s. Li Puz. Boliva
Tol 40962 TLX: 3233

Brain

Fluke Eirsil-Incurtial E
Commercio ltoa
A Amerones 422
Alphavilo. Batuer
CEP 0 A400 Sso Pauto Brazi Ted (Ot1! 421.5477. TLX Of +35588
Fluke Brasil-tndustria E
Commerch LTDA
Ar thentrque Valederes. 23,40
Rio de Janero. Brasil
Tel 252-1297
Brunal -
Pank O'Connors (PTE) Limited No 8. BK D
Surfri Shop House Complax
Mito 1 Jalong Tutorg
Eandar Sorr Begawan. Eruner Ted 26880

Eurgerla ${ }^{5}$

Amtest Associates lid
Clerence House. 31. Clarence St
SLanga, Mrodiasex Twis 4SY
United Kingdom
To (784) 835s5. TLX. 928855

Ceneds θ
Alan Cirmtord Aswoc., Lto
141935 30min Ave N E
Calgary. Alberta T2E EZ5
Ter (403) 230-1341. TLX. 03-621186
Allan Crawford Assoc. Lto
PO Bey 3067
Dostar Siation - D
Edmonton Alberla TSL AK1
(d) (403) 451-4e93

Alon Crawtord Assoc. Lid
3795 Willum Street
Burnaby. Brition Columbie VSC 3H3 101 (604) 294-1326. TLX 04-54247
Allan Crawtord Assoc. Lto
sa1 Ledy Elien Phace
Oftame. Ontario K12 5L3
TI (613) 722-i E62. TLX 0533600
allin Crawford Assoc. Lrd
503 Northarr Drve
Missispaciga. Ontario L4y 1J2 Tel (416) 670-1500. TLX O69887*0

Alian Crawtord Arsoc. Ltd
7918 cote de bretse
SI Laurent. Ouadec mit IE
Tof (514) 731-8504. TLX 0582494

cied

luke (Molland) BV
PO Bos 5053. 5004 EB Tilbure
Zoveriheuverenweg 53. 5048 AN Tilburg
The Natherland:
Tol (013) 873973 TLX 52237

CNI

nuronica Chile Lida
Mmuel Monti 024 - Of. D
Casilia 18228. Sentugo 9. Chie Tel 44940 . TLX 24030
Atin inironica Chile
Chine, Peoploty Repentilic of ${ }^{\circ}$
Fluke International Corporation PO Box C9080
Everett. WA 98206. U SA
TE (206) 356-5511
TLX 152662 JOHN FLUXE EVT
Cotomble e
Sistemas E Instrumentacion. Lida
Cerrara 13. No 37-43. Of 40

p Aproo 298e3

Pogota DE. Colombra SA
Tel 232-45-32. TLX: 45787
Cypare -
Clurs Rediovision Lid
PO Boor 1909 Nicome. Cyprus
Tol 66121 . TLX 8262385
Crechosiovelide a
Amtest Assoclates Lid
Cierence House, 31, Clarence $\$$
Sianines, Middieoer TWis 4SY
mited Kingdom
T하 (764) 03555. TLX. 92885s

Donruert

Tape Oben A/S
Belierup Brand 222
DK - 2750 Ballarup. Denmerk
Tal (2) 656111. TLX. (055) 35293

feution -

Proieco Conmin Cia . Ltde
Edilicio "Jerico"
Ave 12 of Octupere r2285
Ave Orelana (Plante Bepa)
Ouito. Ecubdo
T1 529684. TLX (393) 2865
Proteco Cossin Cis , Lide
Casderon 103 y Malecon
Castle al 133
Guaysqull, Ecuscor
Tol 526093

Egypt and Puden :
Etecilonic Engineming Limson Office
PO Box 2801 Horreya
Helropolat. Cero. Egyp
Tot 601588. TLX (927) 02502

Enquand -

Fiuke (Great Eritan) cto
Cotonial WHy
Weford, rerts. WD2 4 TT
United Kingdom
Td (OO23) 40511. TLX: (B51) 83456 Rapifax (0923) 25067

Ethlople -

Fluke (Holland) E V.
PO. Box 50s3. 5004 EB TIlburg
Zovernmuvelonweg 53, 5040 AN TJburg
The Netharianct
Tel (013) 873973 . TLX 52237

种

AWA Fi,
47 Forsier Rond. Walu Bay
Sure. Fy
Tel: 312079. TLX FJ2347

Fridend o

Oy Finaip AB. Teolisulatis
02700 Kaumainen, Finland
Puh (0) 5052255 T (X (B57) 123120

France :

