## LeCroy 9354A/M/L, 9354T/M

## Digital Storage Oscilloscope

## Service Manual



Innovators in Instrumentation

# LeCroy 9354A/M/L, 9354T/M 

## Digital Storage Oscilloscope

## Service Manual

[^0]February 1995
First printing

## LeCroy

Corporate Headquarters
700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499

Tel : (914) 425-2000
Fax : (914) 425-8967

## LeCroy <br> European Headquarters

2, rue du pré-de-la-Fontaine
1217 Meyrin 1 / Geneva, Switzerland

Teí : 41 (022) 719.21.11
Fax : 41 (022) 782.39.15

## Table of Contents

Section 1 General Informatiom Page
1.1 Initial Inspection ..... 1-1
1.2 Warranty ..... 1-1
1.3 Product Assistance ..... 1-1
1.4 Address of Service Centers ..... 1-1
1.5 Maintenance Agreements ..... 1-5
1.6 Documentation Discrepancies ..... 1-5
1.7 Service Procedure ..... 1-5
1.8 Return Procedure ..... 1-5
1.9 Safety Precautions ..... 1-6
1.10 Antistatic Precautions ..... 1-6
Section 2 Specifications ..... 2-1
$2.1 \quad 9354 \mathrm{~A} / \mathrm{M} / \mathrm{L}$ Specifications ..... 2-2
2.2 9354T/M Specifications ..... 2-6
2.3 Hard Disk, Floppy, RAM Card, Internal Printer options ..... 2-10
2.4 Active Fet Probes ..... 2-13
2.5 Active Differential Probes ..... 2-15
2.6 WP01 Waveform Processing Package ..... 2-17
2.7 WP02 Fast Fourier Processing Package ..... 2-20
2.8 CKTRIG option ..... 2-23
$2.9 \quad$ LeCalsoft Calibration Software ..... 2-25
Section 3 Block Diagram and Sub-Assemblies ..... 3-1
3.1 9354A, 9354AM, 9354AL Sub-Assemblies ..... 3-1
3.2 9354T/M Sub-Assemblies ..... 3-1
3.3 9354A/T Hardware Options ..... 3-1
$3.4 \quad 9354 \mathrm{~A}$ Block Diagram ..... 3-2
3.5 9354AM Block Diagram ..... 3-3
3.6 9354AL Block Diagram ..... 3-4
3.7 9354T Block Diagram ..... 3-5
3.8 9354TM Block Diagram ..... 3-6
Section 4 Theory of Operation
4.1 Processor Board for 9354A/M/L \& 9354T/M ..... 4-1
4.1.1 Processor Block Diagram ..... 4-1
4.1.2 Parallel Peripherals ..... 4-2
4.1.3 Serial Peripherals ..... 4-3
4.1.4 External Interfaces ..... 4-3
4.1.5 Optional Interfaces ..... 4-3
4.2 F9354-31 Main Board ..... 4-4
4.2.1 Introduction ..... 4-4
4.2.2 Microprocessor Control ..... 4-4
4.2.3 Front End ..... 4-4
Section 4 Theory of Operation Page
4.2.3.1 Channel Description ..... 4-4
4.2.2 Microprocessor Control Block Diagram ..... 4-5
4.2.3.2 Digital Controls ..... 4-6
4.2.3.3 Analog Controls ..... 4-7
4.2.4 Trigger ..... 4-8
4.2.4.1 Trigger Block Diagram ..... 4-8
4.2.4.2 Digital Controls ..... 4-9
4.2.4.3 Analog Controls ..... 4-9
4.2.4.4 TV Trigger ..... 4-9
4.2.5 Analog to Digital Converter ..... 4-10
4.2.5.1 Introduction ..... 4-10
4.2.5.2 ADC Block Diagram ..... 4-11
4.2.5.3 Memories Block Diagram ..... 4-12
4.2.6 Time Base ..... 4-13
4.2.6.1 Introduction ..... 4-13
4.2.6.2 Time Base Block Diagram ..... 4-14
4.2.6.3 Digital Control ..... 4-15
4.2.6.4 Trigger Selection ..... 4-15
4.2.6.5 $\quad$ Smart Trigger ..... 4-15
4.3 F9300-4 GPIB and RS232 Interface ..... 4-16
4.3.1 RS232 Interface ..... 4-16
4.3.2 GPIB Interface ..... 4-16
$4.4 \quad$ F9354-5 Front Panel ..... 4-16
$4.5 \quad$ F9300-6 Centronics Interface ..... 4-16
4.5.1 Centronics Interface Option ..... 4-16
4.5.2 Floppy Disk Drive Interface Option ..... 4-16
4.5.3 Printer Interface Option ..... 4-17
4.6 F9300-7 Printer Controller ..... 4-17
4.7 F9300-8 Hard Disk Option ..... 4-17
4.8 93XX-Display ..... 4-17
4.8.1 General Description ..... 4-17
4.8.2 Basic Characteristics ..... 4-17
4.8.3 Horizontal Deflection ..... 4-18
4.8.4 Vertical Synchronization ..... 4-19
4.8.5 Horizontal Resolution ..... 4-19
4.8.6 Vertical Resolution ..... 4-19
$4.9 \quad$ PS9351 Power Supply ..... 4-20
4.9.1 Power Supply Specifications ..... 4-20
4.9.2 Power Supply Block Diagram ..... 4-21
Section 5 Performance Verification
5.1 Introduction ..... 5-1
5.2 Test Equipment Needed ..... 5-1
5.3 Turn On ..... 5-1
5.4 Input Impedance ..... 5-2
5.4.1 Procedure ..... 5-2
5.4.1.a $\quad \mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-2
Section 5 Performance Verification Page
5.4.1.b DC $50 \Omega$ ..... 5-3
5.4.2 External Trigger Input Impedance ..... 5-4
5.4.2.a $\quad \mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-4
5.4.2.b DC $50 \Omega$ ..... 5-5
5.4.3 Internal Protective Resistor Verification ..... 5-6
5.5 Leakage Current ..... 5-7
5.5.1 Procedure ..... 5-7
5.6 Average Noise Level ..... 5-7
5.6.1 Peak to Peak ..... 5-7
5.6.1.a $\mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-7
5.6.1.b AC $1 \mathrm{M} \Omega$ ..... 5-10
5.6.1.c DC $50 \Omega$ ..... 5-11
5.6.2 Rms Noise ..... 5-12
5.6.2.a $\mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-12
5.6.2.b AC $1 \mathrm{M} \Omega$ ..... 5-14
5.6.2.c DC $50 \Omega$ ..... 5-14
5.6.3 Inputs Grounded ..... 5-15
5.7 DC Linearity ..... 5-19
5.7.1 Description ..... 5-19
5.7.1.a DC $50 \Omega$ ..... 5-19
5.7.1.a. 1 Positive DC Linearity ..... 5-20
5.7.1.a. 2 Negative DC Linearity ..... 5-22
5.7.1.b $\mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-24
$5.8 \quad$ Offset ..... 5-27
5.8.1 Description ..... 5-27
5.8.1.a Negative Offset Control ..... 5-27
5.8.1.b Positive Offset Control ..... 5-30
5.9 Bandwidth ..... 5-33
5.9.1 Description ..... 5-33
5.9.1.a DC $50 \Omega$ ..... 5-33
5.9.1.a. 1 Trigger Bandwidth ..... 5-38
5.9.1.b $\mathrm{DC} 1 \mathrm{M} \Omega$ ..... 5-39
5.10 Trigger Level ..... 5-42
5.10.1 Description ..... 5-42
5.10.2 Channel ( Internal) ..... 5-42
5.10.3 External Trigger ..... 5-50
5.10.4 External/10 Trigger ..... 5-58
5.11 Smart Trigger ..... 5-66
5.11.1 Trigger on Pulse Width $<10 \mathrm{nsec}$ ..... 5-66
5.11.2 Trigger on Pulse Width $>10 \mathrm{nsec}$ ..... 5-66
5.11.3 Trigger on Pulse Width $<100 \mathrm{nsec}$ ..... 5-68
5.11.4 Trigger on Pulse Width > 100 nsec ..... 5-69
5.12 Time Base Accuracy ..... 5-70
5.12.1 Description ..... 5-70
5.12.2 $\quad 500 \mathrm{MHz}$ Clock Accuracy ..... 5-70
$5.13 \quad$ Overshoot and Rise Time ..... 5-74
$5.14 \quad$ Probe Calibrator Verification ..... 5-76
$5.15 \quad$ Overload ..... 5-79
Section 6 Internal Calibration amd Diagnostics
6.1 Introduction ..... 6-1
6.2 Diagnostic Summary ..... 6-2
6.2.1 Gain and Offset Calibration Description ..... 6-3
6.2.2 Trigger Level Calibration ..... 6-3
6.3 Diagnostic Results ..... 6-3
6.3.1 Gain Curves ..... 6-3
6.3.2 Offset Curves ..... 6-4
6.3.3 Trigger Level ..... 6-5
6.3.4 Integral Linearity ..... 6-7
$6.4 \quad$ Board Test Results ..... 6-9
6.5 Probe Bus Verification ..... 6-10
6.6 PP092 Verification ..... 6-13
Section 7 Maintenance
7.1 Introduction ..... 7-1
7.2 Disassembly and Assembly Procedure ..... 7-1
7.2.1 Removal of the Upper Cover ..... 7-1
7.2.2 Removal of the PS9351 Power Supply ..... 7-1
7.2.3 Disassembly and Assembly Diagram ..... 7-2
7.2.3.1 Figure 7.1 : 9354A/T Assembly ..... 7-3
7.2.3.2 Figure 7.2 : 9354A/T Lower Cover Assembly ..... 7-4
7.2.3.3 Figure 7.3 : 9354A/T Front Frame Assembly ..... 7-5
7.2.3.4 Figure 7.4 : 9354A/T Rear Panel Assembly ..... 7-6
7.2.4 Removal of the F9300-4 GPIB and RS232 Interface ..... 7-7
7.2.5 Removal of the Fan ..... 7-7
7.2.6 Removal of the Line Input Module ..... 7-7
7.2.7 Removal of the 93XX-Video ..... 7-7
7.2.8 Removal of the 93XX-Yoke ..... 7-7
7.2.9 Removal of the Front Frame Assembly ..... 7-8
7.2.10 Removal of the 93XX-Deflection ..... 7-8
7.2.1 Removal of the 93XX-CRT ..... 7-9
7.2.12 Removal of the F9354-5 Front Panel ..... 7-9
7.2.13 Removal of the Front Panel Keyboard ..... 7-9
7.2.14 Removal of the Processor ..... 7-10
7.2.15 Removal of the F9354-31 Main Board ..... 7-10
7.2.16 Removal of the Handle ..... 7-11
7.2.17 Removal of the Foot Support ..... 7-11
7.2.18 Removal of the 93XX-FD01 Floppy Disk ..... 7-11
7.2.19 Removal of the 93XX-GP01 Graphic Printer ..... 7-11
7.2.19 Removal of the F9300-7 Printer Controller ..... 7-11
7.2.20 Removal of the F9300-6 Centronics Interface ..... 7-11
7.2.21 Figure 7.5 : 9354A/T Floppy Option Assembly ..... 7-12
7.2.22 Figure 7.6:9354A/T Graphic Printer Option Assembly ..... 7-13
7.3 Software Upgrade Procedure ..... 7-14
7.3.1 Upgrading Firmware ..... 7-14
7.3.2 Changing Software Option ..... 7-15
7.3.3 Software Option Selection GAL ..... 7-16
Section 7 Maintenance Page
7.3.4 Processor Board Exchange Procedure ..... 7-16
7.4 Equipment and Spare Parts Recommended for Service ..... 7-17
7.4.1 Equipment ..... 7-17
7.4.2 Spare Parts ..... 7-17
7.5 Troubleshooting and Flow Charts ..... 7-18
7.5.1 Introduction ..... 7-18
7.5.2 Line Voltage Autoranging ..... 7-18
7.5.3 Initial Troubleshooting Chart ..... 7-19
7.5.4 No Power Supply ..... 7-20
7.5.4.1 Line Fuses Replacement ..... 7-20
7.5.5 No Display ..... 7-21
7.5.6 Abnormal Image on Screen ..... 7-22
7.5.7 Front Panel Controls do not Operate ..... 7-23
7.5.8 No Remote Control GPIB or RS232 ..... 7-24
7.5.9 Performance Verification Fails ..... 7-25
7.5.10 Internal Calibration Fails ..... 7-26
7.5.11 Floppy Disk Drive Option Fails ..... 7-27
7.5.12 Graphic Printer Option Fails ..... 7-28
7.5.13 Centronics Option Fails ..... 7-29
7.5.14 Hard Disk Option Fails ..... 7-30
7.6 Calibration Procedures ..... 7-31
7.6.1 PS9351 Power Supply Calibration ..... 7-31
7.6.1.1 Figure 7.7 : Power Supply ..... 7-32
7.6.2 93XX-Display Adjustment Procedure ..... 7-33
7.6.2.1 Introduction ..... 7-33
7.6.2.2 Coarse Adjustment ..... 7-34
7.6.2.3 Fine Adjustment ..... 7-35
7.6.3 Front End Test and Calibration Procedure ..... 7-37
7.6.3.1 Introduction ..... 7-37
7.6.3.2 Power Supplies ..... 7-37
7.6.3.2.1 Front End Power Supply Verification ..... 7-37
7.6.3.2.2 ADC Power Supply Verification ..... 7-37
7.6.3.3 16 bit DAC Verification ..... 7-38
Figure 7.8 : 9354A/T Front End Adjustment ..... 7-42
7.6.3.4 Input Buffer DC Gain Adjustment ..... 7-43
7.6.3.4.1 Channel 1 DC Gain Adjustment ..... 7-43
7.6.3.4.2 Channel 2 DC Gain Adjustment ..... 7-44
7.6.3.4.3 Channel 3 DC Gain Adjustment ..... 7-45
7.6.3.4.4 Channel 4 DC Gain Adjustment ..... 7-46
7.6.3.5 Overshoot and Risetime Adjustment ..... 7-47
7.6.3.5.1 Channel 1 Overshoot and Risetime Adjustment ..... 7-47
7.6.3.5.2 Channel 2 Overshoot and Risetime Adjustment ..... 7-49
7.6.3.5.3 Channel 3 Overshoot and Risetime Adjustment ..... 7-51
7.6.3.5.4 Channel 4 Overshoot and Risetime Adjustment ..... 7-53
7.6.3.6 Flatness Adjustment ..... 7-55
7.6.3.6.1 Channel 1 HF Adjustment ..... 7-55
7.6.3.6.2 Channel 2 HF Adjustment ..... 7-57
7.6.3.6.3 Channel 3 HF Adjustment ..... 7-59
Section 7 Maintenance Page
7.6.3.6.4 Channel 4 HF Adjustment ..... 7-61
7.6.3.7 Sample \& Hold Flatness Adjustment ..... 7-63
7.6.3.7.1 Channel 1 Sample \& Hold Flatness Adjustment ..... 7-63
7.6.3.7.2 Channel 2 Sample \& Hold Flatness Adjustment ..... 7-64
7.6.3.7.3 Channel 3 Sample \& Hold Flatness Adjustment ..... 7-65
7.6.3.7.4 Channel 4 Sample \& Hold Flatness Adjustment ..... 7-66
7.6.3.8 Trigger Hysteresis Control ..... 7-67
7.6.3.8.1 Channel 1 Trigger Hysteresis Adjustment ..... 7-67
7.6.3.8.2 Channel 2 Trigger Hysteresis Adjustment ..... 7-68
7.6.3.8.3 Channel 3 Trigger Hysteresis Adjustment ..... 7-69
7.6.3.8.4 Channel 4 Trigger Hysteresis Adjustment ..... 7-70
7.6.3.8.5 External Trigger Hysteresis Verification ..... 7-71
7.6.3.9 DC 50 $\Omega$ Overload Adjustment ..... 7-72
7.6.3.9.1 Channel 1 DC $50 \Omega$ Overload Adjustment ..... 7-72
7.6.3.9.2 Channel 2 DC $50 \Omega$ Overload Adjustment ..... 7-73
7.6.3.9.3 Channel 3 DC $50 \Omega$ Overload Adjustment ..... 7-74
7.6.3.9.4 Channel 4 DC $50 \Omega$ Overload Adjustment ..... 7-74
Section 8 Schematics Diagrams - Parts List ..... 8-1
8.1.1 9354A Sub Assemblies ..... 8-2
8.1.2 9354AM Sub Assemblies ..... 8-2
8.1.3 9354AL Sub Assemblies ..... 8-2
8.1.4 9354T Sub Assemblies ..... 8-3
8.1.5 9354TM Sub Assemblies ..... 8-3
8.2 F9302-1-X Processor Board Schematic ..... 8-4
8.2.1 F9302-1-X Processor Board Layout ..... 8-12
8.2.2 F9302-1-X Processor Board Parts List ..... 8-18
8.3 F9350/M-21 Acquisition Memory Schematic ..... 8-24
8.3.1 F9350/M-21 Acquisition Memory Layout ..... 8-29
8.3.2 F9350-21 Acquisition Memory Parts List ..... 8-35
8.3.3 F9350M-21 Acquisition Memory Parts list ..... 8-37
8.3.4 F9350L-2 Acquisition Memory Schematic ..... 8-38
8.3.5 F9350L-2 Acquisition Memory Layout ..... 8-43
8.3.6 F9350L-2 Acquisition Memory Parts List ..... 8-49
8.4 F9354-31 Main Board Schematic ..... 8-50
8.4.1 F9354-31 Microprocessor Control Schematic ..... 8-51
8.4.2 F9354-31 Front End Control Schematic ..... 8-56
8.4.2.1 F9354-31 Front End Power Supply Schematic ..... 8-58
8.4.2.2 F9354-31 Front End Channel 1 Schematic ..... 8-59
8.4.2.3 F9354-31 Front End Channel 2 Schematic ..... 8-62
8.4.2.4 F9354-31 Front End Channel 3 Schematic ..... 8-65
8.4.2.5 F9354-31 Front End Channel 4 Schematic ..... 8-68
8.4.2.6 F9354-31 Front End Trigger Schematic ..... 8-71
8.4.2.7 F9354-31 Front End Probe Calibrator Schematic ..... 8-75
8.4.3 F9354-31 ADC Schematic ..... 8-76
8.4.3.1 F9354-31 ADC Power Supply Schematic ..... $8-77$
8.4.3.2 F9354-31 ADC Control Channel 1 \& 2 Schematic ..... 8-78

| Section 8 | Schematics Diagrams - Parts List | Page |
| :---: | :---: | :---: |
| 8.4.3.3 | F9354-31 ADC Channel 1 Schematic | 8-79 |
| 8.4.3.4 | F9354-31 ADC Channel 2 Schematic | 8-80 |
| 8.4.3.5 | F9354-31 ADC Connector Channel 1 \& 2 Schematic | 8-81 |
| 8.4.3.6 | F9354-31 ADC Buffer Channel 1 Schematic | 8-84 |
| 8.4.3.7 | F9354-31 ADC Buffer Channel 2 Schematic | 8-85 |
| 8.4.3.8 | F9354-31 ADC Control Channel 3 \& 4 Schematic | 8-86 |
| 8.4.3.9 | F9354-31 ADC Channel 3 Schematic | 8-87 |
| 8.4.3.10 | F9354-31 ADC Channel 4 Schematic | 8-88 |
| 8.4.3.11 | F9354-31 ADC Connector Channel 3 \& 4 Schematic | 8-89 |
| 8.4.3.12 | F9354-31 ADC Buffer Channel 3 Schematic | 8-92 |
| 8.4.3.13 | F9354-31 ADC Buffer Channel 4 Schematic | 8-93 |
| 8.4.4 | F9354-31 TimeBase Schematic | 8-94 |
| 8.4.5 | F9354-31 Microprocessor Control Layout | 8-101 |
| 8.4.5.1 | F9354-31 Front End Layout | 8-105 |
| 8.4.5.2 | F9354-31 Trigger Layout | 8-109 |
| 8.4.5.3 | F9354-31 ADC Layout | 8-113 |
| 8.4.5.4 | F9354-31 TimeBase Layout | 8-117 |
| 8.4.6 | F9354-31 Parts List | 8-121 |
| 8.5 | F9300-4 GPIB/RS232 Interface Schematic | 8-157 |
| 8.5.1 | F9300-4 GPIB/RS232 Interface Layout | 8-158 |
| 8.5.2 | F9300-4 GPIB/RS232 Interface Parts List | 8-161 |
| 8.6 | F9354-5 Front Panel Schematic | 8-163 |
| 8.6.1 | F9354-5 Front Panel Layout | 8-164 |
| 8.6 .2 | F9354-5 Front Panel Parts List | 8-168 |
| 8.7 | F9300-6 Centronics Interface Schematic | 8-169 |
| 8.7.1 | F9300-6 Centronics Interface Layout | 8-171 |
| 8.7.2 | F9300-6 Centronics Interface Parts List | 8-174 |
| 8.8 | F9300-7 Printer Controller Schematic | 8-176 |
| 8.8.1 | F9300-7 Printer Controller Layout | 8-178 |
| 8.8.2 | F9300-7 Printer Controller Parts List | 8-181 |
| 8.9 | F9300-8 PCMCIA III Hard Disk Controller Schematic | 8-184 |
| 8.9.1 | F9300-8 PCMCIA III Hard Disk Controller Layout | 8-185 |
| 8.9.2 | F9300-8 PCMCIA III Hard Disk Controller Parts List | 8-188 |
| 8.10 | Deflection and Video Schematic | 8-190 |
| 8.10 .1 | 93XX-Deflection Schematic | 8-190 |
| 8.10 .2 | 93XX-Video Schematic | 8-192 |
| 8.10 .3 | 93XX-Deflection Parts List | 8-193 |
| 8.10 .4 | 93XX-Video Parts List | 8-194 |
| 8.11 | PS9351 Power Supply Schematic | 8-195 |
| 8.12 | M935X Mechanical for 9354A/T | 8-197 |
| 8.13 | Accessories for 9354A/T | 8-198 |
| 8.14 | 93XX-FDGP Option Parts List | 8-199 |
| 8.15 | 93XX-FD01 Option | 8-200 |
| 8.16 | 93XX-GP01 Option | 8-200 |

$\qquad$
Section 9 Mechanical Parts Page
9.1 Figure $9.1: 9354 \mathrm{~A} / \mathrm{T}$ Exploded View ..... 9-2
9.1.1 9354A/T Assembly Part Description ..... 9-3
9.2 Figure 9.2 : 9354A/T Lower Cover Exploded View ..... 9-4
9.2.1 9354A/T Lower Cover Assembly Description ..... 9-5
9.3 Figure 9.3 : Front Frame Assembly Exploded View ..... 9-6
9.3.1 Front Panel Assembly Description ..... 9-7
9.4 Figure 9.4 : Rear Panel Assembly Exploded View ..... 9-8
9.4.1 Rear Panel Assembly Description ..... 9-9
9.5 Figure 9.5 : Power Supply Exploded View ..... 9-10
9.5.1 Power Supply Description ..... 9-11
9.6 Figure 9.6 : FD01 Floppy Option Assembly ..... 9-12
9.6.1 FD01 Floppy Option Assembly Description ..... 9-13
9.7 Figure 9.7: GP01 Printer Option Assembly ..... 9-14
9.7.1 GP01 Printer Option Assembly Description ..... 9-15
9.8 Figure 9.8 : 9354A/T Front View ..... 9-16
9.9 Figure 9.9 : 9354A/T Rear View ..... 9-17
9.10 Figure 9.10 : 9354A/T Dimensions ..... 9-18
Section 10 Connecting the $9354 \mathrm{~A} /$ T to a Plotter or a Printer
10.1 Introduction ..... 10-1
$10.2 \quad$ Plotters ..... 10-3
10.2. $\quad$ HP 7470A Plotter ..... 10-3
10.2.2 HP 7550A Plotter ..... 10-3
10.2.3 Hitachi 672 Graph Plotter (or NSA 672) ..... 10-4
10.3 Printers ..... 10-4
10.3.1 Centronics Printers ..... 10-4
10.3.2 RS 232 Printers ..... 10-5
10.3.2.1 Epson FX80 ..... 10-5
10.3.2.2 Citizen 120D ..... 10-5
10.3.2.3 HP LaserJet ..... 10-5
10.3.2.4 HP QuietJet ..... 10-5
10.3.2.5 HP ThinkJet ..... 10-6
10.3.2.6 HP DeskJet ..... 10-6
10.3.2.7 Brother Printers ..... 10-6
10.3.3 GPIB Printers ..... 10-7
10.3.3.1 HP QuietJet ..... 10-7
10.3.3.2 HP ThinkJet ..... 10-7
10.3.3.3 HP PaintJet ..... 10-7
10.4 Information on GPIB ..... 10-8
10.4.1 Introduction ..... 10-8
10.4.2 Functions in the GPiB ..... 10-8

## SECTION 1 GENERAL INFORMATION

### 1.1 Initial Inspection

It is recommended that the shipment be thoroughly inspected immediately upon delivery to the purchaser. All material in the container should be checked against the enclosed Packing List. LeCroy cannot accept responsibility for shortages in comparison with the Packing List unless notified promptly. If the shipment is damaged in any way, please contact the Customer Service Department or local field office immediately.

### 1.2 Warranty

LeCroy warrants its oscilloscope products to operate within specifications under normal use for a period of three years from date of shipment. Spares, replacement parts and repairs are warranted for 90 days. The instrument's firmware is thoroughly tested and thought to be functional, but is supplied "as is" with no warranty of any kind covering detailed performance. Products not manufactured by LeCroy are covered solely by the warranty of the original equipment manufacturer.
In exercising this warranty, LeCroy will repair or, at its option, replace any product returned to the Customer Service Department or an authorized service facility within the warranty period, provided that the warrantor's examination discloses that the product is defective due to workmanship or materials and that the defect has not been caused by misuse, neglect, accident or abnormal conditions or operation.
LeCroy will return all in-warranty products with transportation prepaid.
This warranty is in lieu of all other warranties, expressed or implied, including but not limited to any implied warranty of merchantability, fitness, or adequacy for any particular purpose or use. LeCroy shall not be liable for any special, incidental, or consequential damages, whether in contract or otherwise.

### 1.3 Product Assistance

Answers to questions concerning installation, calibration, and use of LeCroy equipment are available from the Customer Service Department, 700 Chestnut Ridge Road, Chestnut Ridge, New York 10977-6499, U.S.A., tel: (914) 578-6060, or 6061, and 2 rue du Pré-de-la-Fontaine, 1217 Meyrin 1, Geneva, Switzerland, tel : (41) 22.719.21.11, or your local field engineering office.

### 1.4 Addresses

## Corporate Headquarters

LECROY CORPORATION 700 CHESTNUT RIDGE ROAD
CHESTNUT RIDGE, NY 10977-6499 USA

TEL: (914) 425-2000 578-6060 or 6061
FAX: (914) 425-8967

## European Headquarters

## LECROY SA

2, CHEMIN PRE-DE-LAFONTAINE CH-1217 MEYRIN 1 GENEVA SWITZERLAND

TEL: 41 (22) 719-21-11
FAX: 41 (22) 782-39-15
$\qquad$

## Europe

LECROY GMBH
MANNHEIMERSTRASSE 177
POSTFACH 103767
D-6900 HEIDELBERG GERMANY

TEL: 49.6221.831001
FAX: 49.6221 .834655

LECROY LTD
28 BLACKLANDS WAY
ABINGDON, OXON OX14 1DY
GREAT BRITAIN

TEL: 44.23.553.31.14
FAX: 44.23.552.87.96

LECORY SRL
VIA CONCESIO 325
I-00188 ROMA
ITALY

TEL: 39.6.300.97.00
FAX: 39.6.300.96.00

ESSA
EUIPOS Y SISTEMAS SA APOLONIO MORALES 13-B E-28036 MADRID

TEL: 34.1.359.0088
FAX: 34.1.359.0298

DEWETRON ELEKTRONISCHE
MESSGERAETE Ges.M.B.H.
FOELLINGERSTRASSE 9E
8044 GRAZ AUSTRIA

TEL: 43.316 .391 .804
FAX: 43.316.391.052

ORBIS OY
VANHA KAARELANTIE 9
01610 VANTAA
FINLAND

TEL: 358.0.566.4066
FAX: 358.0.531.604

LECROY BV
WAALRESEWEG 17
NL-5554 HA VALKENSWAARD
THE NETHERLANDS

TEL: 31.4902 .8 .9285
FAX: 31.4902 .42628

LECROY SARL
1, AVENUE DE L'ATLANTIQUE LES ULIS 91976 COURTABOEUF FRANCE

TEL: 33.1.69.18.83.20
FAX: 33.1.69.07.40.42

LECROY SA
BAHNOFSTRASSE 18
5600 LENZBURG
SWITZERLAND

TEL: 4164.519.181
FAX: 4164.519 .192
M.T. BRANDAO, LDA

RUA DO QUANZA, 150
4000 PORTO
PORTUGAL

TEL: 351.2.830.2709
FAX: 351.2.830.2710

LUTRONIC APS
NAVERLAND 2
2600 GLOSTRUP
DENMARK

TEL: 45.4342 .9764
FAX: 45.4342 .9765

HELLENIC SCIENTIFIC REP., LTD
11 VRASSIDA STREET
11528 ATHENS GREECE

TEL: 30.1.721.1140 or 721.3154
FAX: 30.1.724.1374

AVANTEC
TVETENVEIEN 6
0661 OSLO NORWAY

TEL: 472.63.05.20
FAX: 472.65.84.14

ABB NERA A/S
KOKSTADVEGEN 23
KOKSTAD BERGEN NORWAY

TEL: 351.2 .815 .680
FAX: 351.2.815.630

MEASUREMENT SYSTEMS SCANDINAVIA AB
P.O. BOX 393 FORETAGSALLEN 12, HUS 5 BV

18424 AKERSBERGA SWEDEN

TEL: 46.8.540.68100
FAX: 46.8.540.66536

## Eastern Enrope

ELSINCO GMBH
ROTENMUHLGASSE 11
1120 VIENNA
AUSTRIA

TEL: 43.222.812.1751
FAX: 43.222.812.2329

## Asia

LECROY JAPAN CORPORATION
ESAKA SANSHO BLDG - 3RD FLOOR
16-3, 3-CHOME
TARUMICHO, SUITA CITY
OSAKA 564 JAPAN

TEL: 816.330.0961
FAX: 816.330 .8096

SCIENTIFIC DEVICES AUSTRALIA
2 JACKS ROAD
SOUTH OAKLEIGH, VICTORIA
AUSTRALIA

TEL: 61.3579.3622
FAX: 61.3579.0971
E.C. GOUGH, LTD

245 ST.ASAPH STREET
P.O. BOX 22073

CHRISTCHURCH NEW ZEALAND

TEL: 64.3.3798.740
FAX: 64.3.3796.776

## Mideast

## AMMO

9, HARUGEI MALKHUT RAMAT HACHAYAL. P.O BOX 13132, 61131 TEL AVIV ISRAEL

TEL: 972.3.6478740
FAX: 972.3.6478771

LECROY JAPAN CORPORATION ZAIKEN BLDG 6TH FLOOR 19-3, 2-CHOME
SASAZUKA, SHIBUYA-KU
TOKYO 151 JAPAN

TEL: 813.3376-9400
FAX: 813.3376 .9587
TATA-HONEYWELL
55-A/8 \& 9 HADAPSPAR INDUSTRIAL ESTATE
PUNE 411013 INDIA

TEL: 91.212 .670445
FAX: 91.212.672205
ELECTRO TECH CORPORATION
1ST FLOOR, 16 KAZI CHAMBERS
BAHADURSHAH ZAFAR ROAD
KARACHI-74800 PAKISTAN

TEL: 92.21.493-8087
FAX: 92.21.493-7749
$\qquad$

SINGAPORE ELECTRONICS AND ENGINEERING, LTD 24 ANG MO KIO STREET, 65 SINGAPORE 2056

TEL: 65.480.7783
FAX: 65.481.4272
LECOLN TECHNOLOGY CO.,LTD. 4F-1, NO. 214, SEC. 1
HO PING E ROAD
TAIPEI TAIWAN R.O.C.

TEL: 886.2.365.0612
FAX: 886.2.367.1792
SCHMIDT ELECTRONICS LTD 18 F, GREAT EAGLE CENTRE 23 HARBOUR ROAD WANCHAI HONG KONG

TEL: 852.2507.0222
FAX: 852.2827.5656
P.T. DWI TUNGGAL JAYA SAKTI WISMA RAJAWALI, 14TH FLOOR J JENDRAL SUDIRMAN 34 JAKARTA 10220 INDONESIA

TEL: 62.21.570.4563
FAX: 62.21.583.218

## North America

ALLAN CRAWFORD LTD 5835 COOPERS AV, MISSISSAUGA ONTARIO L4Z 1Y2, CANADA

TEL: 416890.2010
FAX: 416890.1959

## South America

SEARCH SA
VIAMONTE 1716 - PISO 7
1055 CAPITAL FEDERAL
ARGENTINA
TEL: 54.1.46.6156
FAX: 54.1.394.8374

ABEX ENGINEERING PTE. LTD.
37 KALLANG PUDDING ROAD 08-08
TONG LEE BUILDING BLOCK B
SINGAPORE 1334
TEL: 8412818
FAX: 8415988

## MEASURETRONIX

2102/31 RAMKAMHANG ROAD
BANGKOK 10240
THAILAND

TEL: 66.2.375.2733-4
FAX: 66.2.374.9965
WOOJOO HI-TECH CORP. DONGHYUN BLDG. 102-4 MOONJUNG-DONG, SONGPA-KU SEOUL 138-200 KOREA

TEL: 82.2.449.5472
FAX: 82.2.449.5475

ATP-HI-TEK
ALAMEDA AMAZONAS
422 ALPHAVILLE 06454-030
BARUEI, SP BRAZIL
TEL: 55.11.421.5477
FAX: 55.11.421.5032

Central America<br>NUCLEOELECTRONICA, SA<br>CALZ. LAS AGUILAS 101<br>DELEGATCION ALVARO OBREGON<br>01710 MEXICO, 20, d.f.<br>MEXICO

TEL: 52.5593.604
FAX: 52.5593 .6021

South Airica<br>WESTPLEX LTD<br>TUSCANY HOUSE<br>376 OAK AVENUE<br>RANDBURG 2194<br>REPUBLIC OF SOUTH AFRICA

TEL: 27.11.787.0473
FAX: 27.11.787.0237

### 1.5 Maintenance Agreements

LeCroy offers a selection of customer support services. Maintenance agreements provide extended warranty and allow the customer to budget maintenance costs after the initial three years warranty has expired. Other services such as installation, training, enhancements and on-site repair are available through specific Supplemental Support Agreements.

### 1.6 Documentation Discrepancies

LeCroy is committed to providing state-of-the-art instrumentation and is continually refining and improving the performance of its products. While physical modifications can be implemented quite rapidly, the corrected documentation frequently requires more time to produce. Consequently, this manual may not agree in every detail with the accompanying product. There may be small discrepancies in the values of components for the purposes of pulse shape, timing, offset, etc., and, occasionally, minor logic changes. Where any such inconsistencies exist, please be assured that the unit is correct and incorporates the most up-to-date circuitry. In a similar way the firmware may undergo revision when the instrument is serviced. Should this be the case, manual updates will be made available as necessary.

### 1.7 Service Procedure

Products requiring maintenance should be returned to the Customer Service Department or authorized service facility. LeCroy will repair or replace any product under warranty at no charge. The purchaser is only responsible for one way transportation charges. For all LeCroy products in need of repair after the warranty period, the customer must provide a Purchase Order Number before repairs can be initiated. The customer will be billed for parts and labor for the repair, as well as for shipping.

### 1.8 Return Procedure

To determine your nearest authorized service facility, contact the Customer Service Department or your field office. All products returned for repair should be identified by the model and serial numbers and include a description of the defect or failure, name and phone number of the user, and, in the case of products returned to the factory, a Return Authorization Number (RAN). The RAN may be obtained by contacting the customer service department in New York, tel: (914)578-6060, or 6061 ; in Geneva, tel: (41)22/719.21.11, or your nearest sales office.

Return shipment should be made prepaid. LeCroy will not accept C.O.D. or Collect Return Shipments. Air-freight is generally recommended. Wherever possible, the original shipping carton should be used. If a substitute carton is used, it should be rigid and be packed such that the product is surrounded with a minimum of four inches of excelsior or similar shock-absorbing material. In addressing the shipment, it is important that the Return Authorization Number be displayed on the outside of the container to ensure its prompt routing to the proper department within LeCroy.

### 1.9 Safety Precautions

The following servicing instructions are for use by qualified personnel only. Do not perform any servicing other than contained in service instructions. Refer to procedures prior to performing any service.

Exercise extreme safety when testing high energy power circuits. Always turn the power OFF, disconnect the power cord, discharge the cathode ray tube and all capacitors before disassembling the instrument.

The WARNING symbol used in this manual indicates dangers that could result in personal injury.

The CAUTION symbol used in this manual identify conditions or practices that could damage the instrument.

### 1.10 Antistatic Precautioms

## CAUTION

Any static charge that builds on your person or clothing may be sufficient to destroy CMOS components, integrated circuits. In order to avoid possible damage, the usual precautions against static electricity are required.

- Handle the boards in antistatic boxes or containers with foam specially designed to prevent static build-up.
- Ground yourself with a suitable wrist strap.
- Disassembly the instrument at a properly grounded work station equipped with antistatic mat.
- When handling the boards, do not touch the pins.
- Stock the boards in antistatic bags.


## SECTION 2 SPECIFICATIONS

9354A/M/L \& 9354T/M Digital Oscilloscope
$\qquad$

## 9350A Family Digital Oscilloscopes 500 MHz Bandwidth， 2 GS／s

## Main Features

－Two and Four Channel versions
园 Up to 8 M Point record length
圆 2.5 ns Peak Detect
国 Glitch，Pattern，Qualified，Interval， Dropout and TV Triggers
－8－bit vertical resolution， 11 with ERES option

橉 Fully programmable via GPIB and RS－232－C
－Automatic PASS／FAIL testing
－Advanced Signal Processing
［ DOS Compatible Floppy Disk and Memory Card options
－Internal Printer Option

High speed and long memory make this family the ideal general－purpose Digital Storage Oscilloscopes．Two and Four Channel simultaneous sampling at $500 \mathrm{MS} / \mathrm{s}$ meets demanding high－speed design applications．Even faster sam－ pling may be achieved by combining channels，up to a maximum of $2 \mathrm{GS} / \mathrm{s}$ ．

Acquisition memories may also be com－ bined，providing up to 8 M Points of con－ tinuous or segmented waveform record－ ing．Repetitive signals are digitized at up to $10 \mathrm{GS} / \mathrm{s}$ ．These combined capabilities make the 9350A family the state－of－the－ art in current DSO technology．


A unique peak detect scheme captures 2.5 ns glitches－even at slow time bases －without destroying the underlying data． This provides circuit designers with the benefits of peak detection without any loss of precision．

Live waveforms may be viewed simultan－ eously with up to 3 expansions，showing all of the signal detail．Expansions are shown as highlights on the main trace．
SMART Trigger modes like Glitch，Pat－ tern，Dropout and TV allow you to cap－ ture precisely the events of interest．Pre－ and Post－Trigger delay，and Time and Events Holdoff are also standard．

The 9350A family features the proven user－interface of LeCroy＇s portable scopes．A bright，high－resolution 9＂CRT allows optimum waveform viewing under any conditions．Menus and text are ar－ ranged around the graticules－they never overwrite the waveforms．Dedi－ cated control knobs keep the scope＇s performance at your fingertips．
A comprehensive range of signal pro－ cessing functions including FFT and Math on live or stored waveforms，allows extensive waveform manipulation．DOS compatible floppy disk and memory card options store waveforms and test setups， and simplify data transfer to any PC．

## Features and Benefits

## PRECISION ACQUISITION

The 9350A family combines all the technologies required for accurate waveform digitizing. Low-noise highsensitivity amplifiers drive $500 \mathrm{MS} / \mathrm{s}$ 8 -bit ADC's which are clocked simultaneously by a high-precision timebase. 500 MHz system bandwidth allows accurate risetime measurements below 1 nanosecond. Vertical resolution can be enhanced to 11 bits using ERES.

## MEMORY FOR ALL APPLICATIONS

The 9350A family offers three different memory lengths:
50 k points per channel (std. versions), 250k points per channel ("M" versions), 2M points per channel ("L" versions). Memory length may be extended by combining the acquisition memories of multiple channels (see table below).

Long memories provide higher horizontal resolution. LeCroy's unique memory management system, combined with an advanced peak detection system, maximizes the benefits of longer memory. Showing the entire waveform onscreen allows immediate location of glitches or other disturbances, and guarantees the highest possible sample rate on all timebases.

## THE MOST ADVANCED PEAK DETECT

 9350A family members offer 2.5 ns peak detect, available whenever the digitizer system runs at below 200MS/s This captures fast glitches or signal details that might have been missed due to undersampling.One unwanted effect of other peak detection systems is a severe loss of horizontal (time) precision. This occurs because detected peaks are known to have occurred during a particular interval, but not at any specific time. This means that signals acquired with other manufacturers peak detection techniques cannot be successfully used for further processing or analysis.

LeCroy solves this problem by maintaining both peak detected and normally sampled waveforms for each signal. Thus the user gets all the benefits of peak detection without any loss of time precision.

## EXTENSIVE TRIGGER SYSTEM

To capture rare or complex conditions, SMART trigger functions are available. These include Glitch with 2.5 ns resolution to trigger down to 1 ns and a unique Dropout mode, which triggers when the signal disappears for a selectable period of time. Other trigger modes include Pattern, Interval, Stateor Edge-Qualified and TV.
TV trigger allows individual lines or fields in PAL, SECAM, NTSC and nonstandard video to be selected. Pre- and Post-trigger delay are fully variable.

## ProBus ${ }^{\text {TM }}$ PROBE INTERFACE

The ProBus system provides a complete measurement solution from probe tip to oscilloscope display. ProBus is an intelligent interconnection between LeCroy oscilloscopes and a growing range of innovative probes, including high-bandwidth low-loading FET probes.

## AUTOMATIC MEASUREMENTS

The following Parametric measurements are available, together with their Average, Highest, Lowest values and Standard Deviation:

| amplitude | falltime | peak to peak |
| :---: | :---: | :---: |
| area | f80-20\% | period |
| base | ¢ ¢level (abs) | risetime |
| cycles | f@level (\%) | r20-80\% |
| delay | frequency | r@level(abs) |
| $\Delta$ delay | maximum | r@level (\%) |
| $\Delta t$ at level (abs) | mean | RMS |
| $\Delta t$ at level (\%) | median | std dev |
| $\Delta$ at level ( $\mathrm{t}=0, \mathrm{abs}$ ) | minimum | top |
| $\Delta t$ at level ( $\mathrm{t}=0, \%$ ) duty Cycle | overshoot + overshoot - | width |

Pass/Fail testing allows up to 5 parameters to be tested against selectable thresholds. Waveform Limit Testing is performed using Masks which may be defined inside the instrument. Any failure will cause preprogrammed actions such as Hardcopy, Save, GPIB SRQ or Pulse Out.

## DOS COMPATIBLE MASS STORAGE

All LeCroy 9300 -series scopes offer an optional 3.5" 1.44 MB floppy disk drive which stores traces, setups, screen graphics and Pass/Fail templates. Data are stored as DOS files, which may be read directly by a PC. A high-speed DOS compatible PCMCIA memory card option is also available.

## BUILT-IN PRINTER

As well as driving most printers and plotters via GPIB, RS-232-C and (optional) Centronics interface, the 9300 series offers an optional internal printer. This thermal printer produces full resolution screendumps, $126 \times 90 \mathrm{~mm}$, in under 10 seconds.

## FLEXIBLE INTERFACING

GPIB and RS-232-C interfaces may be used for full remote control of the instrument. All front-panel and internal processing functions can be controlled via either interface. For applications where throughput is essential, the GPIB interface transfers hundreds of waveforms per second. A Front-Panel BNC connector may be setup to provide Pass/Fail test output pulses.

## MULTIPLE DISPLAY MODES

The high-resolution raster display shows from one to four independent waveform grids. Waveforms are represented as dots joined by vectors which may be turned on or off. Four Zoom/Math traces may be used for zooming waveforms or for signal processing. The area to be zoomed is selected by moving an intensified portion of the main waveform. Persistence display mode allows easy viewing of signal changes over time, and XY mode plots any two sources against one another. Cursors are usable in all display modes.

## EXTENSIVE WAVEFORM MATH

Standard built-in waveform processing includes mathematics (Add, Subtract, Multiply and Divide, Negation and Identity) and Summation Averaging (up to 1000 sweeps). Option WP01 provides Summed and Continuous Averaging, Waveform Math Functions, Extrema and Enhanced Resolution Modes. More information is available in the 9300 WP01 datasheet.

## OPTIONAL FFT PACKAGE

Option WP02 provides comprehensive Spectral Analysis capabilities, permitting the system designer to identify characteristics which may not be apparent in the time domain. WP02 provides a wide selection of displayed projections and windowing functions, as well as averaging in the frequency domain. For more information, see the 9300 WP02 datasheet.
$\qquad$

## 9350A Family Specifications

## ACQUISITION SYSTEM

Bandwidth ( -3 dB ):
@ $50 \Omega$ : $\quad \mathrm{DC}$ to 500 MHz
$100 \mathrm{mV} / \mathrm{div}: 400 \mathrm{MHz}$
$50 \mathrm{mV} / \mathrm{div}$ and below: 350 MHz
@ $1 \mathrm{M} \Omega \mathrm{DC}: \mathrm{DC}$ to 250 MHz typ. at probe tip.
No. of Channels: 4 (9354A) or 2 (9350A)
No. of Digitizers: 4 (9354A) or 2 (9350A)
Maximum Sample Rate and Acquisition
Memories: See table below.
Sensitivity: $2 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$, fully variable.
Scale factors: A vast choice of probe
attenuation factors are selectable.
Offset Range: $2.0-9.9 \mathrm{mV} / \mathrm{div}: \pm 120 \mathrm{mV}$
$10.0-199 \mathrm{mV} / \mathrm{div}: \pm 1.2 \mathrm{~V}$
$0.2-5.0 \mathrm{~V} / \mathrm{div}: \quad \pm 24 \mathrm{~V}$
DC Accuracy: $\leq \pm 2 \%$ full scale ( 8 divisions) at 0 V offset.
Vertical Resolution: 8 bits.
Bandwidth Limiter: 30 MHz
Input Coupling: $A C, D C, G N D$.
Input Impedance: $1 \mathrm{M} \Omega / / 15 \mathrm{pF}$ or $50 \Omega \pm 1 \%$.
Max Input:
$1 \mathrm{M} \Omega: \quad 250 \mathrm{~V}(\mathrm{DC}+$ peak $\mathrm{AC} \leq 10 \mathrm{kHz})$
$50 \Omega: \quad \pm 5 \mathrm{VDC}(500 \mathrm{~mW})$ or 5 VRMS
TIME BASE SYSTEM
Timebases: Main and up to 4 Zoom Traces.
Time/Div Range: $1 \mathrm{~ns} / \mathrm{div}$ to $1,000 \mathrm{~s} /$ div.
Clock Accuracy: $\leq 10$ ppm
Interpolator resolution: 10 ps
Roll Mode: ranges 500 ms to $1,000 \mathrm{~s} / \mathrm{div}$. For $>50 \mathrm{k}$ points: 10 s to $1,000 \mathrm{~s} / \mathrm{div}$.
External Clock: $\leq 100 \mathrm{MHz}$ on EXT input with ECL, TTL or zero crossing levels. Optional up to 500 MHz rear panel clock input.
External Reference: Optional 10 MHz rearpanelinput.

## TRIGGERING SYSTEM

Trigger Modes: Normal, Auto, Single, Stop. Trigger Sources: CH1, CH2, Line, Ext, Ext/10 (9354A: $\mathrm{CH} 3, \mathrm{CH} 4$ ). Slope, Level and Coupling for each can be set independently.
Slope: Positive, Negative.
Coupling: AC, DC, HF (up to 500 MHz ), LFREJ, HFREJ.
Pre-trigger recording: 0 to $100 \%$ of full scale (adjustable in $1 \%$ div increments).
Post-trigger delay: 0 to 10,000 divisions (adjustable in 0.1 div increments).
Holdoff by time: 10 ns to 20 s .
Holdoff by events: 0 to 99,999,999 events.
Internal Trigger Sensitivity Range: $\pm 5$ div.
EXT Trigger Max Input:
$1 \mathrm{M} \Omega / / 15 \mathrm{pF}: 250 \mathrm{~V}(\mathrm{DC}+$ peak $\mathrm{AC} \leq 10 \mathrm{kHz})$
$50 \Omega \pm 1 \%: \pm 5 \mathrm{~V}$ DC ( 500 mW ) or 5 V RMS
EXT Trigger Range: $\pm 0.5 \mathrm{~V}( \pm 5 \mathrm{~V}$ with $\mathrm{Ext} / 10)$ Trigger Timing: Trigger Date and Time are listed in the Memory Status Menu.
Trigger Comparator: Optional ECL rear panel output.

## SMART TRIGGER TYPES

Pattern: Trigger on the logic AND of 5 inputs $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4$, and EXT Trigger, (9350A: 3 inputs - $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{EXT}$ ) where each source can be detined as High, Low or Don't Care. The Trigger can be defined as the beginning or end of the specified pattern.
Signal or Pattern Width: Trigger on width between two limits selectable from 2.5 ns to 20 s . Signal or Pattern Interval: Trigger on interval between two limits selectable from 10 ns to 20 s Dropout: Trigger if the input signal drops out for longer than a time-out from 25 ns to 20 s.

State/Edge Qualified:Trigger on any source only if a given state (or transition) has occurred on another source. The delay between these events can be defined as a number of events on the trigger channel or as a time interval.
TV: Allows selection of both line (up to 1500) and field number (up to 8) for PAL, SECAM, NTSC or non-standard video.

## ACQUISITION MODES

Random Interleaved Sampling (RIS):
for repetitive signals from $1 \mathrm{~ns} /$ div to $2 \mu \mathrm{~s} / \mathrm{div}$ ( M , L : from $1 \mathrm{~ns} /$ div to $5 \mu \mathrm{~s} / \mathrm{div}$ ).
Single shot: for transient and repetitive signals from $10 \mathrm{~ns} / \mathrm{div}$ (all channels active).
Peak detect: captures and displays 2.5 ns glitches or other high-speed events.
Sequence: Stores multiple events in segmented acquisition memories.
Number of segments available:
9350A-54A 2-200
9350AM-9354AM 2-500
9350AL-9354AL $\quad 2-2,000$
Min. Dead Time between segments: $60 \mu \mathrm{~s}$
DISPLAY
Waveform style: Vectors connect the individual sample points, which are highlighted as dots. Vectors may be switched off. CRT: $12.5 \times 17.5 \mathrm{~cm}$ ( 9 " diagonal) raster. Resolution: $810 \times 696$ points.
Modes: Normal, X-Y, Variable or Infinite Persistence.
Real-time Clock: Date, hours, minutes, seconds.
Graticules: Internally generated; separate intensity control for grids and waveforms.
Grids: 1, 2 or 4 grids.
Formats: $Y T, X Y$, and both together.

| Channels Used | Maximum Sample Rate | Memory per Channel |  |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { 9350A } \\ & 9354 A \end{aligned}$ | $\begin{aligned} & \text { 9350AM } \\ & \text { 9354AM } \end{aligned}$ | $\begin{aligned} & \text { 9350AL } \\ & 9354 \mathrm{AL} \end{aligned}$ |  |
| All Peak Detect OFF | $500 \mathrm{MS} / \mathrm{s}$ | 50k | 250k | 2M | All channels active |
| All <br> Peak Detect ON | $100 \mathrm{MS} / \mathrm{s}$ data $400 \mathrm{MS} / \mathrm{s}$ peak | 25k data + 25k peaks | 100k data + 100k peaks | 1 M data + 1M peaks | All channels active 2.5 ns peak detect |
| Paired Peak Detect OFF | $1 \mathrm{GS} / \mathrm{s}$ | 100k | 500k | 4M | $\begin{aligned} & \text { 9350A: } \mathrm{CH} 1 \\ & \text { 9354A: } \mathrm{CH} 2+\mathrm{CH} 3 \end{aligned}$ |
| $\begin{aligned} & \text { Paired + PP } 092 \\ & \text { Peak Detect OFF } \end{aligned}$ | 2 GS/s | 200k | 1M | 8M | 9354A models only |

Vertical Zoom: Up to $5 x$ Vertical Expansion ( 50 x with averaging, up to $40 \mu \mathrm{~V}$ sensitivity).
Maximum Horizontal Zoom Factors:

| 9350A-9354A | $1000 x$ |
| :--- | :--- |
| 9350AM-9354AM | $5,000 x$ |
| 9350AL-9354AL | $40,000 x$ |

Waveforms can be expanded to give 4-5 points/division. This implies zoom factors up to 200,000x for the 9354AL when channels are combined.

## INTERNAL MEMORY

Waveform Memory: Up to four 16-bit Memories (M1, M2, M3, M4).
Processing Memory: Up to four 16 -bit
Waveform Processing Memories (A, B, C, D).
Setup Memory: Four non-volatile memories.
Optional Cards or Disks may also be used for high-capacity waveform and setup storage.

## CURSORMEASUREMENTS

Relative Time: Two cursors provide time measurements with resolution of $\pm 0.05 \%$ fullscale for unexpanded traces; up to $10 \%$ of the sampling interval for expanded traces. The corresponding frequency value is displayed.
Relative Voltage: Two horizontal bars measure voltage differences up to $\pm 0.2 \%$ of full-scale in single-grid mode.
Absolute Time: A cross-hair marker measures time relative to the trigger and voltage with respect to ground.
Absolute Voltage: A reference bar measures voltage with respect to ground.

## WAVEFORM PROCESSING

Up to four processing functions may be performed simultaneously. Functions available are: Add, Subtract, Multiply, Divide, Negate, Identity and Summation Averaging.
Average: Summed averaging of up to 1,000 waveforms in the basic instrument. Up to $10^{6}$ averages are possible with Option WP01.
Envelope*: Max, Min, or Max and Min values of from 1 to $10^{6}$ waveforms.
ERES*: Low-Pass digital filter provides up to 11 bits vertical resolution.
Sampled data is always available, even when a trace is turned off. Any of the above modes can be invoked without destroying the data.
FFT*: Spectral Analysis with four windowing functions and FFT averaging.
*Envelope and ERES modes are provided in Math Package WP01. FFT is in WP02.

## AUTOSETUP

Pressing Autosetup sets timebase, trigger and sensitivity to display a wide range of repetitive signals. (Amplitude 2 mV to 40 V ; frequency above 50 Hz ; Duty cycle greater than $0.1 \%$ ).

Autosetup Time:Approximately 2 seconds. Vertical Find: Automatically sets sensitivity and offset.

## PROBES

Model: One PP002 (10:1, $10 \mathrm{M} \Omega$ // 15 pF ) probe supplied per channel.
The 9350A family is fully compatible with LeCroy's range of FET Probes, which may be purchased separately.
Probe calibration: Max 1 V into $1 \mathrm{M} \Omega$, 500 mV into $50 \Omega$, frequency and amplitude programmable, pulse or square wave selectable, rise and fall time 1 ns typical. Alternatively, the Calibrator output can provide a trigger output or a PASS/FAIL test output.

## INTERFACING

Remote Control: Of all front-panel controls, as well as all internal functions is possible by GPIB and RS-232-C.
RS-232-C Port: Asynchronous up to 19200 baud for computer/terminal control or printer/ platterconnection.
GPIB Port: (IEEE-488.1) Configurable as talker/listener for computer control and fast data transfer. Command Language complies with requirements of IEEE-488.2.
Centronics Port:Optional hardcopy parailel interface.
Hardcopy: Screen dumps are activated by a front-panel button or via remote control. TIFF and BMP formats are available for importing to Desktop Publishing programs. The following printers and plotters can be used to make hardcopies: HP DeskJet (color or BW), HP ThinkJet, QuietJet, LaserJet, PaintJet and EPSON printers. HP 7400 and 7500 series, or HPGL compatible plotters. An optional internal high resolution graphics printer is also available.

## GENERAL

Auto-calibration ensures specified DC and timing accuracy.
Temperature: $5^{\circ}$ to $40^{\circ} \mathrm{C}\left(41^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ rated $0^{\circ}$ to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ operating.
Humidity: $<80 \%$.
Shock \& Vibration: Meets MIL-STD-810C
modified to LeCroy design specifications and MIL-T-28800C.
Power: 90-250 V AC, $45-66 \mathrm{~Hz}, 230 \mathrm{~W}$.
Battery Backup: Front-panel settings maintained for two years.
Dimensions:(HWD)8.5"x14.5"x16.25",
$210 \mathrm{~mm} \times 370 \mathrm{~mm} \times 410 \mathrm{~mm}$.
Weight: $13 \mathrm{~kg}(28.6 \mathrm{lbs})$ net, 18.5 kg ( 40.7 lbs ) shipping. Warranty: Two years.

