"His Master's Voice"

SERVICE MANUAL

for

FOUR-VALVE DUAL-WAVE VIBRATOR-OPERATED BATTERY RECEIVER

TABLE MODEL 848

CONSOLE MODEL 188

IIncorporating Chassis Type A456DMI

TECHNICAL SPECIFICATION

POWER SUPPLY:

6 volt 130 amp. hour Accumulator. CONSUMPTION:

1 amp. at 6.0 Volts.
FREQUENCY RANGE:
Broadcast: $540 \mathrm{Kc} / \mathrm{s}$ to $1600 \mathrm{Kc} / \mathrm{s}$. Short-Wave: 16.5 Metres to 51 Metres.
I.F. FREQUENCY:
$457.5 \mathrm{Kc} / \mathrm{s}$.
VALVE COMPLEMENT:
1C7G Converter.
1M5G I.F. Amplifier.
1K7G Demod.—AVC—A.F. Amplifier.
1L5G Power.

DIAL LAMPS (2):
6.3 volts, 0.15 to 0.3 amps.

LOUDSPEAKER:
Model 848: 6in. Permagnetic.
Model 188: 10 in . Permagnetic.
Voice Coil Impedance at 400 c.p.s. bin. Speaker: 3.7 ohms.
10in. Speaker: 2.7 ohms.
DIMENSIONS: Width Height Depth $\begin{array}{llll}\text { Model } 848 & & \text { 19in. } & 11 \frac{3}{4} \mathrm{in} .\end{array} \quad 10-1,8 \mathrm{in}$. Model 18832in. 29 $\frac{1}{2} \mathrm{in} . \quad 12 \mathrm{in}$.
WEIGHT:
Model 848
Model 188
Accumulator

Gross
36 lbs.
69 lbs.
56 ibs.

Net 29 lbs.
59 lbs.
52 lbs.

CIRCUIT DESCRIPTION

These models incorporate a 4 -valve vibrator-operated superheterodyne receiver for broadcast and short-wave reception.

FREQUENCY CHANGER:

The aerial, on the broadcast band, is coupled to the signal frequency circuit by means of the irondust core aerial transformer L1-L2. For short-wave reception, the short-wave aerial transformer L5-L6 is switched into circuit.

A pentagrid converter is employed as frequency changer. Fixed padding capacitors are used on both wave bands. A variable padding adjustment is provided on the broadcast band by means of an iron dust bolt in the broadcast oscillator coil L3-L4.

I.F. AMPLIFIER

The converter valve is transformer coupled to a super-control pentode, V2, which functions as an I.F. amplifier. The output of this amplifier is in turn transformer coupled to one of the diodes of the following valve. Both transformers are of the permeability tuned type.

DEMODULATOR-AVC-A.F. AMPLIFIER

The AVC diode is capacity coupled to the primary of the 2nd I.F. transformer. Full AVC is applied to the broadcast section of the converter whilst partial AVC is taken to the I.F. and A.F. amplifiers V2 and V3 respectively. AVC diode delay voltage is obtained from the voltage drop across the filaments of preceding valves in the series-parallel filament chain.

Signal demodulation is effected by the remaining diode. The input circuit of the pentode section of this valve may be switched to either the demodulator diode load R7 or to external pick-up terminals.

Tone Control is effected, at this stage, by means of switch S2, which gives bass or treble cut as required, by switching appropriate condensers.

The output circuit is resistance-capacity coupled to the grid of the pentode power output valve V4.

POWER STAGE

The output of the power valve is coupled to the speaker by transformer T2. Negative leedback voltage is taken from the secondary of the transformer and led into the tap of the volume control VR1, through a resistor. This arrangement provides negative feedback over the whole of the audio frequency system. By advancing the volume control setting for higher gain, the feedback factor is reduced. A phasing network comprising R19, C39 is connected across the transformer primary.