MB Elecironique SA
Rue fourny 606.21 Centre
76530 日UC
BP No 31
78530 BUC. France
Tal: 13) Q6i68131. TLX (E42) 605414
Oorrwen Democrutic Proptolic :
Amitest Associales Lid.
Clarence House. 31 Clanence SI
Stunet. Madresex TWIA 4SY
United Kingoiom
Tol (78) 83555. TLX 026855
Corman Federas fepurlic ie
Fluke (Deutrictand) Gmbr
Max. Huober StraBe 8
BO4S Immining Wess Germany
Tel (069) 960s0, TLX 522472
Papitan: (089) 9605180
Fluke (Deutschiand) $\mathbf{G m b H}$
Moineckesu sase 33
4000 Duseel dort 30. Wesh Germany
Tel (0211) 450831. TLX: (841) A585576
dellenic Sciemtic Meprexentations Lt
11. Vrasende Stroet

Athens 612 . Grace
TeN (1) 711140 TLK: (883) 219330
Hong Kong -
Schmidt 4 Co (HK) Lid
2tin FI wing on Cents
111 Conneught Roand
Central Hong Kang
Tel 5-455844
TLX: 74786
thungery 0
Amtest Ascociaten hid
Clarence Houso. 31, Clarence St
Staines. Middleseax TW1A 4SY
United Kingdom
Tal (704) 63555, TLX 92805s
tonasend
Krisifin O Skagljord Lid
PO Box 900
Roykpavik. Iceland
Tal 24120. TLX: 2133
mats 0
Hindition Sermces PyI LId
Os/a L. Jagmotundiat Merg
Bombly 400006 . India
Tel 011318 . TLX 112328
Hinditron Sernces Pve Lid
arth Man Pood
33/44-A Raj Muth Vilas Extenswon
Bengaiore 500 080, India
Tol 33139. TLX. (953) 004374
Honditron Sarwetes Pvi Lid
Shantiniketan Office No 0
Bin Floor, 8 Camac Street
Celcutha 700 017. India
Tel 434032. 447541
Honditron Services Put Lid
204-206 Henkunt Tower
ges Nahri Place
Now Delhi. 110019 . Inols
Ter 640380. TLX (95) 314890
Prnditron Serices Py Lid Sinnath Comptex, 5ith Fioor 1.1.5e/1 to 1.1-58/11

Saroifini Devi Rom
secunderabed 500003 . Inder
Tel. 621117 TLX (053) 0155575

msoneda 0

P.T. Dwi Tunggad Jaya Sent

Kebayoran Earu
Jakerta Selatan. Inconesia
Tel 716374. ILX: 45305
Irame
Fluke (Molland 8 v
PO Box 50535004 EB Tilburg
Zovenheuveioniweg 33. 5048 AN Talburg
The Notheriunds
Tel (013) 673973. TLX 52237

troteral o

Euro Elecronace
32 Brows Hill
Naven County Masth. Iraland
TeN (46) 23577, TLX: (B51) 3182

lared

RDT Electronica Enguneering Lio
PO. Pox 75
46. Soholov Streat

Aemat Haghaton 47235. Isree
TE1 (3) 463216. TLX (822) 32143
tity 0
Sotrol S p A
Vill Peileza da Volpedo 59
20092 Cinisalfo Ealsamo
Milen, tialy
Tet (2) 6181893. TLX. (843) 334643
Sistrel SoA
Via Gnuseppe Armelini No 39
00143 Fome Italy
Tel (6) 5915551 . TLX (843) 68356
Siarol SpA
Vhe Cinto
Paco S Prow
60128 Naples. Italy
Tod (81) 7879700

ac.

Jotin Fiulke Mig Co. Inc
Japan Branch
Sumbiono Higeahi
Snintanah Bich
1-1-1 1 Hamamatrucho
Minto-ku Tokyo. Japen
Ter (03, 434-0101, TLX 2424331
keny
MOCOM Lto
PO Bor 30070
Nerobs, Kerrya. Enit Altrea
Tel 331985 TLX 22439
1005
Electro-Scienca Korea Co
CPO Boz 448
Foom 403. Boondo Bldg
50-12 Jangethung-ika
lung. ku
Seoul, kore
Tow 281.7708 . TLX $\times 25381$
Kumen :
Al-Baher Int Group
PO 日ox 28072 Stitat
Kuwert, Arabian Gult
Tid 45010er TLX 44022
Lebenon end dorden ${ }^{\text {e }}$
Mabak (Electronic Dinewn)
p.O Bon 11-3823