## Ordering Information

## Oscilloscope and Options

9354A/AM/AL 4-Ch Digital Oscilloscope 9350A/AM/AL 2-Ch Digital Oscilloscope
9XXX-WP01 Waveform Math
9XXX-WP02 FFTProcessing
9XXX-MC01/04 Memory Card Reader
w/512KB Memory Card
93XX-FD Internal 3.5" Floppy Drive
93XX-GP Internal Graphics Printer
935XA-CKTRIG 10MHz External Clock
Reference Input
500 MHz External Clock input
Trigger Comparator Output
Oscilloscope Accessories
Supplied with Instrument:
935X-OM Operator's Manual
93XX-RCM Remote Control Manual
93XX-FC Front Cover
PP002 $350 \mathrm{MHz}, 10 \mathrm{M} \Omega$ Passive
Probe (1 per channel)
PP092 ProBus Channel Multiplexer
(9354A only)
Ordered separately:

| 93XX-W5 | 5 years extended warranty |
| :--- | :--- |
| 93XX-CC | Calibration Certificate |
| 935XA-SM | Service Manual |
| 9XXX-MC02 | 128K Memory Card |
| 9XXX-MC04 | 512K Memory Card |
| DC/GPIB | 2 Meter GPIB Cable |
| SG9001 | High Voltage Protector |
| OC9001 | Oscilloscope Cart |
| AP020 | 1 GHz 10:1 FET Probe |
| AP021 | $800 \mathrm{MHz} \mathrm{5:1} \mathrm{FET} \mathrm{Probe}$ |
| AP030 | 15 MHz Differential Probe |
| PP062 | 1GHz, 10:1,500 $\Omega$ Passive |
|  | Probe |
| PP090 | ProBus 75 to $50 \Omega$ adapter |
| 93XX-RM01 | Rackmount |
| 93XX-TC1 | Transit Case |
| 93XX-TC2 | Carrying 8ag |

USA Direct Sales: 1 (800) 5LE-CROY
LeCroy Worldwide Sales Offices
ASIAPACIFIC LeCroy Pty Ltd $\quad 61.38 .90 .7358$
BENELUX LeCroy BV 04902.8.9285
FRANCE LeCroy SARL (1).69.18.83.20
GERMANY LeCroy GmbH 0622183.10.01
ITALY LeCroy SRL 06.336.797.00
JAPAN Osaka LeCroy Japan 0816.330.0961
JAPAN Tokyo LeCroy Japan 0813.3376.9400
SWITZERLAND Geneva 022.719.21.11
SWITZERLAND Lenzburg 064.51.91.81
United Kingdom LeCroy Ltd (01235)533114


The Digital Scope Specialists
$\qquad$

## 9354T/9354TM Digital Oscilloscopes 500 MHz Bandwidth, 2 GS/s

## Main Features

- Four Channels
- Up to 2 M Point record length
- Advanced Peak Detect
- Glitch, Pattern, Qualified, Interval, Dropout and TV Triggers
- 8 -bit vertical resolution, 11 with ERES option
- Fuily programmable via GPIB and RS-232-C
© Automatic PASS/FAIL testing
[ Advanced Signal Processing
(1) DOS Compatible Floppy Disk
- Internal Printer, PCMCIA Hard Disk and memory card available.


The 9354T and 9354TM are Total Performance products that provide high sampling speed, long memory, excelient analysis capability and superior I/O features. Four channel simultaneous sampling at $500 \mathrm{MS} / \mathrm{s}$ meets demanding high-speed design applications. Even faster sampling may be achieved by combining channels, up to a maximum of $2 \mathrm{GS} / \mathrm{s}$. Acquisition memories may also be combined, providing up to 2 M Points of continuous or segmented waveform recording. Repetitive signals are digitized at up to 10 GS/s.

A unique peak detect scheme captures 2.5 ns glitches, even at slow time bases, without destroying the underlying data.

This provides circuit designers with the benefits of peak detection without any loss of precision.

Live waveforms may be viewed simultaneously with up to 3 expansions on a total of 4 different display timebases, showing all of the signal detail. Expansions are shown as highlights on the main trace.

SMART Trigger modes like Glitch, Pattern, Dropout and TV allow the precise capture of events of interest. Pre- and Post-Trigger delay, and Time and Events Holdoff are also standard. The 9354T and 9354TM feature the proven user-interface of LeCroy's
portable scopes. A bright, high-resolution 9" CRT allows optimum waveform viewing under any conditions. Menus and text are arranged around the graticules - they never overwrite the waveforms.

A comprehensive range of signal processing functions including FFT and Math on live or stored waveforms, allows extensive waveform manipulation. GPIB, RS-232-C and Centronics ports are standard as is a floppy disk drive. The 9354TM also includes an internal high resolution printer.

## Features and Benefits

## PRECISION ACQUISITION

The 9354T and 9354TM combine all the technologies required for accurate waveform digitizing. Low-noise highsensitivity amplifiers drive $500 \mathrm{MS} / \mathrm{s}$ 8 -bit ADC's which are clocked simultaneously by a high-precision timebase. 500 MHz system bandwidth allows accurate risetime measurements below 1 nanosecond. Vertical resolution can be enhanced to 11 bits using ERES.

## MEMORY FOR ALL APPLICATIONS

The 9354T offers 100k points per channel, while the 9354 TM has 500 k points per channel. Memory length may be extended by combining the acquisition memories of multiple channels (see table below).

Long memories provide higher horizontal resolution. LeCroy's unique memory management system, combined with an advanced peak detection system, maximizes the benefits of longer memory. Showing the entire waveform onscreen allows immediate location of glitches or other disturbances, and guarantees the highest possible sample rate on all timebases.

## THE MOST ADVANCED PEAK DETECT

The 9354T and 9354TM offer 2.5 ns peak detect, available whenever the digitizer system runs at below 200MS/s This captures fast glitches or signal details that might have been missed due to undersampling.
One unwanted effect of other peak detection systems is a severe loss of horizontal (time) precision. This occurs because detected peaks are known to have occurred during a particular interval, but not at any specific time. This means that signals acquired with other manufacturers peak detection techniques cannot be successfully used for further processing or analysis.

LeCroy solves this problem by maintaining both peak detected and normally sampled waveforms for each signal.
Thus the user gets all the benefits of peak detection without any loss of time precision.

## EXTENSIVE TRIGGER SYSTEM

To capture rare or complex conditions, SMART trigger functions are available. These include Glitch with 2.5 ns resolution to trigger down to 1 ns and a unique Dropout mode, which triggers when the signal disappears for a selectable period of time. Other trigger modes include Pattern, Interval, Stateor Edge-Qualified and TV.
TV trigger allows individual lines or fields in PAL, SECAM, NTSC and nonstandard video to be selected. Pre- and Post-trigger delay are fully variable.

## ProBus ${ }^{\text {TM }}$ PROBE INTERFACE

The ProBus system provides a complete measurement solution from probe tip to oscilloscope display. ProBus is an intelligent interconnection between LeCroy oscilloscopes and a growing range of innovative probes, including high-bandwidth low-loading FET probes.

## AUTOMATIC MEASUREMENTS

The following Parametric measurements are available, together with their Average, Highest, Lowest values and Standard Deviation:

| amplitude | falltime | peak to peak |
| :--- | :--- | :--- |
| area | f80-20\% | period |
| base | f@level (abs) risetime |  |
| cycles | f@level (\%) | r20-80\% |
| delay | frequency | r@level (abs) |
| $\Delta$ delay | maximum | r@level (\%) |
| $\Delta t$ at level (abs) | mean | RMS |
| $\Delta t$ tat level $(\%)$ | median | std dev |
| $\Delta t$ at level $(\mathrm{t}=0, \mathrm{abs})$ | minimum | top |
| $\Delta t$ at level $(\mathrm{t}=0, \%)$ | overshoot + | width |
| duty Cycle | overshoot - |  |

Pass/Fail testing allows up to 5 parameters to be tested against selectable thresholds. Waveform Limit Testing is performed using Masks which may be defined inside the instrument. Any failure will cause preprogrammed actions such as Hardcopy, Save, GPIB SRQ or Pulse Out.

## DOS COMPATIBLE MASS STORAGE

The 9354T and 9354TM scopes offer a 3.5" 1.44 MB floppy disk drive which stores traces, setups, screen graphics and Pass/Fail templates. Data are stored as DOS files, which may be read directly by a PC. High-speed DOS compatible PCMCIA memory card and hard disk options are also available.

## BUILT-IN PRINTER

As well as driving most printers and plotters via GPIB, RS-232-C and Centronics interface, the 9354TM offers an internal high resolution graphics printer. This thermal printer produces full resolution screendumps, $126 \times 90$ mm , in under 10 seconds. The printer is optional for model 9354 T .

## FLEXIBLE INTERFACING

GPIB and RS-232-C interfaces may be used for full remote control of the instrument. All front-panel and internal processing functions can be controiled via either interface. For applications where throughput is essential, the GPIB interface transfers hundreds of waveforms per second. A Front-Panel BNC connector may be setup to provide Pass/Fail test output pulses.

## MULTIPLE DISPLAY MODES

The high-resolution raster display shows from one to four independent waveform grids. Waveforms are represented as dots joined by vectors which may be turned on or off. Four Zoom/Math traces may be used for zooming waveforms or for signal processing. The area to be zoomed is selected by moving an intensified portion of the main waveform. Persistence display mode allows easy viewing of signal changes over time, and XY mode plots any two sources against one another. Cursors are usable in all display modes.

## EXTENSIVE WAVEFORM MATH

Standard built-in waveform processing includes mathematics (Add, Subtract, Multiply and Divide, Negation and Identity) and Summation Averaging (up to 1000 sweeps). It also provides Summed and Continuous Averaging, Waveform Math Functions, Extrema and Enhanced Resolution Modes. More information is available in the 9300 WP01 datasheet.

## FFT PACKAGE

The WP02 package provides comprehensive Spectral Analysis capabilities, permitting the system designer to identify characteristics which may not be apparent in the time domain. WP02 provides a wide selection of displayed projections and windowing functions, as well as averaging in the frequency domain. For more information, see the 9300 WP02 datasheet.

## 9354T and 9354TM Specifications

## ACQUISITIONSYSTEM

Bandwidth ( -3 dB ):
@ 50 』: $\quad$ DC to 500 MHz
$100 \mathrm{mV} / \mathrm{div}: 400 \mathrm{MHz}$
$50 \mathrm{mV} /$ div and below: 350 MHz
@ $1 \mathrm{M} \Omega \mathrm{DC}$ : DC to 250 MHz typ. at probe tip.
No. of Channels: 4
No. of Digitizers: 4
Maximum Sample Rate and Acquisition
Memories: See table below.
Sensitivity: $2 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div, fully variable.
Scale factors: A vast choice of probe
attenuation factors are selectable.
Offset Range: $2.0-9.9 \mathrm{mV} / \mathrm{div}: \pm 120 \mathrm{mV}$ $10.0-199 \mathrm{mV} / \mathrm{div}: \pm 1.2 \mathrm{~V}$ $0.2-5.0 \mathrm{~V} / \mathrm{div}: \quad \pm 24 \mathrm{~V}$
DC Accuracy: $\leq \pm 2 \%$ full scale ( 8 divisions) at 0 V offset.
Vertical Resolution: 8 bits.
Bandwidth Limiter: 30 MHz
Input Coupling: AC, DC, GND.
Input impedance: $1 \mathrm{M} \Omega / / 15 \mathrm{pF}$ or $50 \Omega \pm 1 \%$.
Max Input:
$1 \mathrm{M} \Omega: \quad 250 \mathrm{~V}$ (DC+ peak AC $\leq 10 \mathrm{kHz}$ )
$50 \Omega: \quad \pm 5 \mathrm{VDC}(500 \mathrm{~mW})$ or 5 VRMS

## TIME BASE SYSTEM

Timebases: Main and up to 4 Zoom Traces.
Time/Div Range: $1 \mathrm{~ns} / \mathrm{div}$ to $1,000 \mathrm{~s} / \mathrm{div}$.
Clock Accuracy: $\leq 10 \mathrm{ppm}$
interpolator resolution: 10 ps
Roll Mode: ranges 500 ms to $1,000 \mathrm{~s} / \mathrm{div}$.
For $>50 \mathrm{k}$ points: 10 s to $1,000 \mathrm{~s} / \mathrm{div}$.
External Clock: $\leq 100 \mathrm{MHz}$ on EXT input with
ECL, TTL or zero crossing levels. Optional up to 500 MHz rear panel clock input.
External Reference: Optional 10 MHz rearpanelinput.

## TRIGGERING SYSTEM

Trigger Modes: Normal, Auto, Single, Stop. Trigger Sources: $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4$, Line, Ext, Ext/10. Slope, Level and Coupling for each can be set independently.

Slope: Positive, Negative.
Coupling: AC, DC, HF (up to 500 MHz ), LFREJ, HFREJ.
Pre-trigger recording: 0 to $100 \%$ of full scale (adjustable in $1 \%$ div increments).
Post-trigger delay:0 to 10,000 divisions
(adjustable in 0.1 div increments).
Holdoff by time: 10 ns to 20 s .
Holdoff by events: 0 to 99,999,999 events. Internal Trigger Sensitivity Range: $\pm 5$ div. EXT Trigger Max Input:
$1 \mathrm{M} \Omega / / 15 \mathrm{pF}: 250 \mathrm{~V}(\mathrm{DC}+$ peak $\mathrm{AC} \leq 10 \mathrm{kHz})$ $50 \Omega \pm 1 \%: \pm 5 \mathrm{~V}$ DC ( 500 mW ) or 5 V RMS EXT Trigger Range: $\pm 0.5 \mathrm{~V}( \pm 5 \mathrm{~V}$ with Ext/10)
Trigger Timing: Trigger Date and Time are listed in the Memory Status Menu.
Trigger Comparator: Optional ECL rear panel output.

## SMART TRIGGER TYPES

Pattern: Trigger on the logic AND of 5 inputs $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4$, and EXT Trigger, where each source can be defined as High, Low or Don't Care. The Trigger can be defined as the beginning or end of the specified pattern. Signa! or Pattern Width: Trigger on width between two limits selectable from 2.5 ns to 20 s. Signal or Pattern Interval: Trigger on interval between two limits selectable from 10 ns to 20 s Dropout: Trigger if the input signal drops out for longer than a time-out from 25 ns to 20 s. State/Edge Qualified: Trigger on any source only if a given state (or transition) has occurred on another source. The delay between these events can be defined as a number of events on the trigger channel or as a time interval. TV: Allows selection of both line (up to 1500) and field number (up to 8 ) for PAL, SECAM, NTSC or nonstandard video.

## ACQUISITION MODES

Random Interleaved Sampling (RIS):
for repetitive signals from $1 \mathrm{~ns} /$ div to $5 \mu \mathrm{~s} / \mathrm{div}$.

Single shot:for transient and repetitive signals from $10 \mathrm{~ns} / \mathrm{div}$ (all channels active).
Peak detect: captures and displays 2.5 ns glitches or other high-speed events.
Sequence: Stores multiple events in segmented acquisition memories.
Number of segments available:
$9354 \mathrm{~T} \quad 2-500$

9354TM 2-2000
Min. Dead Time between segments: $60 \mu \mathrm{~s}$
DISPLAY
Waveform style: Vectors connect the individual sample points, which are highlighted as dots. Vectors may be switched off.
CRT: $12.5 \times 17.5 \mathrm{~cm}$ ( $9^{\prime \prime}$ diagonal) raster.
Resolution: $810 \times 696$ points.
Modes: Normal, X-Y, Variable or Infinite Persistence.
Real-time Clock: Date, hours, minutes, seconds.
Graticuies:Internally generated; separate intensity control for grids and waveforms. Grids: 1,2 or 4 grids.
Formats: YT, XY, and both together. Vertical Zoom: Up to $5 \times$ Vertical Expansion ( 50 x with averaging, up to $40 \mu \mathrm{~V}$ sensitivity). Maximum Horizontal Zoom Factors: 9354T 4000x 9354TM 20000x Waveforms can be expanded to give 2 points/ division. This implies zoom factors up to $100,000 \times$ for the 9354TM when channels are combined.

## INTERNAL MEMORY

Waveform Memory: Up to four 16-bit Memories (M1, M2, M3, M4). Processing Niemory: Up to four 16-bit Waveform Processing Memories (A, B, C, D). Setup Memory: Four nonvolatile memories. Optional Cards or Disks may also be used for high-capacity waveform and setup storage.

| Channels Used | Maximum <br> Sample Rate | Memory per Channel <br> $9354 T$ |  | Notes |
| :---: | :---: | :---: | :---: | :---: |
| All <br> Peak Detec! OFF | $500 \mathrm{MS} / \mathrm{s}$ | 100 k | 500 k | All channels active |
| All <br> Peak Detect ON | $100 \mathrm{MS} / \mathrm{s}$ data <br> $400 \mathrm{MS} / \mathrm{s} \mathrm{peak}$ | 50 k data + <br> 50 k peaks | 250 k data + <br> 250 k peaks | All channels active <br> 2.5 ns peak detect |
| Paired <br> Peak Detect OFF | $1 \mathrm{GS} / \mathrm{s}$ | 250 k | 1 M | $\mathrm{CH} 2+\mathrm{CH3}$ |
| Paired + PP 092 <br> Peak Detect OFF | $2 \mathrm{GS} / \mathrm{s}$ | 500 k | 2 M |  |

## CURSORMEASUREMENTS

Relative Time: Two cursors provide time measurements with resolution of $\pm 0.05 \%$ fullscale for unexpanded traces; up to $10 \%$ of the sampling interval for expanded traces. The corresponding frequency value is displayed. Relative Voltage: Two horizontal bars measure voltage differences up to $\pm 0.2 \%$ of full-scale in single-grid mode.
Absolute Time: A cross-hair marker measures time relative to the trigger and voltage with respect to ground.
Absolute Voltage: A reference bar measures voltage with respect to ground.

## WAVEFORM PROCESSING

Up to four processing functions may be performed simultaneously. Functions available are: Add, Subtract, Multiply, Divide, Negate, Identity and Summation Averaging.
Average: Summed averaging of up to 1,000 waveforms in the basic instrument. Up to $10^{6}$ averages are possible with Option WPO1.
Envelope*: Max, Min, or Max and Min values of from 1 to $10^{6}$ waveforms.
ERES*: Low-Pass digital filter provides up to 11 bits vertical resolution.
Sampled data is always available, even when a trace is turned off. Any of the above modes can be invoked without destroying the data. FFT*: Spectral Analysis with four windowing functions and FFT averaging.
*Envelope and ERES modes are provided in Math Package WP01. FFT is in WP02.

## AUTOSETUP

Pressing Autosetup sets timebase, trigger and sensitivity to display a wide range of repetitive signals. (Amplitude 2 mV to 40 V ; frequency above 50 Hz ; Duty cycle greater than $0.1 \%$ ).
Autosetup Time:Approximately 2 seconds. Vertical Find: Automatically sets sensitivity and offset.

## PROBES

Model: One PP002 (10:1, $10 \mathrm{M} \Omega / / 15 \mathrm{pF}$ ) probe supplied per channel.
The 9354 T and 9354 TM are fully compatible with LeCroy's range of FET Probes, which may be purchased separately.
Probe calibration: Max 1 V inio $\dagger \mathrm{M} \Omega$, 500 mV into $50 \Omega$, frequency and amplitude programmable, pulse or square wave selectable, rise and fall time 1 ns typical. Alternatively, the Calibrator output can provide a trigger output or a PASS/FAIL test output.

## :NTERFACING

Remote Control: Of all front-panel controls, as well as all internal functions is possible by GPIB and RS-232-C.
RS-232-C Port: Asynchronous up to 19200 baud for computer/terminal control or printer/ plotterconnection.
GPIB Port: (IEEE-488.1) Configurable as talker/listener for computer control and fast data transfer. Command Language complies with requirements of $\operatorname{EEEE}$-488.2.
Centronics Port:Optional hardcopy paralle! interface (included with 9354TM).
Hardcopy: Screen dumps are activated by a front-panel button or via remote control. TIFF and BMP formats are available for importing to Desktop Publishing programs. The following printers and plotters can be used to make hardcopies: HP DeskJet (color or BW), HP ThinkJet, QuietJet, LaserJet, PaintJet and EPSON printers. HP 7400 and 7500 series, or HPGL compatible plotters. An optional internal high resolution graphics printer is also available (included with 9354TM).

## general

Auto-calibration ensures specified DC and timing accuracy.
Temperature: $5^{\circ}$ to $40^{\circ} \mathrm{C}\left(41^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ rated $0^{\circ}$ to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ operating. Humidty: $<80 \%$.
Shock \& Vibration: Meets MIL-STD-810C modified to LeCroy design specifications and MIL-T-28800C.
Power: $90-250$ V AC, $45-66 \mathrm{~Hz}, 230 \mathrm{~W}$.
Battery Backup: Front-panel settings maintained for two years.
Dimensions:(HWD) 8.5" $\times 14.5$ " $\times 16.25$ ", $210 \mathrm{~mm} \times 370 \mathrm{~mm} \times 410 \mathrm{~mm}$.
Weight: 13 kg ( 28.6 lbs ) net, 18.5 kg ( 40.7 lbs ) shipping.
Warranty: Two years.

| USA Direct Sales: 1 (800) 5LE-CROY |  |  |
| :---: | :---: | :---: |
| LeCroy Worldwide Sales Offices |  |  |
| ASIAPACIFIC | LeCroy Pty Ltd | 61.38.90.7358 |
| benelux | LeCroy BV | 04902.8.9285 |
| FRANCE | LeCroy SARL | (1).69.18.83.20 |
| GERMANY | LeCroy GmbH | 0622183.10 .01 |
| ITALY | LeCroy SRL | 06.336.797.00 |
| JAPAN Osaka | LeCroy Japan | 0816.330.0961 |
| JAPAN Tokyo | LeCroy Japan | 0813.3376 .9400 |
| SWITZERLAND | Geneva | 022.719.21.11 |
| SWITZERLAND | Lenzburg | 064.51.91.81 |
| United Kingdom | LeCroy Ltd | (01235) 533114 |

## Ordering Information

Oscilloscope and Options
9354T/TM 4-Ch Digital Oscilloscope
9XXX-MC01/04 Memory Card Reader w/512KB Memory Card
93XX-HD01 Hard Disk Adapter
93XX-HD02 PCMCIA Hard Disk
93XX-DA01-110 PCMCIA type III external desktop adaptor for PC (110v)
93XX-DA01-220 PCMCIA type III external desktop adaptor for PC (220v)
93XX-HDD HD01/HD02combination
93XX-DDM Disk Drive Measurements
93XX-PRML Supplementary Disk Drive Measurements
935XA-CKTRIG 10MHz External Clock Reference Input 500 MHz External Clock input Trigger Comparator Output
93XX-W5 5 Year Warranty
93XX-C5 5 Year Calibration Contract
93XX-T5 5 Year Warranty and Calibration
Oscilloscope Accessories
Supplied with Instrument:

| 935X-OM | Operator's Manual |
| :--- | :--- |
| 93XX-RCM | Remote Control Manual |
| 93XX-FC | Front Cover |
| PP002 | $350 \mathrm{MHz}, 10 \mathrm{M} \Omega$ Passive <br>  <br> Probe (1 per channel) <br> PP092 |
| 9XXX-WP01 | ProBus Channel Multiplexer |
| 9XXX-WP02 | FFT Procm Math |
| 93XX-FD01 | Floppy Drive |
| 93XX-GP01 | Internal Graphics Printer <br> (Included with 9354TM only) |
|  | (l) |

Ordered separately:
93XX-CC Calibration Certificate
935XT-SM Service Manual
9XXX-MC02 128K Memory Card
9XXX-MC04 512K Memory Card
DC/GPIB 2 Meter GPIB Cable
SG9001 High Voltage Protector
OC9002 Oscilloscope Cart
AP020 $\quad 1$ GHz 10:1 FET Probe
AP021 $\quad 800 \mathrm{MHz} 5: 1$ FET Probe
AP030 $\quad 15 \mathrm{MHz}$ Differential Probe
PP062 $\quad 1 \mathrm{GHz}, 10: 1,500 \Omega$ Passive
PP090 ProBus 75 to $50 \Omega$ adapter
93XX-RM01 Rackmount
93XX-TC1 Transit Case
93XX-TC2 Carrying Bag
Various option bundling schemes available. Contact your nearest LeCroy subsidiary or representative for more information.
$\qquad$

The Digital Scope Specialists

# 9300 Series PCMCIA Hard Disk Adapter, Internal Printer, 3.5" Floppy Disk Drive and Ram Card 

## Main Feałures

園 PCMCIA Type III compatible Hard Disk Adapter, DOS Compatible
$\square$ High-resolution Printer, ideal for fast, on-the-spot documentation
. 3.5" Floppy disk drive, DOS format - affordable and convenient

- Ultra-fast RAM card, DOS format, ideal for PASS/FAIL testing
- Convenient Hardcopy storage to card/disk


## 3.5" Floppy

The floppy drive is a convenient storage medium, not only for saving and retrieving waveforms or instrument settings, but also for storing hardcopies that can be printed from a PC when desired. The floppy supports both 720k and 1.44 M DOS formats so that it can be read back on any PC with a $3.5^{\prime \prime}$ drive, avoiding the need to interface the oscilloscope to your PC. As with the RAM-card option, the floppy system capabilities include automatic storage of data under pre-programmed conditions.


## PCMCIA Storage

PCMCIA Interfaces for RAM card and Hard Disk allow the use of fast, removable and compact storage media for saving and retrieving waveforms and instrument settings. They comply fully with the PC industry's PCMCIA and JEIDA standards. With the special Autostore feature, waveforms can be automatically stored after every acquisition and "played back" when desired. When used in combination with the PASS/FAIL feature, failure data can be saved automatically for later analysis.

## Printer

The internal printer is an invaluable tool for instant, on-the-spot documentation. It generates a clear, crisp hardcopy of the screen in just a few seconds. The large size of the printout, combined with its high resolution, provide you with an excellent document that matches the screen's superior quality to its finest details. And because it frees you from the trouble of carrying and interfacing a bulky printer, it is the ideal solution for field measurements.

## Mass Siorage Features and Benefits

LeCroy's mass storage capabilities provide a range of benefits:

- Easy data transfers to PCs
- Waveform logging
- Waveform archiving for future use
- Faster troubleshooting
- Faster, more reproducible testing
- Shared oscilloscope resources


## EASY DATA TRANSFER TO PC

Because the 9300 series oscilloscope uses DOS-formatted floppy disks, hard disks and memory cards, transferring waveform data to a PC is simple. The removable storage allows transfers without cables, programming, or any knowledge of GPIB, RS-232, or other interfaces.
In addition, LeCroy provides free of charge, a binary-to-ASCII format conversion program for the PC, accommodating those PC-based analysis packages (such as spreadsheets) that require ASCII format.

## WAVEFORM LOGGING

By using Glitch or Dropout triggering in combination with the powerful AUTOSTORE mode, LeCroy oscilloscopes can monitor and log intermittent problems automatically. To store a waveform, the oscilloscope opens and names a DOS-compatible file and then stores the waveform data in the file. This logging feature requires no operator intervention and maintains data and the operational setup through power line failures. Logged waveforms can be selectively played back by trigger time/date or by sequence number, or can be scrolled through sequentially.

## WAVEFORM ARCHIVING FOR FUTURE USE

- Recallable proof of performance
- Additional data analysis as needed
- Accurate trend or drift monitoring
- Calibration procedure verification

When storing waveforms, LeCroy DSOs also archive a header of setup information and the acquisition time/date. After recalling an archived waveform, the several hundred byte header ensures correct time and voltage scaling. When recalled into the oscilloscope, the waveform can be zoom expanded,
compared, or analyzed just like a live waveform. The time/date offers proof of measurement authenticity and trend sequence.
All LeCroy DSOs store raw waveform data using one byte per sample point. Signal averaged, Enhanced Resolution (ERES) filtered, and other processed data use two bytes per point, to take advantage of the added resolution.

## HARDCOPY ARCHIVING

Hardcopies of the screen can also be stored for future use. For instance, a screen saved in TIFF format can be imported into a Word Processor to illustrate a report. Additionally, fieldmeasurement screens can be saved in LaserJet format on the memory card or floppy disk, and then printed from a PC back in the lab.

## FASTER FIELD MEASUREMENTS

Recallable reference waveforms and oscilloscope setups for each test point on a Device Under Test (DUT) can make fault troubleshooting faster and more accurate. A dedicated memory card or floppy disk will hold all of the correct test point waveforms and associated DSO setups for a particular DUT.
The technician can recall stored setups quickly and consistently, thereby avoiding incorrect measurement conditions. He can then compare actual waveforms to recalled reference waveforms taken from a known working system. He will therefore spend less time probing a large number of test points and verifying that the correct waveforms exist.
If a problem is found, the aberrant waveform may be saved. It can later be shown to laboratory-based engineers, for example, for problem-solving guidance or for improvement of DUT design.
Memory cards - rugged and pocketsized - are ideal for this application.

## FASTER, MORE REPRODUCIBLE TESTING

LeCroy oscilloscopes will compare measured waveforms against upper and lower waveshape tolerances or against parameter limits, such as risetime, overshoot, or peak voltage, and make PASS/FAIL decisions. This PASS/FAIL
testing decreases test times in GPIBbased ATE systems by reducing data transfers. It increases reproducibility and accuracy in manual tests by eliminating human errors.
Once defined, these tests may be saved by storing instrument setups which include the specified tolerances and/or reference waveforms. Different test personnel can easily share a common test library via a PC network.
Waveshape test limits can be generated by capturing a "golden" waveform and by then selecting amplitude and timing limits (in fractions of screen graticule divisions). Or a user can create standard waveform limit templates on a computer (e.g. ANSI/CCITT telecommunication templates).
With the LeCroy 9300 series DSOs, specific parameter tolerance test procedures are created by selecting limits for any five out of twenty pulse parameters with Boolean AND / OR conditions between them. During testing, FAIL responses can include an audible beep, GPIB SRQ, hardcopy output, or store to memory card.

## SHARED OSCILLOSCOPE RESOURCES

By plugging-in your personal floppy disk, RAM card or PCMCIA Hard Disk you can restore your setup in seconds. Individual users can keep preferred setups on separate disks or cards or within separate directories.

$\qquad$

## Hardcopy Features and Benefits

The internal printer adds a whole range of benefits to the LeCroy 9300 series:

- Ultra-fast printouts
- High resolution printing
- Easy transportation
- Trouble-free interfacing
- Auto Print on Trigger


## ULTRA-FAST PRINTOUTS

Measurement documentation is made easier and faster since the internal printer produces a hardcopy in less than 10 seconds. In addition the document is date- and time-stamped: a real bonus for archiving test results.

## high resolution printing

With a resolution of 190 dots-per-inch, the internal printer matches the screen's superior quality. And for even higher resolution, the printout can be stretched to a full 70 meter length so you can see those traces down to their finest details.

## EASY TRANSPORTATION

A printer that is totally integrated in the instrument makes life much easier for field-measurement applications. Imagine carrying a scope, a printer (and perhaps a floppy drive) in one hand!

## TROUBLE-FREE INTERFACING

The internal printer frees your mind from the struggle with cable schematics, baud rates, gender-changers and dip switches, for more productive tasks. Select the internal printer in the scope's utilities menu, hit the SCREEN DUMP button, and you're in business!

## AUTO PRINT ON TRIGGER

The Auto Print feature is used to print a screen image on each acquisition.

The 9300 series oscilloscope supports a whole range of popular printers and plotters. Hardcopies can be either sent directly to the peripheral device or to the fioppy disk, Ram Card or Hard disk for future use.


OTHER HARDCOPY SOLUTIONS
High quality project reports, presentation materials, technical manuals, and troubleshooting instructions often require integration of text and graphics on the same page.
Advanced PC desktop publishing and word processors such as Word-forWindows, WordPerfect, or AMI Pro can directly import graphic files, size them, and position them anywhere on the page. Written text can then wrap around or be positioned within the graphics.

LeCroy 9300 oscilloscopes will save screens in TIFF (Tagged Image Format File), or BMP. After transferring the file to a PC, the DTP software can import and manipulate the document like any other graphic object.

The LeCroy 9300 series also offers a wide range of interfacing capabilities with external hardcopy devices:

- Plotters. HPGL, HP 7400 and 7500 compatible
- Printers. HP LaserJet, ThinkJet, Paintjet (including color), DeskJet (including color) and Epson
- Interfacing. RS-232, GPIB, or even Centronics (optional)


## Specifications

## MASS STORAGE

|  | Floppy Disk | Ram Card | Hard Disk |
| :--- | :--- | :--- | :--- |
| Compatibility | 3.5" Floppy Drive | PCMCIA I, II <br> JEIDA 3.0, 4.0 | PCMCIA III |
| Supported Formats | DOS Format | ReadWrite: SRAM Read: <br> OTP, ROM, Fash DOS <br> Format | DOS Format |
| Size | 720 k byte, 1.44M <br> byte | Up to 8 M byte | Up to 512 M byte <br> Note 1 |
| Max Transfer Rate | 18 k byte/sec | 500 k byte/sec | 150 k byte/sec |
| Typicai wavefors? <br> Transfer Speed <br> (Store/Recall) |  |  |  |
| 1000 point <br> 10000 point <br> 100000 point <br> 1M point | $1.1 \mathrm{~s} / 0.4 \mathrm{~s}$ <br> $1.8 \mathrm{~s} / 1.0 \mathrm{~s}$ <br> $7.5 \mathrm{~s} / 6.5 \mathrm{~s}$ <br> $57 \mathrm{~s} / 55 \mathrm{~s}$ | $40 \mathrm{~ms} / 30 \mathrm{~ms}$ <br> $70 \mathrm{~ms} / 60 \mathrm{~ms}$ <br> $300 \mathrm{~ms} / 300 \mathrm{~ms}$ <br> $2 \mathrm{~s} / 2 \mathrm{~s}$ | $140 \mathrm{~ms} / 120 \mathrm{~ms}$ <br> $240 \mathrm{~ms} / 220 \mathrm{~ms}$ <br> $1.0 \mathrm{~s} / 0.9 \mathrm{~s}$ <br> $7.0 \mathrm{~s} / 6.5 \mathrm{~s}$ |

Waveform File size: A channei-trace will use
1 byte per sample plus approximately 360 bytes of waveform descriptor. A processed trace will use 2 bytes per sample.
Template Size: Approximately 21 k bytes.
Panel Setup Size: Approximately $3 k$ bytes.
*Note 1 : When available

PRINTER
Type: Raster printer, thermal.
Resolution: 190 DPI .
Printout Size: $126 \mathrm{~mm} \times 90 \mathrm{~mm}$
Paper: Thermal printer paper, 30 meter roll, 110 mm width, type Seiko or similar.
Printing speed: 6 seconds approx. for one screen.

## AP003，AP020 and AP021 Active FET Probes

## Main Features

뭉 Bandwidths to 1 GHz
－LeCroy ProBus ${ }^{T M}$ interface for the AP020 and the AP021
（图 $1 M \Omega$ input Impedance

⿴囗木ํ Low capacitance at probe tip
－Rugged mechanical construction
－Automatic sensing and control on scopes equipped with ProBus ${ }^{\text {TM }}$

FET Probes provide the oscilloscope user with a higher level of measurement capability．Compared with passive probes，they offer low circuit loading， low capacitance and high bandwidth． This combination makes them the ideal tools for working on sensititve or high－ speed electronics．

This performance is achieved by the integration of a high－impedance Field Effect Transistor（FET）amplifier into the probe tip．The circuit under test sees only the amplifier＇s input impedance－it is effectively buffered from the scope＇s input impedance and the probe cable．


LeCroy＇s AP series of FET probes are mechanically rugged in design，while their miniature construction allows them to be used in hand－held PCB probing applications．Their detachable tips are designed for simple replacement，and they are supplied with a full set of accessories．

Models AP020 and AP021 offer 1 GHz and 800 MHz Bandwidth respectively． AP020 features X10 signal attenuation and is especially recommended for LeCroy＇s 9320 and 93241 GHz oscillo－ scopes．The AP021 offers X5 attenua－ tion when used with the new 9360.

As an active device，the FET probe requires a stabilized power supply． LeCroy provides an elegant solution to this with the ProBus ${ }^{\text {TM }}$ probe interface．

ProBus ${ }^{\text {TM }}$ provides probe power and sig－ nal connection in one integrated pack－ age．It also allows the scope to control other probe functions，such as input coupling and DC offset．The ProBus ${ }^{\text {TM }}$ interface is now available on a growing range of LeCroy oscilloscopes and probes．AP003 has an external power connector for use with scopes which are not ProBus ${ }^{\text {TM }}$ compatible．All other mod－ els use the ProBus ${ }^{T M}$ interface．
$\qquad$

## Features and Benefits

Connecting a probe to a circuit can significantly distort its signals by adding undesired loading - mostly capacitive and resistive. FET probes offer high resistance and low capacitance therefore they present minimal loading to the circuit under test, and protect from making erroneous measurements.

## HIGH RESISTANCE

Low resistance probes have significant DC effects when used in high impedance circuits. They can greatly affect the behaviour of the device under test by changing the swing and the DC offset of the probed signal. A $1 \mathrm{M} \Omega$ impedance FET probe will not affect gain or offset in virtually all the cases.

## LOW CAPACITANCE

Although not important in DC measurements, capacitive loading is very
disruptive at high signal frequencies. The capacitive loading effects can be drastic. When probed with a $10 \mathrm{M} \Omega, 15$


Probe Impedance versus Frequency
pF passive probe, a 100 MHz signal "sees" a $100 \Omega$ load as illustrated on the picture below.

With only 2 pF of capacitance at the probe tip, LeCroy's FET probes reduce
circuit loading at high frequencies by a factor of 10. Minimizing tip capacitance can aiso push the probe's resonant frequency beyond the system bandwidth. Sensitivity to ground lead inductance is also minimized.

## PROBUS

The ProBus ${ }^{T M}$ system is a complete measurement solution from probe tip to oscilloscope display. It supplies power to active probes, while automatically sensing probe attenuation. ProBus ${ }^{\mathrm{TM}}$ enables direct control of the probe offset and input coupling from the scope's front panel, extending the instrument's accuracy up to the probe tip. In addition, ProBus ${ }^{\text {TM }}$ automatically optimizes scope and probe offset adjustments, calibrates the gain at the probe tip and compensates for non-linearities, providing most accurate measurements.

## Specifications

| MODEL | AP003 | AP020 | AP021 | MODEL | AP003 | AP020 | AP021 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |
| Bandwidth (MHz) | DC-1000 | DC-1000 | DC-800 | Dynamic Range | $\pm 7 \mathrm{~V}$ | $\pm 5 \mathrm{~V}$ | $\pm 2.5 \mathrm{~V}$ |
| Risetime (psec) | $<350$ | $<350$ | $<437$ | DC Offset Range | N/A | $\pm 20 \mathrm{~V}$ | $\pm 10 \mathrm{~V}$ |
| Attenuation | $10: 1 \pm 2 \%$ | $10: 1 \pm 2 \%$ | $5: 1 \pm 2 \%$ | Input Coupling | DC | DC/AC | DC/AC |
| Input R (MS2) | $1 \pm 5 \%$ | $1 \pm 2 \%$ | $1 \pm 2 \%$ | Total length $(\mathbf{m})$ | 1.5 | 1.5 | 1.5 |
| Input C (pF) | $1.9 \pm 0.3$ | $1.8 \pm 0.2$ | $2.7 \pm 0.2$ | Power requirement | $\pm 12 \mathrm{~V}$ | $\pm 12 \mathrm{~V}$ | $\pm 12 \mathrm{~V}$ |
| Max Input Voltage | $\pm 100 \mathrm{~V}$ | $\pm 40 \mathrm{~V}$ | $\pm 20 \mathrm{~V}$ | Interface | $\mathrm{N} / \mathrm{A}$ | ProBus ${ }^{\top \mathrm{M}}$ | ProBus ${ }^{\top \mathrm{M}}$ |

## Recommended Matching

| LeCroy Model | AP-003 | AP-020 | AP-021 |
| :--- | :---: | :---: | :---: |
| $9304-10-14$ | XX |  |  |
| $9360-61$ |  |  | $X$ |
| $9320-24$ |  | $X$ |  |
| $94 X X$ | $X$ |  |  |
| 7200 | $X X$ |  |  |
| $7200 A$ | $X$ |  |  |
| ScopeStation | $X$ |  |  |

$X$ : External Power Supply not required
XX: External Power Supply required

USA Direct Sales: 1 (800) 5LE-CROY

| LeCroy Worldwide Sales Offices |  |  |
| :--- | :--- | :--- |
| ASIAPACIFIC | LeCroy Pty Ltd | 61.38 .90 .7358 |
| BENELUX | LeCroy BV | 04902.8 .9285 |
| CANADA | LeCroy Cnd | 514.928 .4707 |
| FRANGE | LeCroy SARL | $(1) .69 .18 .83 .20$ |
| GERMANY | LeCroy GmbH | 0622183.10 .01 |
| ITALY Milano | LeCroy SRL | 02.204 .70 .82 |
| ITALY Rome | LeCroy SRL | 06.336 .797 .00 |
| JAPAN Osaka | LeCroy Japan | 0816.330 .0961 |
| JAPAN Tokyo | LeCroy Japan | 0813.3376 .9400 |
| SWITZERLAND | Geneva | 022.719 .21 .11 |
| SWITZERLAND | Lenzburg | 064.51 .91 .81 |
| United Kingdom LeCroy Lid | $0235-533114$ |  |
|  |  |  |
| Other sales and service representatives |  |  |

[^1]
## Ordering Information

AP003 1 GHz active FET probe
AP020 $\quad 1 \mathrm{GHz}$ active FET probe
AP021 $\quad 800 \mathrm{MHz}$ active FET probe
with ProBus ${ }^{\text {TM }}$ interface. All
probes are shipped with the
following accessories:
$1 \times$ Retractable hook
$1 \times$ Ground Lead
$1 \times$ BNC Adaptor
$1 \times$ IC Tip
$3 x$ Ground Bayonets
$1 \times$ Mini pincher with Lead Adaptor
Power Supply for the AP003

## AP030, SI 9000 and SI 9000A Active Differential Probes

## Main Features

- Bandwidths to 15 MHz
- Multiple:


## Attenuations

Differential Voltage Ranges
Common Mode Voltages

- High Input Impedance
- Rugged and Lightweight Mechanical Construction

The Models AP030, SI 9000 and SI 9000A are fully differential active probes designed for applications where electric signals must be measured relative to a floating voltage, other than ground potential.
These probes are designed specifically for situations where:

- the reference voltage may be several hundreds volts above or below ground;

- measurements require the rejection of common-mode signals, (e.g. to evaluate small amplitude pulses riding on big common-mode signals);
- ground loops and currents produce so much interference that small signals cannot be detected.
With these differential probes the oscilloscope user avoids both the dangerous practice of floating the
scope, and the technique of using two scope channels in "Invert and Add" mode, which is limited both in common mode rejection and in. dynamic range.
Models AP030, SI 9000 and Sl 9000 A are lightweight and easy to use. They have the rugged mechanical construction required for laboratory, manufacturing and field service environments, and are battery powered for greater safety and convenience.


## Features and Benefiirs

FULLY DIFFERENTIAL INPUTS
The probes are fully differential active devices. The differential technique allows measurements to be made between two points in a circuit without reference to ground. The two input signals are processed inside the probe (as illustrated in figure) and the resulting singleended signal may be measured by any grounded oscilloscope.

HIGH COMMON MODE VOLTAGE The three probes offer a range of Common Mode Voltages from 40 V to 1000 V .
RUGGED CONSTRUCTION
The probes are designed to be compact and lightweight with power provided by four AA size 1.5 V batteries. A rubber casing enhances the probes' resistance to shocks.
SAFETY
Use of differential probes is safe within the specified voltages. Their
use avoids less reliable alternatives, or possible dangerous practices.


## Specifications

MODEL
Bandwidth (MHz)
Risetime
Attenuation
Atten. Accuracy
Input Resistance
Input Capacitance Input Configuration
Input Voitage
Differential Max


Absolute Max


| SI9000A | Ordering Information |
| :---: | :---: |
| 15 MHz |  |
| 24 ns | AP030 $\quad 15 \mathrm{MHz}$ differential probe |
| 1:50/1:500 | 1:10/1:100 |
| 2\% | SI $9000 \quad 15 \mathrm{MHz}$ differential probe |
| $2 \mathrm{M} \Omega$ | 1:20/1:200 |
|  | SIg000A $\quad 15 \mathrm{MHz}$ |
|  | 1:50/1:500 |
| $\pm 1000$ VDC | All models are delivered with rubber casing. Batteries not included |
| or 700 Vrms |  |
| for 1:500 |  |
| 100 VDC |  |
| or 70 Vrms |  |
| for 1:50 |  |
| $\pm 1000 \mathrm{VDC}$ |  |
| or 700 Vrms |  |

LeCroy Worldwide Sales Offices

| ASIA/PACIFIC | LeCroy Pty Ltd | 61.38 .90 .7358 |
| :--- | :--- | :--- |
| BENELUX | LeCroy BV | 04902.8 .9285 |
| FRANCE | LeCroy SARL | $(1) .69 .18 .83 .20$ |
| GERMANY | LeCroy GmbH | 06221.83 .10 .01 |
| ITALY | LeCroy SRL | 06.336 .797 .00 |
| JAPAN Osaka | LeCroy Japan | 0816.330 .0961 |
| JAPAN Tokyo | LeCroy Japan | 0813.3376 .9400 |
| SWITZERLAND Geneva | 022.719 .21 .11 |  |
| SWITZERLAND Lenzburg | 064.51 .91 .81 |  |
| United Kingdom LeCroy Ltd | $(01235) 533114$ |  |
|  |  |  |
|  |  |  |
| Other sales and service representatives |  |  |
| throughout the world. |  |  |

Copyright December, 1994. LeCroy is a registered trademark of LeCroy Corporation. All rights reserved. Information in this publication supersedes all earlier versions.

Specifications subject to change without notice.

The Digital Scope Specialists

## WP01 Waveform Processing Firmware for the 9300 Family of Digital Oscilloscopes

## Main Features

国 High-precision averaging up to 1 million sweeps

- Extended digital filtering capabilities
- Rescale function, with (ax +b ) correction factor
- Envelope mode
- Integration
- Differentiation
. Log(e) and $\log (10)$
- Exp(e) and $\operatorname{Exp}(10)$
- Absolute, Reciprocal
- Square, Square root
- Powerful function chaining feature

The LeCroy WP01 Waveform Processing package features a powerful toolset that extends the processing power inside the 9300 oscilloscope, well beyond the capabilities of a traditional instrument.


Summed Averaging is applied to the signalin Channel 1 , to remove random noise. Trace A shows the result after 377 sweeps: the noise has practically disappeared.

In fact, all the processing is built-in to eliminate the need for external computers and controllers. Highspeed microprocessors are used to ensure real-time updates of computed waveforms on the screen.

The package is fully programmable over GPIB or RS-232-C interfaces, and hard copies can be made directly on to a wide range of printers (including the optional internal printer), plotters or graphic formats.
$\qquad$

## Features and Benefits

## extensive signal averaging

WP01 offers two powerful, highspeed averaging modes that can be used to reduce noise and improve the signal-to-noise ratio. Vertical resolution can be extended by several bits to improve dynamic range and increase the overall input sensitivity to as much as $50 \mu \mathrm{~V} /$ div.
Summed averaging, where up tc $1,000,000$ sweeps are repeatedly summed, with equal weight, in a 32 bit accumulation buffer for improved accuracy. The accumulated result is then divided by the number of sweeps.
Continuous/exponential averaging where a weighted addition of successive waveforms can be performed with weighting factors from 1:1 to $1: 1023$. The averaging goes on indefinitely with the contribution of "older" sweeps gradually decreasing. The method is particularly appropriate to reduce noise on signals drifting very slowly in time or amplitude.

## ENHANCED RESOLUTION BY <br> DIGITAL FILTERING

Allows low-pass F.I.R. filtering of the digitized signals, with 6 different cutoff frequencies per sampling rate setting. As a result, the vertical resolution of the captured signals -single-shot or repetitive - increases from 8 bits to 11 bits in 0.5 -bit steps. This feature is ideal to strip off unwanted high-frequency noise on transient events.

## RESCALING

Allows an input signal to be rescaled using a ( $\mathrm{ax}+\mathrm{b}$ ) correction factor to compensate for gain and offset. This is very useful when dealing with various types of transducers, to read the correct temperature or pressure value directly from the scope's cursor.


High-frequency glitches in Channel 1 have been dramatically reduced in Trace A by using the lowpass filtering properties of the Enhanced Resolution Function.

## ENVELOPE MODE

Shows the signal envelope by retaining only the highest and lowest amplitudes for every sampling interval, over a user-definable number of sweeps. Ideal to visualize the time or amplitude jitter in a signal.
POWERFUL MATH TOOLSET
In addition to the basic arithmetic functions found in the standard models (,,$+- \times, \div$ ), WP01 adds an impressive set of functions such as integration, differentiation, logarithms and exponential - in both bases 10 and e - square, square root, reciprocal, absolute, and $\mathrm{a} \sin (\mathrm{x}) / \mathrm{x}$ interpolation function.
All these functions are updated automatically each time a new waveform is acquired, showing a "live" representation of a computed trace. This would be impossible to achieve on a separate computer.

## Function chaining

When more than one math function is needed in the equation, WP01 supports function chaining, and allows the user to multiply, for instance, the "Voltage" and the "Current" channel and to integrate the result to get an instantaneous energy curve.

## REMOTE CONTRCL

All of the waveform processing can be controlled via GPIB or RS-232-C remote control. And the function traces do not even need to be called up on screen to be updated, an important feature that speeds up the computation.


To illustrate WP01's function chaining ability, the noisy signal in Channel 1 has been averaged in Trace $A$ to remove undesired noise, and the result integrated in trace $B$.

## WPOI Specifications

## GENERAL

Max. number data points: only limited by the available amount of system memory (indicated in the "memory used" status menu).
Min. number data points: Data points can be reduced down to 50 in the processing function to improve update rate.
Vertical Zoom: supported, $50 \times$ maximum.
Horizontal Zoom: supported, maximum zooming to a point where 50 samples of the source trace occupy the full screen. Maximum Sensitivity: $50 \mu \mathrm{~V} / \mathrm{div}$ after vertical expansion.

## SUMMATION AVERAGING

Number of Sweeps: 1 to $1,000,000$.
Speed: up to 200,000 points/s.
CONTINUOUS AVERAGING
Possible Weighting Factors: 1:1, 1:3,
$1: 7,1: 15,1: 31,1: 63,1: 127,1: 255$, 1:511 and 1:1023.

## ENHANCED RESOLUTION

Choice of six low-pass filters to improve vertical resolution improvement from 8 to 11 bits in 0.5-bit steps.

## Resulting bandwidth:

0.5 bit $\quad 0.5 \times$ Nyquist BW

1 bit $\quad 0.241 \times$ Nyquist BW
1.5 bit $\quad 0.058 \times$ Nyquist BW

2 bit $\quad 0.029 \times$ Nyquist BW
2.5 bit $\quad 0.016 \times$ Nyquist BW

Nyquist BW $=1 / 2 \times$ sample frequency.

## RESCALE

$a x+b$ rescaling with $a$ and $b$ ranging from $\pm 0.00001 \mathrm{E}-15$ to $\pm 9.99999 \mathrm{E}+15$

## ARITHMETIC

Addition, subtraction, multiplication and ratio on any two waveforms.

## FUNCTIONS

Identity, negation, integration (including additive constant), differentiation, square, square root, logarithm and exponential (base e and 10), $\sin x / x$, reciprocal and absolute value of any waveform.

## EXTREMA

Shows the signal envelope by retaining only the highest and lowest amplitudes for every sampling interval. Logs all extreme values of a waveform over a programmable number of sweeps. Maxima and minima can be displayed together, or separately by choosing roof or floor traces.
Number of Sweeps: 1 to $1,000,000$.

## FUNCTION CHAINING

Up to four functions can be automatically chained using traces A, B, C and D. Using memories M1 to M4 for intermediate results, any number of operations can be chained manually or via remote control.

## HEMOTE CONTROL

All controls and waveform processing functions are fully programmable using simple commands over the oscilloscope's GPIB or RS-232-C interfaces.
$\qquad$

The Digital Scope Specialists

## WP02 Spectrum Analysis Firmware for the 9300 Family of Digital Oscilloscopes

## Main Features

$\square$ Frequency range from DC up to the instrument's full bandwith

- Simultaneous FFTs on up to 4 channels
- Frequency resolution down to $100 \mu \mathrm{~Hz}$
- Frequency domain averaging

Wide selection of scaling formats

- 5 window functions
- Lip to 5 1000-point FFTs per second
- Full support of cursors and automatic waveform parameters
- Full PASS/FAIL testing support


Adding the WP02 Spectrum Analysis Package to the 9300 family of digital oscilloscopes provides a fast and economical solution to frequency domain applications.

The WP02 Spectrum Analysis package provides the 9300 oscilloscope with a powerful frequencydomain toolset that extends its processing capabilities, well beyond the realm of a standard instrument. In fact, all the processing is built-in to eliminate the need for external computers and controllers.

High-speed microprocessors are used to ensure real-time update of computed waveforms on the screen. Fast Fourier Transforms (FFTs) rapidly convert time domain waveforms into frequency domain records to reveal valuable spectral information such as phase, magnitude and power.

The package is fully programmable over GPIB and RS-232-C interfaces, and hardcopies can be made directly on to a wide range of printers (including the optional internal printer), plotters or graphic formats.

## Features and Benefits

## WHY FFT IN A SCOPE?

The FFT package on a LeCroy 9300 has at least four clear advantages over common swept spectrum analyzers:

- It can show the spectrum of a transient signal.
- Both time and frequency information can be monitored simultaneously.
- Phase information is available.
- The price is attractive.

It has two definite advantages over FFT analyzers:

- It can show higher-frequency components.
- Both time and frequency information can be monitored simultaneously.
- The price is attractive.


## BROAD SPECTRUM COVERAGE

The frequency spectrum ranges from DC to the full bandwidth of the oscilloscope for repetitive signals, and to one half of the maximum sampling frequency for transients.

## MULTI-CHANNEL ANALYSIS

All input channels can be analyzed simultaneously to look for common frequency-domain characteristics in independent signals.

## VERSATILE SCALING FORMATS

Frequency-domain data may be presented as magnitude, phase, real, imaginary, complex, log-power and log-PSD (Power Spectral Density).

## STANDARD WINDOW FUNCTIONS

Use rectangular for transient signals; von Hann (Hanning) and Hamming for continuous waveform data; Flattop for accurate amplitude measurements; Blackman-Harris for maximum frequency resolution.

## FREQUENCY DOMAIN AVERAGING

Up to 50,000 FFT sweeps may be averaged to reduce base-line noise, enable analysis of phase-incoherent signals or signals which cannot be triggered on.

## FREQUENCY CURSORS AND WAVE-

 FORM PARAMETERSCursors can be set on the FFT trace to show up to $0.004 \%$ frequency resolution (up to $0.002 \%$ for 10,000 point memory) and measure power or voltage differences to $0.2 \%$ of full scale. Automatic waveform param-


An FFT (top trace) with spectral components buried in noise. By applying the power averaging function (lower trace), all the baseline noise is removed, and the spectral components of an AM signal are clearly visible..
eters can also be applied to FFT traces.
PASS/FAIL TESTING ON FFT TRACES
PASS/FAIL testing is fully supported on FFT traces. The instrument can be setup to test incoming spectra against tolerance masks. In case the signal "fails", the instrument can be programmed to perform a choice of actions (screen dump, waveform storage, pulse out, etc.)

## RESCALING

Allows an input signal to be rescaled using a ( $a x+b$ ) correction factor to compensate for gain and offset. This is very useful when dealing with various types of transducers, to read the correct temperature or pressure value directly from the scope's cursor.

## FUNCTION CHAINING

When more than one math function is needed in the equation, WP02 supports function chaining, and allows the user to multiply, for instance, the "Voltage" and the "Cur-
rent" channel and to integrate the result to get an instantaneous energy curve.

## REMOTE CONTROL

All of the waveform processing can be controlled via GPIB or RS-232-C remote control. And the function traces do not even need to be called up on screen to be updated, an important feature that speeds up the computation.

## EOURIER FROCESSING

Fourier processing is a mathematical technique which enables a time-domain waveform to be described in terms of frequencydomain magnitude and phase, or real and imaginary spectra. It is used, for example, in spectral analysis where a waveform is sampled and digitized, then transformed by a Discrete Fourier Transform (DFT). Fast Fourier Transforms (FFT) are a set of algorithms used to reduce the computation time (by better than a factor of 100 for a 1000 point FFT) needed to evaluate a DFT.
$\qquad$

## WPO2 Specifications

## GENERAL

Max. number data points: only limited by the available amount of system memory (indicated in the "memory used" status menu).
Min. number data points: Data points can be reduced down to 50 in the processing function to improve update rate.
Vertical Zoom: supported, 50× maximum.
Horizontal Zoom: supported, maximum zooming to a point where 50 samples of the source trace occupy the full screen. Maximum Sensitivity: $50 \mu \mathrm{~V} / \mathrm{div}$ after vertical expansion.

## Frequency Range:

Repetitive signals: DC to instrument bandwidth.
Transient signals: DC to $1 / 2$ maxi-
mum single-shot sampling frequency Frequency Scale Factors: $0.05 \mathrm{~Hz} / \mathrm{div}$ to $0.2 \mathrm{GHz} / \mathrm{div}$ in a 1-2-5 sequence.
Frequency Accuracy: 0.01\%.

## AMPLITUDE AND PHASE

Amplitude Accuracy: Better than 2\%.
Amplitude accuracy may be modified by the window function (see the window functions table).

Signal Overflow: A warning is provided at the top of the display when the input signal exceeds the ADC range.
Number of Traces: Time domain and frequency domain data can be displayed simultaneously (up to 4 waveforms).
Phase Range: $-180^{\circ}$ to $+180^{\circ}$.
Phase Accuracy: $\pm 5^{\circ}$ (for amplitudes > 1.4 div).

Phase Scale Factor: $50^{\circ} /$ division.
SPECTRUM SCALING FORMATS
Horizontal Scale: Linear, in Hz Vertical Scales:
Power Spectrum in dBm (1 mW into $50 \Omega$ ).
Power Spectral Density (PSD) in dBm.
Magnitude, Real, Imaginary: Linear, in V/div
Phase Display: Linear, in degrees.