Correct matching of the speaker to the power valve is obtained by selecting the appropriate tap on the transformer secondary.

HIGH TENSION SUPPLY

High tension voltage is obtained by means of a synchronous vibrator and associated transformer and filters, the whole being incorporated on a subchassis which is shock-mounted on the main receiver chassis. The vibrator cartridge is readily accessible by removing the rubber-lined metal cover enclosing it. The vibrator input circuit is protected by a 5 amp. fuse in the positive side of the circuit. A double-pole single throw switch - combined with the Volume Control-controls the vibrator and valve filament circuits.

DISMANTLING

MODEL 848

1. Disconnect battery leads.
2. Remove control knobs.
3. Disconnect dial lamp switch plug from chassis.
4. Unscrew two chassis holding screws.
5. Withdraw chassis.

MODEL 188

1. Disconnect battery leads.
2. Remove control knobs.
3. Disconnect speaker and dial lamp switch plugs from chassis.
4. Unscrew two chassis fixing nuts and withdraw bolts.
5. Withdraw chassis.

WIRE TO PASS UNDER NUT

2 COMPLETE TURNS.

- DIAL CORC ARRANGEMENT. -

RECEIVER ALIGNMENT PROCEDURE

In any case where a component replacement has been made in either the tuned I.F. or R.F. circuits of a receiver, all circuits must be re-aligned, and even if only one coil has been serviced, the whole of the re-alignment should be done in the order given. An output meter should always be connected across the voice coil terminals of the speaker to indicate when the circuits are tuned to resonance. In carrying out the following operations, it is important that the input to the receiver from the signal generator should be kept low and progressively reduced as the circuits are brought into line, so that the output meter reading does not exceed about 0.5 volt.

I.F. ALIGNMENT

1. Rotate the volume control fully clockwise, set Tone Monitor switch to "Normal," and the wave-change switch to "Broadcast" (centre) position and fully enmesh the tuning condenser vanes. Connect the output leads of signal generator to the cap of the 1C7G converter valve, through a 0.1 mF . condenser: do not remove grid lead of the converter valve.
2. Tune signal generator to exactly $457.5 \mathrm{Kc} / \mathrm{s}$.
3. Adjust the I.F. transformer trimmer screws for maximum reading on output meter, commencing with the second I.F. transformer and following with the first.
4. Continue this alignment on each transformer in turn until no greater output can be obtained. It is necessary to repeat this procedure twice to ensure good alignment.

NOTE: If trimmer screws are screwed too lar in, it may be possible to obtain a false peak due to coupling effects between the iron cores. Start alignment of each individual transformer by first screwing its core well out, and then advancing core into the coil until resonance is obtained.

R.F. ALIGNMENT (BROADCAST)

1. With controls set as for I.F. alignment, connect signal generator output leads in series with a 200 mmF . condenser to the aerial and earth terminals of the receiver.
2. Check that when the gang condenser is fully meshed the pointer coincides with the setting line, marked " S," on the extreme
right of the dial scale. If necessary, the pointer may be adjusted to this position by loosening the cord securing screw provided.
3. Tune signal generator to $600 \mathrm{Kc} / \mathrm{s}$.
4. Rotate tuning knob until the pointer is exactly over $600 \mathrm{Kc} / \mathrm{s}$ calibration mark and adjust the oscillator padder screw for maximum response.
5. Rotate tuning knob until the pointer coincides with the $1500 \mathrm{Kc} / \mathrm{s}$ calibration mark and adjust the oscillator trimmer and aerial trimmer in turn for maximum response.
6. Repeat operations (3) to (5) inclusive for proper alignment.