Bornt Lebenon
Ted 812523 . TLX (023) 22609
Let
Flume (rotiend) $\mathrm{B} \mathbf{V}$
PO. Box 5053 s004 EB Tilburg
Zevenheurvienweg 53. 5048 AN TIlbuig
The Neitheriends
Te: (013) 8T3073 TLX $\$ 2237$

Heltrome

mocomp Malasia SDN BHD
Lot 2 Lonong 13/4A
Priving Juya. Malara
Te 573455 . TLX MA37605
Mandeo.
Electronica y Tecnologia
Avaruade SA de CV
Patructo Padilla 33
Cricuito Cometrial Satelite
Neucapann Edo De Mexico
Tel 3980902
TLX (383) 017 2097
Mmpa
Alasociated Enterprises
GPO Box 780. Pyaphal Tole
Kathmanar Nopal
Tef 13880
Morthertinno 0
Fluke (Nediow land) 8.
Geathuisping 14
SOMI DS Tilburg
The Alatheriands
PO Box 115
0000 AC Tilburg
The Ahatrertanctit
Toll (013) 352455 TLX 52883
Men Zoulend -
meleien informanon Tecmotory. Lid PO Box 9464. Nownainel
Auckland I. Hene Zealend
TE1 501-001. TLX (T01) NZ 21570
Welem Information Technotogy. Lld
PO Box 496
Wellinglon. Naw 2ealand
Twl $851-450$ or $844-424$
requis:
Mofal Enguneering Co Lta
P.O Box 63×1
mpos. Neperia
Tol 800744 TLX 21353
Morway
Morgencierne i. CO ASS
Kongheilogatio 3
PO. Box sese Fodelonk
Oio 5, worway
Tol (2) 38110. TLX (856) 717 fg
Onge
OMI Commumicutions
PO. Box 800
Musent
Sulturnte of Oman
Ted 7 cerves or 703082

Patioten *
Pail internatonel Operalionse
sos Muhammadi Housa
11 Cmundigar Road
PO. Bor 5323 Karechi, Pakisum
Tel 221:27. TLX (P58) 24494
PDN Yomen a
Fluke (Horland) $B V$
PO Box 5033. 5004 EB Timurg
Zorminmuraniwig 535048 AN Tilourg
The Aetherlariats
Tel 10131873973 . TLX 52237
Peru -
Importaciones Y Representacionas
Electronices SA
Aval Franklm D Roonevit 105
Lima 1. Paru
Tal 285850. TLX (394) 25603

Prolppineto

Spark Redio a Enectromict. Corp
1044 Ongpin SI. Sia Crum
Manila Philippines
Te 47.11.94. TLX 2 Tgov
Sperk Radio t Elecironica Corp
Gremnitis PO Bo: 610
San Juan. Matro-Manda
Phitropinos Zid 3113
Ten 77.51.92

Poliped a

Amitest associales bld
Clarence Houso. 31. Cierence SI
Stanes. Migaleatex Twis 4Sy
United Kangoom
Tal (704) 63855 TLX 928055

Portuate -

Deceds-Equipamentos de
Eloctronica. Lda
Rue Pedio Nures. 47-C
1000 Linboa Portugal
PO Bon 1128.1003 Lisbon Coder
Ten (19) s740es TLX (832) 18469
Ontan a
Technotogy Orgenthation
PO Bon 554s Doha Oalar
10t 321431 TLX (957) 458)

Momenta 0

Amteat As cociates Lla
Clarence House. 31 Ciarence St
Staines Mrddigsax TWid 4SY Uniled Kingatom
Tal (764) 63555. ILX 928855

Eavd Arabin e

Electronic Equipment Marketing Co
PO Bor 3750
Riyndh. Seudi Arabua
Tel (1) 477.105001
TLX (928) 201170

thygpere 0

De Pabir Panjang Poug
Singapare 0511
Ruptublic at Singapore
Tol 63794
TLX RS21023
Pomenta
Fluke (HONIand) B V
PO Bon 5053.5004 EB Tiburg
Zavenheuvatenwes 535040 AN Tllburg
The metheriands
Ted $\mathbf{1 0 1 3 1} 573973$. TLX 52237
Bouth Alrice -
Fluke SA \{Pty] Lita
FO Bo: 30797 Bramtay 2016
Ropulic ol South Alrect
Tot forit 7e6-3170 TLX 424328

tran

Hispano Electroncs S A
Palsomo induatised Urinse
Aparindo de Correos 48
Alcorcon (Madind). Spain
Tot (1) 6104108
tLX 1831) 28404