## WINDOW FUNCTIONS

Rectangular, von Hann (Hanning), Hamming, Flattop and Blackman-Harris (see table below).
FFT EXECUTION TIMES*
100 points in less than 0.03 s .
1000 points in less than 0.3 s .
10000 points in less than 3 s .
*Only valid for 9350,9360 , and $9304 / 10$ with
MWP option. Other models, add $50 \%$

|  | FILTER PASS BAND AND RESOLUTION |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Findow type | Filter <br> bandwidth at -6 dB <br> [freq. bins] | Highest side lobe <br> [dB] | Scallop loss <br> [dB] | Noise bandwidth <br> [freq. bins] |
| Rectangular | 1.21 | -13 | 3.92 | 1.0 |
| von Hann | 2.00 | -32 | 1.42 | 1.5 |
| Hamming | 1.81 | -43 | 1.78 | 1.36 |
| Flattop | 1.78 | -44 | 0.01 | 2.96 |
| Blackman-Harris | 1.81 | -67 | 1.13 | 1.71 |

Filter Bandwidth at $-6 d B$ characterizes the frequency resolution of the filter. Highest Side Lobe indicates the reduction in leakage of signal components into neighboring frequencybins.
Scallop Loss is the loss associated with the picket fence effect.

## FREQUENCY DOMAIN POWER

 AVERAGINGSummation averaging of power, PSD or magnitude for up to 50,000 sweeps.

## FUNCTION CHAINING

Up to four functions can be automatically chained using traces A, B, C and D. Using memories M1 to M4 for intermediate results, any number of operations can be chained manually or via remote control.

## REMOTE CONTROL

All controls and waveform processing functions are fully programmable using simple commands over the oscilloscope's GPIB or RS-232-C interfaces.

## CKTRIG hardware option for the 9350A family

## Main Features

High speed 500 MHz external clock input.
-10 MHz external clock reference input.

- Edge trigger comparator output.

T BNC, rear-panel mounted connectors.


## External clock

This feature allows the 9350A family oscilloscopes to be externally clocked up to $500 \mathrm{MS} / \mathrm{s}$, enabling full phase control over the acquired signal. In addition, the sample rate can be fine-tuned to the exact speed required by the application.

## Exiernal reference

The external reference allows the scope to be phase-synchronized to an external 10 MHz reference, either to match the stability of the external source or to phase lock the acquired signal.

## Trigger comparator

The trigger comparator signal outputs a pulse for each valid edgetrigger condition on the trigger signal. An invaluable feature for eventcounting applications.
$\qquad$

## Specifications

EXTERNAL CLOCK INPUT
Input signal requirements:
Amplitude: 800 mV p-p
Frequency range: DC to 500 MHz
Offset: 0 V
Input impedance: $50 \Omega$.
The negative pulse width must imperatively be less than 5 ns.

## EXTERNAL CLOCK REFERENCE

 INPUTInput signal requirements:
Amplitude: 800 mV p-p
Frequency range: $10 \mathrm{MHz} \pm 5 \%$
Offset: 0 V
Input impedance $50 \Omega$.

TRIGGER COMPARATOR OUTPUT
The comparator operates in a 'time-over-threshold' mode and generates a pulse edge of the same polarity as the polarity of the selected triggering edge each time a valid EDGE TRIGGER condition is met on the trigger signal. The duration of the pulse will be equal to the time the trigger signal is above/ below the trigger level.

Note: This does not operate in SMART TRIGGER mode.

Output signal characteristics: ECL, $50 \Omega$, series-terminated.

Ordering Information 935XA-CKTRIG CKTRIG option for the 9350A oscilloscope family.

935XA-RKCKTRIG Retrofit kit for the the 9350A oscilloscope family.

USA Direct Sales: 1 (800) 5LE-CROY
LeCroy Worldwide Sales Offices

| ASIAPACIFIC | LeCroy Pty Ltd | 61.38 .90 .7358 |
| :--- | :--- | :--- |
| BENELUX | LeCroy BV | 04902.8 .9285 |
| FRANCE | LeCroy SARL | $(1) .69 .18 .83 .20$ |
| GERMANY | LeCroy GmbH | 06221.83 .10 .01 |
| ITALY | LeCroy SRL | 06.336 .797 .00 |
| JAPAN Osaka | LeCroy Japan | 0816.330 .0961 |
| JAPAN Tokyo | LeCroy Japan | 0813.3376 .9400 |
| SWITZERLAND Geneva | 022.719 .21 .11 |  |
| SWITZERLAND Lenzburg | 064.51 .91 .81 |  |
| UnitedKingdom LeCroy Ltd | $(01235) 533114$ |  |

Other sales and service representatives throughout the world.

Copyright October, 1994. LeCroy is a registered trademark of
LeCroy Corporation. All rights reserved. Information in this publication supersedes all earlier versions.

Specifications subject to change without notice.

The Digital Scope Specialists

## LeCalsoft-Calibration Software for LeCroy Digital Oscilloscopes



Main Features

- Traceability to reference standards
- Computer check of key specifications
- Computer-aided readjustment
- Fully automated configurations available
- Supports all 93XX and 94XX models
- IBM ${ }^{\circledR}$ PC-AT compatible

General

The LeCroy LeCalsoft (94XXCS05) test and calibration package provides a convenient, unambiguous check of LeCroy oscilloscopes. Designed for users who require traceability to reference standards (NIST, etc.), this package is ideally suited for use in calibration laboratories where the oscilloscopes are checked at fixed intervals.

Results of the calibration check are fully documented on hard copy, or they can be archived on hard disk or diskette.

LeCalsoft works on any PC compatible with the $\mathrm{IBM}^{\circledR}-\mathrm{AT}$ standard. It controls the oscilloscope and the calibration sources through a National Instruments ${ }^{\circledR}$ GPIB interface.

## Features

## Calibration Check

All the essential specifications of the Digital Oscilloscope, such as bandwidth, linearity, noise, trigger, timebase and ef-fective-bit count are tested. Deviations from nominal values are calculated and displayed on the screen, printed, or archived on hard disk or diskette.

## Comprehensive Documentation of the Test Results

At the end of each calibration check, two types of documentation are available: a long form printout which gives details of the results of all the tests executed, and states whether or not the results are within the specifications, and a short form printout which gives a summary of the test results.

## Calibration Traceable to National Standards (NIST, etc.)

By using signal sources traceable to a standard, the calibration will be traceable to the same standard, provided the relevant documentation is maintained.

## Manual and Automated Calibration Check

Both manual operation with computer assistance, and automated operation are possible. Automated operation requires programmable multiplexer and signal sources. See the list of supported devices below.

## Assisted Adjustment of the Oscilloscope

A computer-aided adjustment procedure is also provided. By following instructions on the screen, the trained technician is guided through the adjustments required to correct the settings of the oscilloscope so that it is within the specifications.

## Calibration Certificate

On request, LeCroy will perform calibration traceable to National Standard Organizations. Calibration certificates are provided as part of this service.

## Functional Description

## Calibration Practice

LeCroy oscilloscopes are auto-calibrating digital oscilloscopes and therefore do not require regular calibration like analog oscilloscopes. However, for users who require traceability to reference standards (such as those provided by the National Institutes of Standards and Technology ), and for calibration laboratories which must inspect incoming instruments and perform recalibration at prescribed intervals, the LeCalsoft com-puter-aided test and calibration packages provide an easy solution.
Under guidance of the LeCalsoft program, some adjustments to the oscilloscope can be made by an electronics technician. However major deviations from specifications usually require repair by a trained service engineer. LeCroy regularly schedules training classes. If no in-house trained person is available, the nearest LeCroy service center can carry out repairs and calibration, and provide traceability to reference standards.

## Using the LeCroy LeCalsoft Packages

For calibration checking, digital oscilloscopes have a great advantage over analog oscilloscopes because waveforms can be transferred to a host computer. This simplifies the calibration procedure enormously, makes it potentially faster and allows an extensive range of tests with unambiguous interpretation of the results.
LeCalsoft performs an extensive series of tests which verify the specifications of the oscilloscope. It includes many tests relevant to analog scopes such as Noise and Linearity tests. Although these tests are difficult and time consuming on an analog oscilloscope, they can be computer controlled and are quickly and easily performed on a digital oscilloscope. Tests which are specific to digital oscilloscopes, such as Sinefit tests are also included.
The various test options in LeCalsoft are presented to the operator in the form of a simple menu system. The user has the choice of performing an automated calibration check of the oscilloscope, or individually testing any of the specifications. Some of the tests require the use of high-quality external signal generators. The user receives instructions on
the screen when it is necessary to change the cable connections, but apart from this minor intervention, the tests are fully computer controlled when supported GPIB-programmable instruments are used.

## Supported Instrumentation

LeCalsoft software works on any ATcompatible equipped with a math coprocessor and a National Instruments GPIB interface. Automated calibration checking is possible using a set of instruments from the following list. (For an automated calibration check, either the LeCroy or Keithley programmable multiplexer is required to feed the calibration signals to the oscilloscope input.)

RF sinewave generators:
Marconi 2019A, 2022C, 2030, 2031
Fluke 6060B, 6061A
Hewlett-Packard 8642A, 8642B
Rohde \& Schwarz SMX
AF sinewave generators:
Marconi 2019A, 2022C, 2030, 2031
Hewlett-Packard 8642A, 8642B
Rohde \& Schwarz SMX
Tektronix FG5010
LeCroy AFG 9100
DC Precision Power Supply:
Tektronix PS5004
Datron 4708 Autocal Multifunction
Standard
Fast Pulse Generator: Tektronix CG5001/CG551AP

Power Meters:
Hewlett-Packard HP436A, HP437B
Multiplexers:
Keithley 199 SYSTEM DMM/ SCANNER with LeCroy interface board.
LeCroy 4951, 4973-1, 4973-2
Multiplexers.
Frequency standard:
WWV or HBG1500

## Recommended Accessories

A full kit of calibration connectors and interfaces is available from LeCroy. It includes all the necessary cables, adapters, splitters and filters, as well as the Programmable Multiplexer. Also available is a repair package including special tools, board extenders, etc., for computer-aided adjustment.

## Use of Other Instruments

It is possible to perform the calibration check with some other unsupported signal sources. However, the user is then required to set up these instruments manually and to perform one measurement at a time. The LeCalsoft package
guides the user step by step, and controls the oscilloscope data acquisition and the computation of the results.

LeCalsoft compares the signal measured by the oscilloscope with the signal it would expect to receive from the generator. Warning messages are displayed
whenever tolerances are exceeded. Some of the adjustments may be carried out by the user when the test sequence is finished. In this case, the software will guide the user through the correct adjustment procedure. At the end of the calibration check, a printout can be generated to list the results.

## Specifications

Computer Required: Any PC compatible with the IBM-AT standard, and equipped with a mathematical coprocessor and a National Instrument Inc. GPIB interface.
Operating System: DOS 3.0 upward
Medium: $3^{1 / 21}{ }^{\prime \prime} 1.44 \mathrm{Mb}$ 51/4"1.2 Mb diskette

## Major Tests Supported by LeCalsoft

## Internal

To ensure proper calibration of the oscilloscope, internal auto-calibration tests are automatically executed during normal operation. This standard sequence of internal auto calibration tests is initiated by the software and the results are transferred to the PC for analysis.
The tests are:

- Calibration of the resolution of the time-to-digital converter with respect to the system clock
- Determination of the gain constants of the input amplifiers
- Offset compensation versus gain variation
- Global internal non-linearity
- General functionality check


## Bandwidth

To calculate the bandwidth, the amplitudes of sine waves of increasing frequencies are measured. The sine wave generator is first set to 500 kHz with an amplitude $75 \%$ of full screen, i.e. $\pm 3$ vertical divisions. The frequency is then swept up to the point where an amplitude drop of 3 dB is observed. This indicates the bandwidth.
This test is executed on all channels for $1 \mathrm{M} \Omega$ and $50 \Omega$ input impedance and for all vertical sensitivities. It requires a sine wave generator with good flatness.
Generators supported under program
control are listed on page 2.

## Linearity

15 different known voltages, varying from $5 \%$ to $95 \%$ of full screen, are applied by the external voltage reference source. For each voltage value, a full waveform is acquired, and the mean value is compared to the known input voltage. The linearity is determined through a linear regression fit to the 15 measurements. The slope, the offset and the chi-square of the fit are computed.

With the linearity test, many other related tests are performed: response time of the overload protection of the $50 \Omega$ input, linearity of the variable gain calibration, range and linearity of the offset setting, and quality of the input coupling.
This procedure is executed on all channels for both $1 \mathrm{M} \Omega$ and $50 \Omega$ input impedance. The test requires a DC source with a precision and time stability of $0.1 \%$, a voltage range of 0 V to 20 V adjustable in steps of 5 mV , and an output current capability of 300 mA .
Power supplies supported under program control are listed on page 2.

## Noise

The noise tests are executed on all channels for both $1 \mathrm{M} \Omega$ and $50 \Omega$ input impedance, with AC and DC coupling, five different time-base settings, and open inputs. Full waveforms are acquired with different offset values. The peak-to-peak as well as the RMS values of each measurement are computed, and the maximum values are recorded. The program also indicates the occurrence of any "flyers", i.e. short noise peaks generated by the ADC's.
The noise tests also include:

- checking the linearity of the variable offsets of all channels between 2.5\% and $97.5 \%$ of full screen.
- checking the stability of the ground line when switching the inputs between GROUND and DC coupling modes.


## Rise time/Overshoot

Executed on all channels for both $1 \mathrm{M} \Omega$ and $50 \Omega$ input impedance, these tests measure the rise time of the oscilloscope response to the input voltage step, as well as the amount of pre-shoot and overshoot. They require a voltage step generator with calibrated fast risetime amplitude.
The Voltage Step Generator supported under program control is the Tektronix CG5001.

## Sinefit

The performance of the analog-to-digital converter is evaluated in terms of the number of effective bits (a measure of the signal-to-noise ratio). It is measured on all channels, at a sensitivity of $50 \mathrm{mV} /$ div., by applying a pure sine wave at varying frequencies and timebase settings
This test is a measurement of dynamic linearity. It shows the effect of such errors as noise, non-linearities and aperture jitter.

## Timebase

The timebase test compares the internal clock with a very precise and stable external timebase reference (clock generator) such as the WWV standard or HBG 1500.

## Trigger

The trigger capabilities are tested for all possible configurations. These include:

- Internal and external trigger sources
- DC, AC, HF-reject, and LF-reject couplings
- Trigger level settings in all slope modes.
$\qquad$


## ORDERING INFORMATION

## LeCalsoft and Options

| 94XXCS05 | Complete LeCalsoft for 93XX and 94XX (software and hardware), incl. cables, switch card, adapters, etc. |
| :---: | :---: |
| 94XXCS01 | LeCalsoft software for 93XX and 94XX |

## LeCalsoft Accessories

93XXKCS02 Calibration kit for 93XX and 94XX 9400KCS02 Calibration kit for 9400A

Individual system components available on request

## U.S. REGIONAL SALES OFFICES 1800-5-LeCroy (1-800-553-276§):

automatically connects you to your local sales office.

LeCroy has sales engineers in most major metropolitan areas, coordinated through a system of five Regional Sales and Service Offices:
NORTHEAST: 700 Chestnut Ridge Rd, Chestnut Ridge, NY 10977

SOUTHEAST: 410 Ware Blvd Ste 716, Tampa, FL 33619

FARWEST: 5912 Stoneridge Mall Rd Ste 150, Pleasanton, CA 94588
CENTRAL:
Midwest: $\quad 4811$ S 76th St Ste 415, Greenfield, WI 53220
Southwest: 14800 Central Ave SE Albuquerque, NM 87123

## WORLDWIDE

Argentina: Search SA, (01) 394-5882
Australia: Scientific Devices Pty Ltd, (03) 579-3622

Austria: Dewetron GmbH, (0316) 391804
Benelux: LeCroy BV (0031) 4902-89285
Brazil: ATP-Hi-Tek, (011) 421-5477
Canada: LeCroy Canada Inc,
(514) 928-4707

Denmark: Lutronic, (42) 459764
Eastern Europe: Elsinco GmbH, Vienna, 2228121751
Finland: Labtronic OY, (80) 847144
France: LeCroy Sarl (1) 69073897

Germany: LeCroy GmbH, (06221) 831001
Greece: Hellenic S/R Ltd., (01) 7211140
Hong Kong: Euro Tech (Far East) Ltd, (052) 814-0311

India: Electronic Ent, (022) 4137096
Israel: Ammo, (03) 453157
Italy: LeCroy Srl, Roma (06) 300.97.00 or 33131 46; Milano (02) 29405634
Japan: LeCroy Japan,
Tokyo (0081) 33376 9400;
Osaka (0081) 63300961
Korea: WOOJOO Hi-Tech Corp,
(02) 449-5472

Mexico: Nucleoelectronica SA,
(05) 55936043

New Zealand: E.C. Gough Ltd,
(03) $798-740$

Norway: Avantec AS (02) 630520
Pakistan: Electronuclear Corp, (021) 418087
Portugal: M.T. Brandao, Lta, (02) 815680
Singapore: Sing. Electr. and Eng. Ltd (65) 481-8888
S. Africa: Westplex Test \& Meas. (011) 7870473

Sweden: MSS AB, (0764) 68100
Switzerland: LeCroy SA (064) 519181
Taiwan: Topward El.Inst., Ltd, (02) 6018801
Thailand: Measuretronix Ltd, (02) 3742516
United Kingdom: LeCroy Ltd, (0235) 53314


Innovators in Instrumentation

LeCROY CORPORATE HEADQUARTERS
700 Chestnut Ridge Road
Chestnut Ridge, NY 10977-6499
Phone: (914) 425-2000
TWX: (710) 577-2832
Fax: (914) 425-8967

## LeCROY EUROPEAN HEADQUARTERS

2, rue du Pré-de-la-Fontaine
P.O.Box 341

1217 Meyrin 1 - Geneva, Switzerland
Telephone: (022) 719-21-11
Fax: (022) 782-39-15

## SECTION 3 Block Diagram and Sub-Assemblies

$3.1 \quad 9354 \mathrm{~A}, 9354 \mathrm{AM} \& 9354 \mathrm{AL}$ Sub-Assemblies

| F9302-1-4 | Processor, 4 Mbyte RAM for 9354A |
| :--- | :--- |
| F9302-1-8 | Processor, 8 Mbyte RAM for 9354AM |
| F9302-1-16 | Processor, 16 Mbyte RAM for 9354AL |
| F9350-21 | Acquisition Memory, 2 X 50 K for 9354A |
| F9350M-21 | Acquisition Memory, 2 X 250 K for 9354AM |
| F9350L-2 | Acquisition Memory, 2 X 2 MB for 9354AL |

F9354-31 Main card, Quad $500 \mathrm{MHz}, 500 \mathrm{MS} / \mathrm{s}$, Front end, ADC, Time base
F9300-4 GPIB + RS232 interface
F9354-5 Quad channel front panel
PS9351 Power supply $+/-5 \mathrm{~V},+/-15 \mathrm{~V}$.
93XX-Display Video, deflection, CRT, yoke
M935X Mechanical for 9354A/M/L series
$3.2 \quad 9354 \mathrm{~T} \& 9354 \mathrm{TM}$ Sub-Assemblies

| F9302-1-4 | Processor, 4 Mbyte RAM for 9354T |
| :--- | :--- |
| F9302-1-8 | Processor, 8 Mbyte RAM for 9354TM |
| F9350T-21 | Acquisition Memory, 2 X 100 K for 9354T |
| F9350TM-21 | Acquisition Memory, 2 X 500 K for 9354TM |
|  |  |
| F9354-31 | Main card, Quad $500 \mathrm{MHz}, 500 \mathrm{MS} / \mathrm{s}$, Front end, ADC, Time base |
| F9300-4 | GPIB + RS232 interface |
| F9354-5 | Quad channel front panel |
| PS9351 | Power supply +/-5V, +/-15V. |
| 93XX-Display | Video, deflection, CRT, yoke |
| M935X | Mechanical for 9354T series |

3.3 9354A, 9354AM, 9354AL, 9354T \& 9354TM Hardware Options

9354A-FDGP Graphic Printer \& Floppy Disk
F9300-6 : Centronics, Floppy, Printer interface F9300-7 : Printer controller

9354A-GP01 Graphic Printer F9300-6 : Centronics, Floppy, Printer interface F9300-7 : Printer controller

9354A-FD01 Floppy Disk F9300-6 : Centronics, Floppy, Printer interface

9354A-HDD Hard Disk Drive, 130 MB
F9300-8 : PCMCIA III, Hard Disk Controller


Page 3-2


Page 3-3


Page 3-4


Page 3-5

Section 3 Block Diagram and Sub-Assemblies


Page 3-6

## SECTION 4 THEORY of OPERATION

4.1 Processor Board : F9302-1-4 for 9354A \& 9354T, F9302-1-8 for 9354AM \& 9354TM, or F9302-1-16 for 9354AL

This processor board is based on to the 68EC030 and 68882 coprocessor, with an internal clock frequency of 32 MHz , and 4 Mbytes or 8 Mbytes or 16 Mbytes memory.
The internal Data Bus is 32 bits wide (DRAM, DSP), the peripheral Data Bus set 8 or 16 bits, and the Address Bus has 32 bits ( A0-A30 and A31 for the Min/Max. ).

### 4.1.1 Processor Block Diagram



Page 4-1

Section 4 Theory of Operation $\qquad$

### 4.1.2 Parallel Peripherals

## DRAM memory : Data bus 32 bits

The DRAM memory of 4 Mbytes or 8 Mbytes or 16 Mbytes ( up to 64 Mbytes ) is used as the program memory and working memory.
The compacted program of 1MByte stored within the Flash EPROM, IC of 8 Mbit is de-compacted, loaded and executed in the DRAM.

## DSP imterface : Data bus 32 bits.

An optional Digital Signal Processor is connected to the processor board via a 32 bits address bus.

## F9354-31 maim board interface : Data bus 16 bits.

The main board is connected to the processor via a 32 bits address bus.
See section 4.3.

## Min/Max calculation : Data bus 16 bits.

A gate array MNX401 makes a histogram in its associated 16 Kbytes memory and remembers the minimum and maximum data values it sees.

Flash memory : Data bus 8 bits.
Segmented Flash EPROM of 1 Mbyte ( IC of 8 Mbits ) contains 16 Kbytes program, executable at power on, and other compacted programs executable in the DRAM.

Memory card : Data bus 8 bits.
An interface is implemented to support an external memory card, PCMCIA / JEIDA 4, type 68 pins, whose size can range from 16 Kbytes to 64 Mbytes, with the extension to support flash memory and I/O cards.

## Graphic processor : Data bus 8 bits.

The graphic processor of the raster scan display is a gate array designated MDS410.

| Clock frequency | $: 48 \mathrm{MHz}$. |
| :--- | :--- |
| Trace and characters memory | $: 32 \mathrm{Kbytes}$ ( SRAM). |
| Bitmap memory | $: 128 \mathrm{Kbytes}$ ( BMRAM). |
| Character font | $: 32 \mathrm{Kbytes}$ ( SRAM). |

## Non volatile memory : Data bus 8 bits.

A static RAM of 32 Kbytes ( IC of 256 Kbits ) contains the parameters used at power on to initialize the scope and the stored panels parameters. This memory is battery backed up

## DAC command of the display intensity : Data bus $\mathbf{8}$ bits.

The control of the display intensity is done by a RAMDAC, up to 8 traces.

## Status and command registers : Data bus 8 bits.

Status (read) and command (write) registers of 12 bits address, control the memory card and front panel interface during the boot process or after a RESET.

### 4.1.3 Serial Peripherals

The processor controls the digital and analog section with a dual serial controller.

DAC's registers (read/write)
Front panel registers ( 68 HC 05 C 4 )
RTC registers (68HC68T1)
Probe detection
Software options (GAL)
Front end control
Trigger control (MTR408)

## Real time clock

Integrated circuit 68HC68T1 (Motorola or RCA).
Resolution $: 1 \mathrm{sec}$ to 99 years.
Clock frequency $: 32.768 \mathrm{KHz}$.
Non volatile memory : 32 Kbytes.
Data \& Address bus : 8 bits.
Interrupt level :5.

### 4.1.4 External Interfaces

Serial RS232 interface and Parallel GPIB interface.
See F9300-4 description, section 4.4.

### 4.1.5 Optional Interfaces

\(\left.$$
\begin{array}{ll}\text { Graphic Printer } & \begin{array}{l}: \text { F9300-6 interface and F9300-7 printer controller. } \\
\text { Internal graphic printer }\end{array}
$$ <br>
Floppy Disk Drive \& : F9300-6 interface <br>
\& <br>

1.44 Mbytes floppy\end{array}\right\}\)| Centronics Printer | $:$ F9300-6 interface |
| :--- | :--- |
| Hard Disk Drive | $:$ F9300-8 PCMCIA III controller, |
|  |  |
|  |  |

$\qquad$

### 4.2 F9354-31 Main Board

### 4.2.1 Imtroductiom

The board is divided into five sections :

- Microprocessor control.
= Front-end
e Trigger
- Analog to Digital Converter
- Time base


### 4.2.2 Microprocessor Control

See block diagram, page 4.6

### 4.2.3 Front End

The front end system provides the signal conditioning for the ADC system.
The main functions are :

- four channels operation, calibration with Software control
- input protection and coupling : AC, DC, $1 \mathrm{M} \Omega, 50 \Omega$
- amplitude normalisation for the ADC system : 320 mV full scale
- fine gain control
- offset control
- bandwidth limit filter : BWL 30 MHz
- triggering with standard coupling and TV trigger on four channels and External


### 4.2.3.1 Channel Description

The four channels are identical, thus only one channel will be described for brevity.

- Input coupling and protection : Relay RL1 (CAL) connects the front-end input to the calibration source and disconnects the BNC which is then terminated on a $1 \mathrm{M} \Omega$ high impedance. Switch SW1 (VCAL/10) selects between a divide by 4 or a divide by 40 for the DC calibration signal. Relay RL2 (HZ) sets the $1 \mathrm{M} \Omega / 50 \Omega$ coupling. A diode circuit senses the temperature of the $50 \Omega$ termination resistor and sets the _OVL status bit low if overheating is detected. The BNC input is then disconnected by the hardware, the DC calibration signal being connected to the front-end input (automatic activation of RL1). Relay RL3 (IN/20) selects between a divide-by-20 or a direct path for the signal.
Relay RL4 (DC) sets the AC/DC coupling, which is preceded by a divide by 10 amplifier.
- High impedance buffer : A0 is a high impedance buffer with a gain of 10 . The same buffer is used for the offset control. Switch SW2 (of/10) selects a direct or a divide by 10 amplifier.

$\qquad$
- The MFE409 is a monolithic circuit with the following mean features :
- Differential input with 6 fixed sensitivities ( $2 \mathrm{mV} /$ div. to $100 \mathrm{mV} / \mathrm{div}$. in a 1-2-5 sequence).
- Continuously variable gain amplifier with gain ratio of almost 3.5 .
- A2 is a second variable gain amplifier used to reach the gain needed for the $2 \mathrm{mV} / \mathrm{div}$. setting.
- A3 delivers two complementary outputs, one for the ADC system and one for the trigger circuit (MTR408). A3 can be trimmed for gain and linearity. Typically, A1 will be set with $20 \mathrm{mV} / \mathrm{div}$. and a gain of $3.0, \mathrm{~A} 2$ with a gain of 2.0 and A3 will be trimmed to have 320 mV FS into the ADC system input with the lowest non-linearity.
- The bandwidth control, connected through switch SW3 (BWL), is implemented with a one pole RC filter with a -3 dB cut-off frequency of almost 30 MHz .
- Another bandwidth control, connected through switch SW4 (BWLD), is here to correct the shape of the signal when the divide-by-20 attenuation is selected (gain $>100 \mathrm{mV}$ ) in $1 \mathrm{M} \Omega$ high impedance coupling.
- The output to the ADC system is separated in two $75 \Omega$ lines, going through the relay RL5 (RSH) which selects the source for one of each ADC system couple ( $B$ for $A B$ or $C$ for CD), this is to implement the $1 \mathrm{GS} / \mathrm{s}$ mode.


### 4.2.3.2 Digital controls

$01410 z 00-0141$ 0zff
$01411 z 00-01411 z f f$
$01412 z 00-01412 z f f$
$01413 z 00-01413 z f f$
write channel A control register write channel B control register write channel C control register write channel $D$ control register
15

| VCAL | _IN $/ 20$ | 2 mV | 5 mV | 10 mV | 20 mV | 50 mV | 100 mV |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  |  |  |  |  |  |  |  |
| --- | $\cdots$ | BWL | RSH | BWLD | OF/10 | DC | _HZ |  |


| range <br> mV | BWLD | OF/10 | -IN/20 | 2 mV | 5 mV | 10 mV | 20 mV | 50 mV | 100 mV | gain to <br> ADC |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | +20 |
| 5 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | +8 |
| 10 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | +4 |
| 20 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | -2 |
| 50 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -0.8 |
| 100 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | -0.4 |
| 200 | _HZ | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | +0.2 |
| 500 | _HZ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -0.08 |
| 1000 | _HZ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -0.04 |
| 2000 | _HZ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -0.02 |

_VCAL $\quad 0=\mathrm{DC}$ calibration (external BNC is disconnected), $1=$ input coupling.
IN/20 $0=$ attenuation is ON, $1=$ attenuation is OFF.
BWL $\quad 0=$ bandwidth limit is $\mathrm{OFF}, 1=$ bandwidth limit is ON .
RSH $\quad 0=$ channel only on one ADC, $1=$ channel on two ADC.
BWLD $\quad 0=$ high impedance bandwidth compensation is OFF, $1=\mathrm{ON}$.
$\mathrm{OF} / 10 \quad 0=$ offset control attenuation is OFF, $1=\mathrm{ON}$.
DC $\quad 0=$ AC coupling, $1=\mathrm{DC}$ coupling.
_HZ $\quad 0=1 \mathrm{M} \Omega$ high impedance coupling, $1=50 \Omega$ coupling.
0140 4z00-0140 4zff read channels overload (and option package availability)

| 7 |  |  |  |  |  |  | 0 | LSB-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTWD | INTIIC | OVL_T | PPOFF | OVL_D | OVL_C | OVL_B | $\mathrm{OVL} A$ | OPT |

_INTWD watchdog ADC interrupt,
_INTIIC I2C protocol interrupt, _PPOFF probe power overload interrupt, _OVL_n overload indicator (Ch A, B, C, D, EXT).
OPT 935XA-CKTRIG option package ( $9^{\text {th }}$ bit of serial read ).
A low state indicate that overload or interrupt is detected. Bit OPT is high when the options are available.

01405z00-01405zffread overload sum
OVLSUM bit 7, Sum of the eight above bits.
$0=\mathrm{OK}, 1=$ problem occurred (read channels overload )

### 4.2.3.3 Analog controls

- One precision DAC with associate circular memory ( $\mu \mathrm{P}$ system) drives and refreshes a multiple sample-and-hold system. The DC calibration control is common to all four channels. Each channel has two analog controls.
- VCAL and VOFFSET are voltage controls. The DAC dynamic range ( $\pm 10 \mathrm{~V}$ ) is scaled to the proper range by means of resistor dividers and thus the conversion can be said to be linear. The gain controlled amplifiers inside the MFE409 needs current mode controls. A voltage to current converter follows the sample-and-hold IVGAIN signal and provides the appropriate range. The addresses are :

| 03000014 | write DC calibration level control (VCAL) |
| :--- | :--- |
| 03000000 | write channel A gain control |
| 03000002 | write channel A offset control |
| 03000004 | write channel B gain control |
| 03000006 | write channel B offset control |
| 03000008 | write channel C gain control |
| 0300000 a | write channel C offset control |
| 0300000 c | write channel D gain control |
| 0300000 e | write channel D offset control |

Section 4 Theory of Operation $\qquad$

### 4.2.4 Trigger

### 4.2.4.1 Block Diagram



Page 4-8

The different trigger couplings are :

- DC
${ }^{\square} \mathrm{AC} \quad$ : cut off frequency is almost 10 Hz .
- LF REJ : set a single pole high pass filter with a cut off frequency at 50 kHz .
- HF REJ : set a single pole low pass filter with a cut off frequency at 50 kHz .
- TBWL : single pole low pass filter at 30 MHz .

The amplitude at the input of the MTR 408 is 320 mV FS (identical to the ADC system ),

### 4.2.4.2 Digital Controls

The 40 bit shift register, is allocated as follows :
0141 4z00-0141 4zffwrite trigger control register


TEXT50 $0=1 \mathrm{M} \Omega$ external input coupling, $1=50 \Omega$ external input coupling.
_EXT/10 $0=$ attenuation is $\mathrm{ON}, 1=\mathrm{OFF}$.

### 4.2.4.3 Analog Controls

A sample and hold fed by the precision DAC provides the threshold level.
The addresses are :

03000010 write EXT threshold control
03000018 write channel A threshold control
0300001 a write channel B threshold control
0300 001c write channel $C$ threshold control
0300001 e write channel D threshold control

### 4.2.4.4 TV Trigger

Each channel has a pick-off after the MFE409 or after the high impedance buffer for external trigger. The TV trigger source is selected via bit TVS and drives a times 10 amplifier with complementary outputs. These outputs are selected ( _TVINV) depending on the state of the selected MFE409 gain.
The TV trigger uses a commercial chip (LM1881) and provides two outputs,TV1 \& TV2. This circuit is able to trigger on different TV line number standards.

Section \& Theory of Operation $\qquad$

## - Digital Controls

The 16 bit shift register, written using the serial protocol, is allocated as follows :
01415z00-01415zffwrite trigger TV and MST412 oscillator control register
15

| _TVINV | TVS2 | TVS1 | TVS0 | HDTV | 875 | MB | MA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  |  |  |  |  |  |  |
| STI _STW _SVS _STS - -- - |  |  |  |  |  |  |  | | - |
| :--- |


| -TVINV | $0=$ inverting TV trigger (to compensate for inversion in MFE409). |
| :--- | :--- |
| -SVS | $0=$ enable TV1 source. |
| -SSS | $0=$ enable TV2 source. |
| -STI | $0=$ enable interval width mode for MST412 oscillator control. |
| _STW | $0=$ enable pulse width mode for MST412 oscillator control. |


| TVS2 | TVS1 | TVS0 | TV trigger <br> source | HDTV | 875 | line setting |  |
| :---: | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | channel A | 0 | 0 | $525-625$ TVLO |  |
| 0 | 1 | 0 | channel B | 0 | 1 | 875 (MED) |  |
| 0 | 1 | 1 | channel C | 1 | 0 | 1225 (HIGH) |  |
| 1 | 0 | 0 | channel D | 1 | 1 | 2500 (HDTV) |  |
| 1 | 0 | 1 | external trigger |  |  |  |  |

### 4.2.5 Analog to Digital Converter

### 4.2.5.1 Introduction

The analog to digital converter system does the signal conversion to 8 bits.

- Sample and Hold : the HSH416 Hybrid with Analog bandwidth of 1 GHz , performs the track and hold before the ADC. It is clocked at three different frequencies : 500 MHz , 400 MHz , and 200 MHz . The offset is calibrated by use of a current mirror controlled by a 8 bit DAC.
- Flash ADC : the TDA8718 is a folding ADC working at a maximum clock speed of $500 \mathrm{Ms} / \mathrm{s}$. The gain is calibrated by adjusting the internal resistor ladder using a 8 bit DAC. The ADC input level is 240 mV peak to peak on $75 \Omega$, from the nominal 320 mV front-end output.
- Demultiplexer : the MDX416 monolithic is used to demultiplex the ADC output, and catch the glitch ( $\min / \max$ ).
- Buffer Memory : 128 K bytes
- ADC Memory : 50 K points for $9354 \mathrm{~A}, 100 \mathrm{~K}$ for $9354 \mathrm{~T}, 250 \mathrm{~K}$ for 9354 AM , 500 K for $9354 \mathrm{TM}, 2 \mathrm{M}$ points for 9354 AL . Memory length may be extended by combining the acquisition memories of multiple channels.


### 4.2.5.2 ADC Block Diagram



Page 4-11

Section 4 Theory of Operation $\qquad$

### 4.2.5.3 Memories Block Diagram



Page 4-12

### 4.2.6 Time Base

### 4.2.6.1 Introduction

The main clock (SHCK) comes from a PLL oscillator with a 10 MHz reference, there is a control bit (SEXTREF) to select an optional external reference with ECL level.

The PLL output frequency is controlled by three bits (SF500, SF400 and _SF200). The main clock is directly used by the sample-and-hold, the analog-to-digitai converter and the time-to-digital converter for real time measurement. It is also used for synchronization inside the MDX416 demultiplexer.

The main clock is then feedback to the time base, from the ADC system (MDXCK), to drive a pre-divider controlled by four bits (DIVn). The output of the pre-divider then drives the MTB411 frequency divider (FD). At fastest speed, when the MTB411 frequency divider is not used, the clock to FD (FDCK) can be disabled (DISFD).

The main clock can also be driven from the external trigger BNC, this path is selected by a control bit (SEXTCK). The external clock threshold can be modified by two bits from the time base mode control (EXTCTH1 and EXTCTH2). This external clock frequency range is 0 to 100 MHz .

The PLL oscillator has in fact only two values, 500 and 400 MHz , the 200 MHz is a secondary path coming from a divider by two.

- 500 MHz is used for fast timebase settings, $1 \mathrm{GS} / \mathrm{s}, 2 \mathrm{GS} / \mathrm{s}$ and RIS mode.
- 400 MHz is used as soon as possible when starting to skip samples (skip $>1$ ) in order to be able to do a peak detection (min-max) with the MDX416.
- 200 MHz is used for Roll mode.

There is also another reference clock for the interpolated TDC (ICK) which comes from a divider by eight. Its frequency is then 62.5 or 50 MHz , to be able to directly use the MTB411 counter ( general time base control, start/stop, counters, memory address).

The output of the fast frequency divider is combined with the output of the MTB411's FD to drive a synchronous clock generator. The main functions are :

- reference to the MDX416 (DXCKn) and to the memory address generator (CK8 and CK16),
- synchronize the trigger (CKM for TRIGD),
- calibrate the MST412 use for smart trigger (TRT).

Section 4 Theory of Operation

### 4.2.6.2 Time Base Block Diagram



### 4.2.6.3 Digital Control

0141 8z00-0141 8zffwrite Time Base divider register

| 15 |  |  |  |  |  | 8 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $\cdots$ | --- | - | --- | SECK500 | EN_1G | SEXTREF |
| 7 |  |  |  |  |  |  | 0 |
| DISFD | SF200 | SF500 | SF400 | DIV3 | DIV2 | DIV1 | DIV0 |

where :

- SECK500 select optional external clock ( 100 MHz to 500 MHz ).
- EN_1G
- SEXTREF
enable $1 \mathrm{GS} / \mathrm{s} / \mathrm{s}$ acquisition ( 1 ns delay on MDX416 clock ).
- DISFD
select optional external PLL clock reference ( $10 \mathrm{MHz} \pm 5 \%$ ).
DISFD disable FD clock to MTB411.
- _SF200 select oscillator frequency 200 MHz .
- SF500 select oscillator frequency 500 MHz .
- SF400 select oscillator frequency 400 MHz .
- DIVn frequency pre-divider (4 bits).


### 4.2.6.4 Trigger Selection

Each differential outputs of the five MTR408 from the Front-End (TCx) are selected (bit SCHn ) and then inverted (bit INVCH) to drive the TRCKL signal and the VALCKL signal (bit SVAL1).

A logical function of the TCx signals can be selected (bit STCx) for the pattern generator. A few single ended signals can also be selected one at a time (bit STn). These signals are TV1 and TV2 for television trigger, TRT for test and calibration of MST412, _VALOUT for drop-out trigger.

Then there is a selection between the pattern and the single ended sources (bit SPAT). The signal obtained is inverted (bit INVPAT) and used to drive TRCKL (bit STRCKL). There is also a choice between this signal and TV1 to drive VALCKL (bit SVAL0). The pattern trigger logic function is any "AND" combination of TCx input signals, inverted or not. All the control are done through a 16 bit serial register.

### 4.2.6.5 Smart Trigger

The VALCKL source drives the MST412. The TRCKL source goes through a buffer to drive the MST412 and control the smart trigger 400 MHz start/stop oscillator.

The MST412 oscillator is usually free running, but when using glitch trigger mode the oscillator is enable only during the pulse duration (bit_STW), and when using interval width trigger mode the oscillator is restarted at each edge (bit_STI).
There is also a time base mode control register with roll mode interrupt enable (RMIE), external clock control (SEXTCK, EXTCTH1 and EXTCTH2), buzzer (BUZZ) and calibration front panel output signal selection ( PCSn ).

Section 4 Theory of Operation $\qquad$

### 4.3 F9300-4 GPIB and RS 232 Interface

This board is connected to the processor through a flat cable.
Data bus is 8 bits, address bus: 12 bits.
Address 0180000 to 018000 FF .

### 4.3.1 RS 232 Serial Interface

Based on the 2661A IC from Signetics or Philips.

- Clock frequency 4.9152 MHz .
- 4 internal registers of 8 bits.
- Interrupt level 2.
- Connector type DB9 with 9 male pins.


### 4.3.2 GPIB Interface

Based on the circuit 7210 IC from NEC.

- Clock frequency 5 MHz .
- 8 internal registers of 8 bits.
- Tri-state external GPIB drivers. - Low level output.
- Interrupt level 3.

The GPIB address is set by software and stored in non-volatile memory.

### 4.4 F9354-5 Front Panel

The front panel is connected to the processor board with a flat cable. Power supply and control signals are supplied from the processor. The front panel is divided in two sections:

- One board with Motorola 68 HC 05 C 4 processor, coders, and serial data interface.
- One matrix Keyboard with push buttons.
4.5 F9300-6 Centronics, Floppy, Printer interface option


### 4.5.1 Centronics interface option

This Centronics interface makes direct connection possible to external parallel printer.

- Address 01300180 to 013001 A 0
- Interrupt level 2


### 4.5.2 Floppy Disk drive interface option

Based on the circuit MCS3201 from Motorola.

- Address 013001 C 0 to 013001 C 7
- Interrupt level 4

| Address | Read | Write |
| :--- | :--- | :--- |
| 013001 C 0 | Input register | ----- |
| 013001 C 2 | ---- | Digital output register |
| 013001 C 4 | Main status register | ---- |
| 013001 C 5 | Data register | Data register |
| 013001 C 7 | Data input register | Disk control register |

### 4.5.3 Primter Interface option

Internal graphic printer : Seiko LPT5446

- Address 01300140 to 01300160
- Interrupt level 2


## 4.6 $\sqrt{6300-7}$ Printer Controller option

Based on the LPT5000 series control chip set from Seiko instrument Inc

- PT501P01 CPU
- PT500GA1 Gate array
- Technical reference 39019-2234-01
- Address 01300100
4.7 F9300-8 Hard Disk option, PCMCIA III Controller
- Address 01300800 to 01300 bff
- Interrupt level 5


### 4.8 93XX-Display

### 4.8.1 General Description

The raster scan display module is divided into five sections:

- Graphic processor
- Deflection
- Video
- Yoke
- Cathode ray tube


### 4.8.2 Basic Characteristics

- Nine inches diagonal monochrome, yellowish, orange.
- CRT anti-glare treated
- Non interlaced resolution of (X) $810 \times(\mathrm{Y}) 696$ pixels at 60 Hz or 50 Hz frequency.

Section 4 Theory of Operation

- Landscape vertical raster
- Electromagnetic deflection.
- Intensity control rise and fall time $>12 \mathrm{~ns}$.
- Analog intensity input
- TTL synchronization input.
- Horizontal nominal size: 165 mm for X -on = 15.39 Ms.
- Horizontal size adjustment: $>+/-5 \mathrm{~mm}$.
- Horizontal offset adjustment: $+/-5 \mathrm{~mm}$.
- Vertical nominal size: 120 mm for Y -on $=14.5 \mu \mathrm{~s}$.
- Vertical size adjustment: >+/-5 mm.
- Vertical offset adjustment: $+/-5 \mathrm{~mm}$.
- X and Y differential non linearity: $10 \%$.

The line deflection is vertical, from bottom to top. The field deflection is horizontai, from left to right and is resynchronized to the power line frequency.

### 4.8.3 Horizontal Deflection

The horizontal deflection is synchronized to the 50 or 60 Hertz power line frequency. The on time display is the same for both frequencies, therefore the deflection is calculated for 60 Hz . The horizontal deflection is controlled by the HSYNC signal.

The trailing edge of HSYNC resets the horizontal spot position to a hardware predefined position at the left side of the screen: MAX_left. When ever HSYNC is high, the spot stays at this position.

The falling edge of HSYNC starts the horizontal deflection ramp. The ramp has the same rate for either 50 or 60 Hertz frequency.
When ever HSYNC is low, the horizontal deflection will rise left to right, until HSYNC becomes high, or the system has reached the maximum right position (MAX_RIGHT).


### 4.8.4 Vertical Synchronization

The timing of both VSYNC and HSYNC is synchronized to the pixel clock (PCLK).


The pixel rate is 48 MHz .

### 4.8.5 Horizontal Resolution

|  | \# of vertical line | Time in ms |
| :--- | :---: | :---: |
| HSYNC_T | 842 | 15.998 |
| HSYNC_W | 22 | 0.418 |
| HSYNC_E | 4 | 0.076 |
| HSYNC_S | 6 | 0.114 |
| X-ON | 810 | 15.390 |
| X-OFF | 32 | 0.608 |

Values of the horizontal timing for the maximum field refresh frequency.

### 4.8.6 Vertical Resolution

|  | \# of Pixels | Time in $\mu \mathrm{s}$ |
| :--- | :---: | :---: |
| VSYNC_T | 912 | 19.000 |
| VSYNC_W | 136 | 2.833 |
| VSYINC_E | 0 | 0.000 |
| VSYNC_S | 80 | 1.666 |
| Y-ON | 696 | 14.500 |
| Y-OFF | 216 | 4.500 |

Section 4 Theory of Operation $\qquad$

### 4.9 PS9351 Power Supply

### 4.9.1 Power Supply Specifications

| Input voltage | $: 90$ to 130 V or 180 to 260 V. <br> Auto ranging line voltage. |
| :--- | :--- |
| Input frequency | $: 47 \mathrm{~Hz}$ to 63 Hz. |

### 4.9.2 Power Supply Block Diagram



## SECTION 5 Performance Verification

### 5.1 Introduction

This procedure can be used to verify the main operating specifications of the LeCroy $9354 \mathrm{~A} / \mathrm{T}$ digital storage oscilloscope, it is useful as an incoming inspection checkout. It is time consuming and requires extensive test equipment. If you are not familiar with operating the $9354 \mathrm{~A} /$ T oscilloscope, read the operator's manual.

### 5.2 Test Equipment Required

| Instrument | Specifications | Recommended | Where used |
| :---: | :---: | :---: | :---: |
| Signal Generator ( sine wave) | Frequency: .5 MHz to 1 GHz Frequency Accuracy: 1 ppm Amplitude : 1 V peak to peak | Marconi 2030 or equivalent | $\begin{aligned} & \hline 5.9 .1 . \mathrm{a} \\ & 5.11 \\ & 5.12 \end{aligned}$ |
| Leveled Sine wave generator | Frequency: $.5 \mathrm{MHz}-250 \mathrm{MHz}$ <br> Amplitude: 5 V peak to peak | Tektronix SG503 or equivalent | 5.9.1.b |
| Fast pulse Generator | Rise time < 500 psec | LeCroy 4969 or equivalent | 5.13 |
| Sine Wave Generator | Frequency: 5 KHz <br> Amplitude : 6 V peak to peak | LeCroy LW420 or equivalent | 5.10 |
| DC precision Power Supply | $\begin{aligned} & \hline \text { Amplitude : } 10 \mathrm{~V}, \mathrm{DC} \\ & \text { Accuracy : }<0.1 \% \\ & \hline \end{aligned}$ | Tektronix PS5004 | $\begin{array}{\|l\|} \hline 5.7,5.8 \\ 5.15 \\ \hline \end{array}$ |
| Digital <br> Multimeter | 4 digits | Keithley 199 or equivalent | $\begin{aligned} & 5.4 \\ & 5.5 \\ & \hline \end{aligned}$ |
| Cable | $\mathrm{BNC}, 50 \Omega$, length $20 \mathrm{~cm}, 1 \mathrm{~ns}$ ( 7.87 inches ) | $\begin{aligned} & \text { LeCroy } \\ & 4802432001 \end{aligned}$ | $\begin{array}{\|l\|} \hline 5.10 .3 \\ 5.10 .4 \\ \hline \end{array}$ |
| Cable | $\begin{aligned} & \mathrm{BNC}, 50 \Omega \text {, length } 100 \mathrm{~cm}, \\ & 5 \mathrm{~ns} \text { ( } 39.37 \text { inches ) } \end{aligned}$ | $\begin{aligned} & \hline \text { LeCroy } \\ & 480020101 \end{aligned}$ | 5.XX |
| Attenuator | $50 \Omega, 20 \mathrm{~dB} 1 \%$ accuracy | Suhner | 5.7 |
| Attenuator | $1 \mathrm{M} \Omega, 20 \mathrm{~dB} 1 \%$ accuracy | Suhner | 5.7 |
| Attenuator | $50 \Omega, 3 \mathrm{~dB} 1 \%$ accuracy | Suhner | 5.10 |
| Terminator | $50 \Omega$ Feed through | Suhner | 5.13 |
| BNC T adapter | BNC, $50 \Omega$, T adapter | $\begin{array}{\|l\|} \hline \text { LeCroy } \\ 402222002 \end{array}$ | $\begin{aligned} & \hline 5.10 .3 \\ & 5.10 .4 \\ & \hline \end{aligned}$ |

Table 5-1 : Test Equipment

### 5.3 Turn On

- Switch on the power using the power switch on the rear panel and verify :
- The display turns on after about 10 seconds and is stable
- The range of intensity and grid intensity is reasonable
- Wait for about 10 minutes for the scope to reach a stable operating temperature.

Section 5 Performance Verification $\qquad$

### 5.4 Input Impedance

## Specifications

$\mathrm{DC} 1 \mathrm{M} \Omega \pm 1 \%$
DC $50 \Omega \pm 1 \%$

### 5.4.1 Procedure

The input impedance is tested in working conditions, with a high precision digital multimeter.
5.4.1.a $\mathrm{DC} \mathbb{M} \Omega$

- Set DSO Channel 1 : On
- Input Coupling : DC $1 \mathbf{M} \Omega$
- Input gain : $100 \mathrm{mV} /$ div.
- Trigger on : Channel 1
- Trigger mode : Auto
- Time base : $\mathbf{5 0} \mu \mathrm{sec} / \mathrm{div}$.

- Measure the impedance using a high precision $D M M$ with sense : must be $\mathbb{1} \mathbf{M} \Omega \pm \mathbf{1 \%}$.
- Repeat the above test for input volt/div. of $\mathbf{2 0 0} \mathbf{~ m V}$.


### 5.4.1.b DC $50 \Omega$

- Set DSO Channel 1 : On
- Input Coupling : DC 50
- Input gain : $\mathbf{1 0 0} \mathbf{m V} /$ div.
- Trigger on : Channel 1
- Trigger mode : Auto
- Time base : $\mathbf{5 0} \mu \mathrm{sec} / \mathrm{div}$.

- Measure the impedance using a high precision DMM with sense : must be $50 \Omega \pm 1 \%$
- Repeat steps 5.4.1.a, and 5.4.1.b for Channel 2, Channel 3 and Channel 4.
$\qquad$


### 5.4.2 External Trigger Input Impedance

### 5.4.2.a $\operatorname{DC} \mathbb{M} \Omega$

The External Trigger input impedance is tested with any time base and gain.

- Set Trigger on : EXT
- Trigger mode : Auto
- Coupling Ext : DC
- External : DC $\mathbf{1 M} \Omega$

- Measure the impedance using a high precision DMM with sense : must be $\mathbf{1 M} \Omega \pm \mathbf{1 \%}$.


### 5.4.2.b DC $50 \Omega$

With any time base and gain.

- Set Trigger on : EXT
- Trigger mode : Auto
- Coupling Ext : DC
- External : DC 50

- Measure the impedance using a high precision DMM with sense : must be $\mathbf{5 0} \Omega \pm \mathbf{1 \%}$.
- Repeat steps 5.4.2.a, 5.4.2.b for $\mathbf{E x t} / \mathbf{1 0}$, and check as above.

Section 5 Performance Verification $\qquad$

### 5.4.3 Internal Protective Resistor Verification

With any time base and gain, set DSO as follows :

- Input Coupling : Grounded
- Check with a high precision DMM : input impedance must be $\mathbf{1} \mathbf{M} \Omega \pm \mathbf{2 \%}$.
- In case of problem check SM $1 \mathrm{M} \Omega$ resistor R1003 or troubleshoot relay RL1000.
- Repeat the above test for Channel 2, Channel 3, Channel 4.
- In case of problem check SM $1 \mathrm{M} \Omega$ resistors R2003, R3003, R4003 or troubleshoot relays RL2000, RL3000, RL4000.



### 5.5 Leakage Current

## Specifications

$\mathrm{DC} 1 \mathrm{M} \Omega, \mathrm{AC} 1 \mathrm{M} \Omega, \mathrm{DC} 50 \Omega: \pm 1 \mathrm{mV}$

### 5.5.1 Procedure

- Set DSO Ch1 : On
- Input Coupling : DC50
- Input gain : $\mathbf{1 0 0} \mathbf{m V} /$ div.
- Trigger on : Chammel 1
- Trigger mode : Auto
- Time base : $\mathbf{1 0} \mu \mathrm{sec}$
- Connect a high precision DMM to Channel 1, and verify that the reading is not larger than $\pm \mathbf{1 m V}$.
- Repeat the procedure for $1 \mathbf{M} \Omega \mathbf{D C}$ and $\mathbb{1} \mathbf{M} \Omega \mathbf{A C}$.
- Repeat step 5.5.1 for Channel 2, Channel 3, Channel 4 and check as above.


### 5.6 Average Noise Level

## Description

The 9354A/T inputs average noise level is tested at $5 \mathrm{mV} /$ div., with 0 mV offset. This is to verify the proper operation of the main board, front-end and ADC's.
The scope parameters functions are used to measure the RMS and Peak amplitude of the noise.

### 5.6.1 Peak to Peak Noise

## Specifications

$< \pm 3.6 \mathrm{mV}$ Peak to Peak at $5 \mathrm{mV} /$ div.

### 5.6.1.a $\operatorname{DC} 1 \mathrm{M} \Omega$

## Procedure

- With no signal connected to the inputs, set 9354A/T DSO settings as follows :
- Turn on traces : Ch1, Ch2, Ch3, Ch4
- Display setup : Standard, Dot Join on, Persistence off, Single grid
- Input Coupling : DC 1 M $\Omega$
- V/div. offset : Normal
- Probe atten : X1
- Global BWL : Off

Section 5 Performance Verification $\qquad$

- Input gain : $\mathbf{5 m V}$ div.
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Coupling 1 : DC
- Slope 1 : Pos
- Holdoff : Off
- Trigger Mode : Auto
- Timebase : 20 msec/div.
- Channel use : 4
- Record up : 50 K

- Press : Cursors/Measure
- Measure : Parameters
- Mode : Custom
- Statistics : On
- Change parameters
- On line $1 \quad: \quad$ Measure pkpk of Ch1
- On line 2 : Measure pkpk of Ch2
- On line 3 : Measure pkpk of Ch3
- On line 4 : Measure pkpk of Ch4

$\qquad$
- Check after at least 100 sweeps that : high pkpk readout is less than $\pm \mathbf{3 . 6} \mathbf{~ m V}$, corresponding to $\mathbf{9 \%}$ of full scale.
- Repeat the test for Timebase : $\mathbf{2} \mathbf{~ m s e c} / \mathrm{div}, \mathbf{2} \mathbf{~ m s e c} / \mathbf{d i v}, \mathbf{2 0} \mu \mathrm{sec} / \mathbf{d i v}$, and $\mathbf{1 0} \mu \mathrm{sec} / \mathrm{div}$. and check as above.


### 5.6.1.b $\quad \mathrm{AC} 1 \mathrm{M} \Omega$

- Select Coupling Ch1, Ch2, Ch3, Ch4 : AC $\mathbf{1 M} \Omega$
- Check after at least 100 sweeps that the high pkpk readout is less than $\pm 3.6 \mathrm{mV}$, corresponding to $9 \%$ of full scale.
- Repeat the test for Timebase : $\mathbf{2} \mathbf{~ m s e c} / \mathbf{d i v}, \mathbf{2} \mathbf{~ m s e c} / \mathbf{d i v}, 20 \mu \mathrm{sec} / \mathrm{div}$, and $\mathbf{1 0} \mu \mathrm{sec} / \mathrm{div}$. and check as above.



### 5.6.1.c DC $50 \Omega$

- Select Coupling Ch1, Ch2, Ch3, Ch4 : DC 50 $\Omega$
- Check after at least 100 sweeps that the high pkpk readout is less than $\pm \mathbf{3 . 6} \mathbf{~ m V}$, corresponding to $\mathbf{9 \%}$ of full scale.
- Repeat the tests for Timebase : $2 \mathrm{msec} / \mathrm{div}, .2 \mathrm{msec} / \mathrm{div}, 20 \mu \mathrm{sec} / \mathrm{div}$, and $\mathbf{1 0} \mu \mathrm{sec} / \mathrm{div}$. and check as above.


Section 5 Performance Verification

### 5.6.2 Rms Noise

Specifications
$< \pm 360 \mu \mathrm{~V}$ at $5 \mathrm{mV} /$ div.

### 5.6.2.a $\operatorname{DC} \mathbb{M} \Omega$

## Procedure

- With no signal connected to the inputs, set $9354 \mathrm{~A} / \mathrm{T}$ DSO settings as follows :
- Turn on traces : Ch1, Ch2, Ch3, Ch4
- Display setup : Standard, Dot Join on, Persistence off, Single grid
- Input Coupling : DC 1M $\Omega$
- V/div. offset : Normal
- Probe atten : X1
- Global BWL : Off
- Input gain : 5 mV/div.
- Trigger setup : Edge
- Trigger on : 1
- Coupling 1 : DC
- Slope 1 : Pos
- Holdoff : Off
- Trigger Mode : Auto
- Timebase : 20 msec/div.
- Channel use : 4
- Record up : $50 \mathbf{K}$
- Press : Cursors/Measure
- Measure : Parameters
- Mode : Custom
- Statistics : On
- Change parameters
- On line 1 : Measure sdev of Ch1
- On line 2 : Measure sdev of Ch2
- On line 3 : Measure sdev of Ch3
- On line 4 : Measure sdev of $\mathbf{C h} \$$
- Check after at least 100 sweeps that : high sdev readout is less than $\pm \mathbf{3 6 0} \mu \mathrm{V}$, corresponding to $\mathbf{0 . 9 \%}$ of full scale.
- Repeat the test for Timebase : $\mathbf{2} \mathbf{~ m s e c} /$ div, $.2 \mathrm{msec} / \mathrm{div}, \mathbf{2 0} \mu \mathrm{sec} / \mathrm{div}$, and $10 \mu \mathrm{sec} / \mathrm{div}$. and check as above.