R.F. ALIGNMENT (SHORT.WAVE)

1. Set wave-change switch to "Short-Wave" (clockwise) position. Remove the 200 mmF . condenser from the output lead of the signal generator and replace with a 400 ohm non-inductive resistor; connect to the aerial terminal as before.
2. Rotate tuning knob until the pointer coincides with the 17 metres calibration mark.
3. Tune signal generator to 17 metres (17.65 Mc. s.).
4. Adjust S-W oscillator trimmer for maximu:n output. Two settings will be found at which this trimmer will peak; care must be taken that the setting finally selected is that which gives the lower capacity. Failure to select the correct position of the two will cause serious tracking error and loss of sensitivity.
5. Adjust S-W aerial trimmer for maximum output whilst "rocking" the gang condenser slightly to obtain the true resonance point.
6. Note that the signal is still tuned in correctly on the dial: if not, readjust S-W oscillator trimmer slightly until dial reads correctly, and repeat operation (5).

ADDITIONAL DATA

Any further service information desired may be obtained by addressing an enquiry to the "Service Department. The Gramophone Co. Ltd., 2 Parramatta Road, Homebush, N.S.W."

- VolTage TABLE-

- VOLTACES AND CURRENTS ARE WITH THE RECEIVER OPERATING WITH BATTERY TERMINAL VOLTACE OF 6.O VOLTS, AND TUNED TO A POINT OF NO RECEPTION ON THE BROADCAST BAND.
- - VOLTACE READINGS TAKEN WITH METER RESISTANCE OF $1, O O O$ OHMS PER VOLT.
- VOLTACE AND CURRENT READINCS WITHIN $\pm 15 \%$
- - RESISTANCE READINGS ARE APPROXIMATE.

REMARKS:-

H.T. VOLTS
H.T. CURRENT

TOTAL FILAMENT VOLTACE
TOTAL FILAMENT CURRENT
TOTAL BATTERY DRAIN
$=130 \quad$ VOLTS.
$=18.3 \mathrm{MA}$.
$=5.88$ VOLTS.
$=0.24$ AMP.
$=\quad 1 \cdot 0$ AMP AVERACE CURRENT