Ht Lenta *
Hy-Es Emerionict
180 Poorvarame Mawathe
Colombo 5. Sn Lanka

- 073.2303

Fracien
Toberntrument AB
PO. Box 4490
162 on valingry. Swoom
Tol (B) 380370. TLX• (B54) 15770

unitasilend -

Traco Elociromic AG
Janathehatras on 1
8002 Zurich. Smitiertima
Tel (1) 2010711. TLX (845) 54318
syria a
Mabet (Eieciron.c Divinon)
PO Box 4238
Dumaseus Syill
Tbumen -
Serman Seimutic Far Easi Lid
906. Chia hain Bldo
96. Chumg Snen N Ra. Sec 2

Tapei. Tarwan
Tol 5414800 . TLX 11111
Thelland
Mensuretroniz bed
1890/10 Ramkemheang Ro
Huamark Banghok 24 Thailano
Te 3143369 . TLX 11143

Tuneste $:$

SeleosABL
${ }^{4}$ Rue de Sparte
T:Inis - 1000 RP Tunemis
Ten (1) 248093 TLX (834) 13030
Turkey -
Erhmen Eletitonik Alalier
Ticeret Anomim Simeti
Nacalitory Cad 92 r3
Karakoy intmoul Turkey
Tol 441548
TLX [821) 23353
Uniwed Arab Emiratee -
Al Sanami trad Eat
PO Bon 1981
Abu Dhabi, United Arab Emifatos
© 821370 or 82 !371
TLK 23086
United Klondom
Fluke (Grast Gritunn Lid
Cotomal way
Wmfora. Merts WO2 41 I
United Kingaom
Tel 10923) 40511 . ILX 234503
Papolay (0923) 25067
Urupany 0
Comin Uruguaya SA
Cosilit de Correor 1400
Lisertad 2529
Nontevideo. Urugumy
Tal 78-90-15. TLX UY8571

U.8.s.a. -

Amment Alsociales Lid
Chermet Houng 31. Clarome $\$ 1$
Staines Ahagetiay TW 18 4SY
United Kingolom
Tol (764) 83555. TLX 928855

Yonaruels.

Consin. $C A$
Calle a Con Calle 4. Edit Edinuro
Apartado De Correos
NA-70 138 Los Auces
Carmest 1070A, Vonesuald
Tal 239-0967 TLX (395) 2102)

Yemen \mathbf{E}

Fluke (Hollend) Ey
PO Bor SOS3 5004 E E Thburg
Zovenheuvelanmeg 53. so4s AN Tilburg
Tho Natherlande
Tal (013) 673973. TLX 52237

Yuqueliwie -

Amtert Associales Ltd
Clatence mourte 31 , Cimence St
Staines. Middlesex TWis 4 S
Uattod kngorm
100 (76A) bisss TLX azass

- gupplied end Supported by -

Flume (Hollend) BV
PO. Bok 5053. 5004 EB TImerg Zevenheurelanweg 53 sold AN Tilburg The Noinerisnas
Tel (013) 873973. TLX 52237

- supplied and Bupported by -

Fluka intemational Cotporavon
PO EOx C8090
Everet WA 98206 U 5 A
Tor (208) 356-5500
TLX 152862 JOHN FLUKE EVT

FLLKに

TECHNICAL SERVICE CENTERS

U.8.A.

Hispamo Elactronicis SA
Tel: 101) 8194108
TLX 22404/42834

Telelnatrument AB
T.A. (00) 300370

TLX 15770
Cimbertend, Iraveh
Traco Electronst AG
Tel: (01) 201071
TUX 54318
THumberm
Schnudt Scontufic Far East Lid
Tel: 3414600
TLX: 11111 Schmidt
Theland Bumpor
Measurotionix Lid
Tel 3143306. 3143430
TLX: 81143 DEJO日KK TH
Turtery, leteritan
Erkmen Elantronik Alotier
Telf (01) 548 t
TLX 23353
Unugury, Hontrideo
Comitn Uruguaya S R.L.
Ter 29-31-252
TLX UY ES71 OROCUER
Yonazunta, Carmed
Comin, C A
Tell 38-78-42. 38-78-68
TLX. 21027 EMVEN VE
Wed Oentimy, tarmand
Fluke (Deubentind) GmbH
Tel. (000) 98050
TLX 0622472

Nlan Crowtord Asso Tat (004) 294. 1328
Cranda, Memetamentan OM Alen Crawtord Aesociates Ltd T어 (416) 678-1500
Cenela, ©iL Lenotich, PO
Atmin Crawtord Alpocletee Lto Tal (S14) 731-8564

FLபK
John Fluke Mig. Co. Inc., P.O. Box C9090. Everett, WA 98206
Fluke (Holland) B V., P.O. Box 5053, 5004 EB, Tilburg. The Netherlands. Phone (013) 673973
Litho in U.S.A.