Section 5 Performance Verification $\qquad$

### 5.6.2.b $\quad \mathrm{AC} \mathbb{M} \Omega$

- Select Coupling Ch1, Ch2, Ch3, Ch4 : AC $\mathbf{1 M} \Omega$
- Check after at least 100 sweeps that the high pkpk readout is less than $\pm \mathbf{3 6 0} \mu \mathbf{V}$, corresponding to $\mathbf{0 . 9 \%}$ of full scale.
- Repeat the test for Timebase : $\mathbf{2} \mathbf{~ m s e c} /$ div, $.2 \mathrm{msec} / \mathrm{div}, 20 \mu \mathrm{sec} / \mathrm{div}$, and $\mathbf{1 0} \mu \mathrm{sec} / \mathbf{d i v}$. and check as above.


### 5.6.2.c DC $50 \Omega$

- Select Coupling Ch1, Ch2, Ch3, Ch4 : DC 50』
- Check after at least 100 sweeps that the high pkpk readout is less than $\pm \mathbf{3 6 0} \mu \mathrm{V}$, corresponding to $\mathbf{0 . 9 \%}$ of full scale.
- Repeat the tests for Timebase : $\mathbf{2} \mathbf{~ m s e c} / \mathrm{div}, \mathbf{2} \mathrm{msec} / \mathrm{div}, 20 \mu \mathrm{sec} / \mathrm{div}$, and $10 \mu \mathrm{sec} / \mathrm{div}$. and check as above.



### 5.6.3 Inputs Groumded

With no cable plugged into scope, set the DSO as follows :

- Turn on trace : Chanmel 1, Channel 2, Channel 3, Channel 4
- Input Coupling : DC50
- Input gain : $\mathbf{1 0} \mathrm{mV} / \mathrm{div}$.
- Offset : Zero
- Trigger on : Channel 1, DC
- Trigger mode : Auto
- Timebase : $\mathbf{5 0} \mu \mathrm{sec} / \mathrm{div}$.
- Channel use : 4
- Record up : $\mathbf{5 0} \mathbf{K}$
- Turn off trace : Chamnel 1, Channel 2, Channel 3, Channel 4
- Turn on trace : A, B, C, D
- Select Math Setup
- For Math : Use at most $\mathbf{5 0 0 0}$ points
- Redefine A, B, C, D : Channel 1, Channel 2, Channel 3, Channel 4
- Use Math? : Yes
- Math Type : Average
- Avg Type : Summed
- For : 1000 sweeps
- Cursors/Measure : Parameters
- Mode : Custom
- Statistics : off
- Change parameters
- On line 1 : Measure mean of A
- On line 2 : Measure mean of B
- On line 3 : Measure mean of C
- On line 4 : Measure mean of $\mathbf{D}$
- Check after at least 100 sweeps that the mean value of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ is less than $\pm \mathbf{1 . 6} \mathrm{mV}$, corresponding to $\pm 2 \%$ of full scale.
- Switch Channel 1, Channel 2, Channel 3 and Channel 4, between coupling DC $50 \Omega$ and Grounded.
- Check after at least 100 sweeps that the mean value of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ is less than $\pm 1.6 \mathbf{~ m V}$, corresponding to $\pm 2 \%$ of full scale.
- Set coupling all Channel : DC $\mathbf{1 M} \Omega$
- Check after at least 100 sweeps that the mean value of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ is less than $\pm \mathbf{1 . 6 ~ \mathbf { ~ m V }}$, corresponding to $\pm 2 \%$ of full scale.
- Switch all Channel between coupling DC $1 \mathbf{M} \Omega$ and Grounded.
- Check after at least 100 sweeps that the mean value of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ is less than $\pm 1.6 \mathrm{mV}$, corresponding to $\pm 2 \%$ of full scale.

Section 5 Performance Verification $\qquad$


$\qquad$


### 5.7 DC Limearity

## Specificatiom

$\leq \pm 2 \%$ of full scale at 0 mV offset

### 5.7.1 Description

This test measures the DC Accuracy within the gain range specified.
The parameters Std voltage are used to measure the amplitude of the DC input signal.
In the absence of the computer automated calibration system based on LeCroy Calibration Software (LeCalsoft) for the 9354A/T model oscilloscope, the manual performance test procedure can be followed to establish a traceable calibration, provided that the measurement instruments used are themselves traceable.
For such calibration, follow the manual linearity test procedure using a calibrated and certified high precision ( better than $0.1 \%$ ) voltage source, for example TEK PS5004 or equivalent, or use a certified DMM to measure the applied voltage.

### 5.7.1.a DC $50 \Omega$

## Procedure

- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot joim on, Single grid
- Input Coupling : DC50 $\Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset : $\mathbf{0 . 0} \mathbf{m V}$
- Input gain : from $\mathbf{2 m V} / \mathbf{d i v}$ to 5 V/div. ( see table 5-2 and 5-3 )
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Auto
- Holdoff : Off
- Timebase : 2 msec/div.
- Channel use : 4
= Record up : $\mathbf{5 0} \mathbf{K}$
- Turn on trace : A
- Select Math Setup
- For Math : Use at most 5000 poimts
- Redefine A
- Use Math? : Yes
- Math Type : Average
- Avg Type : Summed
- For : 1000 sweeps
- Of : Channel 1

Section 5 Performance Verification $\qquad$
= Turn off trace : Channel 1

- Cursors/Measure : Parameters
- Mode : Std Voltage
- Statistics : off
- on displayed trace : A


### 5.7.1.a. 1 Positive DC Linearity

- For the ranges $\mathbf{2} \mathbf{m V} /$ div. to $1 \mathrm{~V} /$ div., from the high precision voltage source, apply to Channel $1:+\mathbf{3}$ major screen divisions.
- For the low sensitivities : $\mathbf{2 m V}, \mathbf{5 V V}, \mathbf{1 0} \mathbf{m V}, \mathbf{2 0} \mathbf{m V}$ and $50 \mathrm{mV} / \mathrm{div}$., use a 50 Ohm 20 dB attenuator.
- For the range $\mathbf{2 V} / \mathbf{d i v}$. and $\mathbf{5 V} /$ div., the maximum input voltage is $+\mathbf{5 V}$.


| Range | Attemuator | Conditions of Test |  |  |  | $\begin{array}{c}\text { Average Meam } \\ \text { Parammeter Reading }\end{array}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $\begin{array}{l}\text { Volts/div } \\ \text { Control }\end{array}$ | 20 dB | $\begin{array}{c}\text { PS } \\ \text { Output }\end{array}$ | $\begin{array}{c}9354 \mathrm{~A} / \mathrm{T} \\ \text { Input }\end{array}$ | $\begin{array}{l}9354 \mathrm{~A} / \mathrm{T} \\ \text { Full scale }\end{array}$ | $\begin{array}{l}\text { Min Value } \\ \text {-X } \% \text { of FS }\end{array}$ | $\begin{array}{l}\text { Max Value } \\ + \text { X\% of FS }\end{array}$ | X\% |  |$]$

Table 5-2 : Positive DC Linearity Readout Accuracy

- For each point, read off the Mean parameter voltage, and compare it to the digital readout of the voltage reference
- The Mean parameter reading should be within the limits shown in table 5-2.

$\qquad$



### 5.7.1.a. 2 Negative $\mathbb{D C}$ Linearity

- For the ranges $\mathbf{2} \mathbf{m V} / \mathbf{d i v}$. to $\mathbf{1} \mathbf{V} / \mathbf{d i v}$., from the high precision voltage source, apply to Channel 1:-3 major screen divisions.
- For the low sensitivities : $\mathbf{2} \mathbf{m V}, \mathbf{5 m V}, \mathbf{1 0} \mathrm{mV}, \mathbf{2 0} \mathbf{m V}$ and $\mathbf{5 0 \mathrm { mV } / \text { div., use a } 5 0 \Omega}$ 20 dB attenuate.
- For the range $\mathbf{2 V} / \mathbf{d i v}$. and $\mathbf{5 V} /$ div., the minimum input voltage is -5 V .
- For each point, read off the Mean parameter voltage, and compare it to the digital readout of the voltage reference.
- The mean parameter reading should be within the limits shown in table 5-3.

| Range | Attenuator | Conditions of Test |  |  | Average Mean Parameter Reading |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volts/div Control | 20 dB | PS Output | $\begin{gathered} 9354 \mathrm{~A} / \mathrm{T} \\ \text { Input } \\ \hline \end{gathered}$ | $9354 \mathrm{~A} / \mathrm{T}$ <br> Full scale | Min Value -X \% of FS | Max Value $+X \% \text { of } F S$ | X\% |
| 2 mV | Yes | - 60 mV | -6mV | 16 mV | $-5.2 \mathrm{mV}$ | $-6.8 \mathrm{mV}$ | 5\% |
| 5 mV | Yes | $-150 \mathrm{mV}$ | -15 mV | 40 mV | -13.8 mV | $-16.2 \mathrm{mV}$ | 3\% |
| 10 mV | Yes | $-300 \mathrm{mV}$ | - 30 mV | 80 mV | -28.4 mV | - 31.6 mV | 2\% |
| 20 mV | Yes | $-600 \mathrm{mV}$ | -60 mV | 160 mV | $-56.8 \mathrm{mV}$ | -63.2 mV | 2\% |
| 50 mV | Yes | -1.5 V | $-150 \mathrm{mV}$ | 400 mV | -142 mV | $-158 \mathrm{mV}$ | 2\% |
| . 1 V | No | - 300 mV | - 300 mV | 800 mV | - 284 mV | - 316 mV | 2\% |
| . 2 V | No | $-600 \mathrm{mV}$ | -600 mV | 1.6 v | - 568 mV | -632 mV | 2\% |
| . 5 V | No | -1.5 V | $-1.5 \mathrm{~V}$ | 4 V | -1.42 V | -1.58 V | 2\% |
| 1 V | No | -3V | -3 V | 8 V | -2.84 V | -3.16 V | 2\% |
| 2 V | No | Max -5 V | Max -5 V | 16 V | -4.68 V | - 5.32 V | 2\% |
| 5 V | No | Max-5 V | Max -5 V | 40 V | -4.20 V | - 5.80 V | 2\% |

Table 5-3: Negative DC Linearity Readout Accuracy


Section 5 Performance Verification $\qquad$


### 5.7.1.b DC $1 \mathrm{M} \Omega$

Set the DSO as follows :

- Input Coupling : DC $1 \mathrm{M} \Omega$
- Input offset : $0.0 \mathbf{m V}$
- Input gain : from $2 \mathrm{mV} /$ div. to $5 \mathrm{~V} / \mathbf{d i v}$.
- For the ranges $\mathbf{2 m V} / \mathbf{d i v}$. to $\mathbf{5} \mathbf{V} / \mathbf{d i v}^{2}$, from the high precision voltage source, apply to Channel 1 the following 2 voltages values, one after another : + $\mathbf{3}$ major screen divisions, - $\mathbf{3}$ major screen divisions.
- For the low sensitivities : $\mathbf{2 , 5 , 1 0 , 2 0}$ and $\mathbf{5 0} \mathbf{m V} /$ div., use a $\mathbf{1 M} \Omega \mathbf{2 0} \mathrm{dB}$ attenuator ( $1 / 10$ ), see table 5-4.

| Range | Attenuator | Conditions of Test |  |  |  | Average Meam <br> Parameter Reading |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Volts/div <br> Control | 20 dB | PS <br> Output | $9354 \mathrm{~A} / \mathrm{T}$ <br> Input | $9354 \mathrm{~A} / \mathrm{T}$ <br> Full scale | Min Value <br> $\pm$ X\% of FS | Max Value <br> $\pm$ X\% of FS | $\pm$ <br> X\% |  |
| 2 mV | Yes | $\pm 60 \mathrm{mV}$ | $\pm 6 \mathrm{mV}$ | 16 mV | $\pm 5.2 \mathrm{mV}$ | $\pm 6.8 \mathrm{mV}$ | $5 \%$ |  |
| 5 mV | Yes | $\pm 150 \mathrm{mV}$ | $\pm 15 \mathrm{mV}$ | 40 mV | $\pm 13.8 \mathrm{mV}$ | $\pm 16.2 \mathrm{mV}$ | $3 \%$ |  |
| 10 mV | Yes | $\pm 300 \mathrm{mV}$ | $\pm 30 \mathrm{mV}$ | 80 mV | $\pm 28.4 \mathrm{mV}$ | $\pm 31.6 \mathrm{mV}$ | $2 \%$ |  |
| 20 mV | Yes | $\pm 600 \mathrm{mV}$ | $\pm 60 \mathrm{mV}$ | 160 mV | $\pm 56.8 \mathrm{mV}$ | $\pm 63.2 \mathrm{mV}$ | $2 \%$ |  |
| 50 mV | Yes | $\pm 1.5 \mathrm{~V}$ | $\pm 150 \mathrm{mV}$ | 400 mV | $\pm 142 \mathrm{mV}$ | $\pm 158 \mathrm{mV}$ | $2 \%$ |  |
| .1 V | No | $\pm 300 \mathrm{mV}$ | $\pm 300 \mathrm{mV}$ | 800 mV | $\pm 284 \mathrm{mV}$ | $\pm 316 \mathrm{mV}$ | $2 \%$ |  |
| .2 V | No | $\pm 600 \mathrm{mV}$ | $\pm 600 \mathrm{mV}$ | 1.6 V | $\pm 568 \mathrm{mV}$ | $\pm 632 \mathrm{mV}$ | $2 \%$ |  |
| .5 V | No | $\pm 1.5 \mathrm{~V}$ | $\pm 1.5 \mathrm{~V}$ | 4 V | $\pm 1.42 \mathrm{~V}$ | $\pm 1.58 \mathrm{~V}$ | $2 \%$ |  |
| 1 V | No | $\pm 3 \mathrm{~V}$ | $\pm 3 \mathrm{~V}$ | 8 V | $\pm 2.84 \mathrm{~V}$ | $\pm 3.16 \mathrm{~V}$ | $2 \%$ |  |
| 2 V | No | $\pm 6 \mathrm{~V}$ | $\pm 6 \mathrm{~V}$ | 16 V | $\pm 5.68 \mathrm{~V}$ | $\pm 6.32 \mathrm{~V}$ | $2 \%$ |  |
| 5 V | No | $\pm 15 \mathrm{~V}$ | $\pm 15 \mathrm{~V}$ | 40 V | $\pm 14.2 \mathrm{~V}$ | $\pm 15.8 \mathrm{~V}$ | $2 \%$ |  |

## Table 5-4 : 1M $\Omega$ DC Linearity Readout Accuracy

- For each point, read off the Mean parameter voltage, and compare it to the digital readout of the voltage reference.
- The mean parameter reading should be within the limits shown in table 5-4.
- Repeat steps 5.7.1.a and 5.7.1.b for Channel 2, Channel 3, and Channel 4 substituting channel controls and input connector.

Section 5 Performance Verification $\qquad$


### 5.8 Offset

### 5.8.1 Description

The maximum allowed offsets depend on the sensitivity as shown in table 5-5 and $5-6$, and is tested at DC $1 \mathrm{M} \Omega$, over the full 2 mV to 5 V range.

## Specifications

$\pm 120 \mathrm{mV}$ : for the ranges $2 \mathrm{mV} /$ div., $5 \mathrm{mV} /$ div.
$\pm 1.2 \mathrm{~V}$ : for $10 \mathrm{mV} /$ div., $20 \mathrm{mV} /$ div., $50 \mathrm{mV} /$ div., $100 \mathrm{mV} /$ div.
$\pm 24 \mathrm{~V}$ : for $200 \mathrm{mV} / \mathrm{div} ., 500 \mathrm{mV} /$ div., $1 \mathrm{~V} /$ div., $2 \mathrm{~V} /$ div., $5 \mathrm{~V} / \mathrm{div}$.

### 5.8.1.a Negative Offset Control Procedure

Set the DSO as follows :

- Turn on trace : Channel 1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Input Coupling : DC $\mathbf{1 M} \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input gain : $5 \mathbf{m V}$
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Auto
- Holdoff : Off
- Timebase : 2 msec/div.
- Channel use : 4
- Record up : $50 \mathbf{K}$
- Turn on trace : A
- Select Math Setup
- For Math
- Redefine A
- Use Math? : Yes
- Math Type : Average
- Avg Type : Summed
= For : 1000 sweeps
- Of : Channel 1
- Turn off trace : Channel 1
- Cursors/Measure : Parameters
- Mode : Std Voltage
- Statistics : off
- On displayed trace : A

Section 5 Performance Verification $\qquad$

- From the high precision voltage source PS5004, apply to Channel $1+\mathbf{1 2 0} \mathbf{m V}$.
- Using the offset control, move Channel 1 trace through the entire range until the maximum offset value is reached :-120 $\mathbf{m V}$.
- Verify that the displayed trace A : Average (1) is in the screen, near to the center horizontal graticule line.
- Press clear sweeps.
- Check after at least 100 sweeps that the mean (A) parameter readout is : $+120 \mathrm{mV} \pm \mathbf{3} \%$.

| Range | Conditions of Test |  | Offset <br> Control | Mean Parameter Reading |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Volts/div <br> Control | PS <br> Output | $9354 \mathrm{~A} / \mathrm{T}$ <br> Input | $9354 \mathrm{~A} / \mathrm{T}$ <br> Offset | Minimum <br> value, $-\mathrm{X} \%$ | Maximum <br> Value, $+\mathrm{X} \%$ |  |
| 5 mV | +120 m V | +120 mV | -120 mV | +116.4 mV | +123.6 mV | $3 \%$ |
| 50 mV | +1.2 V | +1.2 V | -1.2 V | +1.164 V | +1.236 V | $3 \%$ |
| 5 V | +20 V | +20 V | -24 V | +18.6 V | +21.4 V | $7 \%$ |

Table 5-5 : Negative offset control


- Set input gain to $\mathbf{5 0} \mathrm{mV} / \mathrm{div}$., from the high precision voltage source, apply to Channel 1 the following voltage value : $+\mathbf{1 . 2} \mathbf{V}$.
- Using the offset control, move the Ch1 trace through the entire range until the following offset value is reached : - $\mathbf{1 . 2} \mathrm{V}$.
- Verify that the displayed trace A: Average (1) is in the screen ( near to the center horizontal graticule line ).
- Press clear sweeps
- Check after at least 100 sweeps that the mean (A) parameter readout is : $+1.2 \mathrm{~V} \pm 3 \%$ ( see table 5-5).


Section 5 Performance Verification $\qquad$

- Set input gain to $\mathbf{5} \mathbf{V} /$ div., from the high precision voltage source, apply to Channel 1:+20 V ( maximum from PS5004).
- Using the offset control, move the Ch1 trace through the entire range until the maximum offset value is reached :-24 V.
- Verify that the displayed trace A : Average (1) is in the screen
- Press clear sweeps
= Check after at least 100 sweeps that the mean (A) parameter readout is :
$+\mathbf{2 0 V} \pm 7 \%$ ( see table 5-5).
- Repeat step 5.8.1.a for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector.


### 5.8.1.b Positive Offset Control Procedure

Set the DSO as in 5.8.1.a:

- Channel 1 input gain: $\mathbf{5} \mathbf{~ m V}$
- From the high precision voltage source PS5004, apply to Channel 1:-120 mV .
- Using the offset control, move Channel 1 trace through the entire range until the maximum offset value is reached : $+\mathbf{1 2 0} \mathbf{m V}$.
- Verify that the displayed trace A : Average (1) is in the screen, near to the center horizontai graticule line.
- Press clear sweeps.
- Check after at least 100 sweeps that the mean (A) parameter readout is :
- $\mathbf{1 2 0} \mathrm{mV} \pm \mathbf{3} \%$.

| Range | Conditions of Test |  | Offset <br> Control | Mean Parameter Reading |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Volts/div <br> Control | PS <br> Output | $9354 \mathrm{~A} / \mathrm{T}$ <br> Input | $9354 \mathrm{~A} / \mathrm{T}$ <br> Offset | Minimum <br> value, $-\mathrm{X} \%$ | Maximum <br> Value, $+\mathrm{X} \%$ |  |
| 5 mV | -120 mV | -120 mV | +120 mV | -116.4 mV | -123.6 mV | $3 \%$ |
| 50 mV | -1.2 V | -1.2 V | +1.2 V | -1.164 V | -1.236 V | $3 \%$ |
| 5 V | -20 V | -20 V | +24 V | -18.6 V | -21.4 V | $7 \%$ |

Table 5-6 : Positive offset control

MEASURE

| Off Cursors <br> Parameters |
| :--- |
| mode－ |


| $\operatorname{pkpk}(1)$ | 西 | 2.656 mb |
| :---: | :---: | :---: |
| mean（ $\mathrm{A}^{\text {）}}$ | 兆 | －120．151 mV |
| $\operatorname{sdev}(\mathrm{A})$ | 承 | $155.81 \mu$ |
| rms（ $\mathrm{n}^{\text {a }}$ ） | 兆 | 120.151 mb |
| $\operatorname{ampl}$（ $A$ ） | 兆 | 2.66 mv |

 $\qquad$ 1 DC－95．0 $\mathrm{m} V$

| $\left[\begin{array}{l} \text { on displayed } \\ \text { (trace) } \\ \text { i } \end{array}\right.$ |
| :---: |
| from- |
| to |
| 10.00 div |
| 5000 pts |

－Set input gain to $\mathbf{5 0} \mathbf{m V} / \mathbf{d i v}$ ．，from the high precision voltage source，apply to Channel 1 the following voltage value ：$+\mathbf{1 . 2} \mathbf{V}$ ．
－Using the offset control，move the Chl trace through the entire range until the following offset value is reached ：－ $\mathbf{1 . 2} \mathbf{V}$ ．
－Verify that the displayed trace A：Average（1）is in the screen（ near to the center horizontal graticule line ）．
－Press clear sweeps
－Check after at least 100 sweeps that the mean（A）parameter readout is ： $+1.2 \mathrm{~V} \pm \mathbf{3} \%$（ see table 5－6 ）．

Section 5 Performance Verification $\qquad$


- Set input gain to $5 \mathbf{V} /$ div., from the high precision voltage source, apply to Channel 1-20 V ( maximum from PS5004).
- Using the offset control, move the Ch1 trace through the entire range until the maximum offset value is reached :+24 V.
- Verify that the displayed trace A : Average (1) is in the screen.
- Press clear sweeps
- Check after at least 100 sweeps that the mean (A) parameter readout is : $-20 \mathrm{~V} \pm 7 \%$ ( see table 5-6).
- Repeat step 5.8.1.b for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector.


### 5.9 Bandwidth

### 5.9.1 Description

The purpose of this test is to ensure that the entire system has a bandwidth of at least 500 MHz at $200 \mathrm{mV} / \mathrm{div}$. An external source is used as the reference to provide a signal where amplitude and frequency are well controlled. A serious measurement of the bandwidth requires the use of a source whose amplitude does not change with frequency. The LeCroy calibration software corrects for the measured amplitude variation of the generator used. Generators can have errors of -2 dB above 500 MHz . The non flatness of the generator should be taken into consideration.

## Specifications

DC to at least $500 \mathrm{MHz}(-3 \mathrm{~dB})$ at $200 \mathrm{mV} / \mathrm{div}$. and above.
DC to at least 400 MHz at $100 \mathrm{mV} /$ div.
DC to at least 350 MHz below $100 \mathrm{mV} / \mathrm{div}$.

### 5.9.1.a $\mathrm{DC} 50 \Omega$

## Procedure

- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Input Coupling : DC50 $\Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input gain : $\mathbf{1 0 0} \mathrm{mV} / \mathrm{div}$.
- Offset : $\mathbf{0} \mathbf{m V}$
- Trigger setup : Edge
- Trigger on : Line
- Slope Line : Pos
- Mode : Norm or Auto
- Timebase : $10 \mu \mathrm{sec} / \mathrm{div}$.
- Channel use : 4
- Record up : 50 K
- Press Cursors/Measure: Parameters
- Mode : Custom
- Statistics : off
- Change parameters : Measure
- On line 1 : sdev of 1
- On line 2 : freq of 1
- Connect a leveled sine wave generator to Channel 1 (i.e. Marconi 2030), set the frequency to $\mathbf{5 0 0} \mathbf{K H z}$, adjust the generator output amplitude to get on DSO : $\operatorname{sdev}(1)=140 \mathrm{mV}$.

Section 5 Performance Verification


- Increase the generator frequency in multi $\mathbf{5 0} \mathbf{~ M H z}$ steps until the sine wave amplitude is $70 \%$ of the initial amplitude at 500 KHz .
- At each 50 MHz step, check that $\mathbf{s d e v}(1)>\mathbf{9 8} \mathbf{m V}$
- When $\operatorname{sdev}(1)=98 \mathrm{mV}(\mathbf{3 d B}$ point $)$ the frequency of the generator must be at least 400 MLHz .


3 Select Coupling and Global BWL: On (bandwidth limiter on )

- Check that the frequency at the 3 dB point $(\operatorname{sdev}(\mathbf{1})=\mathbf{9 8} \mathbf{m V})$ is typically $\mathbf{3 0} \mathbf{M H z}$. ( between 22 MHz and 43 MHz ).
$\qquad$

- Set DSO Input gain : $\mathbf{2 0 0} \mathbf{~ m V} / \mathbf{d i v}$.
- Select Coupling and Global BWL : Off ( bandwidth limiter off )
- Set sine wave generator frequency to $\mathbf{5 0 0} \mathbf{K H z}$, adjust the generator output amplitude to get on DSO : $\operatorname{sdev}(\mathbf{1})=\mathbf{2 8 2} \mathbf{m V}$.
- Increase the generator frequency in multi $\mathbf{5 0} \mathbf{~ M H z}$ steps until the sine wave amplitude is $70 \%$ of the initial amplitude at 500 KHz .
- At each 50 MHz step, check that $\operatorname{sdev}(\mathbf{1})>198 \mathrm{mV}$
- When $\operatorname{sdev}(\mathbb{1})=198 \mathbf{m V}(\mathbf{3 ~ d B}$ point $)$ the frequency of the generator must be at least 500 MLHz .


Section 5 Performance Verification

### 5.9.1.a. 1 Trigger Bandwidth

- Set Trigger on : 1
- Coupling 1 : HF
- Mode : Norm
- Timebase : 1nsec/div.
- Set sine wave generator frequency to $501 \mathbf{M H z}$
- Change Trigger level, until the scope triggers on Channel 1.

- Check: The scope must keep triggering in a stable way, a smooth 501 MHz sine wave must be visible on the screen.
- Repeat step 5.9.1.a and 5.9.1.a. 1 for Channel 2, Channel 3 and Channel 4, substituting channel control and input connector.


### 5.9.1.b DC $1 \mathrm{M} \Omega$

The purpose of this test is to ensure that the entire $9354 \mathrm{~A} / \mathrm{T}$ system has a bandwidth of at least 250 MHz at prolbe tip.

Set up a Tektronix SG503 leveled sine wave generator or equivalent.

- Terminate the output of the SG503 via a $50 \Omega$ feed through and connect it to the channel 1 input through a 10X-probe using a probe tip BNC Jack adapter. Make sure the probe compensation is perfectly adjusted at low frequency.
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join om, Single grid
a Input Coupling : AC $1 \mathrm{M} \Omega$
- V/div. offset : Normal
- Global BWL : Offi
- Probe atten : X10
- Input gain : $1 \mathrm{~V} /$ div.
- Offset : 0 ma
- Trigger setup : Edge
- Trigger on : Line
- Slope Line : Pos
- Mode : Norm
- Timebase : $10 \mu \mathrm{sec} / \mathrm{div}$.
- Channel use : 4
- Record up : 50 K
- Press Cursors/Measure: Parameters
- Mode : Custom
- Statistics : off
- Change parameters : Measure
- On line 1 : sdev of 1
- On line $2:$ freq of 1
- Set sine wave generator frequency to $500 \mathbf{K H z}$, adjust the generator output amplitude to get on $\mathrm{DSO}: \operatorname{sdev}(\mathbb{1})=\mathbf{1 . 8} \mathrm{V}$.
- Increase the generator frequency in multi $\mathbf{M H z}$ steps until the sine wave amplitude is $70 \%$ of the initial amplitude at 500 KHz .
- At each frequency step, check that $\operatorname{sdev}(1)>1.25 \mathrm{~V}$
- When $\operatorname{sdev}(1)=1.25 \mathrm{~V}(3 \mathrm{~dB}$ point $)$ the frequency of the generator must be at least 250 MHz.
$\qquad$


CHANNEL 1


| sdev(1) | $\sim$ |
| :--- | ---: | ---: |
| freq(1) | .80290 V |
| 499.91 kHz |  |

1 1月 $\mu$


$$
\begin{aligned}
& \operatorname{pkpk}(1) \\
& \operatorname{mean}(1) \\
& \operatorname{sdev}(1) \\
& \operatorname{rms}(1) \\
& \operatorname{ampl}(1)
\end{aligned}
$$

3.62 V
$-32.96 \mathrm{mb}$
1.25378 V
1.25420 V
3.44 V

AWNE
$\rightarrow$ ANE
$\mu \mathrm{s}$
$\begin{array}{lll}.1 & U & A C \\ .2 & U & 50 \Omega \\ .2 & V & 50 \Omega \\ 2 & V & 50 \Omega\end{array}$
$\boxed{\square}$
Line

500 MS/s

- NORMAL

MEASURE


Std Voltage
Std Time
Custom
Pass
Fail


500 MS/s
$\square$ NORMAL

- Set the bandwidth limiter on :
- Select Coupling and Global BWL: On
- Check that the frequency at the 3 dB point is typically $\mathbf{3 0} \mathbf{M H z}$. ( between 22 MHz and 43 MHz ).

- Repeat step 5.9.1.b for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector.


### 5.10

Trigger Level

### 5.10.1 Description

The trigger capabilities are tested for several cases of the standard edge trigger :

- Channel (internal ), and External Trigger sources
- Three DC levels : - 3, 0, - 3 major screen divisions
- DC coupling
- Positive and negative slopes


### 5.10.2 Chamnel (internal)

The horizontal and vertical errors for a trigger at 0 v threshold are determined by comparing the crossing point of the same sine wave at two different amplitudes.

- Setup any sine wave generator capable of generating sine waves of $\mathbf{1} \mathbf{K H z}, \mathbf{4 V} \mathbf{p k p k}$.
- Connect the generator output to Channel 1
- Turn on trace : Ch1
- Input Coupling Ch 1 : DC $50 \Omega$
- V/div. offset : Normal
- Input gain : . $5 \mathrm{~V} /$ div.
- Input offset : $\mathbf{0} \mathbf{m V}$
- Trigger setup : Edge
- Trigger on : 1
- Coupling 1 : DC
- Slope 1 : Pos
- Set Trigger level : DC $\mathbf{0 . 0} \mathbf{m V}$
- Mode : Single
- Pre-Trigger Delay : 50\%
- Timebase : . $1 \mathrm{msec} / \mathrm{div}$.
- Channel Use : 4
- Record up to : 50 K samples
- Adjust the sine wave generator's output amplitude to get 8 divisions peak to peak, corresponding to a 4 V amplitude.
- It is important that the offset of the input is set to zero $\mathbf{m V}$, use show status and acquisition status to verify.
- Display setup : Dot join Off
- Set Persistence Om, and acquire few sweeps in Single Trigger mode.
- Connect a $\mathbf{3} \mathbf{~ d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm \mathbf{2 0} \mu \mathrm{sec}$. The time readout is below 0.50 V in the icon 1 , at top left.

$\qquad$
- Select Cursors mode : Amplitude, Absolute
- Use the " cursor position " knob, to move the marker at the vertical crossing point of the two sine waves.
- Check that the voltage difference obtained between the marker and the trigger level is within $\pm \mathbf{2 0 0} \mathrm{mV}$. The level readout is below 0.50 V in the icon 1 , at top left.

- Set Trigger Slope 1 : Neg
- Disconnect the $\mathbf{3} \mathbf{~ d B}$ attenuator from the BNC input
- Acquire few sweeps in Single Trigger mode.
- Connect the $\mathbf{3} \mathbf{d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm 20 \mu \mathrm{sec}$. The time readout is below 0.50 V in the icon 1 , at top left.
- Select Cursors mode : Amplitude, Absolute
- Use the " cursor position " knob, to move the marker at the vertical crossing point of the two sine waves.
- Check that the voltage difference obtained between the marker and the trigger level is within $\pm \mathbf{2 0 0} \mathbf{~ m V}$. The level readout is below 0.50 V in the icon $\mathbf{1}$, at top left.

$\qquad$
- Set Trigger level : DC+1.5 V
- Disconnect the $\mathbf{3} \mathbf{d B}$ attenuator from the BNC input
- Set Trigger Slope 1 : Pos
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical $+\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sime wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $+1.5 \mathrm{~V} \pm .2 \mathrm{~V}$. See icon 1 at top left.

- Set Trigger Slope 1 : Neg
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical + $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sime wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossimg point level is $+1.5 \mathrm{~V} \pm .2 \mathrm{~V}$. See icon at top left.


Section 5 Performance Verification $\qquad$

- Set Trigger level : DC-1.5 V
- Set Trigger Slope 1 : Pos
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical - $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sime wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $-1.5 \mathrm{~V} \pm .2 \mathrm{~V}$. See icon 1 at top left.

- Set Trigger Slope 1 : Neg
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizomtal cemter of the screen at the vertical - $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing poimt of the sine wave and the horizontal center of the screem ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{- 1 . 5 ~} \mathrm{V} \pm .2 \mathrm{~V}$. See icon 1 at top left.

- Repeat step 5.10.2 for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector.
$\qquad$


### 5.10.3 External Trigger

## Specificatioms

External trigger range : $\mathrm{DC} \pm .5 \mathrm{~V}$

## Procedure

- Connect the output of the generator to External input and to Channel 2 via a coaxial T-connector. The cable length from External to Channel 2 must be short, at most 2 nsec.
- Set frequency : $\mathbf{1} \mathbf{~ K H z}$
- Turn on trace : Ch2
- Input Coupling Ch 2 : DC $50 \Omega$
- V/div. offset : Normal
- Input gain : $\mathbf{1 0 0} \mathbf{~ m V} / \mathbf{d i v}$.
- Input offset : $0 \mathbf{m V}$
- Trigger setup : Edge
- Trigger on : Ext
- Coupling Ext : DC
- Slope Ext : Pos
- External : DC $\mathbf{1 M} \Omega$
- Set Ext Trigger level : DC $\mathbf{0 . 0} \mathbf{m V}$
- Mode : Single
- Pre-Trigger Delay : $50 \%$
- Timebase : . $1 \mathrm{msec} / \mathrm{div}$.
- Channel use : 4
- Record up to : $\mathbf{5 0} \mathbf{K}$ samples
- Adjust the sine wave generator's output amplitude to get $\mathbf{8}$ divisions peak to peak, corresponding to a .8 V amplitude.
- It is important that the offset of the input is set to zero $\mathbf{m V}$, use show status and acquisition status to verify.
- Display setup : Dot joim Off
- Set Persistence On, and acquire few sweeps in Single Trigger mode.
- Connect a $\mathbf{3} \mathbf{d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm \mathbf{2 0} \mu \mathrm{sec}$. The time readout is below 100 mV in the icon 2, at top left.


Section 5 Performance Verification $\qquad$

- Select Cursors mode : Amplitude, Absolute
- Use the " cursor position " knob, to move the marker at the vertical crossing point of the two sine waves.
- Check that the vertical crossing point level is within $\pm 40 \mathrm{mV}$. See icon 2 at top left.

- Set Slope Ext : Neg
- Disconnect the $\mathbf{3} \mathbf{d B}$ attenuator from the BNC input
- Acquire few sweeps in Single Trigger mode.
- Connect the $\mathbf{3} \mathbf{d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm \mathbf{2 0} \mu \mathbf{~ s e c}$. The time readout is below 100 mV in the icon 2, at top left.

$\qquad$
- Select Cursors mode : Amplitude, Absolute
- Use the " cursor position " knob, to move the marker at the vertical crossing point of the two sine waves.
- Check that the voltage difference obtained between the marker and the trigger level is within $\pm 40 \mathrm{mV}$. The level readout is below 100 mV in the icon 2 , at top left.

- Set Trigger level : $\mathbf{D C}+\mathbf{3 0 0} \mathbf{m V}$
- Disconnect the $\mathbf{3 d B}$ attenuator from the BNC input
- Set Trigger Slope Ext: Pos
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical +3 divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sime wave and the horizontal center of the screen ( $50 \%$ pre-trigger line).
- Check that the vertical crossing point level is $+\mathbf{3 0 0} \mathbf{m V} \pm \mathbf{4 0} \mathbf{m V}$. See icon $\mathbf{2}$ at top.

- Set Trigger Slope Ext: Neg
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical +3 divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{+ 3 0 0} \mathbf{m V} \pm \mathbf{4 0} \mathbf{m V}$. See icon 2 at top .
$\qquad$

- Set Trigger level : DC - $\mathbf{3 0 0} \mathbf{m V}$
- Set Trigger Slope Ext: Pos
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the vertical - 3 divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{- 3 0 0} \mathbf{m V} \pm \mathbf{4 0} \mathbf{m V}$. See icon $\mathbf{2}$ at top.
- Set Trigger Slope Ext: Neg
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal cemter of the screen at the vertical - $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screem ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $-\mathbf{3 0 0} \mathbf{m V} \pm 40 \mathrm{mV}$. See icon 2 at top.



### 5.10.4 External / 10 Trigger

## Specifications

External trigger range : $\mathrm{DC} \pm 5 \mathrm{~V}$
Procedure

- Connect the output of the generator to External input and to Channel 2 via a coaxial T-connector. The cable length from External to Channel 2 must be short, at most 2 nsec.
- Set frequency : $\mathbf{1} \mathbf{~ K H z}$
- Turn on trace : Ch2
- Input Coupling Ch 2 : DC50 $\Omega$
- V/div. offset : Normal
- Input gain : 1 V/div.
- Input offset : $\mathbf{0} \mathbf{m V}$
- Trigger setup : Edge
- Trigger on : Ext10
- Coupling Ext10 : DC
- Slope Ext10 : Pos
- External : DC $\mathbf{1 M} \Omega$
- Set Ext Trigger level : DC 0.0 mV
- Mode : Single
- Pre-Trigger Delay : $\mathbf{5 0 \%}$
- Timebase : . $\mathbf{1}$ msec/div.
- Channel use : 4
- Record up to : $\mathbf{5 0} \mathbf{K}$ samples
- Adjust the sine wave generator's output amplitude to get $\mathbf{8}$ divisions peak to peak, corresponding to a $\mathbf{8 V}$ amplitude.
- It is important that the offset of the input is set to zero $\mathbf{m V}$, use show status and acquisition status to verify.
- Display setup : Dot join Off
- Set Persistence On, and acquire few sweeps in Single Trigger mode.
- Connect a $\mathbf{3 d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm 20 \mu \mathrm{sec}$. The time readout is below 1 V in the icon 2 , at top left.

$\qquad$
- Select Cursors mode : Amplitude, Absolute
$n$ Use the " cursor position " knob, to move the marker at the vertical crossing point of the two sine waves.
- Check that the voltage difference obtained between the marker and the trigger level is within $\pm 400 \mathrm{mV}$. The level readout is below 1 V in the icon 2, at top left.
- Set Trigger Slope Ext10 : Neg
- Disconnect the $\mathbf{3 d B}$ attemuator from the BNC input
- Acquire few sweeps in Single Trigger mode.
- Connect the $\mathbf{3} \mathbf{d B}$ attenuator, and acquire few more sweeps in Single mode.
- Select Cursors/Measure : Cursors, Time, Absolute
- Use the " cursor position " knob, to move the marker at the horizontal crossing point of the two sine waves.
- Check that the time difference obtained between the marker and the trigger is within $\pm 20 \mu \mathrm{sec}$. The time readout is below 1 V in the icon 2, at top left.
- Select Cursors mode : Amplitude, Absolute
- Use the " cursor position " knob, to move the marker at the vertical crossimg poimt of the two sine waves.
- Check that the vertical crossing point level is within $\pm 400 \mathrm{mV}$. See icon 2 at left.

$\qquad$
- Set Trigger level: DC + 3 V
- Set Trigger Slope Ext10 : Pos
- Disconnect the $\mathbf{3} \mathbf{d B}$ attemuator from the BNC input
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the verfical +3 divisioms.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screen ( $50 \%$ pre-trigger line).
- Check that the vertical crossing point level is $\mathbf{+ 3 V} \pm \mathbf{4 0 0} \mathbf{~ m V}$. See icon 2 at top.

- Set Trigger Slope Ext10: Neg
- Acquire few sweeps in Single Trigger mode.
= The sine wave must pass through the horizontal center of the screen at the vertical + $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{+ 3 V} \pm \mathbf{4 0 0} \mathrm{mm} V$. See icon 2 at top .



## Section 5 Performance Verification

$\qquad$

- Set Trigger level: DC-3V
- Trigger Slope Ext10 : Pos
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizontal center of the screen at the verticat - 3 divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sine wave and the horizontal center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{- 3 V} \pm \mathbf{4 0 0} \mathbf{m V}$. See icon $\mathbf{2}$ at top.

- Trigger Slope Ext10 : Neg
- Acquire few sweeps in Single Trigger mode.
- The sine wave must pass through the horizomtal center of the screen at the vertical - $\mathbf{3}$ divisions.
- Select Cursors/Measure : Cursors, Amplitude, Absolute
- Use the " cursor position " knob, to move the marker, at the crossing point of the sime wave and the horizontall center of the screen ( $50 \%$ pre-trigger line ).
- Check that the vertical crossing point level is $\mathbf{- 3 V} \pm \mathbf{4 0 0} \mathrm{mV}$. See icon 2 at top.


Section 5 Performance Verification $\qquad$

### 5.11 Smart Trigger

## Specificatioms

Pulse width < or > 2.5 nsec to 20 sec .

### 5.11.1 Trigger on Pulse Width < $\mathbf{1 0}$ nsec

Procedure

- Connect a leveled sine wave generator to Channel 1
- Frequency : 100 MHz
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Simgle grid
- Input Coupling : DC50 $\Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input gain : . 5 V/div.
- Trigger setup : Smart
- Setup Smart Trigger : Glitch
- Trigger on : $\mathbb{l}$
- Coupling 1 : DC
- At end of : Neg
- Width : < $\mathbf{1 0}$ nsec
- Mode : Norm
- Timebase : 5 nsec/div.
- Adjust the generator output amplitude to get a five division amplitude sine wave.
- Check that the scope triggers
- Switch to Width : > $\mathbf{1 0}$ nsec
- Check that the scope doesn't trigger : slow trigger and no flashes in box next to normal.


### 5.11.2 Trigger on Pulse Width $>10$ nsec

- Adjust the generator frequency to $\mathbf{4 0} \mathbf{~ M H z}$
- Check that the scope triggers
- Switch to Width : < $\mathbf{1 0}$ nsec
- Check that the scope doesn't trigger : slow trigger and no flashes in box next to normal.


Section 5 Performance Verification $\qquad$

### 5.11.3 Trigger on Pulse Width $<\mathbf{1 0 0}$ nsec

- Set the generator frequency to $\mathbf{1 0} \mathbf{~ M H z}$
- Pulse width : < 100 nsec
- Timebase : 20 nsec/div.
- Check that the scope triggers.

- Switch to Width : > 100 nsec
- Check that the scope doesn't trigger : slow trigger and no flashes in box next to normal.


### 5.11.4 Trigger om Pulse Width $>\mathbf{1 0 0}$ nsec

- Adjust the generator frequency to $\mathbf{4} \mathbf{M H z}$
- Pulse width : > 100 nsec
- Set Timebase : $\mathbf{5 0}$ nsec/div.
- Check that the scope triggers.

- Switch to Width : < 100 nsec
- Check that the scope doesn't trigger : slow trigger and no flashes in box next to normal.
- Repeat all the above tests for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector, and check as above.

Section 5 Performance Verification

### 5.12 Time Base Accuracy

### 5.12.1 Description

An external sine wave generator of $\mathbf{1} \mathbf{M H z}$ with a frequency accuracy better than 1 ppm is used.

## Specificatioms

500 MHz clock : accuracy : $\leq \pm \mathbf{0 . 0 0 1 \%}$ or $\leq \pm \mathbf{1 0} \mathbf{~ p p m}$

### 5.12.2 $\quad 500 \mathrm{MHz}$ Clock Manual Verification Procedure

Setup a leveled sine wave generator.

- Frequency : $\mathbf{1} \mathbf{M H z}$
- Connect the generator output to Channel 1
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Input Coupling : DC50 $\Omega$
- V/div. offset: Normal
- Probe atten : X1
- Input gain : . 5 V/div.
- Trigger setup : Edge
- Trigger on : 1
- Coupling 1 : DC
- Slope 1 : Pos
- Level 1 : 0.5 V
- Mode : Norm
- Holdoff : Off
- Delay : 0\%
- Timebase : . $5 \mu \mathrm{sec} / \mathrm{div}$.
- Channel use : 4
- Record up to : $\mathbf{5 0} \mathbf{K}$
- Adjust the generator output amplitude and Chl offset to get a five divisions peak to peak amplitude sine wave.
a Store Channel 1 in Memory 1
- Set Post-trigger delay to $\mathbf{5 . 0 0} \mathbf{~ m s e c}$

This allows the accuracy of the time base clock to be checked $\mathbf{5 0 0 0}$ periods after the trigger point.


Section 5 Performance Verification $\qquad$

- Recall Memory 1 to $\mathbf{A}$
- Turn on trace $\mathbf{A}$
- Check that the displayed Channel 1 trace is aligned with the sine wave from memory 1.
- Press : Cursors/Measure
- Measure : Parameters
- Mode : Custom
- Statistics : Off
- Change parameters
- On line 1 : Delay of 1
- On line 2 : Delay of $\mathbf{A}$
- Check that ( delay(A) - delay(1) $+5 \mathrm{msec}) \leq \pm 0.00005 \mathrm{msec}$ corresponding to 10ppm.


A difference of $\pm \mathbf{0 . 0 5} \mu \mathrm{sec}$ corresponds to $\pm \mathbf{1 0} \mathrm{ppm}$.
See screen dump below :

$\qquad$
5.13 Overshoot and Rise time ( $\mathbf{1 0 \%} \% \mathbf{- 9 0 \%}$ )

## Specifications

DC $50 \Omega, 100 \mathrm{mV} /$ div., : overshoot $<12 \%$, rise time $<0.9 \mathrm{~ns}$
DC $1 \mathrm{M} \Omega, 100 \mathrm{mV} /$ div., : rise time $<1.5 \mathrm{~ns}$

## Procedure

- Apply the fast pulse generator LeCroy 4969 ( < 500 psec ) or equivalent, to Channel 1
- Set the DSO as follows :
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 1 : DC50 $\Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset : - $\mathbf{2 5 0} \mathrm{mV}$
- Input gain : $\mathbf{1 0 0} \mathbf{~ m V} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Trigger level : DC 250 mV
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : 2 nsec/div
- Record up to : 50K samples
- Delay : 30 \% Pre-Trigger
- Turn on trace : A
- Select Math Setup
- For Math : Use at most 1000 points
- Use Math? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 1
- Turn off trace : Channel 1
- Cursors/Measure : Parameters
- Mode : Custom
- Statistics : On
- Change Parameters
- on displayed trace : A
- On line 1 :
- Measure : Over + of A
- On line 2 :
- Measure : Rise of $\mathbf{A}$
- After at least 100 sweeps, check that the average overshoot is $<\mathbf{1 2} \%$ and rise time is $<\mathbf{0 . 9} \mathbf{n s}$ ( measured in scope and not corrected for the effect of the step generator).

- Set Input Coupling : DC $\mathbf{1 M} \Omega$
- Terminate the output of the 4969 pulser with a $\mathbf{5 0 \Omega}$ feed through and connect it to Ch1
- After at least 100 sweeps, check that the Average rise time is $<\mathbf{1 . 5} \mathbf{n s}$ ( measured in scope and not corrected for the effect of the step generator).

- Repeat the above tests for Channel 2, Channel 3 and Channel 4 substituting channel control and input connector, and check as above.


### 5.14 Probe Calibrator Verification

## Specificatioms

Amplitude : 50 mV to $500 \mathrm{mV} \pm 2 \%$ into $50 \Omega$

$$
: 50 \mathrm{mV} \text { to } 1 \mathrm{~V} \pm \mathbf{2} \% \text { into } 1 \mathrm{M} \Omega
$$

Frequency : 500 Hz to $2 \mathrm{MHz} \pm 1 \%$

## Probe Calibrator Verification Procedure

- Connect the Probe Calibrator output to Channel 1, using a 5 nsec BNC cable
- Select
: Utilities
- Press : Cal BNC Setup
- Mode : Cal signal
- Set Frequency : $\mathbf{5 0 0} \mathbf{~ H z}$
- Amplitude : $1 \mathrm{~V}(500 \mathrm{mV}$ into $50 \Omega)$
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Input Coupling : DC $50 \Omega$
- V/div. offset : Normal
- Probe atten : X1
- Input offset : $\mathbf{- 2 5 0} \mathbf{~ m V}$
- Input gain : $100 \mathrm{~m} \mathrm{~m} / \mathrm{div}$.
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Trigger level : DC 250 mV
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : . $5 \mathrm{msec} / \mathrm{div}$.
- Delay : $10 \%$ Pre-Trigger
- Cursors/Measure : Parameters
- Mode : Custom
- Change parameters
- On line 1 : Measure ampl of 1
- On line $2:$ Measure freq of 1
- Check parameters readout : freq (1) $=\mathbf{5 0 0} \mathbf{H z} \pm 1 \%$, and ampl (1) $=\mathbf{5 0 0} \mathbf{~ m V} \pm \mathbf{6} \%$ ( $\pm \mathbf{2 \%}$ plus $\pm 4 \%$ due to the non linearity of the scope )
- Set Cal frequency : $\mathbf{2} \mathbf{M H z}$
- Timebase : . $2 \mu \mathrm{~s}$
- Check that freq (1) is $\mathbf{2} \mathbf{M H z} \pm 1 \%$
- Repeat test for amplitude of $\mathbf{0 . 0 5} \mathrm{V}(25 \mathrm{mV}$ into $50 \Omega)$
- Set Cal amplitude: $\mathbf{5 0} \mathbf{m V}$ ( 25 mV into $50 \Omega$ )
- DSO Input gain : $\mathbf{5} \mathbf{~ m V} / \mathbf{d i v}$.
- Check parameters readout ampl (1) = $\mathbf{2 5} \mathbf{~ m V} \pm \mathbf{6} \%$



## Section 5 Performance Verification

$\qquad$

- Repeat the tests for the amplitude of 0.05 V and 1 V into $1 \mathrm{M} \Omega$
- Cal amplitude : $\mathbf{5 0} \mathbf{m V}$
- Set Input Coupling : DC $\mathbf{1 M} \Omega$
- DSO Input gain : $\mathbf{1 0} \mathbf{m V} /$ div.
= Check parameters readout ampl (1) $=\mathbf{5 0} \mathbf{~ m V} \pm \mathbf{6} \%$

- Set Cal amplitude : $1 \mathbf{V}$
- DSO Input gain : $\mathbf{2 0 0} \mathbf{m V} / \mathbf{d i v}$.
- Check parameters readout ampl (1)=1V $\mathbf{1} \mathbf{6 \%}$


### 5.15 Overload

## Specifications

1 Watt into $50 \Omega$ : Overload $<17$ seconds

## Procedure

- Set the DSO as follows :
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Input Coupling : DC50 $\Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset : - $\mathbf{3 . 5} \mathbf{V}$
- Input gain : 1 V/div.
- Trigger setup : Edge
- Trigger on : $\mathbf{1}$
- Trigger level : DC-0.04 V
- Delay : zero
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Norm
- Holdoff : Off
- Timebase : 2 sec/div.
- Channel Use : 4
- Record up to : $\mathbf{1 0 0 0}$ samples
- From Tektronix power supply PS5004, apply 7.07 V ( 1 Watt ) to Channel 1.
- Check that the overload trips, within 17 seconds.
- Set Timebase : $\mathbf{5} \mathbf{~ s e c} / \mathbf{d i v}$.
- From Tektronix power supply PS5004, apply 5 V ( .5 Watt ) to Channel 1
- Check that the overload doesn't trip for at least $\mathbf{3 0}$ seconds.
- Repeat the above tests for Channel 2, Channel 3 and Channel 4 substituting channel controls and input connector, and check as above.

Section 5 Performance Verification $\qquad$

27-Jan-95
10:01:36



-


CHANNEL 1

| Coupling |
| :--- |
| DC50n |
| DVERLOAD |
| DC1M |
| Grounded |
| AC1M $\Omega$ |

- $V /$ div offset

NORMAL
ECL TTL
Global BWL-
( 30 MHz )
$\left[\begin{array}{l}\text { Probe Atten } \\ \times 1 \\ \times 2 \\ x 5 \\ \times 10 \\ \times 20 \\ \hline\end{array}\right.$
$\begin{array}{llll}1] & 1 & v & \pm \boxed{B} \\ \mathbf{2} & 1 & v & 58 \Omega \\ \mathbf{3} & 1 & v & 50 \Omega \\ \mathbf{4} & 1 & V & 50 \Omega\end{array}$

$50 \mathrm{~S} / \mathrm{s}$

27-Jan-95
10:09:34
$\left[\begin{array}{l}11 \\ 55 \\ 1.00 \mathrm{~W}\end{array}\right.$


- STOPPED

CHANNEL 1

$5 \quad 5$
$\begin{array}{llll}\mathbf{1} & 1 & V & 50 \Omega \\ \mathbf{2} & 1 & V & 50 \Omega \\ \mathbf{3} & 1 & V & 50 \Omega \\ \mathbf{4} & 1 & V & 50 \Omega\end{array}$

$$
\Gamma \quad 1 \text { DC } 0.04 V
$$

- NORMAL


## SECTION 6 INTERNAL CALIBRATION and DIAGNOSTICS

### 6.1 Introduction

- The 9354A/T internal calibration use routines to confirm basic functionality, no test equipment is required to do these test procedures. The diagnostics menu is entered by simultaneously depressing the third and fourth menu push buttons on the right hand side of the CRT and then by depressing the fifth.
- To quickly check the performance of the digital storage oscilloscope, select the calibration diagnostics.
- Press the recalibrate completely button to do a full recalibration of the front end. It is advisable to perform this type of check when the scope is in a stable condition.

24-Jan-95 9:23:30


INTERNAL

Calibration Diagnostics


Develapment

Flash Update
$100 \mathrm{MS} / \mathrm{s}$
$\square$ AUTO

Section 6 Internal Calibration and Diagnostics $\qquad$

### 6.2 Diagnostic Summary

- Press diagnostic summary.
- This is a handy tool to perform a quick but comprehensive internal performance check, without touching the acquisition settings. The failures are indicated by channel identifiers.
- If no problem is detected, the fields are left blank.


Failures are indicated by channel identifiers. Fields are left blank if na problem detected or a failure occurred previously.

- The gain and offset calibration results displayed for Channel 1, Channel 2, Channel 3 and Channel 4 are independent of the following conditions:
- Time base
- $50 \Omega$ or $1 \mathrm{M} \Omega$ input impedance
- BWL on or off
- Variable gain
- Offset
- Trigger mode and coupling
- The internal calibration is checked at $\mathbf{D C} \mathbf{1} \mathbf{M} \Omega$, and for the six gain settings : $2 \mathrm{mV}, 5 \mathrm{mV}, 10 \mathrm{mV}, 20 \mathrm{mV}, 50 \mathrm{mV}$, $.1 \mathrm{~V} / \mathrm{div}$.


### 6.2.1 Gain and Offset Calibration Description

- ADC zero reading : Failed to get 0 reading from ADC for some choice of Vgain, and Cal signal, while varying the Offset
- Gain measurement : Failed to measure Gain, the gain was not what was expected.
- Gain is negative : Measured a negative Gain or broken channel.
- Gain control range : The range of the variable Gain is checked.
- Offset control range : The range of the variable Offset is checked.
- Final gain setting : An error is detected if the variable Gain and fix Gain adjustment do not converge to the desired Gain.
- Final offset setting : An error is detected if the 3 Offset calibration points do not lie on a straight line.


### 6.2.2 Trigger Level Calibration

- The control of the trigger hysteresis is done in the trigger mode $\mathrm{DC}, \mathrm{BWL}$ on, HFr , and AC . If an error has occurred $1,2,3,4$ or E is displayed corresponding to Channel 1, Channel 2, Channel 3, Channel 4 or External.
- Control : Failed if no transition of discriminator observed when stepping the Threshold level.
- Hysteresis : Failed to get correct Hysteresis.


### 6.3 Diagnostic Results

### 6.3.1 Gain Curves

- Press diagnostic results
- Select results for gaim
- Press recalibrate completely
- Select show results for Channel 1
- Variable gain range, checked by software must be better than 0.95 to at least 2.75 . With regards to the illustration, the lower portion of the curve must extend below 0.95 limit, and the upper portion above the $\mathbf{2 . 7 5}$ limit.
- If this is not true the Gain control range summary shows a violation for Channel 1.
- The maximum and minimum gain factors are displayed.
$\qquad$

- Repeat the test for Channel 2, Channel 3 and Channel 4


### 6.3.2 Offset Curves

- Select results for Offset, and show result for Channel 1
$\mathrm{X}=$ offset DAC range
$\mathrm{Y}=$ offset
- The curves should be above the positive limits $+\mathbf{0 . 1 2} \mathrm{V} /+\mathbf{1 . 2} \mathrm{V}$ and below the negative limits - 0.12 V/-1.2 V.
- For the sensitivities $2 \mathrm{mV}, 5 \mathrm{mV} /$ div. a $1 / 10$ attenuator is used, the limits are $\pm \mathbf{0 . 1 2} \mathrm{V}$.
- For the sensitivities $10 \mathrm{mV}, 20 \mathrm{mV}, 50 \mathrm{mV}, 0.1 \mathrm{~V} /$ div. the limits are $\pm 1.2 \mathrm{~V}$.
- The maximum and minimum offset is $\pm 1.2 \mathrm{~V}$. The calibration verifies that the DAC can reach this value.
- The intrinsic value represents the offset in $m V$ that should be applied to get zero offset to the ADC.
$\mathrm{NB}: \triangle \mathrm{BWL}$ is the difference between BWL on and BWL off.