PARTS LIST

REF.	PART No.	description	REF.	PART No.	DESCRIPTION	REF.	PART No.	description
	RESISTORS		CONDENSERS			MISCELLANEOUS		
R1	H1X	50,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C1	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	VC1,VC2	C0159A	2 Gang Condenser
R2	AWW3V	16.5 ohms 1 watt $\pm 5 \%$	C2	D0243BU	$3 \mathrm{mmF} . \pm 0.5 \mathrm{mmF}$.	VR1: S3	D2350	1 Megohn Potentiometer
R3	F3X	10,000 ohms 1 watt $\pm 10 \%$	C3	C0013M	0.05 mF .200 V .			(Tapped at 25,000
R4	V3X	20,000 ohms 1 watt $\pm 10 \%$	C4	D0243CQ	0.004 mF . $\pm 100 \mathrm{mmF}$.			ohms) incor. Switch
R5	J1X	100,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C5	D0243AM	$400 \mathrm{mmF} . \pm 5 \mathrm{mmF}$.	S1	D2346	4-Pole 3-Position Switch
R6	H1X	50,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C6	D0243Q	$50 \mathrm{mmF} . \pm 10 \%$	S2	D2351	2-Pole 4-Position Switch
R7	O1X	500,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C7	C0013N	0.01 mF .600 V .	S4	D1361B	Push Button Switch
R8	AA1X	2 megohms $\frac{1}{4}$ watt $\pm 10 \%$	C8	C0013Q	0.1 mF .200 V .	IFT. 1	D1985	1st I.F. Transformer
R9	YW2V	150 ohms $\frac{1}{2}$ watt $\pm 5 \%$	C9	C00131	0.02 mF .400 V .	IFT. 2	D1987	2nd I.F. Transformer
R10	P1X	1 megohm $\frac{1}{4}$ watt $\pm 10 \%$	C10	C0014AV	$500 \mathrm{mF} .12 \mathrm{P.V}$.	T1	D2317	Vibrator Translormer
R11	AHW2V	200 ohms I watt $\pm 5 \%$	C11	C0014BA	$16 \mathrm{mF} .350 \mathrm{P} . \mathrm{V}$.	T2	D2318	Output Transformer
R12	P1X	1 negohm $\frac{1}{4}$ watt $\pm 10 \%$	C12	C0013Q	0.1 mF .200 V .	CK1	D5624	L.T. R.F. Choke
R13	O1X	500000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C13	C0014AZ	8 mF .350 P.V.	CK2	D5623	H.T. R.F. Choke
R14	O1X	500,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C14	C0013A	0.5 mF .400 V .	CK3	D1438	L.T. R.F. Choke
R15	O3X	500,000 ohms 1 watt $\pm 10 \%$	C15	D4405W	$100 \mathrm{mmF} . \pm 5 \%$	CK4	D2228	H.T. Filter Choke
R16	N3X	250,000 ohms 1 watt $\pm 10 \%$	C16	C0013M	0.05 mF .200 V .	CK5	D1452	L.T. Filter Choke
R17	P1X	1 megohm $\frac{1}{4}$ watt $\pm 10 \%$	C17	D4405X	$50 \mathrm{mmF} . \pm 5 \%$	L1 \& L2	D1614D/2	B/C Aerial Coil
R18	AN1X	75,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C18	C0013AK	0.005 mF .600 V .	L3 \& L4	D2224	B.C Oscillator Coil
219	D1X	1,000 ohms $\frac{1}{4}$ watt $\pm 10 \%$	C19	D4405W	$100 \mathrm{mmF} . \pm 5 \%$	L5 \& L6	D2321/1	S W Aerial Coil
			C20	D4405W	$100 \mathrm{mmF} . \pm 5 \%$	L7 \& L8	D2320	SW Oscillator Coil
			C21	C0014AV	500 mF .12 P.V.	TC. 1	D2395	Air Trimmer Condenser
			C22	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	TC. 2	D2395	Air Trimmer Condenser
			C23	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	TC. 3	D2395	Air Trimmer Condenser
			C23A	D0243Q	$50 \mathrm{mmF} . \pm 10 \%$	TC. 4	D2395	Air Trimmer Condenser
			C24	D0243H	$0.002 \mathrm{mF} . \pm 10 \%$	VIB.	D2259	Vib. Cartridge V5124A
			C25	D0243L	$0.0005 \mathrm{mF} . \pm 10 \%$		D2420	10in. Permag. Speaker
			C26	D0243Cy	$0.0002 \mathrm{mF} . \pm 10 \%$		D2419	bin. Permag. Speaker
			C27	C0014BA	$16 \mathrm{mF} .350 \mathrm{P} . \mathrm{V}$.		C0371	Dial Glass
			C28	C0013Q	0.1 mF .200 V .		D2335	Dial Pointer
			C29	D0243L	$0.0005 \mathrm{mF} . \pm 10 \%$		D0873	Dial Cord Spring
			C30	C0013M	0.05 mF .200 V .		D2394	Control Knob
			C31	C0013Q	0.1 mF .200 V .			Dial Lamps. 6.3V.
			C32	C0013Q	0.1 mF .200 V .			0.25A. S.C.
			C33	C0014V	500 mF .12 P.V.			Dial Cord. White No. 1
			C34	C0013M	0.05 mF .200 V .			2ft. 6in.
			C35	C0013L	0.5 mF .200 V .			Dial Wire ICored and
			C36 C 37	C0013Q	0.1 mF .200 V .			5 Braided). 6it. Gin.
			C38	C0013N	0.01 mF. 600 V .			Amp. Fuse Wire, SWG. T.Cu.
			C39	C0013AP	$0.005 \mathrm{mF} .2000 \mathrm{~V} . \pm 10 \%$			Dial Cord Lug H238

CIRCUIT DIAGRAM OF MODELS 848 AND 188, INCORPORATING CHASSIS TYPE A456DM.