- Repeat the test for Channel 2, Channel 3 and Channel 4.


### 6.3.3 Trigger Level Calibration

- Select results for trigger level
- For Channel 1, Channel 2, Channel 3 and Channel 4 the hysteresis value for trigger DC, BWL, HFR, AC is given in divisions. The trigger range is $\pm 5$ div. for the steep curve. The boxed region is zoomed to give the two lines with a vertical scale of $\pm 1$ div. The external trigger hysteresis is given in Volt. The offset of the positive curve relating trigger threshold to DAC setting is given.
- Press recalibrate completely
- Select show result for Channel 1
- The DC hysteresis in div. should be $\pm \mathbf{0 . 3}$ div. $\pm 0.05$ div.
- Repeat the test for Channel 2, Channel 3 and Channel 4.

Section 6 Internal Calibration and Diagnostics $\qquad$


Monitor: re
5; 1: $\Delta g$
$-13, \Delta 0$
17

- Select show result for External trigger
- The hysteresis in Volt should be $\pm \mathbf{0 . 0 3 5} \mathbf{V} \pm \mathbf{0 . 0 1}$

Monitor: re 5


### 6.3.4 Integral Limearity

- Press diagnostic measurements
- Select Individual Channels

$-5.00(-1.00)$

| hysteresis [div] | 0.317 | 0.300 | -0.319 | -0.344 |
| :--- | :--- | :--- | :--- | :--- |
| offset [div] | 0.087 | 0.100 | 0.399 | 0.407 |

- Select integral linearity
- Measure for Channel 1

$\qquad$
- The integral linearity curve should be within the $\pm 0.05 * \mathrm{FS}$ bars, for offset $=0.0 \mathrm{~V}$.
- Repeat the test for Channel 2, Channel 3 and Channel 4.
- Press level
- Measure for Channel 1
- The three plots show raw ADC data displayed around their mean value for 3 different CAL levels.
- The data should be narrow and random.
- The theoretical level is shown by the second horizontal line which should be near ( $<4$ steps) to the measured value for Offset $=0$.

- Repeat the test for Channel 2, Channel 3 and Channel 4.


### 6.4 Board Test Results

- From the Internal menu press Maintenance
- Select Board Test Results

- This menu displays the board calibration measured at the factory, the calibration values are loaded in the I2C Prom.
- The header block indicates the following information :
- The test version : i.e. 168
- The revision of the printed circuit board : i.e. Rev B
- The engineering change order level : i.e. ECO 1002
- The work order number : i.e. WO 9452-0056
- The tested date : i.e. tested $1995-01-10$ it should be $: \geq 1993-\mathrm{xx}-\mathrm{xx}$.
$\qquad$
- If the date says 1990-04-01 it is a sign that the I2C prom on the main board can not be read correctly.
- The gain, offset, level, timing, delay values shown in this menu are used to perform the internal calibration of the scope.

```
24-Jan-95
                                    Board Test
    9:33:07
Header: block lengths 20 32 14 Test version 168 4 chans
    Rev: B, ECO 1002, W0 9452-0056, Tested: 1995-01-10 10:15
CAL levels: (E68F,-2000m|) (8015, 日m|) (199A, 2000m'\)
EXT trigger: pos. (AA78, -410m\) (56F8, 418m(V)
    neg. (A6C8, -410mV) (5340, 418mb)
EXT/10 attenuator: 10.004
Delay correction: 20.00 ns
ADC control: clock periad gain DAC offset DAC
    2.00 ns 9c 93 2.50 ns 78 7f 5.00 ns 8c 6b
Inter channel delay: 0 ps
ADC contral: clock periad gain DAC offset DAC
    2.00 ns 9d 91 
Inter channel delay: 0 ps
ADC control: clock period gain DAC offset DAC
    2.00ns 96 8a 2.50 ns 7c 81 5.00 ns 80 5f
Inter channel delay: 0 ps
ADC control: clock period gain DAC offset DAC
    2.00 ns 93 87 2.50 ns 7a 7a % 5.00 n5 88 65
Inter channel delay: 0 ps
```


### 6.5 Probe Bus Verification

- From the Internal menu press Maintenance
- Select probe ADC data
- This menu displays the probe bus and probe ring status.
- With no probe connected to the input, check that the value in the first column is $251 \pm 2$ for Channel A, B, C, D, and Ext.

| 24-Jan-95 |  |  |  |  |  |  | Probe Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | value |  | limits interrupts |  |  |  |  |
| Channel A | 252 | 253 | ［245，255］ | 0 |  |  |  |
| Channel B | 252 | 252 | ［245，255］ | 0 |  |  |  |
| Channel C | 252 | 252 | ［245，255］ | 0 |  |  |  |
| Channel D | 252 | 252 | ［245，255］ | 0 |  |  |  |
| Channel EXT | 252 | 252 | ［245，255］ | 0 |  |  |  |
| Channel CAL | 253 | 253 | ［ 0，255］ | 0 |  |  |  |
| Channel MON | 125 | 125 | ［ 73，79］ | 0 |  |  |  |
| Channel T | 93 | 96 | ［ 90，102］ | 3 | Temperature | $30^{\circ} \mathrm{C}$ |  |

－Connect a AP020 LeCroy active probe to Channel 1 and check that：
－The probe is identified on physical Channel $\mathbf{A}$
－The Channel A value indicates in the first column has changed to $\mathbf{2 1} \pm \mathbf{2}$
－An interrupt has been detected on Channel A

| 24－Jan－95 value limits interrupts$9: 36: 19$ |  |  |  |  | Probe Data |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| Channel A | $21 \quad 21$ | ［ 6，26］ | 1 APO2O |  |  |
| 01 日8 00 | 415030 | 32300406 | 9325015911 日6 | 41200000 |  |
| 15063 d | cc cc cd | 21 日a 4019 | ec da 3899 f3 9d | 22 abcol 㫜 |  |
| 000040 | 旺 0080 | 01240701 | 464201 日0 3406 | 明10 日 42 |  |
| 360402 | 044106 | $328448 \mathrm{f5}$ | fF |  |  |
| Channel B | $252 \quad 252$ | ［245，255］ | － |  |  |
| Channel C | 252252 | ［245，255］ | 0 |  |  |
| Channel D | 252252 | ［245，255］ | 0 |  |  |
| Channel EXT | 252252 | ［245，255］ | 0 |  |  |
| Channel CAL | 253253 | ［ 0，255］ | 0 |  |  |
| Channel MON | 125125 | ［ 73，79］ | $\theta$ |  |  |
| Channel 1 | 9396 | ［ 90，102］ | 3 Temperature | $30^{\circ} \mathrm{C}$ |  |

－Repeat the test for Channel 2，Channel 3，Channel 4 and External Trigger．
－Check that the probe is identified on physical Channel B，C，D，or Ext．
－Connect a LeCroy passive probe with probe ring i．e．PP002 to Channel 1 and check that ：
－The probe X10 is identified on physical Channel A
－The Channel A value indicates in the first column has changed to $\mathbf{1 9 5} \pm \mathbf{2}$
－An interrupt has been detected on $A$


- Repeat the test for Channel 2, Channel 3, Channel 4 and External Trigger.
- Check that the probe is identified on physical Channel B, C, D, or Ext.

- Connect a LeCroy passive probe with probe ring PP012 to Channel 1 and check that :
- The probe X100 is identified on physical Channel A
- The Channel A value indicates in the first column has changed to $\mathbf{1 6 5} \pm \mathbf{2}$
- An interrupt has been detected on A

| $\begin{gathered} 24-\mathrm{J} 3 n-95 \\ 9: 38: 15 \end{gathered}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | value |  | limits interrupts |  |  |  |
| Channel A | 165 | 165 | [140,167] | 10 | $\times 100$ |  |
| Channel B | 252 | 252 | [245, 255] | $\theta$ |  |  |
| Channel C | 252 | 252 | [245,255] | 0 |  |  |
| Channel D | 252 | 252 | [245,255] | 0 |  |  |
| Channel EXT | 252 | 252 | [245, 255] | 0 |  |  |
| Channel CAL | 253 | 253 | [ 0,255] | 0 |  |  |
| Channel MON | 125 | 125 | [ 73, 79] | 0 |  |  |
| Channel T | 93 | 96 | [ 90,102] | 3 | Temperature | $30^{\circ} \mathrm{C}$ |

- Repeat the test for Channel 2, Channel 3, Channel 4 and External Trigger.
- Check that the probe is identified on physical Channel B, C, D, or Ext.


### 6.6 PP092 Verification

Channels can be combined to achieve more memory and more sampling rate by interleaving the ADC's in time. It is possible to achieve $2 \mathrm{GS} / \mathrm{s}$ and up to 8 M record length ( 9354 AL ) by means of a special adaptor call PP092.

- Connect the PP092 adaptor to Channel 2 and Channel 3 and check that :
- The PP092 is identified on Chammel 2
- Channel 1, Channel 3 and Channel 4 are disabled
- Channel 2 is set to $\mathbf{D C} \mathbf{5 0} \Omega, \mathbf{X} \mathbf{2}$
- Sampling rate is $\mathbf{2 G S} / \mathbf{s}$
- Connect the Probe calibrator output to PP092 input using a 5 nsec BNC cable.
- Set Cal frequency to $\mathbf{2} \mathbf{M H z}$ and Amplitude to $\mathbf{1} \mathbf{V}$ into $\mathbf{1} \mathbf{M} \Omega$
- Turn on trace $\mathbf{2}$ and check that:

Section 6 Internal Calibration and Diagnostics $\qquad$


- A Square wave of 500 mV is displayed on Channel 2
- Turn on trace 1, 3, 4 and check that :
- A Square wave of 500 mV is displayed on Channel 1, Channel 3, and Channel 4.


## SECTION 7 MAINTENANCE

### 7.1 Introduction

This section contains information necessary to disassemble, assemble, maintain, calibrate and troubleshoot the LeCroy 9354A, 9354AM, 9354AL, 9354 T and 9354 TM digital oscilloscope.

### 7.2 Disassembly and Assembly Procedure

The disassembly and assembly procedures detailed below refer to the assembly and disassembly diagram 7.2.3, and the view of figures $7.1,7.2,7.3,7.4,7.5 \& 7.6$. Please study the diagram and figures before attempting disassembly.

## WARNING

Before removing any parts from the LeCroy 9354A/T, be sure to read carefuliy the instructions referring to those parts, noting any precautions needed to avoid problems caused by mechanical behaviour, high voltage supplies, etc.

## CAUTION

The usual precautions against static electricity are required (see 1.10)

### 7.2.1 Removal of the Upper Cover (5.9)

The top cover (5.9) is secured by two M4x5 screws (5.11) on both sides of the front panel assembly (2), and by two M4x8 screws (5.10) on the rear panel (3). Remove the screws and carefully slide the cover off the unit to the rear. Removal of the top cover gives access to the boards and parts listed in section 7.2.3.

### 7.2.2 Removal of the PS9351 Power Supply (4)

## WARNING

Ensure the line cord is disconnected. Remove the following:

- Top cover (7.2.1).
- One M4X8 screw (5.7) from left side of the bottom cover (1.1).
- Two M4X8 screws (5.1) from left side of the rear panel (3).

Disconnect the following:

- Base card power cable from main board connector $\mathrm{J} 1 / \mathrm{J} 2$ ( see figure 7.7).
- PS9351 line input cable ( AC line, neutral, ground ) from line input module (3.7).
- Auxiliary power cable from optional internal graphic printer connector J4 ( see figure 7.7 ).

The power supply can now be removed vertically from the oscilloscope.
$\qquad$

### 7.2.3 Disassembly and Assembly Diagram

Disassembly : If it becomes necessary to replace a board or a part, use the disassembly diagram to disassemble the unit. Any board can be removed if items higher in the diagram and connectec by a line are already out.


Assembly: Reassemble the unit in the reverse order.


Figure 7.1 : 9354A/T Assembly


Figure 7.2 : 9354A/T Lower Cover Assembly


Figure 7.3 : 9354A/T Front Frame Assembly
$\qquad$


Figure 7.4 : 9354A/T Rear Panel Assembly
Page 7-6

### 7.2.4 Removal of the F9300-4 GPIB/RS232 Interface (3.9)

The GPIB/RS232 interface (3.9) is vertically mounted on the rear panel (3.1).
Remove the following:

- Top cover (7.2.1).
- Two M3x6 screws (3.17) and washers from the rear panel (3.1).
- Disconnect the flat cable (3.19) from the processor board (1.30) connector J5.

The GPIB/RS232 board can be removed forward from the rear panel.

### 7.2.5 Removal of the Fam (3.4)

Remove the following:

- Top cover (7.2.1)
- Four screws (3.6) and nuts (3.5) from the rear panel (3.1).
- Disconnect the fan power cable from the main card F9354-31 connector J3.

The fan (3.4) part number : 7093XX902 can be removed from the unit.

## CAUTION

Note the air flow, the fan extracts air from the unit and expels it.

### 7.2.6 Removal of the Lime Input module (3.7)

## WARNING

Disconnect the power cord.
Remove the following:

- Top cover (7.2.1).
- Two screws (3.8) from the rear panel.
- Disconnect the power cable from the power supply connector.
- Disconnect the earth cable (3.18).

The fuse holder assembly (3.7) can be removed from the rear panel (3.1).

### 7.2.7 Removal of the 93XX-Video (2.20)

- Remove the top cover (7.2.1).
- Disconnect the ground cable from CRT (black wire)
- Disconnect the monitor cable (2.21) from the deflection board, connector W301 \& W302

Ease the video board (2.20) carefully toward the back of the DSO, until it is free.

### 7.2.8 Removal of the 93XX-Yoke (2.19)

- Remove the top cover (7.2.1).
- Remove the 93XX-video board (7.2.7)
- Disconnect the cable from the deflection board connector W201.
- Loose the screw on the yoke ring holder.

The deflection yoke (2.19) can be removed from the cathode ray tube (2.14).

### 7.2.9 Removail of the front frame Assembly (2)

Remove the following:

- Top cover (7.2.1)
- Two screws (5.8) that secure the front frame assembly (2) to the lower cover (1.1).
- Disconnect the front panel flat cable (2.11) from the processor (1.30) connector J4.
- Disconnect the deflection flat cable (2.22) from the processor board (1.30) connector J6.

The front frame assembly (2) with the CRT (2.14), yoke (2.19), video (2.20), deflection (2.17), front panel (2.7) and keyboard (2.6) can with care be removed forward from the unit.

## CAUTION

Hold the CRT very carefully, or place soft padding under it.

### 7.2.10 Removal of the 93XX-Deflection (2.17)

The deflection board (2.17) is situated to the back of the front panel (2.5).
Remove the following

- Top cover (7.2.1).
- Front frame assembly (7.2.9).
- Disconnect the monitor cable (2.21) which lead to the video board (2.20), connector W301 and W302.
- Disconnect the cable from the deflection yoke, connector W201.
- Disconnect the EHT plug from the receptacle at the right side of the CRT (2.14).


## WARNING

Touch the free end of the EHT cable to the ground, this ensures that no significant charge remains. The CRT must be discharged similarly, using a tool or a long screw driver which is first placed to the ground and on the CRT receptacle.

Remove the four M35x10 screws (2.18) that secure the deflection board to the plastic front frame.

The board (2.17) can now be removed from the unit.

### 7.2.11 Removal of the 93XX-CRT (2.14)

It is necessary to remove the front frame assembly (7.2.9). The CRT is secured to the plastic front frame by four screws (2.16).

- Remove the 93XX-video (7.2.7).
- Remove the 93XX-yoke (7.2.8).
- Disconnect the EHT cable from the deflection board. - Discharge the tube.
- Remove the four screws.

The CRT can now be removed from the front frame.

## WARNING

Use care when handling the CRT. Avoid striking it on any object which may cause the tube to impiode. Store the cathode ray tube face down on a soft surface. To avoid electrical shock the CRT should be discharged after the 9354A/T oscilloscope is powered OFF. After disconnecting the EHT plug, ground the CRT anode lead to the metallic display support, repeat the operation to fully dissipate the charge.

### 7.2.12 Removal of the $\operatorname{F9354-5}$ Front Panel (2.5)

Remove the following:

- Upper cover (7.2.1).
$=$ Front frame assembly (7.2.9).
- 93 XX-deflection board (7.2.10).
- Four screws (2.12) that secure the front panel.

The front panel (2.5) with the keyboard (2.6) can be removed forward from the unit.

### 7.2.13 Removal of the Front Panel Keyboard (2.6)

Remove the following:

- Upper cover (7.2.1).
- Front frame assembly (7.2.9).
- 93XX-deflection board (7.2.10).
- F9354-5 front panel (7.2.12).
- The 11 rotary knobs ( 2.9 and 2.10). Take great care of the soft plastic
- One screw (2.8) that secures the keyboard to the front panel.
a Disconnect the flat ribbon cable from the front panel connector J2, and remove the keyboard P/N : 729354513.


## CAUTION

When removing or installing the keyboard or the front panel, be careful of the fragile flat ribbon cable and connector.

### 7.2.14 Removal of the Processor (1.30)

The processor F9302-1-4 or F9302-1-8 or F9302-1-16 board is located along the right side of the instrument.

Remove the following:

- Top cover (7.2.1).
- Front frame assembly (7.2.9).
- Disconnect the flat cable (3.19) from the F9300-4 GPIB interface connector J5

The processor can be removed vertically from the main card (1.10) F9354-31 connector Jl

## CAUTION

Static electricity can damage components (RAM, Eproms, microprocessor...).
Antistatic precautions are required.

### 7.2.15 Removal of the F9354-31 Main Card (1.10)

Remove the following:

- Top cover (7.2.1).
- Front frame assembly (7.2.9).
- Power supply (7.2.2).
- Processor (7.2.14).

The main board with the upper shield (1.2) is horizontally mounted to the lower case cover (1.1).

- Remove the ten M3x20 screws (5.3), two M3x6 (5.4) and six M2.5x6 (5.5) that secure the upper shield (1.2) to the main board and front panel.
- Remove the two M4x8 (5.1) and one M3x6 (5.2) that secure the rear panel assembly (3) to the lower cover (1.1)
- Disconnect the fan cable from connector J3.

The upper shield (1.2) attached to the rear panel (3) can be removed forward from the board.

- Remove the five M3x6 screws (1.20), four M3x16 (1.21) and three M3x6 flat head screws (1.19) that secure the board to the lower cover (1.1).

The main board F9354-31 (1.10) with acquisition memory card F9350/M/T-21 (1.23), base shield (1.15) and card panel (1.11) can be removed from the scope.

## CAUTION

Antistatic precautions are required.

### 7.2.16 Removal of the Hamdle (1.4)

The handle with two black end caps is secured to the right side of the lower cover (1.1) by two screws (1.5) and washers (1.6).

- Remove the upper cover (7.2.1), and processor board (7.2.14).

The handle can be removed from the lower case.

### 7.2.17 Removal of the Foot Support (1.8)

The two foot supports are clipped on the lower cover (1.1).

- Remove the foot (1.7) or the support (1.8) by inserting a small flat screwdriver under the support


### 7.2.18 Removal of the 93XX-FD01 Floppy Disk Drive Option

- Remove the upper cover (7.2.1).
- Disconnect the flat ribbon cable from the F9300-6 interface ( see figure 7.6 ).
- Remove the two M3x6 screws that secure the floppy drive support to the upper cover.
- Remove the support 70FD01021 and frame 70FD01031 from the cover.
- Remove the four M2.5x4 screws that secure the floppy to the support

The floppy disk (6.3) drive can be removed from the frame
7.2.19 Removal of the 93XX-GP01 Graphic Printer and F9300-7 Controller Option

- Remove the upper cover (7.2.1).
- Disconnect the power cable ( 780210030 ) from the PS9351 power supply ( see figure 7.7 ).
- Disconnect the flat ribbon cable ( 780791604 ) from the F9300-7 controller ( see figure 7.7 ).
- Disconnect the flat ribbon cable $(780721022$ ) between the F9300-6 interface and F9300-7 controller.
- Remove the four M3x6 screws that secure the F9300-7 controller to frame ( 70GP01031).
- Remove the F9300-7 controller
- Remove the two M3x6 screws that secure the printer to the frame

The graphic printer (7.3) can now be removed from the upper cover.

### 7.2.20 Removal of the F9300-6 Centronics Interface Optiom

- Remove the upper cover (7.2.1).
- Remove the two M3x6 screws from the rear panel
- Disconnect the flat cable from the F9300-4 GPIB/RS232 board ( see figure 7.6 or 7.7 ).

The Centronics interface board can be removed forward from the rear panel.
$\qquad$


Figure 7.5 : 9354A/T Floppy Assembly
Page 7-12


Figure 7.6 : 9354A/T Graphic Printer Assembly
$\qquad$

### 7.3 Software Upgrade Procedure

F9302-1-X processor board has one 8MB Flash Prom which contains the program memory and the character font used by the graphic processor of the raster scan display.

After any software change, a general instrument reset is mandatory. Simultaneously press the autosetup button, the top menu button and the return button.

### 7.3.1 Upgrading Firmware

LeCroy Corporation has a policy of continually improving and upgrading its products.
The instrument is equipped with Flash Prom on processor board, the Software is upgraded to the latest version using the Memory Card interface.

- Insert one Memory card with latest firmware revision, and power on the scope.
- The internal menu is entered by simultaneously depressing the third and fourth menu push buttons on the right hand side of the CRT and then by depressing the fifth.

- Select " Flash Update " and push twice " Update Program ".

The Software is then downloaded to the Flash Prom on the processor board.

```
Update
Program
```

Warning:

Reprogramming the flash memory is a procedure to be performed by qualified service personnel.

Any loss of power during the update process could cause the scope to require factory service.

Update
Loader

Update
Both

The update process requires a LeCroy supplied
memory card which contains the necessary information to update your scope software.

30-Nou-94
Program transferred to Flash memory without error

FLASH UPDATE SUCCESSFUL:
The flash memory reprogramming process is complete and was successful.

Please cycle the power to the scope to start the updated code.

Update
Loader

Update
Both

### 7.3.2 Changing Software Options

The software option selection GAL is located on the processor board at location A49. Insert or replace the GAL to select new options.
Make sure that the orientation notch is correctly aligned with the PCB .
$\qquad$

### 7.3.3 Software Option Selection GAL

The following software options are available : ( see section 2 )

| WP01 | Advanced Math package |
| :--- | :--- |
| WP02 | Basic FFT package |
| CARD | Memory card |


| OPTIONS |  | GAL Description |  |
| :--- | :--- | :--- | :--- |
| Memory Card | WP02 | WP01 | CLE XXX-R <br> XXX = Software option, <br> R = Release |
| no | no | no | GAL Not Necessary |
| no | no | yes | CLE 001-A |
| no | yes | no | CLE 002-A |
| no | yes | yes | CLE 003-A |
| yes | no | no | CLE 200-A |
| yes | no | yes | CLE 201-A |
| yes | yes | no | CLE 202-A |
| yes | yes | yes | CLE 203-A |

### 7.3.4 Processor Board Exchange Procedure

The replacement board is supplied without any options. Therefore the existing GAL (Loc A49) must be transferred from the faulty board to the new board. After upgrading firmware or changing the software option, check that the scope boots correctly. Then check in the system summary, by using the show status button on the front panel, the software version, software options and serial number.
The serial number of the $9354 \mathrm{~A} / \mathrm{T}$ oscilloscope is loaded in the real time clock memory which is battery backed up. If it becomes necessary to replace the processor board, the serial number must be loaded in the memory of the new board by using LeCroy program " LeCalsoft " under GPIB remote control.
To run " LeCalsoft " type SKP.exe, in the main menu type S, and follow the instructions, use five digits to enter the serial number (i.e. 02175 ).

16-Jan-95
16:24:16

Serial Number 935402175
Soft Version 9354A- 06.0.0
Wednesday, November 23, 1994 5:14 PM
(build 43)

Soft Options
WPO1 WPO2 CKIO MCO1

Hard Options
GPIB R232 CLBZ CPU3 I2C
STATUS

| Acquisition |
| :--- |
| Sustem |
| Text 8 Times |
| Waveform |
| Memory Used |

### 7.4 Equipment and Spare Parts Recommended for Service

### 7.4.1 Equipment

The following equipment is needed to provide the technician access to the 9354A/T subassemblies during repair and calibration (see also Performance Verification section 5).

| Instrument | Qty | Specifications | Recommended |
| :---: | :---: | :---: | :---: |
| Signal Generator ( sine wave) | 1 | Frequency: 500 KHz to 1 GHz <br> Accuracy: $0.001 \%$ <br> Amplitude : 1 V peak to peak | Marconi 2030 |
| Signal Generator ( sine wave) | 1 | Frequency: 5 KHz <br> Amplitude : 6 V peak to peak | LeCroy LW420 |
| DC precision Power Supply | 1 | $\begin{array}{\|l} \hline \text { Amplitude : } 10 \mathrm{~V}, \mathrm{DC} \\ \text { Accuracy : }<0.1 \% \\ \hline \end{array}$ | Tektronix PS5004 |
| Digital <br> Multimeter | 1 | 5 digits | Keithley 199 |
| Fast pulser | 1 | Rise time < 500 psec | LeCroy 4969 |
| Digital scope | 1 | Bandwidth 350 MHz | LeCroy 9310A |
| Cable | 1 | $\mathrm{BNC}, 50 \Omega$, length 20 cm ( 7.87 inches ) | Suhner |
| Cable | 1 | BNC, $50 \Omega$, length 100 cm (39.37 inches) | Suhner |
| BNC T adapter | 1 | BNC, $50 \Omega$, T adapter | Suhner |

### 7.4.2 Spare Parts

In order to make the repair of 9354A/T DSO's series at board level, a minimum stock of boards is at least one each:

- F9302-1-4 : Processor board for 9354A and 9354T
- F9302-1-8 : Processor board for 9354AM and 9354TM
- F9302-1-16 : Processor board for 9354AL
- F9350-21 : Acquisition memory for 9354A
- F9350M-21 : Acquisition memory for 9354AM
- F9350T-21 : Acquisition memory for 9354T
- F9350TM-21 : Acquisition memory for 9354TM
- F9350L-2 : Acquisition memory for 9354AL
- F9354-31 : Main board for 9354A, 9354AM, 9354AL, 9354T \& 9454TM
- F9300-4 : GPIB/RS232 interface
- F9354-5 : Front panel with keyboard
- 93XX-Display : Raster monitor kit
- PS9351 : Power supply

If the unit is equipped with the $93 \mathrm{XX}-\mathrm{FD} 01$ option :

- F9300-6 : Floppy, Graphic printer, Centronics Interface
- 335023203 : Floppy disk drive

If the unit is equipped with the 93 XX -GP01 option :

- F9300-6 : Graphic printer, Floppy, Centronics Interface
- F9300-7 : Graphic printer controller
- 334000832 : LPT5446 Seiko Graphic printer

If the unit is equipped with the $93 \mathrm{XX}-\mathrm{HD} 01$ option :

- F9300-8 : Hard disk Interface
- HDD02 : Hard disk drive

The other parts (fan, fuse holder, scope handle, covers, rear panel...) are not on the above list because they are reliable parts and the probability of failure is very low.

### 7.5 Troubleshooting and Flow Charts

### 7.5.1 Introduction

The troubleshooting information contained in this section is intended for use by qualified personnel having a basic understanding of electronics (analog and digital). In order to simplify servicing and minimize downtime, the following list of possible symptoms, likely causes, and troubleshooting steps have been prepared.
The first step in troubleshooting is to check for obvious items like blown fuses.
The power supply is the next item to check before proceeding to more detailed troubleshooting, since noise or low power supply voltages can cause a variety of digital and analog problems.

### 7.5.2 Line Voltage Autoranging

The $9354 \mathrm{~A} /$ T oscilloscope operates from a $115 \mathrm{~V}(90$ to 130 V ) or 220 V ( 180 to 260 V ) normal power source at 47 Hz to 63 Hz .
No voltage selection is required since the instrument automatically adapts to the line voltage which is present. The instrument operates at line frequencies up to 440 Hz .

### 7.5.3 Initial Troubleshooting Chart

Most procedures in this section will allow troubleshooting down to the BOARD LEVEL.

Defective circuit boards will be repaired or exchanged by the regional LeCroy service office or the local representative (see section 1.4).

$\qquad$

### 7.5.4 No Power Supply



### 7.5.4.1 Line Fuses Replacement

The power supply of the oscilloscope is protected against short circuits and overload by means of two $6.3 \mathrm{~A} / 250 \mathrm{~V}$ fuses located above the main plugs.

## WARNING

Disconnect the instrument from the power line and from other equipment before replacing fuses.

To replace line fuses, proceed as follow :

- Turn off the power and disconnect the line cord from the instrument
- Open the fuse box by inserting a small flat screwdriver under the plastic cover and remove the fuse carrier from the holder
- Remove the 6.3 amp fuse and replace it with the proper type:
$6.3 \mathrm{amp} / 250 \mathrm{~V}$, normal blowing.
LeCroy part number: 433162630


### 7.5.5 No Display



Sectiom 7 Maintenance $\qquad$

### 7.5.6 Abnormal Image On Screen



### 7.5.7 Front Panel Controls Do Not Operate



### 7.5.8 No Remote Control GPIB and RS232



### 7.5.9 Performance Verification Fails



Section 7 Maintenance $\qquad$

### 7.5.10 Intermal Calibration Fails



### 7.5.11 Floppy Disk Drive Fails



## Section 7 Maintenance

### 7.5.12 Graphic Printer Fails



Page 7-28

### 7.5.13 Centronics Fails



Section 7 Maintenance $\qquad$

### 7.5.14 Hard Disk Fails



### 7.6 Calibration Procedures

The following section includes the adjustments required for the power supply, front end and display. It is recommended that they be verified at one year intervals.

### 7.6.1 PS9351 Power Supply Calibration

The four voltages are adjustable by $\pm 5 \%$ of the nominal value.
The reference for the measurements are the pins on top of connector J 1 connected to the main board F9354-31.

For the power supply calibration proceed as follow:

- Turn off the power
- Remove the top cover (7.2.1)
- Remove the front frame assembly (7.2.9) and put it to the right of the unit.
- By using two extension cables, reconnect the processor board to the front panel (J4) and to the deflection board (J6).
- Once the top cover is removed and the front panel is disassembled from the scope, extra cooling of the main board is required. It's mandatory to disconnect the existing Fan from connector J3, located on F9354-31 card, and to use a Fan with the air flow oriented to the front end section of the board.
- The front frame assembly is now reconnected to the processor through the extension cables.
- Turn on the power, set the scope to Auto Trigger, and perform the adjustments to get on J1 ( see figure 7.7).

| Pin 4, 5,6 | $:+\mathbf{5 . 1 2} \mathrm{V}(\operatorname{Min}=+5.05 \mathrm{~V}, \operatorname{Max}=+5.15 \mathrm{~V})$ |  |
| :--- | :--- | :--- |
| $\operatorname{Pin} 9,10,11$ | $:$ | $-\mathbf{5 . 2} \mathbf{V}(\operatorname{Min}=-5.15 \mathrm{~V}, \operatorname{Max}=-5.25 \mathrm{~V})$ |
| $\operatorname{Pin} 12$ | $:$ | $\mathbf{+ 1 5} \mathrm{V}(\operatorname{Min}=+14.9 \mathrm{~V}, \operatorname{Max}=+15.1 \mathrm{~V})$ |
| $\operatorname{Pin} 14$ | $:$ | $-\mathbf{1 5} \mathrm{V}(\operatorname{Min}=-14.9 \mathrm{~V}, \operatorname{Max}=-15.1 \mathrm{~V})$ |
| $\operatorname{Pin} 3,7,8,13$ | $:$ | Ground |

The four potentiometers are accessible from the right side through holes in the PS9351 power supply chassis.

- Turn the potentiometer clockwise to increase the tension or counterclockwise to decrease the voltage. When the adjustment is done, stop the acquisition by depressing the stop trigger push button, and verify that there is no large difference on the +5.12 V , typically less than 80 mV .
$\qquad$


Figure 7.7 : PS9351 Power Supply

### 7.6.2 93XX-Display Adjustment Procedure

### 7.6.2.1 Introduction

There is a total of 12 potentiometers or variable coils to adjust the deflection and video board.

Video: (2 adjustments)

- Threshold : Level of the video board.
- Gain : Intensity of the screen.


Video board component side
Deflection : (10 adjustments)

- Vosc : Frequency of the vertical oscillator.
- Slope : Speed of the horizontal ramp.
- Focus : Focus of the screen.
- Cut off : Cathode ray tube cut off.
- Quiescent : Standby current of the horizontal deflection amplifier.
- H Linearity : Horizontal linearity.
- H Size : Horizontal size (Max 165mm).
- H Offset : Horizontal position.
- V Size : Vertical size (Max 120 mm ).
- V Offset : Vertical position.
$\qquad$


Deflection board component side

### 7.6.2.2 Coarse Adjustment

- Depress display button.
- Set W'form + text intensity to $0 \%$.
- Set grid intensity to $0 \%$
- Turn fully clockwise the intensity potentiometer on the video board.
- On the video board connect a digital multimeter on test point : W303
- Adjust threshold potentiometer to get $2 \mathrm{~V} \pm 0.1 \mathrm{~V}$ on W303.

- Set W'form intensity to $100 \%$.
- Set grid intensity to $60 \%$.
- Adjust H-size, H-offset, V-size, V-offset to center the image in the screen.

The vertical position should be adjusted to get the push buttons of the front panel in front of the software menus, use the utilities set up.
The small magnets mounted on the deflection yoke influence the vertical position.

- Turn the quiescent potentiometer ciockwise until the default of the horizontal lines just disappears from the vertical center of the screen.
- Increase the cut off until a vertical line appears on the right side of the screen.
- Adjust the slope potentiometer to get 5 mm gap between the highlighted vertical line and the right border of the selection menus.
- Adjust H-linearity to get the best linearity.


### 7.6.2.3 Fine Adjustment

The final adjustment of the intensity, cut off, and focus must be made in a dark room.

## Section 7 Maintenance

- Set W'form intensity to $30 \%$.
- Set grid intensity to $0 \%$.
- Adjust the cut off potentiometer until the highlighted vertical line disappears from the right side of the screen.
- Set W'form intensity to $20 \%$.
- Display four traces.
- On the video board adjust the gain potentiometer (intensity) in order to get the text just readable.
- Set W 'form + text intensity to $70 \%$.
- Set grid intensity to $30 \%$

- Adjust the focus (usually fully clockwise) for most uniform focus over the entire screen.
- In a standard luminosity environment set $W$ 'form + text to $90 \%$, and grid intensity to $60 \%$.
- Verify the intensity, focus, and contrast adjustment, for best definition of the displayed text.


## CAUTION

## Never change the Vosc calibration.

### 7.6.3 Front End Test and Calibration Procedure

### 7.6.3.1 Introduction

The adjustments describe in the following calibration procedure require extension of the front panel assembly out of the scope, using two flat cables.
In order to access the front end potentiometers and variable caps located underneath the Cathode Ray tube and deflection board, dismount the front panel assembly from the scope and reconnect it to the processor board connectors J4 and J6, using the extension cable set.
Once the top cover is removed and the front panel is disassembled from the scope, extra cooling of the main board is required. It's mandatory to disconnect the existing Fan from connector J , located on $\mathrm{F} 9354-31$ card, and to use a Fan with the air flow oriented to the front end section of the board.

### 7.6.3.2 Power Supplies

Remove the upper shield to access the test point TP203. Use a high precision DMM.

### 7.6.3.2.1 Front End Power Supply Verification

- Check on test point the following tensions :
- Pin 1 and Pin 2 : Ground

TP203


- +12 VFEP : pin $6(+)=+12$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A204
- +12 VFE $: \operatorname{pin} 3(+)=+12$ Volt $\pm 2 \%:$ if problem troubleshoot regulator A210
$-+8 \mathrm{VFE} \quad$ : pin $5(+)=+8$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A 216
-     - 12 VFEP : $\operatorname{pin} 7(-)=-12$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A209
-     - 12 VFE $: \operatorname{pin} 4(-)=-12$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A203
-     - 8 VFE $: \operatorname{pin} 8(-)=-8$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A213


### 7.6.3.2.2 ADC Power Supply Verification

- Check on test point TP203 the following tensions :
-     + 12 VADC : pin $9(+)=+12$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A402
- $-12 \mathrm{VADC}: \operatorname{pin} 10(-)=-12$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A400
-+7 VADC : A403 pin $3=+7$ Volt $\pm 2 \%$ : if problem troubleshoot regulator A403

Section 7 Maintenance $\qquad$

### 7.6.3.3 16 bit DAC Verification

$\Delta$ Select Channel 1, Channel 2, Channel 3 and Channel 4 : Coupling DC $1 \mathrm{M} \Omega$
$=$ Enter in the internal calibration diagnostics by simultaneously depressing the third and fourth push buttons, and then by depressing the fifth.

## - Select Development menu



- Select Front End Control menu

- Set Cal Level:/1 and $0,00 \mathrm{~V}$

- Cneck that we get on pin $5(+)$ of TP201: $0.00 \mathrm{mV} \pm 0.1 \mathrm{mV}$


Front of DSO

Sectiom 7 Maintenance $\qquad$

- Set Cal Level : $/ 1$ and +4.00 V (use front panel potentiometer )

FE CONTROL

offset 1
0.00 V

Gain
$0.00 V^{1}$
$\left[\begin{array}{c}\text { Set to last } \\ \text { calibrated } \\ \text { Gain offset }\end{array}\right]$

| ADC DAC for |
| :--- |
| Offset |
| Gain |
| Sample_Eff |
| Delay |


| $\begin{array}{lll}\text { Gain } & 1- \\ \text { Set ta calib. }\end{array}$ |
| :---: |
| $\left[\begin{array}{ccc} C A L & \text { Level } & 1 \\ 4.0 \theta & V \\ - & / 1 / 10 & 050 \end{array}\right]$ |

- Check that we get on pin $5(+)$ of TP201: $1.00 \mathrm{~V} \pm 1 \%$
- Set Cal Level : /1 and -4.00 V ( use front panel potentiometer )



Page 7-40

- Check on pin $5(+)$ of TP201 that we get $-1.00 \mathrm{~V} \pm 1 \%$
- Set Cal Level : /10 and +10.00 V ( use front panel potentiometer)


FE CONTROL

$$
\text { Offset } 1
$$ 0.00 V

Gain 1


- Check on pin $5(+)$ of TP201 that we get $+0.25 \mathrm{~V} \pm 1 \%$
- Set Cal Level : /10 and - 10.00 V ( use front panel potentiometer)
${ }^{-}$Check on pin $5(+)$ of TP201 that we get $-0.25 \mathrm{~V} \pm 1 \%$


Page 7-42

### 7.6.3.4 Input Buffer DC Gain Adjustment

### 7.6.3.4.1 Channel 1 DC Gain Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Gain, and Show Result for Channel 1
- Push Recalibrate Completely

- Adjust Potentiometer R1084 to get :

Maximum Factor at $5 \mathrm{mV} / \mathrm{div}>2.90$
Minimum Factor at $50 \mathrm{mV} /$ div $<0.85$

- During the adjustment, push recalibrate completely .


### 7.6.3.4.2 Channel 2 DC Gain Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Gain, and Show Result for Channel 2
- Push Recalibrate Completely

- Adjust Potentiometer R2084 to get :

Maximum Factor at $5 \mathrm{mV} / \mathrm{div}>2.90$
Minimum Factor at $50 \mathrm{mV} /$ div $<0.85$

- During the adjustment, push recalibrate completely .


### 7.6.3.4.3 Channel 3 DC Gain Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Gain, and Show Result for Channel 3
- Push Recalibrate Completely

- Adjust Potentiometer R3084 to get :

$$
\begin{aligned}
& \text { Maximum Factor at } 5 \mathrm{mV} / \mathrm{div}>2.90 \\
& \text { Minimum Factor at } 50 \mathrm{mV} / \mathrm{div}<0.85
\end{aligned}
$$

- During the adjustment, push recalibrate completely .
$\qquad$


### 7.6.3.4.4 Channel 4 DC Gain Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Gain, and Show Result for Channel 4
- Push Recalibrate Completely

- Adjust Potentiometer R4084 to get :

Maximum Factor at $5 \mathrm{mV} / \mathrm{div}>2.90$
Minimum Factor at $50 \mathrm{mV} /$ div $<0.85$

- During the adjustment, push recalibrate completely


### 7.6.3.5 Overshoot and Rise time Adjustment

### 7.6.3.5.1 Channel 1 Overshoot and Rise time Adjustment

- Apply the fast Rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 1.
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 1: DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset :-250 mV
- Input gain $: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 1
- Trigger level : DC 250 mV
- Coupling 1 : DC
- Slope 1 : Pos
a Mode : Normal
- Holdoff : Off
- Timebase : 2 nsec/div
- Record up to : 50 K samples
- Delay : $50 \%$ Pre-Trigger
- Turn on trace : A
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine A
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 1
- Turn off trace : Channel 1
- Cursors/Measure : Parameters
- Mode : Custom
- Statistics : on
- Change Parameters :
- on displayed trace : A
- On line 1 :
- Measure : Over + of A
- On line 2 :
- Measure : Rise of A
- Adjust C1029 to get : Over $+(\mathrm{A})=+5.5 \%, \pm 3 \%$
- Check that Rise time is less thar 0.9 nsec



### 7.6.3.5.2 Channel 2 Oversthoot and Rise time Adjustment

- Apply the fast Rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 2.
- Turn on trace : Ch2
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 2 : DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset :-250 mV
- Input gain : $100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on :2
- Trigger level : DC 250 mV
- Coupling 2 : DC
- Slope 2 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : 2 nsec/div
- Record up to : 50K samples
- Delay : 50 \% Pre-Trigger
- Turn on trace : B
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine B
- Use Math? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 2
- Turn off trace : Channel 2
- Cursors/Measure : Parameters
- Mode : Custom
- Statistics : On
- Change Parameters :
- On displayed trace : B
- On line 1
- Measure : Over + of B
- On line 2 :
- Measure : Rise of B
- Adjust C2029 to get : Over $+(\mathrm{B})=+5.5 \%, \pm 3 \%$
- Check that Rise time is less than 0.9 nsec

Section 7 Maintenance $\qquad$


### 7.6.3.5.3 Channel 3 Overshoot and Rise time Adjustment

- Apply the fast Rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 3.
- Turn on trace : Ch3
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 3 : DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset $:-250 \mathrm{mV}$
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 3
- Trigger level : DC 250 mV
- Coupling 3 : DC
- Slope 3 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : $2 \mathrm{nsec} / \mathrm{div}$
- Record up to : 50K samples
- Delay : 50 \% Pre-Trigger
- Turn on trace : C
${ }^{-}$Select Math Setup
- For Math : Use at most 1000 points
- Redefine C
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 3
- Turn off trace : Channel 3
- Cursors/Measure : Parameters
- Mode : Custom
- Statistics : On
- Change Parameters :
- On displayed trace : C
- On line 1 :
- Measure : Over + of C
- On line 2 :
- Measure : Rise of C
- Adjust C3029 to get : Over $+(\mathrm{C})=+5.5 \%, \pm 3 \%$
- Check that Rise time is less than 0.9 nsec
$\qquad$



### 7.6.3.5.4 Channel 4 Overshoot and Rise time Adjustment

- Apply the fast Rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 4.
- Turn on trace : Ch4
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 4 : DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : Xl
- Input offset : - 250 mV
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 4
- Trigger level : DC 250 mV
- Coupling 4 : DC
- Slope 4 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : 2 nsec/div
- Record up to : 50 K samples
- Delay : $50 \%$ Pre-Trigger
- Turn on trace : D
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine D
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 4
- Turn off trace : Channel 4
${ }^{\square}$ Cursors/Measure : Parameters
- Mode : Custom
- Statistics : On
- Change Parameters :
- On displayed trace : D
- On line 1 :
- Measure $\quad:$ Over + of D
- On line 2 :
- Measure : Rise of D
- Adjust C4029 to get : Over $+(\mathrm{D})=+5.5 \%, \pm 3 \%$
- Check that Rise time is less than 0.9 nsec

Section 7 Maintenance


### 7.6.3.6 Flatness Adjustment

### 7.6.3.6.1 Channel 1 HF Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 1. Set pulser to 62.5 msec low frequency.
- Turn on trace : Ch1
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 1: DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset :-250 mV
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 1
- Trigger level : DC 250 mV
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase $: 20 \mu \mathrm{sec} / \mathrm{div}$
- Record up to $: 50 \mathrm{~K}$ samples
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : A
- Select Math Setup
- For Math : Use at most i000 points
- Redefine A
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 1
- With the vertical Zoom set A to 10 mV
- Adjust pot R1041 to get a flat square wave.
- Set Input gain $: 200 \mathrm{mV} /$ div
- Coupling Channel 1: DC $1 \mathrm{M} \Omega$
- Adjust cap C1009 to get a flat square wave.

Sectiom 7 Maintenance $\qquad$


### 7.6.3.6.2 Channel 2 HF Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 2. Set pulser to 62.5 msec low frequency.
- Turn on trace : Ch2
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 2: DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset :-250 mV
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 2
- Trigger level : DC 250 mV
- Coupling 2 : DC
- Slope 2 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase $\quad: 20 \mu \mathrm{sec} /$ div
- Record up to : 50 K samples
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : B
- Select Math Setup
- For Math : Use at mos* 1000 points
- Redefine B
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 2
- With the vertical Zoom set B to 10 mV
- Adjust pot R2041 to get a flat square wave.
- Set Input gain $: 200 \mathrm{mV} /$ div
- Coupling Channel 2 : DC $1 \mathrm{M} \Omega$
- Adjust cap C2009 to get a flat square wave.

Section 7 Maintenance


### 7.6.3.6.3 Channel 3 HF Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 3. Set pulser to 62.5 msec low frequency.
- Turn on trace : Ch3
- Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 3 : DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset :-250 mV
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 3
- Trigger level : DC 250 mV
- Coupling 3 : DC
- Slope 3 : Pos
- Mode : Normal
- Holdoff : Off
- Timebase $\quad: 20 \mu \mathrm{sec} / \mathrm{div}$
- Record up to : 50 K samples
- Delay $: 10 \%$ Pre-Trigger
- Turn on trace : C
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine C
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 3
- With the vertical Zoom set C to 10 mV
- Adjust pot R3041 to get a flat square wave.
- Set Input gain $: 200 \mathrm{mV} /$ div
- Coupling Channel 3 : DC $1 \mathrm{M} \Omega$
- Adjust cap C3009 to get a flat square wave.

Sectiom 7 Maintenance $\qquad$


### 7.6.3.6.4 Channel 4 HF Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 4 . Set pulser to 62.5 msec low frequency.
- Turn on trace : Ch4
r Display setup : Standard, Persistence off, Dot join on, Single grid
- Coupling Channel 4 : DC $50 \Omega$
- V/div. offset : Normal
- Global BWL : Off
- Probe atten : X1
- Input offset : - 250 mV
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger setup : Edge
- Trigger on : 4
- Trigger level : DC 250 mV
- Coupling 4 : DC
- Slope $4 \quad$ : Pos
- Mode : Normal
- Holdoff : Off
- Timebase : $20 \mu \mathrm{sec} /$ div
- Record up to : 50K samples
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : D
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine D
- Use Math ? : Yes
- Math Type : Average
- Avg Type : Summed
- Of : Channel 4
- With the vertical Zoom set D to 10 mV
- Adjust pot R4041 to get a flat square wave.
- Set Input gain $: 200 \mathrm{mV} / \mathrm{div}$
- Coupling Channel 4 : DC $1 \mathrm{M} \Omega$
- Adjust cap C4009 to get a flat square wave.

Sectiom 7 Maintenance $\qquad$


### 7.6.3.7 Sample \& Hold Flatness Adjustment

### 7.6.3.7.1 Channel 1 Sample\&Hold Flatness Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 1. Set pulser to $62.5 \mu \mathrm{sec}$ high frequency.
- Turn on trace : Ch1
- Coupling Channel 1: DC $50 \Omega$
- Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger on : 1
- Trigger level : DC 250 mV
- Coupling 1 : DC
- Slope 1 : Pos
- Timebase : $50 \mathrm{nsec} /$ div
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : A
- Select Math Setup
- For Math : Use at most 1000 points
= Redefine A : Summed Average of Channel 1
- With the vertical Zoom set A to 10 mV
- Adjust pot R1518, C1553, R1577 ( at left of A1500 HSH416 ) to get the best flatness as possible.

$\qquad$


### 7.6.3.7.2 Channel 2 Sample\&Hold Flatness Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 2. Set pulser to $62.5 \mu \mathrm{sec}$ high frequency.
- Turn on trace : Ch2
- Coupling Channel 2 : DC $50 \Omega$
$=$ Input gain $\quad: 100 \mathrm{mV} / \mathrm{div}$
- Trigger on :2
- Trigger level : DC 250 mV
- Coupling 2 : DC
- Slope 2 : Pos
- Timebase : $50 \mathrm{nsec} / \mathrm{div}$
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : B
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine B : Summed Average of Channel 2
- With the vertical Zoom set B to 10 mV
- Adjust pot R2518, C2553, R2577 ( at left of A2500 HSH416) to get the best flatness as possible.



### 7.6.3.7.3 Channel 3 Sample\&Hold Flatness Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 3. Set pulser to $62.5 \mu \mathrm{sec}$ high frequency.
- Turn on trace : Ch3
- Coupling Channel 3 : DC $50 \Omega$
- Input gain $: 100 \mathrm{mV} /$ div
- Trigger on :3
- Trigger level : DC 250 mV
- Coupling $3:$ DC
- Slope 3 : Pos
- Timebase : $50 \mathrm{nsec} / \mathrm{div}$
- Delay : $10 \%$ Pre- - T rigger
- Turn on trace : C
- Select Math Setup
a For Math : Use at most 1000 points
- Redefine C : Summed Average of Channel 3
- With the vertical Zoom set C to 10 mV
- Adjust pot R3518, C3553, R3577 (at left of A3500 HSH416) to get the best flatness as possible.

$\qquad$


### 7.6.3.7.4 Channel 4 Sample\&Hold Flatness Adjustment

- Apply the fast rise time pulse generator LeCroy 4969 or equivalent ( $<600 \mathrm{psec}$ ) to Channel 4 . Set pulser to $62.5 \mu \mathrm{sec}$ high frequency.
- Turn on trace : Ch4
- Coupling Channel 4 : DC $50 \Omega$
- Input gain $\quad: 100 \mathrm{mV} /$ div
- Trigger on : 4
- Trigger level : DC 250 mV
- Coupling 4 : DC
- Slope 4 : Pos
- Timebase : $50 \mathrm{nsec} /$ div
- Delay : $10 \%$ Pre-Trigger
- Turn on trace : D
- Select Math Setup
- For Math : Use at most 1000 points
- Redefine D : Summed Average of Channel 4
- With the vertical Zoom set D to 10 mV
- Adjust pot R4518, C4553, R4577 (at left of A4500 HSH416 ) to get the best flatness as possible.



### 7.6.3.8 Trigger Hysteresis Control

### 7.6.3.8.1 Channel 1 Trigger Hysteresis Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Trigger level, and Show Result for Channel 1
- Push Recalibrate Completely

- Adjust potentiometer R5108 to get :

DC Hysteresis ( div ) $=0.3 \mathrm{div} \pm 0.05 \mathrm{div}$
$\qquad$

### 7.6.3.8.2 Cbannel 2 Trigger Hysteresis Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Trigger level, and Show Result for Channel 2
- Push Recalibrate Completely

- Adjust potentiometer R5078 to get :

DC Hysteresis (div $)=0.3 \operatorname{div} \pm 0.05 \mathrm{div}$

### 7.6.3.8.3 Channel 3 Trigger Hysteresis Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Trigger level, and Show Result for Channel 3
- Push Recalibrate Completely

- Adjust potentiometer R5053 to get :

DC Hysteresis ( div $)=0.3 \operatorname{div} \pm 0.05 \mathrm{div}$

### 7.6.3.8.4 Channel 4 Trigger Hysteresis Adjustment

- In the Calibration Diagnostics select Diagnostics Results.
- Select Results for Trigger level, and Show Result for Channel 4
- Push Recalibrate Completely

- Adjust potentiometer R5080 to get :

DC Hysteresis ( div $)=0.3 \mathrm{div} \pm 0.05 \mathrm{div}$

### 7.6.3.8.5 External Trigger Hysteresis

- In the Calibration Diagnostics, select Diagnostics Results.
- Select Results for Trigger level, and Show Result for E.
- Push Recalibrate Completely

- Check that the DC External Trigger Hysteresis is $0.035 \mathrm{~V} \pm 0.01$


## CAUTION

- Do not adjust potentiometer R5055. The External Trigger Hysteresis value cannot be modified without using a special tester.
$\qquad$


### 7.6.3.9 DC $50 \Omega$ Overload Adjustment

### 7.6.3.9.1 Channel 1 DC $50 \Omega$ Overload Adjustment

- Turn on trace : Channel 1
- Input Coupling : DC $50 \Omega$
- Probe atten : X1
- Input gain :- V/div.
- Input offset :-3.5 V
- Trigger setup : Edge
- Trigger on : 1
- Trigger level : DC 0.1 V
- Delay : zero
- Coupling 1 : DC
- Slope 1 : Pos
- Mode : Auto
a Timebase $: 2 \mathrm{sec} /$ div.
- Record up to : 1000 samples
- From the power supply ( Tektronix PS5004) apply DC 7.07 V ( 1 Watt ) to Channel 1.
- Adjust the potentiometer R1010, such that the overload trips within 10 to 15 seconds. ( turn clockwise if it's too slow or counterclockwise if it's too fast )

- Set Timebase : 5 sec/div.
- From the power supply (Tektronix PS5004) apply 5 V (. 5 Watt ) to Channel 1
- Check that the overload doesn't trip for at least $\mathbf{3 0}$ seconds.


### 7.6.3.9.2 Channel 2 DC $50 \Omega$ Overload Adjustment

- Turn on trace : Channel 2
- Input Coupling : DC $50 \Omega$
- Probe atten : X1
- Input gain $: 1 \mathrm{~V} /$ div.
- Input offset :-3.5 V
- Trigger setup : Edge
- Trigger on :2
- Trigger level : DC 0.1 V
- Delay : zero
- Coupling 2 : DC
: Slope 2 : Pos
- Mode : Auto
- Timebase : $2 \mathrm{sec} / \mathrm{div}$.
- Record up to : 1000 samples
- From the power supply ( Tektronix PS5004 ) apply DC 7.07 V ( 1 Watt ) to Channel 2.
- Adjust the potentiometer R2010, such that the overload trips within 10 to 15 seconds. ( turn clockwise if it's too slow or counterclockwise if it's too fast )

$$
7-0 c t-94
$$





$20 C 0.10 \psi$
CHANNEL 2

 $50 \mathrm{~S} / \mathrm{s}$
$\qquad$

STOPPED

- Set Timebase : 5 sec/div.
- From the power supply ( Tektronix PS5004 ) apply 5 V ( .5 Watt ) to Channel 2
- Check that the overload doesn't trip for at least 30 seconds.
$\qquad$


### 7.6.3.9.3 Channel 3 DC $50 \Omega$ Overload Adjustment

- Turn on trace : Channel 3
- Input Coupling : DC $50 \Omega$
- Probe atten : X1
- Input gain : $1 \mathrm{~V} / \mathrm{div}$.
- Input offset :-3.5 V
- Trigger setup : Edge
- Trigger on : 3
- Trigger level : DC 0.1 V
- Delay : zero
- Coupling $3:$ DC
- Slope 3 : Pos
- Mode : Auto
- Timebase : $2 \mathrm{sec} /$ div.
- Record up to : 1000 samples
- From the power supply ( Tektronix PS5004 ) apply DC 7.07 V ( 1 Watt ) to Channel 3.
- Adjust the potentiometer R3010, such that the overload trips within 10 to 15 seconds. ( turn clockwise if it's too slow or counterclockwise if it's too fast )
= Set Timebase : $\mathbf{5} \mathbf{~ s e c / đ i v .}$
- From the power supply ( Tektronix PS5004 ) apply 5 V ( .5 Watt ) to Channel 3
- Check that the overload doesn't trip for at least 30 seconds.


### 7.6.3.9.4 Channel 4 DC $50 \Omega$ Overload Adjustment

- Turn on trace : Channel 4
- Input Coupling : DC $50 \Omega$
- Probe atten : X1
- Input gain : $1 \mathrm{~V} /$ div.
- Input offset :-3.5 V
- Trigger setup : Edge
- Trigger on : 4
- Trigger level : DC 0.1 V
- Delay : zero
- Coupling 4 : DC
- Slope 4 : Pos
- Mode : Auto
- Timebase : $2 \mathrm{sec} /$ div.
- Record up to : 1000 samples
- From the power supply (Tektronix PS5004) apply DC 7.07 V (1 Watt ) to Channel 4.
- Adjust the potentiometer R4010, such that the overload trips within 10 to 15 seconds. ( turn clockwise if it's too slow or counterclockwise if it's too fast )
- Set Timebase : $\mathbf{5}$ sec/div.
- From the power supply (Tektronix PS5004) apply 5 V (. 5 Watt ) to Channel 4
- Check that the overload doesn't trip for at least $\mathbf{3 0}$ seconds.


## SECTION 8 SCHEMATICS, LAYOUTS, PARTS LIST

9354A, 9354AM, 9354AL, 9354T \& 9354TM

## Digital Storage Oscilloscope

$\qquad$

PART : 9354ADESC : $\mathbf{5 0 0} \mathbf{M H z}$, QUAD CHANNEL $500 \mathrm{MS} / \mathrm{s}$ DSO, 50 KB

| COMPONENT | PART DESCRIPTION QTY P | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| 205750000 | IC AND-OR GATE ARRAY 16V8 | 1 |
| 554500001 | TAPPING SCREW W/U-THREAD | 2 |
| 709354A16 | FRONT LABEL 9354A | 1 |
| 709354913 | SERIAL NUMBER PLATE 9354A | 1 |
| F9302-1-4 | PROCESSOR CARD WITH 4Mb DRAM | 1 |
| F9350-21 | ACQUISITION MEMORY 2 X 50 K | 2 |
| F9354-31 | MAIN CARD ( FRONT END, ADC, TDC ) | , |
| F9300-4 | GPIB + RS232 INTERFACE CARD | 1 |
| F9354-5 | QUAD CHANNEL FRONT PANEL | , |
| M935X | MECHANICAL FOR 9354A | 1 |
| ACCESSORIES-9354 | ACCESSORIES FOR 9354A | 1 |

PART : 9354AM DESC : 500 MHz , QUAD CHANNEL $500 \mathrm{MS} / \mathrm{s}$ DSO, 250 KB

| COMPONENT | PART DESCRIPTION QTY P | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| 205750000 | IC AND-OR GATE ARRAY 16V8 | 1 |
| 554500001 | TAPPING SCREW W/U-THREAD | 2 |
| 709354AM16 | FRONT LABEL 9354AM | 1 |
| 709354913 | SERIAL NUMBER PLATE 9354AM | 1 |
| F9302-1-8 | PROCESSOR CARD WITH 8Mb DRAM | AM |
| F9350M-21 | ACQUISITION MEMORY 2 X 250 K | K 2 |
| F9354-31 | MAIN CARD ( FRONT END, ADC, TDC ) | TDC ) 1 |
| F9300-4 | GPIB + RS232 INTERFACE CARD | , |
| F9354-5 | QUAD CHANNEL FRONT PANEL | 1 |
| M935X | MECHANICAL FOR 9354AM | 1 |
| ACCESSORIES-9354 | ACCESSORIES FOR 9354AM | 1 |
| PART : 9354AL | DESC : 500 MHx , QUAD CHANNEL $500 \mathrm{MS} / \mathrm{s}$ DSO, 2 MB |  |
| COMPONENT | PART DESCRIPTION QTY P | QTY PER ASSEMBLY |
| 205750000 | IC AND-OR GATE ARRAY 16V8 | 1 |
| 554500001 | TAPPING SCREW W/U-THREAD | 2 |
| 709354AL16 | FRONT LABEL 9354AL | 1 |
| 709354913 | SERIAL NUMBER PLATE 9354AL | 1 |
| F9302-1-16 | PROCESSOR CARD WITH 16Mb DRAM | RAM 1 |
| F9350L-2 | ACQUISITION MEMORY 2 X 2 MB | 2 |
| F9354-31 | MAIN CARD ( FRONT END, ADC, TDC ) | TDC ) 1 |
| F9300-4 | GPIB + RS232 INTERFACE CARD | 1 |
| F9354-5 | QUAD CHANNEL FRONT PANEL |  |
| M935X | MECHANICAL FOR 9354AL | 1 |
| ACCESSORIES-9354 | ACCESSORIES FOR 9354AL | 1 |

PART : 9354T DESC : 500 MHz , QUAD CHANNEL $500 \mathrm{MS} / \mathrm{s}$ DSO, 100 KB


PART : 9354TM DESC : 500 MHz , QUAD CHANNEL $500 \mathrm{MS} / \mathrm{s}$ DSO, 500 KB

| COMPONENT | PART DESCRIPTION QTY | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| 205750000 | IC AND-OR GATE ARRAY 16V8 | 1 |
| 554500001 | TAPPING SCREW W/U-THREAD | 2 |
| 709354 TM16 | FRONT LABEL 9354TM | 1 |
| 709354913 | SERIAL NUMBER PLATE 9354TM | 1 |
| F9302-1-8 | PROCESSOR CARD WITH 8Mb DRAM | 1 |
| F9350TM-21 | ACQUISITION MEMORY 2 X 500 KB | 2 |
| F9354-31 | MAIN CARD ( FRONT END, ADC, TDC ) | 1 |
| F9300-4 | GPIB + RS232 INTERFACE CARD | 1 |
| F9354-5 | QUAD CHANNEL FRONT PANEL | 1 |
| M935X | MECHANICAL FOR 9354TM | 1 |
| ACCESSORIES-9354 | ACCESSORIES FOR 9354TM | 1 |

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-4


Page 8-5

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-6


Page 8-7

Section 8 Schematics, Layouts, Parts list


Page 8-8


Page 8-9

Sectiom 8 Schematics, Layouts, Parts list $\qquad$


Page 8-10
$\qquad$


Page 8-12


Page 8-13
$\qquad$



Sectiom 8 Schematics, Layouts, Parts list $\qquad$



Page 8-17

Section 8 Schematics, Layouts, Parts list

PART: F9302-1-X DESC : PROCESSOR with 4 Mb or 8Mb or 16Mb RAM

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | SM205010153 | SERAIL-B | A52 | SM205010103 | RASOIR-A |
| A2 | SM205010150 | CARTON-B | A53 | SM205701070 | SRAM 128Kx8 |
| A3 | SM206885245 | SM74ABT245 | A54 | SM205219256 | SM62256-8 |
| A4 | SM207178541 | SM74HCT541 | A55 | SM207260475 | SMBT475 |
| A5 | SM205219264 | SM6264-7 | A56 | SM206884623 | SM74ABT623 |
| A6 | SM205219264 | SM6264-7 | A57 | SM207972157 | SM74F157A |
| A7 | SM205010154 | SOLDAT-A | A58 | SM207972157 | SM74F157A |
| A8 | SM207178541 | SM74HCT541 | A59 | SM205010155 | TRICOT-A |
| A9 | SM206885245 | SM74ABT245 | A60 | SM208277770 | SMTL7770-5 |
| A 10 | SM205010200 | BUTANE-A | A61 | SM207972157 | SM74F157A |
| A12 | 453250072 | DRAMOD72 | A63 | SM205010101 | CONRAD-A |
| A13 | SM207178541 | SM74HCT541 | A64 | SM205219256 | SM62256-8 |
| A14 | SM207178541 | SM74HCT541 | A65 | SM206884623 | SM74ABT623 |
| A15 | SM207179244 | SM74HCT244 | A66 | SM200276068 | SM68HC6871 |
| A17 | SM205010151 | COPAIN-A | A67 | SM206884623 | SM74ABT623 |
| A18 | MNX401 | MNX401 | A68 | SM206884623 | SM74ABT623 |
| A19 | SM227132830 | SM68EC030FE | B1 | 312590070 | BAT-2.4V-50 |
| A20 | SM206884623 | SM74ABT623 | C1 | SM661207104 | SM.1uFS |
| A21 | SM207970139 | SM74F139 | C2 | SM661207103 | SM.01uFS |
| A22 | SM200178002 | SM74HCT02 | C3 | SM661207102 | SM.001uFS |
| A23 | SM200344174 | SM74HCT174 | C4 | SM661207104 | SM.luFS |
| A24 | SM200172138 | SM74F138 | C5 | SM661207104 | SM.1uFS |
| A25 | SM205219256 | SM62256-8-PS | C6 | SM661207103 | SM.01uFS |
| A26 | SM208780109 | SM1109-12 | C7 | SM661207103 | SM.01uFS |
| A27 | SM200178032 | SM74HCT32 | C8 | SM661207104 | SM.luFS |
| A28 | SM206884623 | SM74ABT623 | C9 | SM661207103 | SM.01uFS |
| A29 | SM206885245 | SM74ABT245 | C10 | SM661207103 | SM.01uFS |
| A30 | SM208780109 | SM1109-12 | C11 | SM661207103 | SM.01uFS |
| A32 | SM208470358 | SMLM358 | C12 | SM661207103 | SM.01uFS |
| A33 | SM205010257 | MINIME-A | C13 | SM661207104 | SM.1uFS |
| A34 | SM205010252 | MAXIME-A | C14 | SM661207104 | SM.1uFS |
| A35 | SM205010102 | INTIME-B | C15 | SM661207104 | SM.1uFS |
| A36 | SM207668882 | SM68882FN | C16 | SM661207103 | SM.01uFS |
| A39 | SM206884623 | SM74ABT623 | C17 | SM661207103 | SM.01uFS |
| A40 | EPROMi | EPROM | C18 | SM661207104 | SM.1uFS |
| A41 | SM205144001 | SM28F008SA | C19 | SM661207104 | SM.1uFS |
| A42 | SM206885245 | SM74ABT245 | C20 | SM661207103 | SM.01uFS |
| A43 | EPROM | EPROM | C21 | SM661207103 | SM.01uFS |
| A44 | SM206884623 | SM74ABT623 | C22 | SM661207104 | SM.1uFS |
| A45 | SM208680916 | SM88916 | C23 | SM661255101 | SM100pFS |
| A46 | SM205010156 | VISION-C | C24 | SM661207103 | SM.01uFS |
| A48 | 453250072 | DRAMOD72 | C25 | SM661255101 | SM100pFS |
| A49 | 205750000 | C16R6L | C26 | SM661207104 | SM.1uFS |
| A50 | SM201186574 | SM74AC574 | C27 | SM661207104 | SM.luFS |
| A51 | MDS410 | MDS410 | C28 | SM661207104 | SM.1uFS |

## PART: F9302-1-X

| Location | Part Number |
| :---: | :---: |
| C29 | SM666377226 |
| C30 | SM661207104 |
| C31 | SM666377226 |
| C32 | SM661207103 |
| C33 | SM661207103 |
| C34 | SM661207103 |
| C35 | SM661207104 |
| C36 | SM661207104 |
| C37 | SM666377226 |
| C38 | SM666327225 |
| C39 | SM666377226 |
| C40 | SM661207104 |
| C41 | SM661207104 |
| C42 | SM661207104 |
| C43 | SM661207103 |
| C44 | SM661207103 |
| C45 | SM661207103 |
| C46 | SM661207103 |
| C47 | SM661207103 |
| C48 | SM661207104 |
| C50 | SM661207104 |
| C51 | SM661207104 |
| C52 | SM661207103 |
| C53 | SM661207103 |
| C55 | SM661207104 |
| C56 | SM661207103 |
| C57 | SM661207104 |
| C58 | SM661207104 |
| C59 | SM661207104 |
| C60 | SM666217106 |
| C61 | SM661207104 |
| C62 | SM661207103 |
| C63 | SM661207103 |
| C64 | SM661207104 |
| C65 | SM661207103 |
| C66 | SM661207103 |
| C68 | SM661207104 |
| C69 | SM661207103 |
| C70 | SM661207103 |
| C71 | SM661207103 |
| C72 | SM661207103 |
| C73 | SM661207104 |
| C74 | SM661207104 |
| C75 | SM661207104 |
| C76 | SM661255180 |

DESC : PROCESSOR with 4 Mb or $\mathbf{~ M M b}$ or 16Mb RAM

| Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: |
| SM22uF-15V | C77 | SM661207104 | SM.1uFS |
| SM.1uFS | C78 | SM666217106 | SM10uF-10V |
| SM22uF-15V | C79 | SM661207103 | SM.01uFS |
| SM.01uFS | C80 | SM661207103 | SM.01uFS |
| SM.01uFS | C81 | SM661207103 | SM.01uFS |
| SM.01uFS | C82 | SM666377226 | SM22uF-15V |
| SM.1uFS | C83 | SM666377226 | SM22uF-15V |
| SM.luFS | C84 | SM661207104 | SM.luFS |
| SM22uF-15V | C85 | SM661255180 | SM18pFS |
| SM2.2uF-20V | C86 | SM661207103 | SM.01uFS |
| SM22uF-15V | C87 | SM661207104 | SM.1uFS |
| SM.1uFS | C88 | SM661207103 | SM. 01 uFS |
| SM.1uFS | C89 | SM661207103 | SM.01uFS |
| SM.1uFS | C90 | SM661207104 | SM.1uFS |
| SM. 01 uFS | C91 | SM661207103 | SM.01uFS |
| SM.01uFS | C92 | SM661207103 | SM.01uFS |
| SM.01uFS | C93 | SM661207103 | SM.01uFS |
| SM.01uFS | C94 | SM661207103 | SM.01uFS |
| SM.01uFS | J1 | 455410096 | 3x32-RA-M-SC |
| SM.1uFS | J2 | 454220096 | 3x32-ST-F-PF |
| SM.1uFS | J3 | 404500068 | 2x34-RA-CGS |
| SM.luFS | J4 | 454511020 | 2x10-RA-M-RE |
| SM.01uFS | J5 | 454511040 | $2 \times 20-\mathrm{RA}-\mathrm{M}-\mathrm{RE}$ |
| SM.01uFS | J6 | 454511014 | 2x7-RA-M-RE |
| SM.1uFS | J7 | 454223048 | 3x16-ST-F-PF |
| SM.01uFS | L1 | SM300056332 | SM33uH |
| SM.1uFS | L2 | SM300056332 | SM33uH |
| SM.1uFS | L3 | SM301502001 | SMBEAD1206 |
| SM.luFS | Q1 | SM280171005 | MTD10N05E |
| SM10uF-10V | Q2 | SM270330848 | BC848C |
| SM.1uFS | Q3 | SM270330848 | BC848C |
| SM.01uFS | R1 | SM652101103 | SM10KS |
| SM.01uFS | R2 | SM652101103 | SM10KS |
| SM.1uFS | R3 | SM652101103 | SM10KS |
| SM.01uFS | R4 | SM652101103 | SM10KS |
| SM.01uFS | R5 | SM652101103 | SM10KS |
| SM.1uFS | R6 | SM652101220 | SM22S |
| SM.01uFS | R7 | SM652101220 | SM22S |
| SM.01uFS | R8 | SM652101220 | SM22S |
| SM.01uFS | R9 | SM652101220 | SM22S |
| SM.01uFS | R10 | SM652101220 | SM22S |
| SM.1uFS | R11 | SM652101103 | SM10KS |
| SM.1uFS | R12 | SM652101102 | SM1KS |
| SM.1uFS | R13 | SM652101102 | SM1KS |
| SM18pFS | R14 | SM652101103 | SM10KS |

PART: F9302-1-X DESC : PROCESSOR with 4 Mb or 8Mb or 16Mb RAM

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R15 | SM652101820 | SM82S | R63 | SM652101104 | SMil00KS |
| R16 | SM652101103 | SM10KS | R65 | SM652101103 | SM10KS |
| R17 | SM652101220 | SM22S | R66 | SM652101102 | SM1KS |
| R18 | SM652101220 | SM22S | R67 | SM652101820 | SM82S |
| R19 | SM652101220 | SM22S | R68 | SM652101102 | SM1KS |
| R20 | SM652101220 | SM22S | R69 | SM652101102 | SM1KS |
| R21 | SM652101103 | SM10KS | R70 | SM652101102 | SM1KS |
| R22 | SM652101103 | SM10KS | R71 | SM652101102 | SM1KS |
| R23 | SM652101220 | SM22S | R72 | SM652101102 | SMIKS |
| R24 | SM652101103 | SM10KS | R73 | SM652101103 | SM10KS |
| R25 | SM652101511 | SM510S | R75 | SM652101101 | SM100S |
| R26 | SM652101103 | SM10KS | R76 | SM652101103 | SM10KS |
| R27 | SM652101103 | SM10KS | R77 | SM652101101 | SM100S |
| R28 | SM652101102 | SM1KS | R78 | SM652101101 | SM100S |
| R29 | SM652101103 | SM10KS | R79 | SM652101220 | SM22S |
| R30 | SM652101102 | SMIKS | R80 | SM652101103 | SM10KS |
| R31 | SM652101103 | SM10KS | R81 | SM652101103 | SM10KS |
| R32 | SM652101102 | SM1KS | R82 | SM652101470 | SM47S |
| R34 | SM652101102 | SM1KS | R83 | SM652101474 | SM470KS |
| R35 | SM652101103 | SM10KS | R84 | SM652101331 | SM330S |
| R36 | SM652101103 | SM10KS | R85 | SM652101470 | SM47S |
| R37 | SM652101220 | SM22S | R86 | SM652101103 | SM10KS |
| R38 | SM652101103 | SM10KS | R87 | SM652101102 | SM1KS |
| R39 | SM652101103 | SM10KS | R88 | SM654101000 | SM0S |
| R40 | SM652101103 | SM10KS | R89 | SM652101220 | SM22S |
| R41 | SM652101102 | SM1KS | R90 | SM652101220 | SM22S |
| R42 | SM652101102 | SM1KS | R91 | SM652101220 | SM22S |
| R43 | SM652101103 | SM10KS | R92 | SM652101220 | SM22S |
| R44 | SM652101102 | SM1KS | R93 | SM652101220 | SM22S |
| R45 | SM652101102 | SM1KS | R94 | SM652101220 | SM22S |
| R46 | SM652101103 | SM10KS | R95 | SM652101220 | SM22S |
| R47 | SM652101103 | SM10KS | R96 | SM652101220 | SM22S |
| R48 | SM652101102 | SM1KS | R97 | SM652101220 | SM22S |
| R49 | SM652101102 | SMIKS | R98 | SM652101220 | SM22S |
| R50 | SM652101220 | SM22S | R99 | SM652101103 | SM10KS |
| R51 | SM652101102 | SM1KS | R100 | SM652101332 | SM3.3KS |
| R52 | SM652101220 | SM22S | R101 | SM652101221 | SM220S |
| R53 | SM652101102 | SM1KS | R102 | SM652101102 | SM1KS |
| R54 | SM652101102 | SM1KS | R103 | SM652101152 | SM1.5KS |
| R55 | SM652101220 | SM22S | R104 | SM652101101 | SM100S |
| R57 | SM652101220 | SM22S | R105 | SM652101102 | SMIKS |
| R58 | SM652101102 | SM1KS | R106 | SM652101221 | SM220S |
| R59 | SM652101104 | SM100KS | R107 | SM652101820 | SM82S |
| R61 | SM652101220 | SM22S | R108 | SM652101152 | SM1.5KS |
| R62 | SM652101102 | SM1KS | R109 | SM652101154 | SM150KS |



Section 8 Schematics, Layouts, Parts list $\qquad$

PART: S9302-1

COMPONENT

309380016
312590070
400331020
404500068
453250072
454314016
454511014
454511020
454511040
455410096
550130108
552130101
719302103
MDS410
MNX401
SM200172138
SM200178002
SM200178032
SM200276068
SM200344174
SM201186574
SM205010101
SM205010102
SM205010103
SM205010150
SM205010151
SM205010153
SM205010154
SM205010155
SM205010156
SM205010200
SM205010252
SM205010257
SM205144001
SM205219256
SM205219264
SM205701070
SM206884623
SM206885245
SM207178541
SM207179244
SM207260475
SM207668882
SM207970139

| PART DESCRIPTION |  |
| :--- | :--- |
| -------------------------------------------1 |  |
| CRYSTAL OSC (PROGR) 16 MHZ | 1 |
| BATTERY LITHIUM 3V 70MAH | 1 |
| SOCKET IC ST DIP-20 | 1 |
| CONN BD TO BD 68 POS | 1 |
| CONN PC EDGE/SOLD TAIL 72 | 2 |
| HDR DIP SOLD TO MALE 16 | 1 |
| HDR SOLD TAIL/MALE/14/RT | 1 |
| HDR SOLD TAIL/MALE 20 | 1 |
| HDR SOLD TAIL/MALE/40/RT | 1 |
| CONN RT ANGLE MALE 96 S-CLIP | 1 |
| SCREW CYL HD M3X8 | 2 |
| NUT HEX M3 | 2 |
| PC BD PREASS'Y 9302-1 | 1 |
| IC RSDP GATE ARRAY MDS410 | 1 |
| ICMIN MAX GATEARR. MNX401 | 1 |
| IC 3-8 DECODER 74F138 | 1 |
| IC 2-INPUT NOR HCT02 | 1 |
| IC 2-IN OR HCT32 | 1 |
| IC RTC SERIAL 68HC68T1 | 1 |
| IC HEX D-FLOP HCT174 | 1 |
| IC OCTAL D-TYP FLOP 74AC574 | 1 |
| PROGRAMMED GAL CONRAD-A | 1 |
| PROGRAMMED GAL INTIME-B | 1 |
| PROGRAMMED GAL RASOIR-A | 1 |
| PROGRAMMED GAL CARTON-B | 1 |
| PROGRAMMED GAL COPAIN-A | 1 |
| PROGRAMMED GAL SERAIL-C | 1 |
| PROGRAMMED GAL SOLDAT-A | 1 |
| PROGRAMMED GAL TRICOT-A | 1 |
| PROGRAMMED GAL VISION-C | 1 |
| PROGRAMMED GAL BUTANE-A | 1 |
| PROGRAMMED GAL MAXIME-A | 1 |
| PROGRAMMED GAL MINIME-A | 1 |
| 8-MBIT FLASH MEM 28F008SA | 1 |
| IC 32K X 8 SRAM MS62256 | 3 |
| IC 8K X 8 SRAM 70 NSEC 6264 | 2 |
| IC 128KX8 STAT RAM 70 NS | 1 |
| IC OCTAL BUS TRANSCVR ABT623 | 8 |
| IC BUS TRANSCVR ABT245 | 4 |
| IC BUFFER/LINE DR HCT541 | 4 |
| IC BUF/LINE DRIV HCT244 | 1 |
| IC RAMDAC 256W 50MHZ BT475 | 1 |
| IC CO PROCESSOR 68882 | 1 |
| IC DECODER/DEMUX 74F139 |  |

PART: S9302-1

COMPONENT

SM207972157
SM208277770
SM208470358
SM208680916
SM208780109
SM227132830
SM232032814
SM236030099
SM256232013
SM270330848
SM280171005
SM300056332
SM301502001
SM310300406
SM311248000
SM652101101
SM652101102
SM652101103
SM652101104
SM652101106
SM652101152
SM652101153
SM652101154
SM652101220
SM652101221
SM652101331
SM652101332
SM652101470
SM652101474
SM652101511
SM652101820
SM654101000
SM661207102
SM661207103
SM661207104
SM661255101
SM661255180
SM666217106
SM666327225
SM666377226

DESC: PROCESSOR CARD without DRAM


Section 8 Schematics, Layouts, Parts list

Page 8-25

Section 8 Schematics, Layouts, Parts list



Page 8-27

Section 8 Schematics, Layouts, Parts list $\qquad$


$\qquad$


Page 8-30

$\qquad$



Sectiom 8 Schematics, Layouts, Parts list


PART: F9350-21 DESC: ACQUISITION MEMORY CARD 2x50K for 9354A \& 9354T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | SM205228863 | SRAM8Kx8-25 | A38 | SM205228863 | SRAM8Kx8-25 |
| A2 | SM205228863 | SRAM8Kx8-25 | A39 | SM205228863 | SRAM8Kx8-25 |
| A3 | SM205228863 | SRAM8Kx8-25 | A40 | SM205228863 | SRAM8Kx8-25 |
| A4 | SM205228863 | SRAM8Kx8-25 | C1 | SM661207103 | SM.01uFS |
| A5 | SM200179373 | SM74BCT373 | C2 | SM661207103 | SM.01uFS |
| A6 | SM200179373 | SM74BCT373 | C3 | SM661207103 | SM.01uFS |
| A7 | SM205228863 | SRAM8Kx8-25 | C4 | SM661207103 | SM.01uFS |
| A8 | SM205228863 | SRAM8Kx8-25 | C5 | SM661207103 | SM.01uFS |
| A9 | SM205228863 | SRAM8Kx8-25 | C6 | SM661207103 | SM.0luFS |
| A10 | SM205228863 | SRAM8Kx8-25 | C7 | SM661207103 | SM.01uFS |
| A11 | SM205228863 | SRAM8Kx8-25 | C8 | SM661207103 | SM.01uFS |
| A12 | SM205228863 | SRAM8Kx8-25 | C9 | SM661207103 | SM.01uFS |
| Al3 | SM205228863 | SRAM8Kx8-25 | C10 | SM661207103 | SM.01uFS |
| Al4 | SM205228863 | SRAM8Kx8-25 | C11 | SM661207103 | SM.01uFS |
| A15 | SM200179373 | SM74BCT373 | C12 | SM661207103 | SM.01uFS |
| A16 | SM200179373 | SM74BCT373 | C13 | SM661207103 | SM.01uFS |
| A17 | SM205228863 | SRAM8Kx8-25 | C14 | SM661207103 | SM.01uFS |
| A18 | SM205228863 | SRAM8Kx8-25 | C15 | SM661207103 | SM.01uFS |
| A19 | SM205228863 | SRAM8Kx8-25 | C16 | SM661207103 | SM.01uFS |
| A20 | SM205228863 | SRAM8Kx8-25 | C17 | SM661207103 | SM.01uFS |
| A21 | SM205228863 | SRAM8Kx8-25 | C18 | SM661207103 | SM.01uFS |
| A22 | SM205228863 | SRAM8Kx8-25 | C19 | SM661207103 | SM.01uFS |
| A23 | SM205228863 | SRAM8Kx8-25 | C20 | SM661207103 | SM.0luFS |
| A24 | SM205228863 | SRAM8Kx8-25 | C21 | SM661207103 | SM.01uFS |
| A25 | SM200179373 | SM74BCT373 | C22 | SM661207103 | SM.01uFS |
| A26 | SM200179373 | SM74BCT373 | C23 | SM661207103 | SM.01uFS |
| A27 | SM205228863 | SRAM8Kx8-25 | C24 | SM661207103 | SM.0luFS |
| A28 | SM205228863 | SRAM8Kx8-25 | C25 | SM661207103 | SM.01uFS |
| A29 | SM205228863 | SRAM8Kx8-25 | C26 | SM661207103 | SM.01uFS |
| A30 | SM205228863 | SRAM8Kx8-25 | C27 | SM661207103 | SM.01uFS |
| A31 | SM205228863 | SRAM8Kx8-25 | C28 | SM661207103 | SM.01uFS |
| A32 | SM205228863 | SRAM8Kx8-25 | C29 | SM661207103 | SM.01uFS |
| A33 | SM205228863 | SRAM8Kx8-25 | C30 | SM661207103 | SM.01uFS |
| A34 | SM205228863 | SRAM8Kx8-25 | C31 | SM661207103 | SM.01uFS |
| A35 | SM200179373 | SM74BCT373 | C32 | SM661207103 | SM.01uFS |
| A36 | SM200179373 | SM74BCT373 | J1 | 454110024 | $7 \times 4 \times 42$ |
| A37 | SM205228863 | SRAM8Kx8-25 |  |  |  |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: S9350-21 DESC: ACQUISITION MEMORY CARD 2x50K for 9354A \& 9354T

| COMPONENT | PART DESCRIPTION QTY PER ASSEMBLY |  |
| :---: | :---: | :---: |
| 145344109 | CAP ALU COMPACT AXIAL 10000UF | 2 |
| 454110024 | HDR 2MM PRESSFIT TO MALE 24 | 7 |
| 719350 M 21 | PC BD PREASS'Y 9350M-21 | 1 |
| SM200179373 | IC OCTAL LATCH 74BCT373 | 8 |
| SM205228863 | IC 8 K X 8 STATIC RAM 25 NS | 32 |
| SM661207103 | CAP CERA CHIP 20\% .01UF (0805) | 32 |
| PART: S9350M-21 DESC: ACQUISITION MEMORY CARD 2x250K for 9354AM \& 9354MT |  |  |
| COMPONENT | PART DESCRIPTION QTY | QTY PER ASSEMBLY |
| 145344109 | CAP ALU COMPACT AXIAL 10000UF | 2 |
| 454110024 | HDR 2MM PRESSFIT TO MALE 24 | 7 |
| 719350M21 | PC BD PREASS'Y 9350M-21 | 1 |
| SM200179373 | IC OCTAL LATCH 74BCT373 | 8 |
| SM205238256 | IC 32K X 8 SRAM 25NS | 32 |
| SM661207103 | CAP CERA CHIP 20\% .01UF (0805) | 32 |

PART: $\mathbb{F} 9350 \mathrm{~L}-2$ DESC: ACQUISITION MEMORY CARD $2 \times 2 \mathrm{M}$ for 9354AL

| COMPONENT | PART DESCRIPTION | QTY PER ASSEMBLY |
| :--- | :--- | :--- |
|  | ----------------------------------------------------------- |  |
| 145344109 | CAP ALU COMPACT AXIAL 10000UF | 2 |
| 454110024 | HDR 2MM PRESSFIT TO MALE 24 | 7 |
| $719350 L 23$ | PC BD PREASS'Y 9350L-2 | 1 |
| SM200179373 | IC OCTAL LATCH 74BCT373 | 4 |
| SM205232226 | IC 128KX8 SRAM 25 6226AWJ25 | 32 |
| SM207480843 | IC 9-BIT BUS INT LA 74BCT29843 | 4 |
| SM661207103 | CAP CERA CHIP 20\% .01UF (0805) | 32 |

PART: F9350M-21 DESC: ACQUISITION MEMORY CARD 2x250K for 9354AM \& 9354TM

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | SM205238256 | SRAM-25 | A38 | SM205238256 | SRAM-25 |
| A2 | SM205238256 | SRAM-25 | A39 | SM205238256 | SRAM-25 |
| A3 | SM205238256 | SRAM-25 | A40 | SM205238256 | SRAM-25 |
| A4 | SM205238256 | SRAM-25 | Cl | SM661207103 | SM.01uFS |
| A5 | SM200179373 | SM74BCT373 | C2 | SM661207103 | SM.01uFS |
| A6 | SM200179373 | SM74BCT373 | C3 | SM661207103 | SM.01uFS |
| A7 | SM205238256 | SRAM-25 | C4 | SM661207103 | SM.01uFS |
| A8 | SM205238256 | SRAM-25 | C5 | SM661207103 | SM.01uFS |
| A9 | SM205238256 | SRAM-25 | C6 | SM661207103 | SM.01uFS |
| A10 | SM205238256 | SRAM-25 | C7 | SM661207103 | SM.01uFS |
| A11 | SM205238256 | SRAM-25 | C8 | SM661207103 | SM.01uFS |
| A12 | SM205238256 | SRAM-25 | C9 | SM661207103 | SM.01uFS |
| A13 | SM205238256 | SRAM-25 | C10 | SM661207103 | SM.01uFS |
| A14 | SM205238256 | SRAM-25 | C11 | SM661207103 | SM.01uFS |
| A15 | SM200179373 | SM74BCT373 | C12 | SM661207103 | SM.01uFS |
| A16 | SM200179373 | SM74BCT373 | C13 | SM661207103 | SM.01uFS |
| A17 | SM205238256 | SRAM-25 | C14 | SM661207103 | SM.01uFS |
| A18 | SM205238256 | SRAM-25 | C15 | SM661207103 | SM.01uFS |
| A19 | SM205238256 | SRAM-25 | C16 | SM661207103 | SM.01uFS |
| A20 | SM205238256 | SRAM-25 | C17 | SM661207103 | SM.01uFS |
| A21 | SM205238256 | SRAM-25 | C18 | SM661207103 | SM.01uFS |
| A22 | SM205238256 | SRAM-25 | C19 | SM661207103 | SM.01uFS |
| A23 | SM205238256 | SRAM-25 | C20 | SM661207103 | SM.01uFS |
| A24 | SM205238256 | SRAM-25 | C21 | SM661207103 | SM.01uFS |
| A25 | SM200179373 | SM74BCT373 | C22 | SM661207103 | SM.01uFS |
| A26 | SM200179373 | SM74BCT373 | C23 | SM661207103 | SM.01uFS |
| A27 | SM205238256 | SRAM-25 | C24 | SM661207103 | SM.01uFS |
| A28 | SM205238256 | SRAM-25 | C25 | SM661207103 | SM.01uFS |
| A29 | SM205238256 | SRAM-25 | C26 | SM661207103 | SM.01uFS |
| A30 | SM205238256 | SRAM-25 | C27 | SM661207103 | SM.01uFS |
| A31 | SM205238256 | SRAM-25 | C28 | SM661207103 | SM.01uFS |
| A32 | SM205238256 | SRAM-25 | C29 | SM661207103 | SM.01uFS |
| A33 | SM205238256 | SRAM-25 | C30 | SM661207103 | SM.01uFS |
| A34 | SM205238256 | SRAM-25 | C31 | SM661207103 | SM.01uFS |
| A35 | SM200179373 | SM74BCT373 | C32 | SM661207103 | SM.01uFS |
| A36 | SM200179373 | SM74BCT373 | J1 | 454110024 | 7x 4x42-ST-M |

Section 8 Schematics, Layouts, Parts list $\qquad$



Section 8 Schematics, Layouts, Parts list



Section 8 Schematics, Layouts, Parts list



Page 8-43

Section 8 Schematics, Layouts, Parts list $\qquad$


$\qquad$



Page 8-47

Section 8 Schematics, Layouts, Parts list


PART: F9350L-2 DESC: ACQUISITION MEMORY CARD 2x2 M for 9354AL

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | SM205232226 | SRAM128Kx8-25 | A38 | SM205232226 | SRAM128Kx8-25 |
| A2 | SM205232226 | SRAM128Kx8-25 | A39 | SM205232226 | SRAM128Kx8-25 |
| A3 | SM205232226 | SRAM128Kx8-25 | A40 | SM205232226 | SRAM128Kx8-25 |
| A4 | SM205232226 | SRAM128Kx8-25 | C1 | SM661207103 | SM.01uFS |
| A5 | SM200179373 | SM74BCT373 | C2 | SM661207103 | SM.01uFS |
| A6 | SM200179373 | SM74BCT373 | C3 | SM661207103 | SM.01uFS |
| A7 | SM205232226 | SRAM128Kx8-25 | C4 | SM661207103 | SM.01uFS |
| A8 | SM205232226 | SRAM128Kx8-25 | C5 | SM661207103 | SM.01uFS |
| A9 | SM205232226 | SRAM128Kx8-25 | C6 | SM661207103 | SM.01uFS |
| A10 | SM205232226 | SRAM128Kx8-25 | C7 | SM661207103 | SM.01uFS |
| A11 | SM205232226 | SRAM128Kx8-25 | C8 | SM661207103 | SM.0luFS |
| A12 | SM205232226 | SRAM128Kx8-25 | C9 | SM661207103 | SM.01uFS |
| A13 | SM205232226 | SRAM128Kx8-25 | C10 | SM661207103 | SM.01uFS |
| A14 | SM205232226 | SRAM128Kx8-25 | C11 | SM661207103 | SM.01uFS |
| A15 | SM207480843 | SM74BCT29843 | C12 | SM661207103 | SM.01uFS |
| A16 | SM207480843 | SM74BCT29843 | C13 | SM661207103 | SM.01uFS |
| A17 | SM205232226 | SRAM128Kx8-25 | C14 | SM661207103 | SM.01uFS |
| A18 | SM205232226 | SRAM128Kx8-25 | C15 | SM661207103 | SM.01uFS |
| A19 | SM205232226 | SRAM128Kx8-25 | C16 | SM661207103 | SM.01uFS |
| A20 | SM205232226 | SRAM128Kx8-25 | C17 | SM661207103 | SM.01uFS |
| A21 | SM205232226 | SRAM128Kx8-25 | C18 | SM661207103 | SM.01uFS |
| A22 | SM205232226 | SRAM128Kx8-25 | C19 | SM661207103 | SM.01uFS |
| A23 | SM205232226 | SRAM128Kx8-25 | C20 | SM661207103 | SM.0luFS |
| A24 | SM205232226 | SRAM128Kx8-25 | C21 | SM661207103 | SM.01uFS |
| A25 | SM207480843 | SM74BCT29843 | C22 | SM661207103 | SM.01uFS |
| A26 | SM207480843 | SM74BCT29843 | C23 | SM661207103 | SM.01uFS |
| A27 | SM205232226 | SRAM128Kx8-25 | C24 | SM661207103 | SM.01uFS |
| A28 | SM205232226 | SRAM128Kx8-25 | C25 | SM661207103 | SM.01uFS |
| A29 | SM205232226 | SRAM128Kx8-25 | C26 | SM661207103 | SM.01uFS |
| A30 | SM205232226 | SRAM128Kx8-25 | C27 | SM661207103 | SM.01uFS |
| A31 | SM205232226 | SRAM128Kx8-25 | C28 | SM661207103 | SM.01uFS |
| A32 | SM205232226 | SRAM128Kx8-25 | C29 | SM661207103 | SM.01uFS |
| A33 | SM205232226 | SRAM128Kx8-25 | C30 | SM661207103 | SM.01uFS |
| A34 | SM205232226 | SRAM128Kx8-25 | C31 | SM661207103 | SM.0luFS |
| A35 | SM200179373 | SM74BCT373 | C32 | SM661207103 | SM.01uFS |
| A36 | SM200179373 | SM74BCT373 | J1 | 454110024 | 7x 4x42-ST-M- |

Section 8 Schematics, Layouts, Parts list


Page 8-50


Page 8-51

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-52


Section 8 Schematics, Layouts, Parts list $\qquad$



Page 8-55

Section 8 Schematics, Layouts, Parts list



Page 8-57

Section 8 Schematics, Layouts, Parts list $\qquad$



Page 8-59

Section 8 Schematics, Layouts, Parts list



Page 8-61

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-62


Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-64


Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-66

Page 8-67

Section 8 Schematics, Layouts, Parts list



Page 8-69

Section 8 Schematics, Layouts, Parts list


Page 8-70


Section 8 Schematics, Layouts, Parts list $\qquad$



Page 8-73

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-74


Page 8-75

Section 8 Schematics, Layouts, Parts list



Page 8-77

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-78


Page 8-79

Section 8 Schematics, Layouts, Parts list



Section 8 Schematics, Layouts, Parts list $\qquad$


Section 8 Schematics, Layouts, Parts list



Page 8-85

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-86


Section 8 Schematics, Layouts, Parts list


Page 8-88


Section 8 Schematics, Layouts, Parts list $\qquad$



Page 8-91

Section 8 Schematics, Layouts, Parts list



Page 8-93

Section 8 Schematics, Layouts, Parts list


Page 8-94


Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-96

Section 8 Schematics, Layouts, Parts list


Page 8-97

Section 8 Schematics, Layouts, Parts list



Page 8-99

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-100











## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| Al | SM205618165 | SM74HCT165 |
| A2 | SM200178138 | SM74HCT138 |
| A3 | SM200178030 | SM74HCT30 |
| A4 | SM200178138 | SM74HCT138 |
| A5 | SM200178138 | SM74HCT138 |
| A6 | SM206260858 | SMADC0858 |
| A7 | SM207970351 | SM74HC4351 |
| A8 | SM206070584 | SMPCD8584 |
| A9 | SM207978251 | SM74HCT251 |
| A10 | SM200178138 | SM74HCT138 |
| A11 | SM205108002 | SMPCF8582A |
| A12 | SM206885245 | SM74ABT245 |
| A13 | SM200178000 | SM74HCT00 |
| A14 | SM206885245 | SM74ABT245 |
| A15 | SM207171244 | SM74ABT244 |
| A16 | SM205045357 | CHEMIN-A |
| A17 | SM205045358 | ROUTE3-C |
| A18 | SM205045355 | RUELLE-A |
| A19 | SM205045356 | ARTERE-A |
| A20 | SM205045354 | AVENUE-A |
| A21 | SM205045350 | ROUTE1-A |
| A22 | SM205045352 | ROUTE2-B |
| A23 | SM205045351 | ROUTE2-A |
| A24 | SM207171244 | SM74ABT244 |
| A25 | SM207171244 | SM74ABT244 |
| A26 | MCL404 | MCL404 |
| A27 | SM207171244 | SM74ABT244 |
| A28 | SM205045300 | MIMOSA-A |
| A29 | SM207972157 | SM74F157A |
| A30 | SM207280703 | SMDAC703 |
| A31 | SM200169191 | SM74F191 |
| A32 | SM200169191 | SM74F191 |
| A33 | SM200169191 | SM74F191 |
| A34 | SM200169191 | SM74F191 |
| A35 | SM200169191 | SM74F191 |
| A36 | SM207970139 | SM74F139 |
| A37 | SM200278040 | SM74HCT4040 |
| A38 | SM207172241 | SM74ABT241 |
| A39 | SM206884623 | SM74ABT623 |
| A40 | SM206884623 | SM74ABT623 |
| A41 | SM207970139 | SM74F139 |
| A42 | SM200178374 | SM74HCT374 |
| A43 | SM200178074 | SM74HCT74 |
| A44 | SM200178273 | SM74HCT273 |
| A45 | SM208570805 | SM78L05 |


| Loca | Part N | Description |
| :---: | :---: | :---: |
| A200 | SM207770442 | SMDG442 |
| A201 | SM208470705 | SMAD705 |
| A202 | SM208870339 | SMLM339 |
| A203 | 208124003 | 7912 |
| A204 | 208123002 | 7812 |
| A205 | SM208470347 | SMLF347 |
| A206 | SM207770201 | SMDG201-PS |
| A207 | SM208470347 | SMLF347 |
| A208 | SM207770201 | SMDG201-PS |
| A209 | 208124003 | 7912 |
| A210 | 208123002 | 7812 |
| A211 | SM208470347 | SMLF347 |
| A212 | SM207770201 | SMDG201-PS |
| A213 | 208124002 | 7905 |
| A214 | SM208470347 | SMLF347 |
| A215 | SM207770201 | SMDG201-PS |
| A216 | 208122002 | 7805 |
| A400 | 208124003 | 7912 |
| A401. | SM201174011 | SM10EL11 |
| A402 | 208123002 | 7812 |
| A403 | 208122002 | 7805 |
| A404 | SM207172241 | SM74ABT241 |
| A405 | SM207172241 | SM74ABT241 |
| A406 | SM207970139 | SM74F139 |
| A407 | SM207970139 | SM74F139 |
| A408 | SM200172008 | SM74F08 |
| A409 | SM207961158 | SM10E158 |
| A410 | SM207961158 | SM10E158 |
| A502 | SM205618594 | SM74HC594-PS |
| A503 | SM205618594 | SM74HC594-PS |
| A504 | SM207288800 | SMDAC8800 |
| A505 | MDX416 | MDX416 |
| A506 | MDX416 | MDX416 |
| A507 | SM201174011 | SM10EL11 |
| A508 | SM207171244 | SM74ABT244 |
| A602 | SM205618594 | SM74HC594-PS |
| A603 | SM205618594 | SM74HC594-PS |
| A604 | SM207288800 | SMDAC8800 |
| A605 | MDX416 | MDX416 |
| A606 | MDX416 | MDX416 |
| A607 | SM201174011 | SM10EL11 |
| A608 | SM207171244 | SM74ABT244 |
| A700 | SM205618594 | SM74HC594-PS |
| A701 | SM200178002 | SM74HCT02 |
| A702 | SM207978251 | SM74HCT251 |

Section 8 Schematics, Layouts, Parts list

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A703 | SM201274033 | SM10EL33 | A1000 | SM208870339 | SMLM339 |
| A704 | SM206970457 | SM10E457 | A1001 | SM208470705 | SMAD705 |
| A705 | SM206970457 | SM10E457 | A1002 | SM207770201 | SMDG201-PS |
| A706 | SM201164104 | SM10E104 | A1003 | MFE409 | MFE409 |
| A707 | SM205618594 | SM74HC594-PS | A1004 | SM289772003 | SMULN2003 |
| A708 | SM200178273 | SM74HCT273 | A1005 | SM205618594 | SM74HC594-PS |
| A709 | SM200167102 | SM10H102 | A1006 | SM205618594 | SM74HC594-PS |
| A710 | SM201174011 | SM10EL11 | A1007 | SM208470347 | SMLF347 |
| A711 | SM201164131 | SM10E131 | A1500 | HSH416 | HSH416 |
| A712 | SM207960157 | SM10E157 | A1501 | SM201166195 | SM10E195 |
| A713 | SM201570016 | SM10EL16 | A1502 | SM201174005 | SM10EL05 |
| A714 | SM200167164 | SM10H164 | A1503 | SM201174011 | SM10EL11 |
| A716 | SM206970457 | SM10E457 | A1504 | SM201174005 | SM10EL05 |
| A717 | SM201174001 | SM10EL01 | A1505 | SM207260718 | SMTDA8718 |
| A718 | SM201164131 | SM10E131 | A1506 | SM201174011 | SM10EL11 |
| A723 | SM201274032 | SM10EL32 | A1900 | SM205701070 | SRAM128Kx8-70 |
| A724 | MST412 | MST412 | A1901 | SM205701070 | SRAM128Kx8-70 |
| A726 | SM207360125 | SM10125 | A1902 | SM206884623 | SM74ABT623 |
| A727 | SM200169016 | SM10E016 | A1903 | SM206884623 | SM74ABT623 |
| A728 | SM200178002 | SM74HCT02 | A2000 | SM208870339 | SMLM339 |
| A730 | SM201164167 | SM10E167 | A2001 | SM208470705 | SMAD705 |
| A734 | SM207360125 | SM10125 | A2002 | SM207770201 | SMDG201-PS |
| A735 | SM200169016 | SM10E016 | A2003 | MFE409 | MFE409 |
| A736 | SM208030245 | SMSL3245 | A2004 | SM289772003 | SMULN2003 |
| A737 | SM205618594 | SM74HC594-PS | A2005 | SM205618594 | SM74HC594-PS |
| A739 | SM208470353 | SMLF353 | A2006 | SM205618594 | SM74HC594-PS |
| A740 | SM208570078 | SM78L12 | A2007 | SM208470347 | SMLF347 |
| A741 | SM201274032 | SM10EL32 | A2500 | HSH416 | HSH416 |
| A742 | SM200169016 | SM10E016 | A2501 | SM201166195 | SM10E195 |
| A743 | SM201274032 | SM10EL32 | A2502 | SM201174005 | SM10EL05 |
| A744 | SM208880079 | SM79L12 | A2503 | SM201174011 | SM10EL11 |
| A745 | SM201174001 | SM10EL01 | A2504 | SM201174005 | SM10EL05 |
| A746 | SM207360125 | SM10125 | A2505 | SM207260718 | SMTDA8718 |
| A748 | SM200167102 | SM10H102 | A2506 | SM201174011 | SM10EL11 |
| A749 | MTB411 | MTB411 | A2900 | SM205701070 | SRAM128Kx8-70 |
| A750 | SM200167131 | SM10H131 | A2901 | SM205701070 | SRAM128Kx8-70 |
| A751 | SM207367125 | SM10H125 | A2902 | SM206884623 | SM74ABT623 |
| A756 | SM207367124 | SM10H124 | A2903 | SM206884623 | SM74ABT623 |
| A757 | SM200178074 | SM74HCT74 | A3000 | SM208870339 | SMLM339 |
| A758 | SM200167131 | SM10H131 | A3001 | SM208470705 | SMAD705 |
| A759 | SM207170367 | SM74HC367 | A3002 | SM207770201 | SMDG201-PS |
| A760 | SM201174031 | SM10EL31 | A3003 | MFE409 | MFE409 |
| A761 | SM205618594 | SM74HC594-PS | A3004 | SM289772003 | SMULN2003 |
| A765 | SM201174031 | SM10EL31 | A3005 | SM205618594 | SM74HC594-PS |
| A769 | SM207367125 | SM10H125 | A3006 | SM205618594 | SM74HC594-PS |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A3007 | SM208470347 | SMLF347 | A5014 | MTR408 | MTR408 |
| A3500 | HSH416 | HSH416 | A5015 | MTR408 | MTR408 |
| A3501 | SM201166195 | SM10E195 | A5016 | SM205618594 | SM74HC594-PS |
| A3502 | SM201174005 | SM10EL05 | A5017 | MTR408 | MTR408 |
| A3503 | SM201174011 | SM10EL11 | A5018 | SM201570016 | SM10EL16-PS |
| A3504 | SM201174005 | SM10EL05 | A5019 | SM205618594 | SM74HC594-PS |
| A3505 | SM207260718 | SMTDA8718 | A5020 | SM205618594 | SM74HC594-PS |
| A3506 | SM201174011 | SM10EL11 | A5021 | SM207978153 | SM74HCT153-PS |
| A3900 | SM205701070 | SRAM128Kx8-70 | A5022 | SM208870339 | SMLM339 |
| A3901 | SM205701070 | SRAM128Kx8-70 | A6000 | SM208470353 | SMLF353 |
| A3902 | SM206884623 | SM74ABT623 | C1 | SM661207103 | SM.01uFS |
| A3903 | SM206884623 | SM74ABT623 | C2 | SM661207104 | SM.1uFS |
| A4000 | SM208870339 | SMLM339 | C3 | SM661207103 | SM.01uFS |
| A4001 | SM208470705 | SMAD705 | C4 | SM661207103 | SM.0luFS |
| A4002 | SM207770201 | SMDG201-PS | C5 | SM661207103 | SM.01uFS |
| A4003 | MFE409 | MFE409 | C6 | SM661255181 | SM180pFS |
| A4004 | SM289772003 | SMULN2003 | C7 | SM661207104 | SM. 1 uFS |
| A4005 | SM205618594 | SM74HC594-PS | C8 | SM661207103 | SM.01uFS |
| A4006 | SM205618594 | SM74HC594-PS | C9 | SM661207103 | SM.01uFS |
| A4007 | SM208470347 | SMLF347 | C10 | SM661207103 | SM.01uFS |
| A4500 | HSH416 | HSH416 | C11 | SM661207103 | SM.01uFS |
| A4501 | SM201166195 | SM10E195 | C12 | SM661207103 | SM.01uFS |
| A4502 | SM201174005 | SM10EL05 | C13 | SM666247106 | SM10uF-25V |
| A4503 | SM201174011 | SM10EL11 | C14 | SM661207103 | SM.01uFS |
| A4504 | SM201174005 | SM10EL05 | C15 | SM661207103 | SM.01uFS |
| A4505 | SM207260718 | SMTDA8718 | C16 | SM661207103 | SM.01uFS |
| A4506 | SM201174011 | SM10EL11 | C17 | SM666247106 | SM10uF-25V |
| A4900 | SM205701070 | SRAM128Kx8-70 | C18 | SM661207103 | SM.01uFS |
| A4901 | SM205701070 | SRAM128Kx8-70 | C19 | SM661207103 | SM.01uFS |
| A4902 | SM206884623 | SM74ABT623 | C20 | SM661207103 | SM.0luFS |
| A4903 | SM206884623 | SM74ABT623 | C21 | SM661207103 | SM.01uFS |
| A5000 | SM208470705 | SMAD705 | C22 | SM661207103 | SM.01uFS |
| A5001 | SM208971881 | SMLM1881 | C23 | SM666377226 | SM22uF-15V |
| A5002 | SM208470037 | SMOP37 | C24 | SM666377226 | SM22uF-15V |
| A5003 | SM208470351 | SMLF351 | C25 | SM661207103 | SM.01uFS |
| A5004 | SM207770403 | SMDG403-PS | C26 | SM661207103 | SM.01uFS |
| A5005 | SM207970508 | SMDG508-PS | C27 | SM661207103 | SM.01uFS |
| A5006 | SM205618594 | SM74HC594-PS | C28 | SM661207103 | SM.01uFS |
| A5007 | SM207770442 | SMDG442-PS | C29 | SM661207103 | SM.01uFS |
| A5008 | SM205618594 | SM74HC594-PS | C30 | SM661207103 | SM.01uFS |
| A5009 | SM205618594 | SM74HC594-PS | C31 | SM661207103 | SM.01uFS |
| A5010 | MTR408 | MTR408 | C32 | SM661207103 | SM.01uFS |
| A5011 | MTR408 | MTR408 | C33 | SM661207103 | SM.01uFS |
| A5012 | SM205618594 | SM74HC594-PS | C34 | SM661207103 | SM.01uFS |
| A5013 | SM205618594 | SM74HC594-PS | C35 | SM661207103 | SM.01uFS |

Sectiom 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| C36 | SM661207103 | SM.01uFS |
| C37 | SM661207103 | SM.01uFS |
| C38 | SM661207103 | SM.01uFS |
| C39 | SM661207103 | SM.01uFS |
| C40 | SM661207103 | SM.01uFS |
| C41 | SM661207104 | SM.luFS |
| C42 | SM661207103 | SM.01uFS |
| C43 | SM661207103 | SM.01uFS |
| C44 | SM661207103 | SM.01uFS |
| C45 | SM661207104 | SM.1uFS |
| C46 | 146544471 | 470uF-25V |
| C47 | SM666247106 | SM10uF-25V |
| C48 | SM666247106 | SM10uF-25V |
| C49 | SM661207103 | SM.01uFS |
| C50 | SM666327225 | SM2.2uF-20V |
| C51 | SM661207104 | SM.1uFS |
| C52 | SM661207104 | SM.1uFS |
| C53 | SM661207104 | SM.1uFS |
| C54 | SM661207104 | SM.1uFS |
| C55 | SM661207104 | SM.1uFS |
| C56 | SM661207104 | SM.1uFS |
| C57 | SM661207104 | SM.1uFS |
| C58 | SM661207104 | SM.1uFS |
| C60 | SM666327225 | SM2.2uF-20V |
| C200 | SM661207103 | SM.01uFS |
| C201 | SM661207103 | SM.01uFS |
| C202 | SM661207104 | SM.1uFS |
| C203 | SM661207103 | SM.01uFS |
| C204 | SM666327225 | SM2.2uF-20V |
| C205 | SM661207103 | SM.01uFS |
| C206 | SM661207103 | SM.01uFS |
| C207 | SM661726103 | SM.01uF-NPO |
| C208 | SM661207103 | SM.01uFS |
| C209 | SM661207103 | SM.01uFS |
| C210 | SM661207103 | SM. $01 u F S$ |
| C211 | SM661726103 | SM.01uF-NPO |
| C212 | SM661726103 | SM.01uF-NPO |
| C213 | SM666327225 | SM2.2uF-20V |
| C214 | SM666327225 | SM2.2uF-20V |
| C215 | SM666327225 | SM2.2uF-20V |
| C216 | SM661726103 | SM.01uF-NPO |
| C217 | SM661726103 | SM.01uF-NPO |
| C218 | SM661207103 | SM.01uFS |
| C219 | SM661726103 | SM.01uF-NPO |
| C220 | SM661726103 | SM.01uF-NPO |


| Location | Part Number | Description |
| :--- | :--- | :--- |
| -------------------- | ----------- |  |
| C221 | SM666327225 | SM2.2uF-20V |
| C222 | SM666327225 | SM2.2uF-20V |
| C223 | SM666327225 | SM2.2uF-20V |
| C224 | SM661726103 | SM.01uF-NPO |
| C225 | SM661726103 | SM.01uF-NPO |
| C226 | SM661207103 | SM.01uFS |
| C227 | SM661207103 | SM.01uFS |
| C228 | SM661726103 | SM.01uF-NPO |
| C229 | SM661726103 | SM.01uF-NPO |
| C230 | SM661207103 | SM.01uFS |
| C231 | SM666327225 | SM2.2uF-20V |
| C232 | SM661726103 | SM.01uF-NPO |
| C233 | SM661726103 | SM.01uF-NPO |
| C234 | SM661207103 | SM.01uFS |
| C235 | SM661207103 | SM.01uFS |
| C236 | SM666327225 | SM2.2uF-20V |
| C237 | SM661726103 | SM.01uF-NPO |
| C238 | SM661726103 | SM.01uF-NPO |
| C239 | SM661207103 | SM.01uFS |
| C240 | SM666327225 | SM2.2uF-20V |
| C241 | SM666327225 | SM2.2uF-20V |
| C242 | SM666327225 | SM2.2uF-20V |
| C247 | SM661207103 | SM.01uFS |
| C248 | SM661207103 | SM.01uFS |
| C249 | SM661207103 | SM.01uFS |
| C250 | SM661207103 | SM.01uFS |
| C251 | SM661207103 | SM.01uFS |
| C252 | SM661207103 | SM.01uFS |
| C253 | SM661207103 | SM.01uFS |
| C254 | SM661207103 | SM.01uFS |
| C255 | SM661207103 | SM.01uFS |
| C256 | SM661207103 | SM.01uFS |
| C257 | SM661207103 | SM.01uFS |
| C258 | SM661207103 | SM.01uFS |
| C400 | 146574227 | 220uF-25V |
| C401 | 146554476 | 47uF-25V |
| C402 | SM661207103 | SM.01uFS |
| C403 | 146554476 | 47uF-25V |
| C404 | 146574227 | 220uF-25V |
| C405 | 146574227 | 220uF-25V |
| C406 | SM661207103 | SM.01uFS |
| C407 | SM661207103 | SM.01uFS |
| C408 | SM661207103 | SM.01uFS |
| SM661207103 | SM.01uFS |  |
| SM661207103 | SM.01uFS |  |
| CM |  |  |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| C412 | SM661207103 | SM.01uFS |
| C413 | SM661207103 | SM.01uFS |
| C508 | SM661207103 | SM.01uFS |
| C510 | SM661207103 | SM.01uFS |
| C511 | SM661207103 | SM.01uFS |
| C512 | SM661207103 | SM.01uFS |
| C513 | SM661207103 | SM.01uFS |
| C516 | SM661207103 | SM.01uFS |
| C520 | SM661207104 | SM.1uFS |
| C521 | SM661207104 | SM.1uFS |
| C522 | SM661207104 | SM.1uFS |
| C523 | SM661207104 | SM.1uFS |
| C524 | SM661207104 | SM.1uFS |
| C525 | SM661207104 | SM.1uFS |
| C526 | SM661207104 | SM.1uFS |
| C527 | SM661207104 | SM.1uFS |
| C528 | SM661207103 | SM.01uFS |
| C529 | SM661207103 | SM.01uFS |
| C530 | SM661207103 | SM.01uFS |
| C531 | SM661207104 | SM.luFS |
| C532 | SM661207104 | SM.1uFS |
| C533 | SM661207104 | SM.1uFS |
| C534 | SM661207104 | SM.1uFS |
| C535 | SM661207104 | SM.luFS |
| C536 | SM661207104 | SM.luFS |
| C537 | SM661207104 | SM.1uFS |
| C538 | SM661207104 | SM.1uFS |
| C539 | SM661207103 | SM.01uFS |
| C542 | SM661207103 | SM.0luFS |
| C543 | SM661207103 | SM.01uFS |
| C544 | SM661207103 | SM.01uFS |
| C545 | SM661207104 | SM.1uFS |
| C546 | SM661207104 | SM.1uFS |
| C547 | SM661207104 | SM.1uFS |
| C548 | SM661207104 | SM.1uFS |
| C549 | SM661207104 | SM.1uFS |
| C608 | SM661207103 | SM.oluFS |
| C610 | SM661207103 | SM.01uFS |
| C611 | SM661207103 | SM.01uFS |
| C612 | SM661207103 | SM.01uFS |
| C613 | SM661207103 | SM.01uFS |
| C616 | SM661207103 | SM.01uFS |
| C620 | SM661207104 | SM.1uFS |
| C621 | SM661207104 | SM.1uFS |
| C622 | SM66120710 | SM.luFS |


| Location | Part Number | Description |
| :--- | :--- | :--- |
| --------------------------- |  |  |
| C623 | SM661207104 | SM.1uFS |
| C624 | SM661207104 | SM.1uFS |
| C625 | SM661207104 | SM.1uFS |
| C626 | SM661207104 | SM.1uFS |
| C627 | SM661207104 | SM.1uFS |
| C628 | SM661207103 | SM.01uFS |
| C629 | SM661207103 | SM.01uFS |
| C630 | SM661207103 | SM.01uFS |
| C631 | SM661207104 | SM.1uFS |
| C632 | SM661207104 | SM.1uFS |
| C633 | SM661207104 | SM.1uFS |
| C634 | SM661207104 | SM.1uFS |
| C635 | SM661207104 | SM.1uFS |
| C636 | SM661207104 | SM.1uFS |
| C637 | SM661207104 | SM.1uFS |
| C638 | SM661207104 | SM.1uFS |
| C639 | SM661207103 | SM.01uFS |
| C640 | SM661207103 | SM.01uFS |
| C641 | SM661207103 | SM.01uFS |
| C642 | SM661207103 | SM.01uFS |
| C643 | SM661207103 | SM.01uFS |
| C644 | SM661207103 | SM.01uFS |
| C645 | SM661207104 | SM.1uFS |
| C646 | SM661207104 | SM.1uFS |
| C647 | SM661207104 | SM.1uFS |
| C648 | SM661207104 | SM.1uFS |
| C649 | SM661207104 | SM.1uFS |
| C700 | SM661207103 | SM.01uFS |
| C702 | SM661207103 | SM.01uFS |
| C703 | SM661207103 | SM.01uFS |
| C704 | SM661207103 | SM.01uFS |
| C706 | SM158240200 | SM0.6-2.5pF |
| C708 | SM661255560 | SM56pFS |
| C710 | SM661207103 | SM.01uFS |
| C711 | SM661207103 | SM.01uFS |
| C713 | SM661207103 | SM.01uFS |
| C714 | SM661207103 | SM.01uFS |
| C716 | SM661207103 | SM.01uFS |
| C718 | SM661207103 | SM.01uFS |
| C719 | SM661207103 | SM.01uFS |
| C720 | SM661207103 | SM.01uFS |
| C721 | SM661207103 | SM.01uFS |
| SM661207103 | SM.01uFS |  |
| SM661207103 | SM.01uFS |  |
| SM.01uFS |  |  |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| ation | Part Number | Description |
| :---: | :---: | :---: |
| C725 | SM661207103 | SM.01uFS |
| C728 | SM661207103 | SM.01uFS |
| C730 | SM661207103 | SM.01uFS |
| C732 | SM661207103 | SM.01uFS |
| C733 | SM661255560 | SM56pFS |
| C734 | SM661207103 | SM.01uFS |
| C735 | SM661207103 | SM.01uFS |
| C737 | SM661207103 | SM.0luFS |
| C738 | SM661207103 | SM.01uFS |
| C739 | SM661207103 | SM.01uFS |
| C744 | SM661207103 | SM.01uFS |
| C745 | SM661207103 | SM.01uFS |
| C752 | SM661207103 | SM.01uFS |
| C753 | SM661207103 | SM.01uFS |
| C754 | SM661207103 | SM.01uFS |
| C756 | SM661207103 | SM.01uFS |
| C758 | SM661255056 | SM5.6pFS |
| C760 | SM661207103 | SM.01uFS |
| C761 | SM661207103 | SM.01uFS |
| C765 | SM661255101 | SM100pFS |
| C768 | SM661207103 | SM.01uFS |
| C769 | SM661207103 | SM.01uFS |
| C770 | SM661207103 | SM.01uFS |
| C771 | SM661207103 | SM.01uFS |
| C773 | SM661207103 | SM.01uFS |
| C774 | SM661207103 | SM.01uFS |
| C776 | SM661207103 | SM.01uFS |
| C777 | SM661207103 | SM.01uFS |
| C778 | SM661446474 | SM.47uF |
| C779 | SM666327225 | SM2.2uF-20V |
| C780 | SM661207103 | SM.01uFS |
| C781 | SM661207103 | SM.01uFS |
| C 782 | SM661207103 | SM.01uFS |
| C783 | SM661207103 | SM.01uFS |
| C784 | SM661207103 | SM.0luFS |
| C785 | SM666327225 | SM2.2uF-20V |
| C786 | SM661446474 | SM.47uF |
| C787 | SM661207103 | SM.01uFS |
| C788 | SM661207103 | SM.01uFS |
| C789 | SM661207103 | SM.01uFS |
| C790 | SM661207103 | SM.01uFS |
| C793 | SM661207103 | SM.01uFS |
| C795 | SM661207103 | SM.01uFS |
| C797 | SM661207103 | SM.01uFS |
| C798 | SM661207103 | SM.01uFS |

Location Part Number Description
C799 ---------------------- ------------C800 SM661207103 SM.01uFS C801 SM661207103 SM.01uFS C802 SM661207103 SM.01uFS C803 SM661207103 SM.01uFS C807 SM661207103 SM.01uFS C809 SM661207103 SM.01uFS C813 SM661207103 SM.01uFS C814 SM661207103 SM.01uFS C820 SM661207103 SM.01uFS C823 SM661207103 SM.01uFS C824 SM661207103 SM.01uFS C825 SM661207103 SM.01uFS C826 SM661207103 SM.01uFS C827 SM661207103 SM.01uFS C828 SM661207103 SM.01uFS C829 SM661255180 SM18pFS C830 SM661207103 SM.01uFS C1000 SM661207104 SM.1uFS C1001 SM661207103 SM.01uFS C1002 SM661207103 SM.01uFS C1003 SM661207104 SM.1uFS C1004 SM661207104 SM.1uFS C1005 SM661255056 SM5.6pFS C1006 SM661207103 SM.01uFS C1007 SM661207103 SM.01uFS C1008 SM661207104 SM.luFS C1009 158849012 5-15pF-S C1010 SM661256120 SM12pFS C1012 SM661255820 SM82pFS C1014 SM661207103 SM.01uFS C1015 SM661495561 SM560pFS-500V
C1016 SM661207104 SM.1uFS C1017 SM661207103 SM.01uFS C1018 SM661207103 SM.01uFS C1019 SM661207103 SM.01uFS C1020 SM661207223 SM.022uFS C1021 SM661207103 SM.01uFS C1022 SM661207103 SM.01uFS C1023 SM661207104 SM.1uFS C1024 SM661207103 SM.01uFS C1025 SM661207103 SM.01uFS C1026 SM661207103 SM.01uFS C1027 SM661255056 SM5.6pFS C1028 SM661207103 SM.01uFS

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| on | Part Number | Description |
| :---: | :---: | :---: |
| 1029 | 158849009 | . |
| C1030 | SM661255330 | SM33pFS |
| C1031 | SM661207103 | SM.01uFS |
| C1032 | SM661207103 | SM.01uFS |
| C1033 | SM661207103 | SM.01uFS |
| C1034 | SM661207103 | SM.01uFS |
| C1036 | SM661207103 | SM.01uFS |
| C1037 | SM661207103 | SM.01uFS |
| C1038 | SM661207103 | SM.01uFS |
| C1039 | SM661207103 | SM.01uFS |
| C1040 | SM661207103 | SM.01uFS |
| C1041 | SM661255101 | SM100pFS |
| C1042 | SM661255101 | SM100pFS |
| C1043 | SM661207103 | SM.01uFS |
| C1044 | SM661207103 | SM.01uFS |
| C1046 | SM661207103 | SM.01uFS |
| C1047 | SM661207103 | SM.01uFS |
| C1048 | SM661207103 | SM.01uFS |
| C1049 | SM661207103 | SM.01uFS |
| C1050 | SM661207103 | SM.01uFS |
| C1051 | SM661207103 | SM.01uFS |
| C1052 | SM666327225 | SM2.2uF-20V |
| C1053 | SM666327225 | SM2.2uF-20V |
| C1054 | SM666327225 | SM2.2uF-20V |
| C1055 | SM666327225 | SM2.2uF-20V |
| C1056 | SM666327225 | SM2.2uF-20V |
| C1057 | SM661255121 | SM120pFS |
| C1058 | SM661255121 | SM120pFS |
| C1059 | SM661255180 | SM18pFS |
| C1060 | SM661255180 | SM18pFS |
| C1061 | SM661207103 | SM.01uFS |
| C1500 | SM661207103 | SM.01uFS |
| C1501 | SM661207103 | SM.01uFS |
| C1502 | SM661207103 | SM.01uFS |
| C1503 | SM661207103 | SM.01uFS |
| C1504 | SM661207103 | SM.01uFS |
| C1505 | SM661207103 | SM.01uFS |
| C1506 | SM661255152 | SM1500pFS |
| C1507 | SM661207103 | SM.01uFS |
| C1508 | SM661207103 | SM.01uFS |
| C1509 | SM661207103 | SM.01uFS |
| C1510 | SM661207103 | SM.01uFS |
| C1511 | SM661207103 | SM.01uFS |
| C1512 | SM661207103 | SM.01uFS |
| C1513 | SM661207103 | SM.01uFS |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| C1514 | SM661207103 | SM.01uFS |
| C1515 | SM661207103 | SM.0luFS |
| C1518 | SM661205472 | SM.0047uFS |
| C1519 | SM661207104 | SM.luFS |
| C1520 | 158849010 | $1-5 \mathrm{pF}-\mathrm{S}$ |
| C1521 | SM661207103 | SM.01uFS |
| C1522 | SM661207104 | SM.1uFS |
| C1523 | SM661207104 | SM.1uFS |
| C1524 | SM661207104 | SM.1uFS |
| C1525 | SM661207104 | SM.1uFS |
| C1526 | SM661207104 | SM.1uFS |
| C1527 | SM661207104 | SM.1uFS |
| C1528 | SM661207104 | SM.luFS |
| C1529 | SM661207104 | SM.luFS |
| C1530 | SM661207104 | SM.luFS |
| C1531 | SM661207104 | SM.1uFS |
| C1532 | SM661207104 | SM.1uFS |
| C1533 | SM661207104 | SM.1uFS |
| C1537 | SM661207104 | SM.1uFS |
| C1540 | SM661207104 | SM.1uFS |
| C1541 | SM661207104 | SM.1uFS |
| C1542 | SM661207104 | SM.1uFS |
| C1543 | SM661207104 | SM.1uFS |
| C1544 | SM661207104 | SM.1uFS |
| C1545 | SM661207104 | SM.1uFS |
| C1547 | SM661207104 | SM.1uFS |
| C1548 | SM661207102 | SM.001uFS |
| C1549 | SM661207102 | SM.001uFS |
| C1552 | SM661207103 | SM.01uFS |
| C1553 | SM158240202 | SM2.5-10pF |
| C1554 | SM661207103 | SM.0luFS |
| C1555 | SM661255033 | SM3.3pFS |
| C1900 | SM661207103 | SM.01uFS |
| C1901 | SM661207103 | SM.01uFS |
| C1902 | SM661207103 | SM.01uFS |
| C1903 | SM661207103 | SM.01uFS |
| C2000 | SM661207104 | SM.1uFS |
| C2001 | SM661207103 | SM.01uFS |
| C2002 | SM661207103 | SM.01uFS |
| C2003 | SM661207104 | SM.1uFS |
| C2004 | SM661207104 | SM.luFS |
| C2005 | SM661255056 | SM5.6pFS |
| C2006 | SM661207103 | SM.01uFS |
| C2007 | SM661207103 | SM.01uFS |
| C2008 | SM661207104 | SM.1uFS |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD (FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C2009 | 158849012 | 5-15pF-S | C2058 | SM661255121 | SM120pFS |
| C2010 | SM661256120 | SM12pFS | C2059 | SM661255180 | SM18pFS |
| C2012 | SM661255820 | SM82pFS | C2060 | SM661255180 | SM18pFS |
| C2014 | SM661207103 | SM.01uFS | C2061 | SM661207103 | SM.01uFS |
| C2015 | SM661495561 | SM560pFS-500V | C2500 | SM661207103 | SM.01uFS |
| C2016 | SM661207104 | SM.1uFS | C2501 | SM661207103 | SM.01uFS |
| C2017 | SM661207103 | SM.01uFS | C2502 | SM661207103 | SM.01uFS |
| C2018 | SM661207103 | SM.01uFS | C2503 | SM661207103 | SM.01uFS |
| C2019 | SM661207103 | SM.01uFS | C2504 | SM661207103 | SM.01uFS |
| C2020 | SM661207223 | SM.022uFS | C2505 | SM661207103 | SM.01uFS |
| C2021 | SM661207103 | SM.01uFS | C2506 | SM661255152 | SM1500pFS |
| C2022 | SM661207103 | SM.01uFS | C2507 | SM661207103 | SM.01uFS |
| C2023 | SM661207104 | SM.1uFS | C2508 | SM661207103 | SM.01uFS |
| C2024 | SM661207103 | SM.01uFS | C2509 | SM661207103 | SM.01uFS |
| C2025 | SM661207103 | SM.01uFS | C2510 | SM661207103 | SM.01uFS |
| C2026 | SM661207103 | SM.01uFS | C2511 | SM661207103 | SM.01uFS |
| C2027 | SM661255056 | SM5.6pFS | C2512 | SM661207103 | SM.01uFS |
| C2028 | SM661207103 | SM.01uFS | C2513 | SM661207103 | SM.01uFS |
| C2029 | 158849009 | 0.5-2.5pF-S | C2514 | SM661207103 | SM.0luFS |
| C2030 | SM661255330 | SM33pFS | C2515 | SM661207103 | SM.01uFS |
| C2031 | SM661207103 | SM.01uFS | C2518 | SM661205472 | SM.0047uFS |
| C2032 | SM661207103 | SM.01uFS | C2519 | SM661207104 | SM.luFS |
| C2033 | SM661207103 | SM.01uFS | C2520 | 158849010 | 1-5pF-S |
| C2034 | SM661207103 | SM.01uFS | C2521 | SM661207103 | SM.01uFS |
| C2036 | SM661207103 | SM.01uFS | C2522 | SM661207104 | SM.1uFS |
| C2037 | SM661207103 | SM.01uFS | C2523 | SM661207104 | SM.1uFS |
| C2038 | SM661207103 | SM.01uFS | C2524 | SM661207104 | SM.1uFS |
| C2039 | SM661207103 | SM.01uFS | C2525 | SM661207104 | SM.luFS |
| C2040 | SM661207103 | SM.01uFS | C2526 | SM661207104 | SM.1uFS |
| C2041 | SM661255101 | SM100pFS | C2527 | SM661207104 | SM.1uFS |
| C2042 | SM661255101 | SM100pFS | C2528 | SM661207104 | SM.1uFS |
| C2043 | SM661207103 | SM.01uFS | C2529 | SM661207104 | SM.1uFS |
| C2044 | SM661207103 | SM.01uFS | C2530 | SM661207104 | SM.1uFS |
| C2046 | SM661207103 | SM.01uFS | C2531 | SM661207104 | SM.1uFS |
| C2047 | SM661207103 | SM.01uFS | C2532 | SM661207104 | SM.luFS |
| C2048 | SM661207103 | SM.01uFS | C2533 | SM661207104 | SM.1uFS |
| C2049 | SM661207103 | SM.01uFS | C2537 | SM661207104 | SM.1uFS |
| C2050 | SM661207103 | SM.01uFS | C2540 | SM661207104 | SM.1uFS |
| C2051 | SM661207103 | SM.01uFS | C2541 | SM661207104 | SM.1uFS |
| C2052 | SM666327225 | SM2.2uF-20V | C2542 | SM661207104 | SM.1uFS |
| C2053 | SM666327225 | SM2.2uF-20V | C2543 | SM661207104 | SM.luFS |
| C2054 | SM666327225 | SM2.2uF-20V | C2544 | SM661207104 | SM.luFS |
| C2055 | SM666327225 | SM2.2uF-20V | C2545 | SM661207104 | SM.luFS |
| C2056 | SM666327225 | SM2.2uF-20V | C2547 | SM661207104 | SM.1uFS |
| C2057 | SM661255121 | SM120pFS | C2548 | SM661207102 | SM.001uFS |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C2549 | SM661207102 | SM.001uFS | C3039 | SM661207103 | SM.01uFS |
| C2552 | SM661207103 | SM.01uFS | C3040 | SM661207103 | SM.C1uFS |
| C2553 | SM158240202 | SM2.5-10pF | C3041 | SM661255101 | SM100pFS |
| C2554 | SM661207103 | SM.01uFS | C3042 | SM661255101 | SM100pFS |
| C2555 | SM661255033 | SM3.3prs | C3043 | SM661207103 | SM.01uFS |
| C2900 | SM661207103 | SM.01uFS | C3044 | SM661207103 | SM.01uFS |
| C2901 | SM661207103 | SM.01uFS | C3046 | SM661207103 | SM.01uFS |
| C2902 | SM661207103 | SM.01uFS | C3047 | SM661207103 | SM.C1uFS |
| C2903 | SM661207103 | SM.01uFS | C3048 | SM661207103 | SM.01uFS |
| C3000 | SM661207104 | SM.1uFS | C3049 | SM661207103 | SM.01uFS |
| C3001 | SM661207103 | SM.01uFS | C3050 | SM661207103 | SM.01uFS |
| C3002 | SM661207103 | SM. 01 uFS | C3051 | SM661207103 | SM.01uFS |
| C3003 | SM661207104 | SM.1uFS | C3052 | SM666327225 | SM2.2uF-20V |
| C3004 | SM661207104 | SM.luFS | C3053 | SM666327225 | SM2.2uF-20V |
| C3005 | SM661255056 | SM5.6pFS | C3054 | SM666327225 | SM2.2uF-20V |
| C3006 | SM661207103 | SM.01uFS | C3055 | SM666327225 | SM2.2uF-20V |
| C3007 | SM661207103 | SM.01uFS | C3056 | SM666327225 | SM2.2uF-20V |
| C3008 | SM661207104 | SM.1uFS | C3057 | SM661255121 | SM120pFS |
| C3009 | 158849012 | 5-15pF-S | C3058 | SM661255121 | SM120pFS |
| C3010 | SM661256120 | SM12pFS | C3059 | SM661255180 | SM18pFS |
| C3012 | SM661255820 | SM82pFS | C3060 | SM661255180 | SM18pFS |
| C3014 | SM661207103 | SM.01uFS | C3061 | SM661207103 | SM.01uFS |
| C3015 | SM661495561 | SM560pFS-500V | C3500 | SM661207103 | SM.01uFS |
| C3016 | SM661207104 | SM.1uFS | C3501 | SM661207103 | SM.01uFS |
| C3017 | SM661207103 | SM.01uFS | C3502 | SM661207103 | SM.01uFS |
| C3018 | SM661207103 | SM. 01 uFS | C3503 | SM661207103 | SM.01uFS |
| C3019 | SM661207103 | SM.01uFS | C3504 | SM661207103 | SM.0luFS |
| C3020 | SM661207223 | SM.022uFS | C3505 | SM661207103 | SM.01uFS |
| C3021 | SM661207103 | SM. 01 uFS | C3506 | SM661255152 | SM1500pFS |
| C3022 | SM661207103 | SM.01uFS | C3507 | SM661207103 | SM.01uFS |
| C3023 | SM661207104 | SM.1uFS | C3508 | SM661207103 | SM.01uFS |
| C3024 | SM661207103 | SM.01uFS | C3509 | SM661207103 | SM.01uFS |
| C3025 | SM661207103 | SM. 01 uFS | C3510 | SM661207103 | SM.01uFS |
| C3026 | SM661207103 | SM. 01 uFS | C3511 | SM661207103 | SM.01uFS |
| C3027 | SM661255056 | SM5.6pFS | C3512 | SM661207103 | SM.01uFS |
| C3028 | SM661207103 | SM.01uFS | C3513 | SM661207103 | SM.01uFS |
| C3029 | 158849009 | 0.5-2.5pF-S | C3514 | SM661207103 | SM.01uFS |
| C3030 | SM661255330 | SM33pFS | C3515 | SM661207103 | SM.01uFS |
| C3031 | SM661207103 | SM.01uFS | C3518 | SM661205472 | SM.0047uFS |
| C3032 | SM661207103 | SM.01uFS | C3519 | SM661207104 | SM.1uFS |
| C3033 | SM661207103 | SM. 01 uFS | C3520 | 158849010 | $1-5 \mathrm{pF}-\mathrm{S}$ |
| C3034 | SM661207103 | SM.01uFS | C3521 | SM661207103 | SM.01uFS |
| C3036 | SM661207103 | SM.01uFS | C3522 | SM661207104 | SM.1uFS |
| C3037 | SM661207103 | SM.01uFS | C3523 | SM661207104 | SM.1uFS |
| C3038 | SM661207103 | SM.01uFS | C3524 | SM661207104 | SM.1uFS |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD (FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C3525 | SM661207104 | SM.1uFS | C4020 | SM661207223 | SM.022uFS |
| C3526 | SM661207104 | SM.1uFS | C4021 | SM661207103 | SM.01uFS |
| C3527 | SM661207104 | SM.1uFS | C4022 | SM661207103 | SM.01uFS |
| C3528 | SM661207104 | SM.1uFS | C4023 | SM661207104 | SM.1uFS |
| C3529 | SM661207104 | SM. 1 uFS | C4024 | SM661207103 | SM.01uFS |
| C3530 | SM661207104 | SM.1uFS | C4025 | SM661207103 | SM.01uFS |
| C3531 | SM661207104 | SM.1uFS | C4026 | SM661207103 | SM.01uFS |
| C3532 | SM661207104 | SM.1uFS | C4027 | SM661255056 | SM5.6pFS |
| C3533 | SM661207104 | SM.1uFS | C4028 | SM661207103 | SM.01uFS |
| C3537 | SM661207104 | SM.luFS | C4029 | 158849009 | 0.5-2.5pF-S |
| C3540 | SM661207104 | SM.1uFS | C4030 | SM661255330 | SM33pFS |
| C3541 | SM661207104 | SM.1uFS | C4031 | SM661207103 | SM.01uFS |
| C3542 | SM661207104 | SM.1uFS | C4032 | SM661207103 | SM.01uFS |
| C3543 | SM661207104 | SM.1uFS | C4033 | SM661207103 | SM.01uFS |
| C3544 | SM661207104 | SM.1uFS | C4034 | SM661207103 | SM.01uFS |
| C3545 | SM661207104 | SM.1uFS | C4036 | SM661207103 | SM.01uFS |
| C3547 | SM661207104 | SM.1uFS | C4037 | SM661207103 | SM.01uFS |
| C3548 | SM661207102 | SM.001uFS | C4038 | SM661207103 | SM.01uFS |
| C3549 | SM661207102 | SM.001uFS | C4039 | SM661207103 | SM.01uFS |
| C3552 | SM661207103 | SM.01uFS | C4040 | SM661207103 | SM.01uFS |
| C3553 | SM158240202 | SM2.5-10pF | C4041 | SM661255101 | SM100pFS |
| C3554 | SM661207103 | SM.01uFS | C4042 | SM661255101 | SM100pFS |
| C3555 | SM661255033 | SM3.3pFS | C4043 | SM661207103 | SM.01uFS |
| C3900 | SM661207103 | SM.01uFS | C4044 | SM661207103 | SM.01uFS |
| C3901 | SM661207103 | SM.01uFS | C4046 | SM661207103 | SM.01uFS |
| C3902 | SM661207103 | SM.01uFS | C4047 | SM661207103 | SM.01uFS |
| C3903 | SM661207103 | SM.01uFS | C4048 | SM661207103 | SM.01uFS |
| C4000 | SM661207104 | SM.1uFS | C4049 | SM661207103 | SM.01uFS |
| C4001 | SM661207103 | SM.01uFS | C4050 | SM661207103 | SM.01uFS |
| C4002 | SM661207103 | SM.01uFS | C4051 | SM661207103 | SM.01uFS |
| C4003 | SM661207104 | SM.luFS | C4052 | SM666327225 | SM2.2uF-20V |
| C4004 | SM661207104 | SM.1uFS | C4053 | SM666327225 | SM2.2uF-20V |
| C4005 | SM661255056 | SM5.6pFS | C4054 | SM666327225 | SM2.2uF-20V |
| C4006 | SM661207103 | SM.01uFS | C4055 | SM666327225 | SM2.2uF-20V |
| C4007 | SM661207103 | SM.01uFS | C4056 | SM666327225 | SM2.2uF-20V |
| C4008 | SM661207104 | SM.1uFS | C4057 | SM661255121 | SM120pFS |
| C4009 | 158849012 | 5-15pF-S | C4058 | SM661255121 | SM120pFS |
| C4010 | SM661256120 | SM12pFS | C4059 | SM661255180 | SM18pFS |
| C4012 | SM661255820 | SM82pFS | C4060 | SM661255180 | SM18pFS |
| C4014 | SM661207103 | SM.01uFS | C4061 | SM661207103 | SM.0luFS |
| C4015 | SM661495561 | SM560pFS-500V | C4500 | SM661207103 | SM.01uFS |
| C4016 | SM661207104 | SM. 1 uFS | $\mathrm{C} 450{ }^{\text {i }}$ | SM661207103 | SM.01uFS |
| C4017 | SM661207103 | SM.01uFS | C4502 | SM661207103 | SM.01uFS |
| C4018 | SM661207103 | SM.01uFS | C4503 | SM661207103 | SM.01uFS |
| C4019 | SM661207103 | SM.01uFS | C4504 | SM661207103 | SM.01uFS |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| ocation | Part Number | Description |
| :---: | :---: | :---: |
| C4505 | SM661207103 | SM.01uFS |
| C4506 | SM661255152 | SM1500pF |
| C4507 | SM661207103 | SM.01uFS |
| C4508 | SM661207103 | SM.01uFS |
| C4509 | SM661207103 | SM.01uFS |
| C4510 | SM661207103 | SM.01uFS |
| C4511 | SM661207103 | SM.01uFS |
| C4512 | SM661207103 | SM.01uFS |
| C4513 | SM661207103 | SM.01uFS |
| C4514 | SM661207103 | SM.01uFS |
| C4515 | SM661207103 | SM.01uFS |
| C4518 | SM661205472 | SM.0047u |
| C4519 | SM661207104 | SM.1uFS |
| C4520 | 158849010 | 1-5pF-S |
| C4521 | SM661207103 | SM.01uFS |
| C4522 | SM661207104 | SM.1uFS |
| C4523 | SM661207104 | SM.1uFS |
| C4524 | SM661207104 | SM.1uFS |
| C4525 | SM661207104 | SM.1uFS |
| C4526 | SM661207104 | SM.1uFS |
| C4527 | SM661207104 | SM.luFS |
| C4528 | SM661207104 | SM.luFS |
| C4529 | SM661207104 | SM.1uFS |
| C4530 | SM661207104 | SM.1uFS |
| C4531 | SM661207104 | SM.1uFS |
| C4532 | SM661207104 | SM.1uFS |
| C4533 | SM661207104 | SM.luFS |
| C4537 | SM661207104 | SM.1uFS |
| C4540 | SM661207104 | SM.luFS |
| C4541 | SM661207104 | SN. 1 uFS |
| C4542 | SM661207104 | SM.1uFS |
| C4543 | SM661207104 | SM.luFS |
| C4544 | SM661207104 | SM.1uFS |
| C4545 | SM661207104 | SM.luFS |
| C4547 | SM661207104 | SM.1uFS |
| C4548 | SM661207102 | SM.001uFS |
| C4549 | SM661207102 | SM.001uFS |
| C4552 | SM661207103 | SM.01uFS |
| C4553 | SM158240202 | SM2.5-10pF |
| C4554 | SM661207103 | SM.01uFS |
| C4555 | SM661255033 | SM3.3pFS |
| C4900 | SM661207103 | SM.01uFS |
| C4901 | SM661207103 | SM. 01 uFS |
| C4902 | SM661207103 | SM.01uFS |
| C4903 | SM661207103 | SM.01uFS |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| C5000 | SM661207104 | SM.1uFS |
| C5001 | SM661207104 | SM.1uFS |
| C5002 | SM661255010 | SM1pFS |
| C5003 | SM661207103 | SM.01uFS |
| C5004 | SM661207103 | SM.01uFS |
| C5005 | SM661255027 | SM2.7pFS |
| C5006 | SM661207103 | SM.01uFS |
| C5007 | SM661207103 | SM.01uFS |
| C5008 | SM661207103 | SM.01uFS |
| C5009 | SM661207103 | SM.01uFS |
| C5010 | SM661255033 | SM3.3pFS |
| C5011 | SM661207103 | SM.01uFS |
| C5012 | SM661495561 | SM560pFS-500V |
| C5013 | SM661207103 | SM.01uFS |
| C5014 | SM661207104 | SM.1uFS |
| C5015 | SM661207103 | SM.01uFS |
| C5016 | SM661207103 | SM.01uFS |
| C5017 | SM661207103 | SM.01uFS |
| C5018 | SM661255821 | SM820pFS |
| C5019 | SM666327225 | SM2.2uF-20V |
| C5020 | SM661207104 | SM.1uFS |
| C5021 | SM661207103 | SM.01uFS |
| C5022 | SM661207103 | SM.01uFS |
| C5023 | SM661207103 | SM.01uFS |
| C5024 | SM661207103 | SM.01uFS |
| C5025 | SM661207103 | SM.01uFS |
| C5026 | SM661207103 | SM.01uFS |
| C5027 | SM661255100 | SM10pFS |
| C5028 | SM661255330 | SM33pFS |
| C5029 | SM661207103 | SM.01uFS |
| C5030 | SM661207103 | SM.01uFS |
| C5031 | SM661255150 | SM15pFS |
| C5032 | SM661255270 | SM27pFS |
| C5033 | SM661255270 | SM27pFS |
| C5034 | SM661207103 | SM.01uFS |
| C5035 | SM666427105 | SMluF-16V |
| C5036 | SM661207103 | SM.01uFS |
| C 5037 | SM661207103 | SM.01uFS |
| C5038 | SM666427105 | SM1uF-16V |
| C5039 | SM661207103 | SM.01uFS |
| C5040 | SM661207103 | SM.01uFS |
| C5041 | SM661207103 | SM.01uFS |
| C 5042 | SM661207103 | SM.01uFS |
| C5043 | SM661207103 | SM.01uFS |
| C5044 | SM661207103 | SM.01uFS |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| C5045 | SM661207103 | SM |
| C5046 | SM661207103 | SM.01uFS |
| C5047 | SM661207103 | SM.01uFS |
| C5048 | SM661207103 | SM.01uFS |
| C5049 | SM661205822 | SM.0082uFS |
| C5050 | SM661205822 | SM.0082uFS |
| C5051 | SM661255270 | SM27pFS |
| C5052 | SM661207103 | SM.01uFS |
| C5053 | SM661207103 | SM.01uFS |
| C5054 | SM661255270 | SM27pFS |
| C5055 | SM661207103 | SM.01uFS |
| C5056 | SM661207103 | SM.01uFS |
| C5057 | SM666427105 | SM1uF-16V |
| C5058 | SM666427105 | SM1uF-16V |
| C5059 | SM661207103 | SM.01uFS |
| C5060 | SM661207103 | SM.01uFS |
| C5061 | SM661207103 | SM.01uFS |
| C5062 | SM661207103 | SM.01uFS |
| C5063 | SM661207103 | SM.01uFS |
| C5064 | SM661207103 | SM.01uFS |
| C5065 | SM661207103 | SM.01uFS |
| C5066 | SM661207103 | SM.01uFS |
| C5067 | SM661207103 | SM.01uFS |
| C5068 | SM661205822 | SM.0082uFS |
| C5069 | SM661207103 | SM.01uFS |
| C5070 | SM661205822 | SM.0082uFS |
| C5071 | SM661207103 | SM.01uFS |
| C5072 | SM661207103 | SM.01uFS |
| C5073 | SM661207103 | SM.01uFS |
| C5074 | SM666327225 | SM2.2uF-20V |
| C5075 | SM666327225 | SM2.2uF-20V |
| C5076 | SM661255270 | SM27pFS |
| C5077 | SM661207103 | SM.01uFS |
| C5078 | SM661255101 | SM100pFS |
| C5079 | SM666427105 | SM1uF-16V |
| C5081 | SM661255150 | SM15pFS |
| C5082 | SM661255022 | SM2.2pFS |
| C5083 | SM661207103 | SM.01uFS |
| C5084 | SM661207103 | SM.01uFS |
| C5085 | SM661207103 | SM. 01 uFS |
| C5086 | SM661207103 | SM.01uFS |
| C5087 | SM661207103 | SM.01uFS |
| C5088 | SM661207103 | SM.01uFS |
| C5089 | SM661207103 | SM.01uFS |
| C5090 | SM661207103 | SM.01uFS |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| C5091 | SM661207103 | SM.01uFS |
| C5092 | SM666327225 | SM2.2uF-20V |
| C5093 | SM661205822 | SM.0082uFS |
| C5094 | SM661207103 | SM.01uFS |
| C5095 | SM666327225 | SM2.2uF-20V |
| C5096 | SM661207103 | SM.01uFS |
| C5097 | SM661207103 | SM.01uFS |
| C5098 | SM661207103 | SM.01uFS |
| C5100 | SM661207103 | SM.01uFS |
| C5101 | SM661207103 | SM.01uFS |
| C5103 | SM661207104 | SM.1uFS |
| C5104 | SM661207104 | SM.1uFS |
| C5106 | SM661207103 | SM.01uFS |
| C5107 | SM661255100 | SM10pFS |
| C5108 | SM661207103 | SM.01uFS |
| C5110 | SM666377226 | SM22uF-15V |
| C5111 | SM666377226 | SM22uF-15V |
| C6000 | SM666257336 | SM33uF-16V |
| C6001 | SM666257336 | SM33uF-16V |
| C6003 | SM666327225 | SM2.2uF-20V |
| C6004 | SM661207103 | SM.01uFS |
| C6005 | SM661207103 | SM.01uFS |
| C6006 | SM666327225 | SM2.2uF-20V |
| C6007 | SM661207103 | SM.01uFS |
| C6008 | SM661255102 | SM1000pFS |
| C6009 | SM661255056 | SM5.6pFS |
| C6010 | SM666257336 | SM33uF-16V |
| C6011 | SM666257336 | SM33uF-16V |
| J1 | 454220096 | 3x32-ST-F-PF |
| J2 | 454115014 | 1x14-ST-M-FLPN |
| J3 | 454390002 | 1x2-ST-M-PL |
| J500 | 454111024 | 4x42-ST-F-PF |
| J600 | 454111024 | 4x42-ST-F-PF |
| J710 | SM454120025 | SM1x12-13-ST-F |
| J1000 | 7093 XXP 01 | 21 BNC-93XX |
| J2000 | 7093XXP01 | 21 BNC-93XX |
| J3000 | 7093XXP01 | 21 BNC-93XX |
| J4000 | $7093 \times X P 01$ | 21 BNC-93XX |
| J5000 | 7093 XXP 01 | 21 BNC-93XX |
| J6000 | 7093 XXP 01 | 21 BNC-93XX |
| L200 | SM301502001 | SMBEAD1206 |
| L201 | SM301502001 | SMBEAD 1206 |
| L202 | SM301502001 | SMBEAD1206 |
| L203 | SM301502001 | SMBEAD 1206 |
| L204 | SM301502001 | SMBEAD1206 |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| ion | Part Number | Description |
| :---: | :---: | :---: |
| L205 | SM301502001 | SMBEAD1206 |
| L206 | SM301502001 | SMBEAD1206 |
| L207 | SM301502001 | SMBEAD1206 |
| L208 | SM301502001 | SMBEAD1206 |
| L700 | SM300446150 | SM.015uH |
| L1000 | SM300486104 | SM100uH |
| L1001 | SM300486104 | SM100uH |
| L1002 | SN3301502001 | SMBEAD1206 |
| L1003 | SM301502001 | SMBEAD 1206 |
| L1004 | SM301502001 | SMBEAD1206 |
| L1005 | SM301502001 | SMBEAD1206 |
| L1006 | SM301502001 | SMBEAD1206 |
| L1500 | SM669080181 | SMBEAD0805 |
| L1501 | SM669080181 | SMBEAD0805 |
| L1502 | SM654101000 | SM0S |
| L2000 | SM300486104 | SM100uH |
| L2001 | SM300486104 | SM100uH |
| L2002 | SM301502001 | SMBEAD1206 |
| L2003 | SM301502001 | SMBEAD1206 |
| L2004 | SM301502001 | SMBEAD1206 |
| L2005 | SM301502001 | SMBEAD1206 |
| L2006 | SM301502001 | SMBEAD1206 |
| L2500 | SM669080181 | SMBEAD0805 |
| L2501 | SM669080181 | SMBEAD0805 |
| L2502 | SM654101000 | SM0S |
| L3000 | SM300486104 | SM100uH |
| L3001 | SM300486104 | SM100uH |
| L3002 | SM301502001 | SMBEAD1206 |
| L3003 | SM301502001 | SMBEAD1206 |
| L3004 | SM301502001 | SMBEAD1206 |
| L3005 | SM301502001 | SMBEAD1206 |
| L3006 | SM301502001 | SMBEAD1206 |
| L3500 | SM669080181 | SMBEAD0805 |
| L3501 | SM669080181 | SMBEAD0805 |
| L3502 | SM654101000 | SM0S |
| L4000 | SM300486104 | SM100uH |
| L4001 | SM300486104 | SM100uH |
| L4002 | SM301502001 | SMBEAD1206 |
| L4003 | SM301502001 | SMBEAD1206 |
| L4004 | SM301502001 | SMBEAD1206 |
| L4005 | SM301502001 | SMBEAD1206 |
| L4006 | SM301502001 | SMBEAD1206 |
| L4500 | SM669080181 | SMBEAD0805 |
| L4501 | SM669080181 | SMBEAD0805 |
| L4502 | SM654101000 | SM0S |


| Location | Part Number | Description |
| :--- | :--- | :--- |
| L5000 | SM301502001 | SMBEAD1206 |
| L5001 | SM301502001 | SMBEAD1206 |
| L5002 | SM301502001 | SMBEAD1206 |
| L5003 | SM301502001 | SMBEAD1206 |
| L6000 | SM301502001 | SMBEAD1206 |
| L6001 | SM301502001 | SMBEAD1206 |
| Q510 | SM275330858 | BC858C |
| Q511 | SM275330858 | BC858C |
| Q512 | SM275330858 | BC858C |
| Q513 | SM275330858 | BC858C |
| Q514 | SM275330858 | BC858C |
| Q516 | SM275330858 | BC858C |
| Q517 | SM275330858 | BC858C |
| Q518 | SM275330858 | BC858C |
| Q610 | SM275330858 | BC858C |
| Q611 | SM275330858 | BC858C |
| Q612 | SM275330858 | BC858C |
| Q613 | SM275330858 | BC858C |
| Q614 | SM275330858 | BC858C |
| Q616 | SM275330858 | BC858C |
| Q617 | SM275330858 | BC858C |
| Q618 | SM275330858 | BC858C |
| Q700 | SM275030092 | BFT92 |
| Q701 | SM270030020 | BFS20 |
| Q702 | SM207130025 | BFT25A |
| Q703 | SM275330858 | BC858C |
| Q704 | SM275330858 | BC858C |
| Q705 | SM275030092 | BFT92 |
| Q706 | SM275030092 | BFT92 |
| Q707 | SM275030092 | BFT92 |
| Q1000 | SM280120416 | MMBF4416 |
| Q1001 | SM270130092 | BFR92A |
| Q1002 | SM270130092 | BFR92A |
| Q1003 | SM275040092 | BFT92R |
| Q1004 | SM289240062 | BCV62 |
| Q1005 | SM275030092 | BFT92 |
| Q1006 | SM275030093 | BFT93 |
| Q1008 | SM270130092 | BFR92A |
| Q1009 | SM270130092 | BFR92A |
| Q1010 | SM270130092 | BFR92A |
| Q1011 | SM275330858 | BC858C |
| Q1012 | SM270130092 | BFR92A |
| Q1013 | SM270130092 | BFR92A |
| Q1015 | SM270130092 | BFR92A |
| SM270130092 | BFR92A |  |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T:

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q1500 | SM289240062 | BCV62 | Q4010 | SM270130092 | BFR92A |
| Q1503 | SM289240061 | BCV61 | Q4011 | SM275330858 | BC858C |
| Q2000 | SM280120416 | MMBF4416 | Q4012 | SM270130092 | BFR92A |
| Q2001 | SM270130092 | BFR92A | Q4013 | SM270130092 | BFR92A |
| Q2002 | SM270130092 | BFR92A | Q4014 | SM270130092 | BFR92A |
| Q2003 | SM275040092 | BFT92R | Q4015 | SM270130092 | BFR92A |
| Q2004 | SM289240062 | BCV62 | Q4500 | SM289240062 | BCV62 |
| Q2005 | SM275030092 | BFT92 | Q4503 | SM289240061 | BCV61 |
| Q2006 | SM275030093 | BFT93 | Q5000 | SM270130092 | BFR92A |
| Q2008 | SM270130092 | BFR92A | Q5001 | SM280120416 | MMBF4416 |
| Q2009 | SM270130092 | BFR92A | Q5002 | SM270130093 | BFR93A |
| Q2010 | SM270130092 | BFR92A | Q5003 | SM270140092 | BFR92AR |
| Q2011 | SM275330858 | BC858C | Q5004 | SM270130092 | BFR92A |
| Q2012 | SM270130092 | BFR92A | Q5005 | SM270130092 | BFR92A |
| Q2013 | SM270130092 | BFR92A | Q6000 | SM270130093 | BFR93A |
| Q2014 | SM1270130092 | BFR92A | Q6001 | SM275030550 | BF550 |
| Q2015 | SM270130092 | BFR92A | Q6002 | SM270130092 | BFR92A |
| Q2500 | SM289240062 | BCV62 | Q6003 | SM270130093 | BFR93A |
| Q2503 | SM289240061 | BCV61 | Q6004 | SM275030550 | BF550 |
| Q3000 | SM280120416 | MMBF4416 | R1 | SM652101103 | SM10KS |
| Q3001 | SM270130092 | BFR92A | R2 | SM652101103 | SM10KS |
| Q3002 | SM270130092 | BFR92A | R3 | SM652101103 | SM10KS |
| Q3003 | SM275040092 | BFT92R | R4 | SM652101103 | SM10KS |
| Q3004 | SM289240062 | BCV62 | R5 | SM652101103 | SM10KS |
| Q3005 | SM275030092 | BFT92 | R6 | SM652101103 | SM10KS |
| Q3006 | SM275030093 | BFT93 | R7 | SM652101103 | SM10KS |
| Q3008 | SM270130092 | BFR92A | R8 | 169416473 | NTC-DISC-47K |
| Q3009 | SM270130092 | BFR92A | R9 | SM652101223 | SM22KS |
| Q3010 | SM270130092 | BFR92A | R10 | SM652101103 | SM10KS |
| Q3011 | SM275330858 | BC858C | R11 | SM652101103 | SM10KS |
| Q3012 | SM270130092 | BFR92A | R12 | SM652101512 | SM5.1KS |
| Q3013 | SM270130092 | BFR92A | R13 | SM652101102 | SM1KS |
| Q3014 | SM270130092 | BFR92A | R14 | SM652101332 | SM3.3KS |
| Q3015 | SM270130092 | BFR92A | R15 | SM652101332 | SM3.3KS |
| Q3500 | SM289240062 | BCV62 | R16 | SM652101102 | SM1KS |
| Q3503 | SM289240061 | BCV61 | R17 | SM652101102 | SM1KS |
| Q4000 | SM280120416 | MMBF4416 | R18 | SM652101332 | SM3.3KS |
| Q4001 | SM270130092 | BFR92A | R19 | SM652101332 | SM3.3KS |
| Q4002 | SM270130092 | BFR92A | R20 | SM652101102 | SM1KS |
| Q4003 | SM275040092 | BFT92R | R21 | SM652101102 | SM1KS |
| Q4004 | SM289240062 | BCV62 | R22 | SM652101102 | SM1KS |
| Q4005 | SM275030092 | BFT92 | R23 | SM652101332 | SM3.3KS |
| Q4006 | SM275030093 | BFT93 | R24 | SM652101102 | SM1KS |
| Q4008 | SM270130092 | BFR92A | R25 | SM652101102 | SM1KS |
| Q4009 | SM270130092 | BFR92A | R26 | SM652101302 | SM3KS |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| R27 | SM652101332 | SM3.3KS |
| R28 | SM652101102 | SM1KS |
| R29 | SM652101103 | SM10KS |
| R31 | SM654101000 | SM0S |
| R32 | SM652101102 | SM1KS |
| R33 | SM652101102 | SM1KS |
| R34 | SM652101103 | SM10KS |
| R35 | SM652101102 | SM1KS |
| R36 | SM652101102 | SM1KS |
| R37 | SM652101220 | SM22S |
| R38 | SM652101103 | SM10KS |
| R39 | SM652101220 | SM22S |
| R40 | SM652101220 | SM22S |
| R41 | SNi652101220 | SM22S |
| R42 | SM652101680 | SM68S |
| R43 | SM652101680 | SM68S |
| R44 | SM652101680 | SM68S |
| R45 | SM652101102 | SM1KS |
| R46 | SM652101103 | SM10KS |
| R47 | SM652101103 | SM10KS |
| R48 | SM652101103 | SM10KS |
| R49 | SM652101103 | SM10KS |
| R52 | SM652115062 | SM6.2-1 W |
| R54 | SM652101103 | SM10KS |
| R56 | SM652101100 | SM10S |
| R57 | SM652101122 | SM1.2KS |
| R58 | SM652101220 | SM22S |
| R200 | SM652101103 | SM10KS |
| R201 | SM652101122 | SM1.2KS |
| R202 | SM652101103 | SM10KS |
| R203 | SM652101103 | SM10KS |
| R204 | SM652101510 | SM51S |
| R205 | SM652101102 | SM1KS |
| R206 | SM652101332 | SM3.3KS |
| R207 | SM652101824 | SM820KS |
| R208 | SM168659007 | SM3.0K-1/oo |
| R209 | SM168659004 | SM900-1/0o |
| R210 | SM168659297 | SM100-1/0o |
| R211 | SM652101153 | SM15KS |
| R212 | SM652101152 | SM1.5KS |
| R213 | SM652101332 | SM3.3KS |
| R214 | SM652101103 | SM10KS |
| R215 | SM652101103 | SM10KS |
| R216 | SM652101103 | SM10KS |
| R217 | SM652101103 | SM10KS |


|  | P | Description |
| :---: | :---: | :---: |
| R218 | SM652101103 | SM10KS |
| R219 | SM652101103 | SM10KS |
| R220 | SM652101103 | SM10KS |
| R221 | SM652101103 | SM10KS |
| R222 | SM652101103 | SM10KS |
| R223 | SM652101103 | SM10KS |
| R224 | SM652101103 | SM10KS |
| R225 | SM652101103 | SM10KS |
| R226 | SM652101103 | SM10KS |
| R227 | SM652101750 | SM75S |
| R228 | SM652101750 | SM75S |
| R229 | SM652101101 | SM100S |
| R230 | SM652101301 | SM300S |
| R231 | SM652101750 | SM75S |
| R232 | SM652101750 | SM75S |
| R233 | SM652101103 | SM10KS |
| R234 | SM652101103 | SM10KS |
| R235 | SM652101301 | SM300S |
| R236 | SM652101101 | SM100S |
| R245 | SM185457101 | SM100-1T |
| R246 | SM185457101 | SM100-1T |
| R400 | SM652101201 | SM200S |
| R401 | SM652101201 | SM200S |
| R402 | SM652101201 | SM200S |
| R403 | SM652101201 | SM200S |
| R404 | SM652101121 | SM120S |
| R405 | SM652101121 | SM120S |
| R406 | SM652101121 | SM120S |
| R407 | SM652101121 | SM120S |
| R408 | SM652101101 | SM100S |
| R409 | SM652101181 | SM180S |
| R410 | SM652101101 | SM100S |
| R411 | SM652101181 | SM180S |
| R415 | SM652101331 | SM330S |
| R417 | SM652101101 | SMi00S |
| R418 | SM652101750 | SM75S |
| R507 | SM652101102 | SM1KS |
| R511 | SM652101102 | SM1KS |
| R514 | SM652101102 | SM1KS |
| R515 | SM652101102 | SM1KS |
| R516 | SM652101102 | SM1KS |
| R517 | SM652101201 | SM200S |
| R518 | SM652101201 | SM200S |
| R519 | SM652101201 | SM200S |
| R520 | SM652101201 | SM200S |

Section 8 Schematics, Layouts, Parts list

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R521 | SM652101121 | SM120S | R623 | SM652101121 | SM120S |
| R522 | SM652101121 | SM120S | R624 | SM652101121 | SM120S |
| R523 | SM652101121 | SM120S | R625 | SM652101201 | SM200S |
| R524 | SM652101121 | SM120S | R626 | SM652101201 | SM200S |
| R525 | SM652101201 | SM200S | R627 | SM652101121 | SM120S |
| R526 | SM652101201 | SM200S | R628 | SM652101121 | SM120S |
| R527 | SM652101121 | SM120S | R629 | SM652101102 | SM1KS |
| R528 | SM652101121 | SM120S | R630 | SM652101102 | SM1KS |
| R529 | SM652101102 | SM1KS | R650 | SM652101621 | SM620S |
| R530 | SM652101102 | SM1KS | R651 | SM652101621 | SM620S |
| R550 | SM652101621 | SM620S | R652 | SM652101153 | SM15KS |
| R551 | SM652101621 | SM620S | R653 | SM652101751 | SM750S |
| R552 | SM652101153 | SM15KS | R654 | SM652101223 | SM22KS |
| R553 | SM652101751 | SM750S | R656 | SM652101153 | SM15KS |
| R554 | SM652101223 | SM22KS | R657 | SM652101751 | SM750S |
| R556 | SM652101153 | SM15KS | R658 | SM652101223 | SM22KS |
| R557 | SM652101751 | SM750S | R662 | SM652101121 | SM120S |
| R558 | SM652101223 | SM22KS | R663 | SM652101121 | SM120S |
| R562 | SM652101121 | SM120S | R664 | SM652101201 | SM200S |
| R563 | SM652101121 | SM120S | R665 | SM652101201 | SM200S |
| R564 | SM652101201 | SM200S | R666 | SM652101121 | SM120S |
| R565 | SM652101201 | SM200S | R667 | SM652101121 | SM120S |
| R566 | SM652101121 | SM120S | R668 | SM652101201 | SM200S |
| R567 | SM652101121 | SM120S | R669 | SM652101201 | SM200S |
| R568 | SM652101201 | SM200S | R670 | SM652101103 | SM10KS |
| R569 | SM652101201 | SM200S | R671 | SM652101103 | SM10KS |
| R570 | SM652101103 | SM10KS | R672 | SM652101103 | SM10KS |
| R571 | SM652101103 | SM10KS | R673 | SM652101103 | SM10KS |
| R572 | SM652101103 | SM10KS | R674 | SM652101103 | SM10KS |
| R573 | SM652101103 | SM10KS | R675 | SM652101103 | SM10KS |
| R574 | SM652101103 | SM10KS | R678 | SM652101103 | SM10KS |
| R575 | SM652101103 | SM10KS | R679 | SM652101103 | SM10KS |
| R578 | SM652101103 | SM10KS | R701 | SM652101131 | SM130S |
| R579 | SM652101103 | SM10KS | R702 | SM652101181 | SM180S |
| R607 | SM652101102 | SM1KS | R703 | SM652101181 | SM180S |
| R611 | SM652101102 | SM1KS | R704 | SM652101391 | SM390S |
| R614 | SM652101102 | SM1KS | R705 | SM652101131 | SM130S |
| R615 | SM652101102 | SM1KS | R706 | SM652101181 | SM180S |
| R616 | SM652101102 | SM1KS | R707 | SM652101181 | SM180S |
| R617 | SM652101121 | SM120S | R708 | SM652101131 | SM130S |
| R618 | SM652101121 | SM120S | R709 | SM652101102 | SM1KS |
| R619 | SM652101201 | SM200S | R710 | SM652101220 | SM22S |
| R620 | SM652101201 | SM200S | R711 | SM652101131 | SM130S |
| R621 | SM652101201 | SM200S | R712 | SM652101131 | SM130S |
| R622 | SM652101201 | SM200S | R713 | SM652101102 | SM1KS |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R714 | SM652101181 | SM180S | R759 | SM652101750 | SM75S |
| R715 | SM652101181 | SM180S | R760 | SM652101911 | SM910S |
| R716 | SM652101131 | SM130S | R761 | SM652101102 | SM1KS |
| R717 | SM652101391 | SM390S | R762 | SM652101201 | SM200S |
| R718 | SM652101820 | SM82S | R763 | SM652101201 | SM200S |
| R719 | SM652101181 | SM180S | R764 | SM652101510 | SM51S |
| R720 | SM652101181 | SM180S | R765 | SM652101391 | SM390S |
| R721 | SM652101181 | SM180S | R766 | SM652101471 | SM470S |
| R722 | SM652101181 | SM180S | R767 | SM652101680 | SM68S |
| R723 | SM652101131 | SM130S | R768 | SM652101181 | SM180S |
| R724 | SM652101131 | SM130S | R769 | SM652101181 | SM180S |
| R725 | SM652101131 | SM130S | R770 | SM652101181 | SM180S |
| R726 | SM652101131 | SM130S | R771 | SM652101181 | SM180S |
| R727 | SM652101471 | SM470S | R772 | SM652101181 | SN180S |
| R728 | SM652101391 | SM390S | R773 | SM652101512 | SM5.1KS |
| R729 | SM652101181 | SM180S | R775 | SM652101181 | SMi80S |
| R730 | SM652101181 | SM180S | R776 | SM652101181 | SM180S |
| R731 | SM652101181 | SM180S | R777 | SM652101471 | SM470S |
| R732 | SM652101181 | SM180S | R778 | SM652101181 | SM180S |
| R733 | SM652101181 | SM180S | R779 | SM652101181 | SM180S |
| R734 | SM652101181 | SM180S | R781 | SM652101181 | SM180S |
| R735 | SM652101680 | SM68S | R782 | SM652101181 | SM180S |
| R736 | SM652101271 | SM270S | R783 | SM652101101 | SM100S |
| R737 | SM652101271 | SM270S | R784 | SM652101220 | SM22S |
| R738 | SM652101181 | SM180S | R785 | SM652101220 | SM22S |
| R739 | SM652101181 | SM180S | R786 | SM652101181 | SM180S |
| R740 | SM652101181 | SM180S | R787 | SM652101181 | SM180S |
| R741 | SM652101181 | SM180S | R788 | SM652101101 | SM100S |
| R742 | SM652101102 | SM1KS | R789 | SM652101220 | SM22S |
| R743 | SM652101102 | SM1KS | R790 | SM652101181 | SM180S |
| R744 | SM652101102 | SMIKS | R791 | SM652101181 | SM180S |
| R745 | SM652101471 | SM470S | R792 | SM652101181 | SM180S |
| R746 | SM652101471 | SM470S | R793 | SM652101181 | SM180S |
| R747 | SM652101471 | SM470S | R794 | SM652101181 | SM180S |
| R748 | SM652101471 | SM470S | R795 | SM652101220 | SM22S |
| R749 | SM652101181 | SM180S | R797 | SM652101181 | SM180S |
| R750 | SM652101181 | SM180S | R799 | SM652101181 | SM180S |
| R751 | SM652101181 | SM180S | R800 | SM652101181 | SM180S |
| R752 | SM652101181 | SM180S | R801 | SM652101181 | SM180S |
| R753 | SM652101121 | SM120S | R802 | SM652101181 | SM180S |
| R754 | SM652101121 | SM120S | R803 | SM652101131 | SM130S |
| R755 | SM652101181 | SM180S | R804 | SM652101181 | SM180S |
| R756 | SM652101181 | SM180S | R805 | SM652101181 | SM180S |
| R757 | SM652101181 | SM180S | R806 | SM652101181 | SM180S |
| R758 | SM652101181 | SM180S | R807 | SM652101181 | SM180S |

$\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R808 | SM652101131 | SM130S | R870 | SM652101112 | SM1.1KS |
| R809 | SM652101181 | SM180S | R871 | SM652101510 | SM51S |
| R812 | SM652101471 | SM470S | R872 | SM652101103 | SM10KS |
| R813 | SM652101181 | SM180S | R873 | SM652101510 | SM51S |
| R814 | SM652101181 | SM180S | R874 | SM652101181 | SM180S |
| R820 | SM652101181 | SM180S | R877 | SM652101471 | SM470S |
| R821 | SM652101202 | SM2KS | R878 | SM652101471 | SM470S |
| R822 | SM652101820 | SM82S | R879 | SM651104204 | SM200K-25PPM |
| R823 | SM652101131 | SM130S | R880 | SM652101751 | SM750S |
| R824 | SM652101181 | SM180S | R881 | SM652101152 | SM1.5KS |
| R826 | SM652101391 | SM390S | R882 | SM652101101 | SM100S |
| R827 | SM652101510 | SM51S | R883 | SM652101101 | SM100S |
| R829 | SM652101181 | SM180S | R885 | SM652101181 | SM180S |
| R830 | SM652101181 | SM180S | R886 | SM652101101 | SM100S |
| R832 | SM652101181 | SM180S | R887 | SM652101471 | SM470S |
| R833 | SM652101181 | SM180S | R888 | SM652101471 | SM470S |
| R834 | SM652101821 | SM820S | R889 | SM652101471 | SM470S |
| R835 | SM652101751 | SM750S | R890 | SM652101102 | SM1KS |
| R836 | SM652101181 | SM180S | R891 | SM652101152 | SM1.5KS |
| R837 | SM652101181 | SM180S | R892 | SM652101131 | SM130S |
| R838 | SM652101181 | SM180S | R893 | SM652101751 | SM750S |
| R840 | SM652101510 | SM51S | R894 | SM652101101 | SM100S |
| R841 | SM652101510 | SM51S | R895 | SM652101240 | SM24S |
| R842 | SM652101510 | SM51S | R897 | SM652101102 | SM1KS |
| R843 | SM652101181 | SM180S | R898 | SM651104241 | SM240-25PPM |
| R844 | SM652101181 | SM180S | R899 | SM651104392 | SM3.9K-25PPM |
| R845 | SM652101181 | SM180S | R900 | SM652101101 | SM100S |
| R847 | SM652101102 | SM1KS | R901 | SM652101751 | SM750S |
| R848 | SM652101102 | SM1KS | R902 | SM652101751 | SM750S |
| R849 | SM652101181 | SM180S | R903 | SM652101102 | SM1KS |
| R850 | SM652101471 | SM470S | R904 | SM652101102 | SM1KS |
| R851 | SM652101102 | SM1KS | R905 | SM651104183 | SM18K-25PPM |
| R852 | SM652101102 | SM1KS | R906 | SM651104182 | SM1.8K-25PPM |
| R855 | SM652101471 | SM470S | R907 | SM651104201 | SM200-25PPM |
| R857 | SM652101510 | SM51S | R908 | SM185457201 | SM200-1T |
| R858 | SM652101103 | SM10KS | R909 | SM652101181 | SM180S |
| R859 | SM652101510 | SM51S | R910 | SM652101181 | SM180S |
| R861 | SM652101510 | SM51S | R911 | SM652101181 | SM180S |
| R862 | SM652101510 | SM51S | R912 | SM652101181 | SM180S |
| R863 | SM652101510 | SM51S | R913 | SM652101750 | SM75S |
| R864 | SM652101471 | SM470S | R914 | SM652101510 | SM51S |
| R865 | SM652101512 | SM5.1KS | R915 | SM652101271 | SM270S |
| R866 | SM652101562 | SM5.6KS | R916 | SM652101221 | SM220S |
| R867 | SM652101510 | SM51S | R918 | SM652101301 | SM300S |
| R869 | SM652101181 | SM180S | R919 | SM652101391 | SM390S |

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R920 | SM652101181 | SM180S | R975 | SM652101471 | SM470S |
| R921 | SM652101181 | SM180S | R976 | SM652101471 | SM470S |
| R923 | SM652101750 | SM75S | R977 | SM652101510 | SM51S |
| R924 | SM652101220 | SM22S | R978 | SM652101391 | SM390S |
| R925 | SM652101220 | SM22S | R979 | SM652101510 | SM51S |
| R926 | SM652101512 | SM5.1KS | R980 | SM652101391 | SM390S |
| R927 | SM652101562 | SM5.6KS | R981 | SM652101471 | SM470S |
| R929 | SM652101103 | SM10KS | R982 | SM652101471 | SM470S |
| R935 | SM652i01181 | SM180S | R983 | SM652101510 | SM51S |
| R936 | SM652101181 | SM180S | R984 | SM652101391 | SM390S |
| R937 | SM652101181 | SM180S | R985 | SM652101510 | SM51S |
| R938 | SM652101181 | SM180S | R986 | SM652101181 | SM180S |
| R939 | SM652101181 | SM180S | R987 | SM652101181 | SM180S |
| R940 | SM652101181 | SM180S | R988 | SM652101823 | SM82KS |
| R941 | SM652101181 | SM180S | R989 | SM652101181 | SM180S |
| R942 | SM652101181 | SM180S | R990 | SM652101512 | SM5.1KS |
| R943 | SM652101181 | SM180S | R991 | SM652101562 | SM5.6KS |
| R944 | SM652101181 | SM180S | R1000 | SM652101330 | SM33S |
| R945 | SM652101512 | SM5.1KS | R1001 | SM652101391 | SM390S |
| R946 | SM652101562 | SM5.6KS | R1002 | SM652101392 | SM3.9KS |
| R947 | SM652101181 | SM180S | R1003 | SM652101105 | SM1MS |
| R948 | SM652101181 | SM180S | R1004 | SM652101332 | SM3.3KS |
| R950 | SM652101221 | SM220S | R1005 | SM652113954 | SM950K-3/oo |
| R951 | SM652101221 | SM220S | R1006 | SM652101181 | SM180S |
| R952 | SM652101221 | SM220S | R1007 | SM168651297 | SM100-1\%MM |
| R953 | SM652101221 | SM220S | R1008 | SM652101822 | SM8.2KS |
| R954 | SM652101221 | SM220S | R1009 | SM652101683 | SM68KS |
| R955 | SM652101221 | SM220S | R1010 | SM185457502 | SM5K-1T |
| R956 | SM652101221 | SM220S | R1011 | SM652101101 | SM100S |
| R957 | SM652101221 | SM220S | R1012 | SM652101360 | SM36S |
| R958 | SM652101221 | SM220S | R1013 | SM652101220 | SM22S |
| R959 | SM652101221 | SM220S | R1014 | SM168651297 | SM100-1\%MM |
| R960 | SM652101112 | SM1.1KS | R1016 | SM652113523 | SM52.63K-3/00 |
| R963 | SM652101181 | SM180S | R1017 | SM652101101 | SM100S |
| R964 | SM652101181 | SM180S | R1018 | SM652101114 | SM110KS |
| R965 | SM652101181 | SM180S | R1019 | SM652110904 | SM900K-5/oo |
| R966 | SM652101181 | SM180S | R1020 | SM652101272 | SM2.7KS |
| R967 | SM652101181 | SM180S | R1021 | SM652101512 | SM5.1KS |
| R968 | SM652101181 | SM180S | R1022 | SM652101390 | SM39S |
| R969 | SM652101181 | SM180S | R1023 | SM652101475 | SM4.7MS |
| R970 | SM652101181 | SM180S | R1024 | SM652101122 | SM1.2KS |
| R971 | SM652101181 | SM180S | R1025 | SM652101221 | SM220S |
| R972 | SM652101471 | SM470S | R1026 | SM652101105 | SM1MS |
| R973 | SM652101471 | SM470S | R1027 | SM652101105 | SM1MS |
| R974 | SM652101471 | SM470S | R1028 | SM652101220 | SM22S |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |  | Location | Part Number |
| :--- | :--- | :--- | :--- | :--- | :--- | Description

## PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Loc | Par | Description |
| :---: | :---: | :---: |
| R1529 | SM654101000 | SM0 |
| R1530 | SM652101201 | SM200S |
| R1531 | SM652101201 | SM200S |
| R1532 | SM652101151 | SM150S |
| R1533 | SM652101151 | SM150S |
| R1534 | SM652101220 | SM22S |
| R1535 | SM652101750 | SM75S |
| R1536 | SM652101151 | SM150S |
| R1537 | SM652101151 | SM150S |
| R1538 | SM652101201 | SM200S |
| R1539 | SM652101201 | SM200S |
| R1540 | SM652101182 | SM1.8KS |
| R1541 | SM652101103 | SM10KS |
| R1542 | SM652101101 | SM100S |
| R1544 | SM654101000 | SM0S |
| R1545 | SM652101431 | SM430S |
| R1546 | SM652101431 | SM430S |
| R1547 | SM652101431 | SM430S |
| R1548 | SM652101431 | SM430S |
| R1549 | SM652101431 | SM430S |
| R1550 | SM652101431 | SM430S |
| R1551 | SM652101431 | SM430S |
| R1552 | SM652101431 | SM430S |
| R1553 | SM652101431 | SM430S |
| R1554 | SM652101910 | SM91S |
| R1555 | SM652101910 | SM91S |
| R1556 | SM652101910 | SM91S |
| R1557 | SM652101910 | SM91S |
| R1558 | SM652101910 | SM91S |
| R1559 | SM652101910 | SM91S |
| R1560 | SM652101910 | SM91S |
| R1561 | SM652101910 | SM91S |
| R1562 | SM652101910 | SM91S |
| R1563 | SM652101301 | SM300S |
| R1564 | SM652101301 | SM300S |
| R1567 | SM652101201 | SM200S |
| R1568 | SM652101201 | SM200S |
| R1569 | SM652101151 | SM150S |
| R1570 | SM652101151 | SM150S |
| R1571 | SM652101201 | SM200S |
| R1572 | SM652101201 | SM200S |
| R1573 | SM185457501 | SM500-1T |
| R1574 | SM652101472 | SM4.7KS |
| R1575 | SM652101223 | SM22KS |
| R1576 | SM185457503 | SM50K-1 |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| R1577 | SM185457102 | SM1K-1T |
| R1579 | SM652101182 | SM1.8KS |
| R1580 | SM653206222 | SMNTC-2.2K |
| R2000 | SM652101330 | SM33S |
| R2001 | SMi652101391 | SM390S |
| R2002 | SM652101392 | SM3.9KS |
| R2003 | SM652101105 | SM1MS |
| R2004 | SM652101332 | SM3.3KS |
| R2005 | SM652113954 | SM950K-3/oo |
| R2006 | SM652101181 | SM180S |
| R2007 | SM168651297 | SM100-1\%MM |
| R2008 | SM652101822 | SM8.2KS |
| R2009 | SM652101683 | SM68KS |
| R2010 | SM185457502 | SM5K-1T |
| R2011 | SM652101101 | SM100S |
| R2012 | SM652101360 | SM36S |
| R2013 | SM652101220 | SM22S |
| R2014 | SM168651297 | SM100-1\%MM |
| R2016 | SM652113523 | SM52.63X-3/00 |
| R2017 | SM652101101 | SM100S |
| R2018 | SM652101114 | SM110KS |
| R2019 | SM652110904 | SM900K-5/oo |
| R2020 | SM652101272 | SM2.7KS |
| R2021 | SM652101512 | SM5.1KS |
| R2022 | SM652101390 | SM39S |
| R2023 | SM652101475 | SM4.7MS |
| R2024 | SM652101122 | SM1.2KS |
| R2025 | SM652101221 | SM220S |
| R2026 | SM652101105 | SM1MS |
| R2027 | SM652101105 | SM1MS |
| R2028 | SM652101220 | SM22S |
| R2029 | SM652101151 | SM150S |
| R2030 | SM652101512 | SM5.1KS |
| R2031 | SM652101512 | SM5.1KS |
| R2032 | SM652101101 | SM100S |
| R2033 | SM652101185 | SM1.8MS |
| R2034 | SM652101334 | SM330KS |
| R2035 | SM652101101 | SM100S |
| R2036 | SM652101333 | SM33KS |
| R2037 | SM652101103 | SM10KS |
| R2038 | SM652101220 | SM22S |
| R2039 | SM652101511 | SM510S |
| R2040 | SM652101331 | SMi330S |
| R2041 | SM185457103 | SM10K-1T |
| R2042 | SM652101103 | SM10KS |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

|  | Par | D |
| :---: | :---: | :---: |
| R2043 | SM652101913 | SM |
| R2044 | SM652101182 | SM1.8KS |
| R2045 | SM652101163 | SM16KS |
| R2046 | SM652101122 | SM1.2KS |
| R2047 | SM652101101 | SM100S |
| R2048 | SM652101470 | SM47S |
| R2049 | SM652101470 | SM47S |
| R2050 | SM652101240 | SM24S |
| R2051 | SM652101101 | SM100S |
| R2052 | SM652101223 | SM22KS |
| R2053 | SM652101822 | SM8.2KS |
| R2054 | SM652101100 | SM10S |
| R2055 | SM652101471 | SM470S |
| R2056 | SM652101471 | SM470S |
| R2057 | SM652101750 | SM75S |
| R2058 | SM652101240 | SM24S |
| R2059 | SM652101100 | SM10S |
| R2060 | SM652101100 | SM10S |
| R2061 | SM652101240 | SM24S |
| R2062 | SM652101120 | SM12S |
| R2064 | SM652101302 | SM3KS |
| R2065 | SM652101302 | SM3KS |
| R2066 | SM652101750 | SM75S |
| R2067 | SM652101510 | SM51S |
| R2068 | SM652101220 | SM22S |
| R2069 | SM652101330 | SM33S |
| R2070 | SM652101301 | SM300S |
| R2071 | SM652101301 | SM300S |
| R2073 | SM652101101 | SM100S |
| R2074 | SM652101301 | SM300S |
| R2075 | SM652101301 | SM300S |
| R2076 | SM652101100 | SM10S |
| R2077 | SM652101100 | SM10S |
| R2078 | SM652101301 | SM300S |
| R2080 | SM652101101 | SM100S |
| R2081 | SM652101152 | SM1.5KS |
| R2082 | SM652101562 | SM5.6KS |
| R2083 | SM652101750 | SM75S |
| R2084 | SM185457203 | SM20K-1T |
| R2085 | SM652101152 | SM1.5KS |
| R2086 | SM652101302 | SM3KS |
| R2087 | SM652101221 | SM220S |
| R2088 | SM652101103 | SM10KS |
| R2089 | SM652101103 | SM10KS |
| R2090 | SM65210122 | SM220S |


| Location | Part Number | Description |
| :--- | :--- | :--- | :--- |
| -------- | --------------------- |  |
| R2091 | SM652101103 | SM10KS |
| R2092 | SM652101105 | SM1MS |
| R2093 | SM652101105 | SM1MS |
| R2094 | SM652101103 | SM10KS |
| R2095 | SM652101221 | SM220S |
| R2096 | SM652101105 | SM1MS |
| R2097 | SM652101105 | SM1MS |
| R2098 | SM652101211 | SM220S |
| R2099 | SM652101100 | SM10S |
| R2100 | SM652101512 | SM5.1KS |
| R2101 | SM652101470 | SM47S |
| R2102 | SM652101470 | SM47S |
| R2506 | SM652101510 | SM51S |
| R2508 | SM652101153 | SM15KS |
| R2510 | SM652101750 | SM75S |
| R2513 | SM652101103 | SM10KS |
| R2514 | SM652101122 | SM1.2KS |
| R2515 | SM185457501 | SM500-1T |
| R2516 | SM653206222 | SMNTC-2.2K |
| R2517 | SM652101122 | SM1.2KS |
| R2518 | SM185457502 | SM5K-1T |
| R2519 | SM652101822 | SM8.2KS |
| R2520 | SM652101103 | SM10KS |
| R2521 | SM652101151 | SM150S |
| R2522 | SM652101151 | SM150S |
| R2523 | SM652101201 | SM200S |
| R2524 | SM652101201 | SM200S |
| R2525 | SM652101201 | SM200S |
| R2526 | SM652101201 | SM200S |
| R2527 | SM652101680 | SM68S |
| R2528 | SM652101680 | SM68S |
| R2529 | SM654101000 | SM0S |
| R2530 | SM652101201 | SM200S |
| R2531 | SM652101201 | SM200S |
| R2532 | SM652101151 | SM150S |
| R2533 | SM652101151 | SM150S |
| R2534 | SM652101220 | SM22S |
| R2535 | SM652101750 | SM75S |
| R2536 | SM652101151 | SM150S |
| R2537 | SM652101151 | SM150S |
| R2538 | SM652101201 | SM200S |
| R2539 | SM652101201 | SM200S |
| R2540 | SM652101182 | SM1.8KS |
| R2541 | SM652101103 | SM10KS |
| R254 | SM652101101 | SM100S |
| SM |  |  |

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| R2544 | SM654101000 | SM0S |
| R2545 | SM652101431 | SM430S |
| R2546 | SM652101431 | SM430S |
| R2547 | SM652101431 | SM430S |
| R2548 | SM652101431 | SM430S |
| R2549 | SM652101431 | SM430S |
| R2550 | SM652101431 | SM430S |
| R2551 | SM652101431 | SM430S |
| R2552 | SM652101431 | SM430S |
| R2553 | SM652101431 | SM430S |
| R2554 | SM652101910 | SM91S |
| R2555 | SM652101910 | SM91S |
| R2556 | SM652101910 | SM91S |
| R2557 | SM652101910 | SM91S |
| R2558 | SM652101910 | SM91S |
| R2559 | SM652101910 | SM91S |
| R2560 | SM652101910 | SM91S |
| R2561 | SNi652101910 | SM91S |
| R2562 | SM652101910 | SM91S |
| R2563 | SM652101301 | SM300S |
| R2564 | SM652101301 | SM300S |
| R2567 | SM652101201 | SM200S |
| R2568 | SM652101201 | SM200S |
| R2569 | SM652101151 | SM150S |
| R2570 | SM652101151 | SM150S |
| R2571 | SM652101201 | SM200S |
| R2572 | SM652101201 | SM200S |
| R2573 | SM185457501 | SM500-1T |
| R2574 | SM652101472 | SM4.7KS |
| R2575 | SM652101223 | SM22KS |
| R2576 | SM185457503 | SM50K-1T |
| R2577 | SM185457102 | SM1K-1T |
| R2579 | SM652101182 | SM1.8KS |
| R2580 | SM653206222 | SMNTC-2.2K |
| R3000 | SM652101330 | SM33S |
| R3001 | SM652101391 | SM390S |
| R3002 | SM652101392 | SM3.9KS |
| R3003 | SM652101105 | SM1MS |
| R3004 | SM652101332 | SM3.3KS |
| R3005 | SM652113954 | SM950K-3/oo |
| R3006 | SM652101181 | SM180S |
| R3007 | SM168651297 | SM100-1\%MM |
| R3008 | SM652101822 | SM8.2KS |
| R3009 | SM652101683 | SM68KS |
| R3010 | SM185457502 | SM5K-1T |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| R3011 | SM652101101 | SM100S |
| R3012 | SM652101360 | SM36S |
| R3013 | SM652101220 | SM22S |
| R3014 | SM168651297 | SM100-1\%MM |
| R3016 | SM652113523 | SM52.63K-3/oo |
| R3017 | SM652101101 | SM100S |
| R3018 | SM652101114 | SM110KS |
| R3019 | SM652i10904 | SM900K-5/oo |
| R3020 | SM652101272 | SM2.7KS |
| R3021 | SM652101512 | SM5.1KS |
| R3022 | SM652101390 | SM39S |
| R3023 | SM652101475 | SM4.7MS |
| R3024 | SM652101122 | SM1.2KS |
| R3025 | SM652101221 | SM220S |
| R3026 | SM652101105 | SMilMS |
| R3027 | SM652101105 | SM1MS |
| R3028 | SM652101220 | SM22S |
| R3029 | SM652101151 | SM150S |
| R3030 | SM652101512 | SM5.1KS |
| R3031 | SM652101512 | SM5.1KS |
| R3032 | SM652101101 | SM100S |
| R3033 | SM652101185 | SM1.8MS |
| R3034 | SM652101334 | SM330KS |
| R3035 | SM652101101 | SM100S |
| R3036 | SM652101333 | SM33KS |
| R3037 | SM652101103 | SM10KS |
| R3038 | SM652101220 | SM22S |
| R3039 | SM652101511 | SM510S |
| R3040 | SM652101331 | SM330S |
| R3041 | SM185457103 | SM10K-1T |
| R3042 | SM652101103 | SM10KS |
| R3043 | SM652101913 | SM91KS |
| R3044 | SM652101182 | SM1.8KS |
| R3045 | SM652101163 | SM16KS |
| R3046 | SM652101122 | SM1.2KS |
| R3047 | SM652101101 | SM100S |
| R3048 | SM652101470 | SM47S |
| R3049 | SM652101470 | SM47S |
| R3050 | SM652101240 | SM24S |
| R3051 | SM652101101 | SM100S |
| R3052 | SM652101223 | SM22KS |
| R3053 | SM652101822 | SM8.2KS |
| R3054 | SM652101100 | SM10S |
| R3055 | SM652101471 | SM470S |
| R3056 | SM65210147 | SM470S |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD (FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R3057 | SM652101750 | SM75S | R3510 | SM652101750 | SM75S |
| R3058 | SM652101240 | SM24S | R3513 | SM652101103 | SM10KS |
| R3059 | SM652101100 | SM10S | R3514 | SM652101122 | SM1.2KS |
| R3060 | SM652101100 | SM10S | R3515 | SM185457501 | SM500-1T |
| R3061 | SM652101240 | SM24S | R3516 | SM653206222 | SMNTC-2.2K |
| R3062 | SM652101120 | SM12S | R3517 | SM652101122 | SM1.2KS |
| R3064 | SM652101302 | SM3KS | R3518 | SM185457502 | SM5K-1T |
| R3065 | SM652101302 | SM3KS | R3519 | SM652101822 | SM8.2KS |
| R3066 | SM652101750 | SM75S | R3520 | SM652101103 | SM10KS |
| R3067 | SM652101510 | SM51S | R3521 | SM652101151 | SM150S |
| R3068 | SM652101220 | SM22S | R3522 | SM652101151 | SM150S |
| R3069 | SM652101330 | SM33S | R3523 | SM652101201 | SM200S |
| R3070 | SM652101301 | SM300S | R3524 | SM652101201 | SM200S |
| R3071 | SM652101301 | SM300S | R3525 | SM652101201 | SM200S |
| R3073 | SM652101101 | SM100S | R3526 | SM652101201 | SM200S |
| R3074 | SM652101301 | SM300S | R3527 | SM652101680 | SM68S |
| R3075 | SM652101301 | SM300S | R3528 | SM652101680 | SM68S |
| R3076 | SM652101100 | SM10S | R3529 | SM654101000 | SM0S |
| R3077 | SM652101100 | SM10S | R3530 | SM652101201 | SM200S |
| R3078 | SM652101301 | SM300S | R3531 | SM652101201 | SM200S |
| R3080 | SM652101101 | SM100S | R3532 | SM652101151 | SM150S |
| R3081 | SM652101152 | SM1.5KS | R3533 | SM652101151 | SM150S |
| R3082 | SM652101562 | SM5.6KS | R3534 | SM652101220 | SM22S |
| R3083 | SM652101750 | SM75S | R3535 | SM652101750 | SM75S |
| R3084 | SM185457203 | SM20K-1T | R3536 | SM652101151 | SM150S |
| R3085 | SM652101152 | SM1.5KS | R3537 | SM652101151 | SM150S |
| R3086 | SM652101302 | SM3KS | R3538 | SM652101201 | SM200S |
| R3087 | SM652101221 | SM220S | R3539 | SM652101201 | SM200S |
| R3088 | SM652101103 | SM10KS | R3540 | SM652101182 | SM1.8KS |
| R3089 | SM652101103 | SM10KS | R3541 | SM652101103 | SM10KS |
| R3090 | SM652101221 | SM220S | R3542 | SM652101101 | SM100S |
| R3091 | SM652101103 | SM10KS | R3544 | SM654101000 | SM0S |
| R3092 | SM652101105 | SM1MS | R3545 | SM652101431 | SM430S |
| R3093 | SM652101105 | SM1MS | R3546 | SM652101431 | SM430S |
| R3094 | SM652101103 | SM10KS | R3547 | SM652101431 | SM430S |
| R3095 | SM652101221 | SM220S | R3548 | SM652101431 | SM430S |
| R3096 | SM652101105 | SM1MS | R3549 | SM652101431 | SM430S |
| R3097 | SM652101105 | SM1MS | R3550 | SM652101431 | SM430S |
| R3098 | SM652101221 | SM220S | R3551 | SM652101431 | SM430S |
| R3099 | SM652101100 | SM10S | R3552 | SM652101431 | SM430S |
| R3100 | SM652101512 | SM5.1KS | R3553 | SM652101431 | SM430S |
| R3101 | SM652101470 | SM47S | R3554 | SM652101910 | SM91S |
| R3102 | SM652101470 | SM47S | R3555 | SM652101910 | SM91S |
| R3506 | SM652101510 | SM51S | R3556 | SM652101910 | SM91S |
| R3508 | SM652101153 | SM15KS | R3557 | SM652101910 | SM91S |

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R3558 | SM652101910 | SM91S | R4026 | SM652101105 | SM1MS |
| R3559 | SM652101910 | SM91S | R4027 | SM652101105 | SM1MS |
| R3560 | SM652101910 | SM91S | R4028 | SM652101220 | SM22S |
| R3561 | SM652101910 | SM91S | R4029 | SM652101151 | SM150S |
| R3562 | SM652101910 | SM91S | R4030 | SM652101512 | SM5.1KS |
| R3563 | SM652101301 | SM300S | R4031 | SM652101512 | SM5.1KS |
| R3564 | SM652101301 | SM300S | R4032 | SM652101101 | SM100S |
| R3567 | SM652101201 | SM200S | R4033 | SM652101185 | SM1.8MS |
| R3568 | SM652101201 | SM200S | R4034 | SM652101334 | SM330KS |
| R3569 | SM652101151 | SM150S | R4035 | SM652101101 | SM100S |
| R3570 | SM652101151 | SM150S | R4036 | SM652101333 | SM33KS |
| R3571 | SM652101201 | SM200S | R4037 | SM652101103 | SM10KS |
| R3572 | SM652101201 | SM200S | R4038 | SM652101220 | SM22S |
| R3573 | SM185457501 | SM500-1T | R4039 | SM652101511 | SM510S |
| R3574 | SM652101472 | SM4.7KS | R4040 | SM652101331 | SM330S |
| R3575 | SM652101223 | SM22KS | R4041 | SM185457103 | SM10K-1T |
| R3576 | SM185457503 | SM50K-1T | R4042 | SM652101103 | SM10KS |
| R3577 | SM185457102 | SM1K-1T | R4043 | SM652101913 | SM91KS |
| R3579 | SM652101182 | SM1.8KS | R4044 | SM652101182 | SM1.8KS |
| R3580 | SM653206222 | SMNTC-2.2K | R4045 | SM652101163 | SM16KS |
| R4000 | SM652101330 | SM33S | R4046 | SM652101122 | SM1.2KS |
| R4001 | SM652101391 | SM390S | R4047 | SM652101101 | SM100S |
| R4002 | SM652101392 | SM3.9KS | R4048 | SM652101470 | SM47S |
| R4003 | SM652101105 | SM1MS | R4049 | SM652101470 | SM47S |
| R4004 | SM652101332 | SM3.3KS | R4050 | SM652101240 | SM24S |
| R4005 | SM652113954 | SM950K-3/oo | R4051 | SM652101101 | SM100S |
| R4006 | SM652101181 | SM180S | R4052 | SM652101223 | SM22KS |
| R4007 | SM168651297 | SM100-1\%MM | R4053 | SM652101822 | SM8.2KS |
| R4008 | SM652101822 | SM8.2KS | R4054 | SM652101100 | SM10S |
| R4009 | SM652101683 | SM68KS | R4055 | SM652101471 | SM470S |
| R4010 | SM185457502 | SM5K-1T | R4056 | SM652101471 | SM470S |
| R4011 | SM652101101 | SM100S | R4057 | SM652101750 | SM75S |
| R4012 | SM652101360 | SM36S | R4058 | SM652101240 | SM24S |
| R4013 | SM652101220 | SM22S | R4059 | SM652101100 | SM10S |
| R4014 | SM168651297 | SM100-1\%MM | R4060 | SM652101100 | SM10S |
| R4016 | SM652113523 | SM52.63K-3/00 | R4061 | SM652101240 | SM24S |
| R4017 | SM652101101 | SM100S | R4062 | SM652101120 | SM12S |
| R4018 | SM652101114 | SM110KS | R4064 | SM652101302 | SM3KS |
| R4019 | SM652110904 | SM900K-5/00 | R4065 | SM652101302 | SM3KS |
| R4020 | SM652101272 | SM2.7KS | R4066 | SM652101750 | SM75S |
| R4021 | SM652101512 | SM5.1KS | R4067 | SM652101510 | SM51S |
| R4022 | SM652101390 | SM39S | R4068 | SM652101220 | SM22S |
| R4023 | SM652101475 | SM4.7MS | R4069 | SM652101330 | SM33S |
| R4024 | SM652101122 | SM1.2KS | R4070 | SM652101301 | SM300S |
| R4025 | SM652101221 | SM220S | R4071 | SM652101301 | SM300S |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| R4073 | SM652101101 | SM100S |
| R4074 | SM652101301 | SM300S |
| R4075 | SM652101301 | SM300S |
| R4076 | SM652101100 | SM10S |
| R4077 | SM652101100 | SM10S |
| R4078 | SM652101301 | SM300S |
| R4080 | SM652101101 | SM100S |
| R4081 | SM652101152 | SM1.5KS |
| R4082 | SM652101562 | SM5.6KS |
| R4083 | SM652101750 | SM75S |
| R4084 | SM185457203 | SM20K-1T |
| R4085 | SM652101152 | SM1.5KS |
| R4086 | SM652101302 | SM3KS |
| R4087 | SM652101221 | SM220S |
| R4088 | SM652101103 | SM10KS |
| R4089 | SM652101103 | SM10KS |
| R4090 | SM652101221 | SM220S |
| R4091 | SM652101103 | SM10KS |
| R4092 | SM652101105 | SM1MS |
| R4093 | SM652101105 | SM1MS |
| R4094 | SM652101103 | SM10KS |
| R4095 | SM652101221 | SM220S |
| R4096 | SM652101105 | SM1MS |
| R4097 | SM652101105 | SM1MS |
| R4098 | SM652101221 | SM220S |
| R4099 | SM652101100 | SM10S |
| R4100 | SM652101512 | SM5.1KS |
| R4101 | SM652101470 | SM47S |
| R4102 | SM652101470 | SM47S |
| R4506 | SM652101510 | SM51S |
| R4508 | SM652101153 | SM15KS |
| R4510 | SM652101750 | SM75S |
| R4513 | SM652101103 | SM10KS |
| R4514 | SM652101122 | SM1.2KS |
| R4515 | SM185457501 | SM500-1T |
| R4516 | SM653206222 | SMNTC-2.2K |
| R4517 | SM652101122 | SM1.2KS |
| R4518 | SM185457502 | SM5K-1T |
| R4519 | SM652101822 | SM8.2KS |
| R4520 | SM652101103 | SM10KS |
| R4521 | SM652101151 | SM150S |
| R4522 | SM652101151 | SM150S |
| R4523 | SM652101201 | SM200S |
| R4524 | SM652101201 | SM200S |
| R4525 | SM652101201 | SM200S |


|  | Part Number | Description |
| :---: | :---: | :---: |
| R4526 | SM652101201 | SM200S |
| R4527 | SM652101680 | SM68S |
| R4528 | SM652101680 | SM68S |
| R4529 | SM654101000 | SM0S |
| R4530 | SM652101201 | SM200S |
| R4531 | SM652101201 | SM200S |
| R4532 | SM652101151 | SM150S |
| R4533 | SM652101151 | SM150S |
| R4534 | SM652101220 | SM22S |
| R4535 | SM652101750 | SM75S |
| R4536 | SM652101151 | SM150S |
| R4537 | SM652101151 | SM150S |
| R4538 | SM652101201 | SM200S |
| R4539 | SM652101201 | SM200S |
| R4540 | SM652101182 | SM1.8KS |
| R4541 | SM652101103 | SM10KS |
| R4542 | SM652101101 | SM100S |
| R4544 | SM654101000 | SM0S |
| R4545 | SM652101431 | SM430S |
| R4546 | SM652101431 | SM430S |
| R4547 | SM652101431 | SM430S |
| R4548 | SM652101431 | SM430S |
| R4549 | SM652101431 | SM430S |
| R4550 | SM652101431 | SM430S |
| R4551 | SM652101431 | SM430S |
| R4552 | SM652101431 | SM430S |
| R4553 | SM652101431 | SM430S |
| R4554 | SM652101910 | SM91S |
| R4555 | SM652101910 | SM91S |
| R4556 | SM652101910 | SM91S |
| R4557 | SM652101910 | SM91S |
| R4558 | SM652101910 | SM91S |
| R4559 | SM652101910 | SM91S |
| R4560 | SM652101910 | SM91S |
| R4561 | SM652101910 | SM91S |
| R4562 | SM652101910 | SM91S |
| R4563 | SM652101301 | SM300S |
| R4564 | SM652101301 | SM300S |
| R4567 | SM652101201 | SM200S |
| R4568 | SM652101201 | SM200S |
| R4569 | SM652101151 | SM150S |
| R4570 | SM652101151 | SM150S |
| R4571 | SM652101201 | SM200S |
| R4572 | SM652101201 | SM200S |
| R4573 | SM185457501 | SM500- |

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| R4574 | SM652101472 | SM4.7KS |
| R4575 | SM652101223 | SM22KS |
| R4576 | SM185457503 | SM50K-1T |
| R4577 | SM185457102 | SM1K-1T |
| R4579 | SM652101182 | SM1.8KS |
| R4580 | SM653206222 | SMNTC-2.2K |
| R5000 | SM652101330 | SM33S |
| R5001 | SM652101220 | SM22S |
| R5002 | SM652101100 | SM10S |
| R5003 | SM652101330 | SM33S |
| R5004 | SM652101330 | SM33S |
| R5005 | SM652101104 | SM100KS |
| R5006 | SM652110904 | SM900K-5/00 |
| R5007 | SM652101101 | SM100S |
| R5008 | SM652101182 | SM1.8KS |
| R5009 | SM652101272 | SM2.7KS |
| R5010 | SM652110904 | SM900K-5/oo |
| R5011 | SM652101510 | SM51S |
| R5012 | SM652101182 | SM1.8KS |
| R5013 | SM652101122 | SM1.2KS |
| R5014 | SM652101221 | SM220S |
| R5015 | SM652101475 | SM4.7MS |
| R5016 | SM:168659006 | SM111.1K-1/oo |
| R5017 | SM652101153 | SM15KS |
| R5018 | SM652101183 | SM18KS |
| R5019 | SM185457201 | SM200-1T |
| R5020 | SM652101101 | SM100S |
| R5021 | SM652101151 | SM150S |
| R5022 | SM6652101680 | SM68S |
| R5023 | SM652101474 | SM470KS |
| R5024 | SM652101684 | SM680KS |
| R5025 | SM652101103 | SM10KS |
| R5026 | SM652101104 | SM100KS |
| R5027 | SM652101330 | SM33S |
| R5028 | SM652101391 | SM390S |
| R5029 | SM652110904 | SM900K-5/00 |
| R5030 | SM652101101 | SM100S |
| R5031 | SM652101331 | SM330S |
| R5032 | SM652101103 | SM10KS |
| R5033 | SM652101680 | SM68S |
| R5034 | SM652101100 | SM10S |
| R5035 | SM652101471 | SM470S |
| R5036 | SM652101101 | SM100S |
| R5038 | SM652101824 | SM820KS |
| R5039 | SM652101510 | SM51S |


| Location | Part Number | Description |
| :--- | :--- | :--- | :--- |
| ----------------------------182 |  |  |
| R5040 | SM652101182 | SM1.8KS |
| R5041 | SM652101510 | SM51S |
| R5042 | SM652101182 | SM1.8KS |
| R5043 | SM652101330 | SM33S |
| R5044 | SM652101330 | SM33S |
| R5045 | SM652101561 | SM560S |
| R5046 | SM652101101 | SM100S |
| R5047 | SM652101330 | SM33S |
| R5048 | SM652101330 | SM33S |
| R5049 | SM652101561 | SM560S |
| R5050 | SM652101101 | SM100S |
| R5051 | SM652101512 | SM5.1KS |
| R5052 | SM652101163 | SM16KS |
| R5053 | SM185457203 | SM20K-1T |
| R5054 | SM652101163 | SM16KS |
| R5055 | SM185457203 | SM20K-1T |
| R5056 | SM652101332 | SM3.3KS |
| R5057 | SM654101000 | SM0S |
| R5060 | SM654101000 | SM0S |
| R5061 | SM652101332 | SM3.3KS |
| R5062 | SM652101332 | SM3.3KS |
| R5064 | SM654101000 | SM0S |
| R5066 | SM654101000 | SM0S |
| R5067 | SM652101332 | SM3.3KS |
| R5068 | SM652101512 | SM5.1KS |
| R5071 | SM652101510 | SM51S |
| R5072 | SM652101510 | SM51S |
| R5073 | SM652101182 | SM1.8KS |
| R5074 | SM652101182 | SM1.8KS |
| R5075 | SM652101561 | SM560S |
| R5076 | SM652101561 | SM560S |
| R5077 | SM652101163 | SM16KS |
| R5078 | SM185457203 | SM20K-1T |
| R5079 | SM652101163 | SM16KS |
| R5080 | SM185457203 | SM20K-1T |
| R5081 | SM652101332 | SM3.3KS |
| R5082 | SM654101000 | SM0S |
| R5084 | SM654101000 | SM0S |
| R5086 | SM652101332 | SM3.3KS |
| R5087 | SM652101512 | SM5.1KS |
| R5088 | SM652101332 | SM3.3KS |
| R5089 | SM654101000 | SM0S |
| R5091 | SM65410100 | SM0S |
| SM652101332 | SM3.3KS |  |
| SM62101512 | SM5.1KS |  |
| R503 |  |  |

Section 8 Schematics, Layouts, Parts list

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T
Location Part Number Description
---------- --------------- $\quad$-----------

R5096 SM652101561 SM560S
R5097 SM652101182 SM1.8KS
R5098 SM652101101 SM100S
R5099 SM652101561 SM560S
R5100 SM652101271 SM270S
R5101 SM652101101 SM100S
R5102 SM652101561 SM560S
R5103 SM652101163 SM16KS
R5104 SM652101221 SM220S
R5105 SM652101391 SM390S
R5106 SM652101471 SM470S
R5107 SM652101512 SM5.1KS
R5108 SM185457203 SM20K-1T
R5109 SM652101471 SM470S
R5110 SM652101512 SM5.1KS
R5111 SM652101512 SM5.1KS
R5112 SM652101332 SM3.3KS
R5113 SM654101000 SM0S
R5115 SM654101000 SM0S
R5117 SM652101332 SM3.3KS
R5118 SM652101512 SM5.1KS
R5119 SM652101562 SM5.6KS
R5120 SM652101562 SM5.6KS
R5121 SM652101512 SM5.1KS
R5122 SM652101562 SM5.6KS
R5123 SM652101562 SM5.6KS
R5124 SM652101241 SM240S
R5125 SM652101271 SM270S
R5126 SM168651297 SM100-1\%MM
R5127 SM168651297 SM100-1\%MM
R5128 SM652101202 SM2KS
R5129 SM185457502 SM5K-1T
R5130 SM652101683 SM68KS
R5131 SM652101392 SM3.9KS
R5132 SM652101105 SM1MS
R5133 SM652101512 SM5.1KS
R5134 SM652101512 SM5.1KS
R5135 SM652101512 SM5.1KS
R5136 SM652101822 SM8.2KS
R5137 SM652101332 SM3.3KS
R5141 SM652101512 SM5.1KS
R5142 SM652101512 SM5.1KS
R6000 SM652101330 SM33S
R6001 SM168659007 SM3.0K-1/oo

Location Part Number Description

| R6002 | SM168659297 | SM100-1/oo |
| :---: | :---: | :---: |
| R6003 | SM168659297 | SM100-1/oo |
| R6004 | SM652101331 | SM330S |
| R6005 | SM652101112 | SM1.1KS |
| R6006 | SM652101330 | SM33S |
| R6007 | SM652101181 | SM180S |
| R6008 | SM652101112 | SM1.1KS |
| R6009 | SM652101621 | SM620S |
| R6010 | SM652101512 | SM5.1KS |
| R6011 | SM652101512 | SM5.1KS |
| R6012 | SM652101131 | SM130S |
| R6013 | SM652101391 | SM390S |
| R6014 | SM168659007 | SM3.0K-1/oo |
| R6015 | SM168659007 | SM3.0K-1/00 |
| R6016 | SM168659004 | SM900-1/oo |
| R6017 | SM168659297 | SM100-1/oo |
| R6018 | SM652101392 | SM3.9KS |
| R6019 | SM652101112 | SM1.1KS |
| R6020 | SM168659007 | SM3.0K-1/oo |
| R6021 | SM652101220 | SM22S |
| R6022 | SM652101101 | SM100S |
| R6023 | SM652101101 | SM100S |
| S1 | SM654101000 | SM0S-2P |
| S5 | SM654101000 | SM0S-2P |
| S6 | SM654101000 | SM0S-2P |
| S7 | SM654101000 | SM0S-2P |
| Y700 | 311210000 | OSC-18D-10MHz |
| Y5000 | SM310900015 | SM15.5029MHz |
| BZ700 | 530040007 | TMB-05 |
| CR1 | SM236030099 | BAV99 |
| CR2 | SM232120070 | BAV70 |
| CR100 | SM253032823 | HSMS2823 |
| CR200 | SM240218451 | BZX84-C5V1 |
| CR201 | SM240218475 | BZX84-C7V5 |
| CR202 | SM240218475 | BZX84-C7V5 |
| CR400 | SM236654004 | SM4004 |
| CR401 | SM236654004 | SM4004 |
| CR402 | SM236654004 | SM4004 |
| CR410 | SM253032823 | HSMS2823 |
| CR411 | SM253032823 | HSMS2823 |
| CR412 | SM253032823 | HSMS2823 |
| CR413 | SM253032823 | HSMS2823 |
| CR414 | SM253032823 | HSMS2823 |
| CR415 | SM253032823 | HSMS2823 |
| CR416 | SM253032823 | HSMS2823 |

PART: F9354-31 DESC: MAIN CARD (FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CR417 | SM253032823 | HSMS2823 | CR1501 | SM240050051 | TZMC5V1 |
| CR418 | SM253032823 | HSMS2823 | CR2000 | SM229020150 | SMTVSS-5V6 |
| CR501 | SM236030099 | BAV99 | CR2001 | SM236030099 | BAV99 |
| CR503 | SM240218451 | BZX84-C5V1 | CR2002 | SM236030099 | BAV99 |
| CR504 | SM240218451 | BZX84-C5V1 | CR2003 | SM236030099 | BAV99 |
| CR505 | SM240218451 | BZX84-C5V1 | CR2004 | SM252023018 | BAT18 |
| CR507 | SM240218451 | BZX84-C5V1 | CR2005 | SM240050056 | TZMC5V6 |
| CR508 | SM240218451 | BZX84-C5V1 | CR2500 | SM240050051 | TZMC5V1 |
| CR601 | SM236030099 | BAV99 | CR2501 | SM240050051 | TZMC5V1 |
| CR603 | SM240218451 | BZX84-C5V1 | CR3000 | SM229020150 | SMTVSS-5V6 |
| CR604 | SM240218451 | BZX84-C5V1 | CR3001 | SM236030099 | BAV99 |
| CR605 | SM240218451 | BZX84-C5V1 | CR3002 | SM236030099 | BAV99 |
| CR607 | SM240218451 | BZX84-C5V1 | CR3003 | SM236030099 | BAV99 |
| CR608 | SM240218451 | BZX84-C5V1 | CR3004 | SM252023018 | BAT18 |
| CR700 | SM240218451 | BZX84-C5V1 | CR3005 | SM240050056 | TZMC5V6 |
| CR701 | SM236030099 | BAV99 | CR3500 | SM240050051 | TZMC5V1 |
| CR702 | SM240218451 | BZX84-C5V1 | CR3501 | SM240050051 | TZMC5V1 |
| CR703 | SM240218451 | BZX84-C5V1 | CR4000 | SM229020150 | SMTVSS-5V6 |
| CR704 | SM240218451 | BZX84-C5V1 | CR4001 | SM236030099 | BAV99 |
| CR705 | SM236654004 | SM4004 | CR4002 | SM236030099 | BAV99 |
| CR707 | SM252080682 | BA682 | CR4003 | SM236030099 | BAV99 |
| CR708 | SM252080682 | BA682 | CR4004 | SM252023018 | BAT18 |
| CR710 | SM252080682 | BA682 | CR4005 | SM240050056 | TZMC5V6 |
| CR713 | SM236030099 | BAV99 | CR4500 | SM240050051 | TZMC5V1 |
| CR716 | SM236030099 | BAV99 | CR4501 | SM240050051 | TZMC5V1 |
| CR717 | SM252080682 | BA682 | CR5000 | SM229020150 | SMTVSS-5V6 |
| CR718 | SM252080682 | BA682 | CR5001 | SM252023018 | BAT18 |
| CR719 | SM240218451 | BZX84-C5V1 | CR5002 | SM232120070 | BAV70 |
| CR720 | SM240218451 | BZX84-C5V1 | CR5003 | SM236030099 | BAV99 |
| CR721 | SM240218451 | BZX84-C5V1 | CR5004 | SM240050033 | TZMC3V3 |
| CR722 | SM240218451 | BZX84-C5V1 | CR5005 | SM240050033 | TZMC3V3 |
| CR723 | SM232022822 | HSMS2822 | CR5006 | SM240050033 | TZMC3V3 |
| CR724 | SM236030099 | BAV99 | CR5007 | SM240050033 | TZMC3V3 |
| CR725 | SM232022822 | HSMS2822 | CR5008 | SM240218451 | BZX84-C5V1 |
| CR730 | SM236030099 | BAV99 | CR5009 | SM240050033 | TZMC3V3 |
| CR731 | SM236030099 | BAV99 | CR5010 | SM232120070 | BAV70 |
| CR732 | SM236030099 | BAV99 | CR5011 | SM236030099 | BAV99 |
| CR733 | SM236030099 | BAV99 | CR5012 | SM236030099 | BAV99 |
| CR1000 | SM229020150 | SMTVSS-5V6 | CR6000 | SM229020150 | SMTVSS-5V6 |
| CR1001 | SM236030099 | BAV99 | CR6001 | SM253032823 | HSMS2823 |
| CR1002 | SM236030099 | BAV99 | CR6002 | SM232022822 | HSMS2822 |
| CR1003 | SM236030099 | BAV99 | CR6003 | SM240050051 | TZMC5V1 |
| CR1004 | SM252023018 | BAT18 | CR6004 | SM236030099 | BAV99 |
| CR1005 | SM240050056 | TZMC5V6 | DL700 | 290199015 | DL-1L6-15 |
| CR1500 | SM240050051 | TZMC5V1 | DL701 | 290199015 | DL-1L6-15 |

$\qquad$

PART: F9354-31 DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| Location | Part Number | Description |
| :---: | :---: | :---: |
| DL705 | 290120009 | 9 nS |
| DL706 | 290120004 | 4 nS |
| DL707 | 290120002 | 2 nS |
| DL708 | 290120002 | 2 nS |
| DL709 | 290120002 | 2 nS |
| DL710 | 290120009 | 9 nS |
| DL711 | 290120002 | 2 nS |
| DL712 | 290120005 | 5 nS |
| RL200 | 430490750 | RL-UR1-12 |
| RL201 | SIMUL | SIMUL-RL-UR1 |
| RL202 | SIMUL | SIMUL-RL-UR1 |
| RL203 | 430490750 | RL-UR1-12 |
| RL1000 | 430441732 | RL-732-12 |
| RL1001 | 430430002 | RL-FBR22-12 |
| RL1002 | 430441732 | RL-732-12 |
| RL1003 | 430430002 | RL-FBR22-12 |
| RL2000 | 430441732 | RL-732-12 |
| RL2001 | 430430002 | RL-FBR22-12 |
| RL2002 | 430441732 | RL-732-12 |
| RL2003 | 430430002 | RL-FBR22-12 |
| RL3000 | 430441732 | RL-732-12 |


| Location | Part Number | Description |
| :---: | :---: | :---: |
| RL3001 | 430430002 | RL-FBR22-12 |
| RL3002 | 430441732 | RL-732-12 |
| RL3003 | 430430002 | RL-FBR22-12 |
| RL4000 | 430441732 | RL-732-12 |
| RL4001 | 430430002 | RL-FBR22-12 |
| RL4002 | 430441732 | RL-732-12 |
| RL4003 | 430430002 | RL-FBR22-12 |
| RL5000 | 430490003 | RL-TQ2-12 |
| RL5001 | 430430002 | RL-FBR22-12 |
| TP201 | 454313010 | 2x5-ST-M-NW |
| TP202 | 454313010 | 2x5-ST-M- |
| TP203 | 454313010 | 2x5-ST-M-NW-S |
| TP1000 | 454340002 | 2x1-ST-M-NW |
| TP1500 | 454311008 | 2x4-ST-M-NW |
| TP2000 | 454340002 | 2x1-ST-M-NW |
| TP2500 | 454311008 | 2x4-ST-M-NW |
| TP3000 | 454340002 | 2x1-ST-M-NW |
| TP3500 | 454311008 | 2x4-ST-M-NW |
| TP4000 | 454340002 | 2x1-ST-M-NW |
| TP4500 | 454311008 | 2x4-ST-M-NW |
| TP5000 | 454340002 | 2x1-ST-M-NW |

PART: F9354-31 DESC: DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

COMPONENT
146544471
146554476
146574227
158849009
158849012
169416473
208122002
208123002
208124002
208124003
290120002
290120004
290120005
290120009
290199015
311210000
430430002
430441732
430490003

PART DESCRIPTION

| CAP MINI ALUM 20\% 470UF | 1 |
| :---: | :---: |
| CAP MINI ALUM 20\% 47 UF | 2 |
| CAP MINI ALUM 20\% 220 UF | 3 |
| CAP VARIABLE .5-2.5 PF | 8 |
| CAP VARIABLE 5.0-15 PF | 4 |
| RESISTOR DISC NTC 47 K | 1 |
| IC VOLT REG POS UA7805 | 2 |
| IC +12 VOLT REG LM340T-12 | 3 |
| IC VOLT REG -5V UA7905UC | 1 |
| IC VOLT REG NEG LM320T-12 | 3 |
| DELAY LINE 2 N-SEC | 4 |
| DELAY LINE 4 NS | 1 |
| DELAY LINE 5NS | 1 |
| DELAY LINE 9 N-SEC | 2 |
| DELAY LINE 1.5 NS | 2 |
| CRYSTAL OSCILLATOR 3PPM 10 | 1 |
| RELAY 1 FORM C SPDT | 9 |
| RELAY 2 FORM CDPDT | 8 |
| RELAY 2 FORM C DPDT | 1 |

PART: F9354-31
COMPONENT
430490750
454111024
454115014
454220096
454313010
454315008
454340002
454390002
505019968
505070220
505132001
505368202
520001020
530009002
530040007
554416000
554425003
709354331
709354351
709354361
709354411
$7093 \times X P 01$
7093XXP21
7093XXP41
7093XXP91
709450321
719354313
CH599043022
F9354-4
FP9354-3
HSH416
MCL404
MDX416
MFE409
MST412
MTB411
MTR408
SM158240200
SM158240202
SM168651297
SM168659004
SM168659006
SM168659007
SM168659297
SM185457101

DESC: DESC: MALN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T


Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31

| COMPONENT | PART DESCRIPTION | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| SM185457102 | RES VARI CERMET 1 K | 4 |
| SM185457103 | RES VARI CERMET 10 K | 4 |
| SM185457201 | RES VARI CERMET 200 OHMS | 2 |
| SM185457203 | RES VARI CERMET 20 K | 9 |
| SM185457501 | RES VARI CERMET 500 OHMS | 8 |
| SM185457502 | RES VARI CERMET 5 K | 9 |
| SM185457503 | RES VARI CERMET 50 K | 4 |
| SM200167102 | IC NOR GATE 10H102 | 2 |
| SM200167131 | IC M-S TYP D FLOP 10H131 | 2 |
| SM200167164 | IC 8 TO 1 MPLX 10H164 | 1 |
| SM200169016 | IC BINARY UP COUNTER 10E01 | 3 |
| SM200169191 | IC UP-DOWN BIN COUNTER 74F | 5 |
| SM200172008 | IC AND GATE 74F08 | 1 |
| SM200178000 | IC 2-INPUT NAND HCT00 | 1 |
| SM200178002 | IC 2-INPUT NOR HCT02 | 2 |
| SM200178030 | IC 8 -IN NAND HCT30 | 1 |
| SM200178074 | IC D-TYP FLOP 74HCT74 | 2 |
| SM200178138 | IC 3-8 LINE DECOD HCT 138 | 4 |
| SM200178273 | IC D-TYP FLOP 74HCT273 | 2 |
| SM200178374 | IC D-TYP FLOP 74HCT374 | 1 |
| SM200278040 | IC COUNTER HCT4040 | 1 |
| SM201164104 | IC QUIET 2-IN AND/NAND | 1 |
| SM201164131 | IC M/S D-TYP FLOP 10E131 | 3 |
| SM201164167 | IC 6-BIT 2:1 MUX REGISTER | 1 |
| SM201166195 | IC ECL PROG DELAY 2NS 10E1 | 4 |
| SM201174001 | IC ECL 4 IN OR/NOR 10EL01D | 2 |
| SM201174005 | IC ECL 2-IN DIF AND/NAND | 8 |
| SM201174011 | IC ECL 1:2 DIF CLOCK DRVR | 12 |
| SM201174031 | IC ECL FLIP/FLOP SET/RES | 2 |
| SM201274032 | IC ECL DIV:2 10EL32D | 3 |
| SM201274033 | IC ECL DIV:4 10EL33D | 1 |
| SM201570016 | IC ECL DIF RECEIVER 10EL16 | 2 |
| SM205045300 | PROGRAMMED GAL MIMOSA-A | - 1 |
| SM205045350 | PROGRAMMED GAL ROUTE1-A | 1 |
| SM205045351 | PROGRAMMED GAL ROUTE2-A | 1 |
| SM205045352 | PROGRAMMED GAL ROUTE2-B | 1 |
| SM205045354 | PROGRAMMED GAL AVENUE-A | 1 |
| SM205045355 | PROGRAMMED GAL RUELLE-A | 1 |
| SM205045357 | PROGRAMMED GAL CHEMIN-A | 1 |
| SM205045358 | PROGRAMMED GAL ROUTE3-C | 1 |
| SM205045359 | PROGRAMMED GAL ARTERE-B | 1 |
| SM205108002 | IC EEPROM 2K BIT IIC BUS | 1 |
| SM205618165 | IC 8-BIT SHIFT REG 74HCT16 | 1 |
| SM205618594 | IC 8-BIT SHIFT REG 74HC594 | 24 |
| SM205701070 | IC 128KX8 STAT RAM 70 NS | 8 |

PART: F9354-31

COMPONENT
SM206070584
SM206260858
SM206884623
SM206885245
SM206970457
SM207130025
SM207170367
SM207171244
SM207172241
SM207260718
SM207280703
SM207288800
SM207360125
SM207367124
SM207367125
SM207770201
SM207770403
SM207770442
SM207960157
SM207961158
SM207970139
SM207970351
SM207970508
SM207972157
SM207978153
SM207978251
SM208030245
SM208470037
SM208470347
SM208470351
SM208470353
SM208470705
SM208570078
SM208570805
SM208870339
SM208880079
SM208971881
SM229020150
SM232022822
SM232120070
SM236030099
SM236654004
SM240050033
SM240050051
SM240050056

DESC: DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| PART DESCRIPTION QT | QTY PER ASSEMBLY |
| :---: | :---: |
| IC BUS CONTROLLER PCF8584T | 1 |
| IC OCT 8-BIT ADC0858 | 1 |
| IC OCTAL BUS TRANSCVR ABT6 | 10 |
| IC BUS TRANSCVR ABT245 | 2 |
| IC 3 DIF 2:1 MUX MC10E457 | 3 |
| TRANSISTOR NPN BFT25A | 1 |
| IC HEX BUFFER 74HC367 | 1 |
| IC OCTAL BUFFER ABT244 | 6 |
| IC OCTAL BUFFER ABT241 | 3 |
| IC 8 -BIT ADC 8718 | 4 |
| IC 16-BIT DAC 703 | 1 |
| IC OCTAL 8-BIT CMOS D/A CO | 2 |
| IC TRANSLATO MC10125 | 3 |
| IC TRANSLATOR 10H124 | 1 |
| IC TRANSLATOR 10H125 | 2 |
| IC ANALOG SWITCH DG201 | 8 |
| IC ANALOG SWITCH DG403 | 1 |
| IC ANALOG SWITCH DG442 | 2 |
| IC QUAD 2:1 MULTIPLEX 10E1 | 1 |
| IC 5 BIT 2:1 MUX 10E158 | 2 |
| IC DECODER/DEMUX 74F139 | 4 |
| IC OCTAL ANALOG MUX/DEMUX | 1 |
| IC ANALOG MULT PLX 8-1 DG5 | 1 |
| IC DATA SEL/MUX 74F157A | 1 |
| IC 4-INPUT MUX HCT153 | 1 |
| IC 8-IN MUX 3-ST 74HCT251 | 2 |
| IC TRANS ARRAY NPNX6 SL324 | 1 |
| IC OP AMP 37GS | 1 |
| IC J-FET OP AMP 347 | 8 |
| IC J-FET OP AMP 351 | 1 |
| IC DUAL OP AMP 353 | 2 |
| IC OP AMP PICOAMP INPUT AD | 6 |
| IC LOW POWER REG + 12V 78L1 | 1 |
| IC POS VOLT REG 78L05 | 1 |
| IC VOLT COMPARATOR 339 | 6 |
| IC LOW POWER REG -12V 79L1 | 1 |
| IC VIDEO SYNC SEPARATOR LM | 1 |
| MLC TR.VOLT SUP.VC08050561 | 6 |
| DIODE ARRAY SCHTTKY 2822 | 3 |
| DIODE ARRAY BAV70 | 3 |
| DIODE SO-PKG BAV99 | 27 |
| DIODE RECTIFIER 4004 | 4 |
| DIODE ZENER TZM-C-3V3 | 5 |
| DIODE ZENER TZM-C-5V1 | 9 |
| DIODE ZENER TZM-C-5V6 | 4 |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F9354-31

| COMPONENT | PART DESCRIPTION QT | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| SM240218451 | DIODE ZENER BZX84C5V1 | 20 |
| SM240218475 | DIODE ZENER BZX84C7V5 | 2 |
| SM252023018 | DIODE PIN BAT 18 | 5 |
| SM252080682 | DIODE PIN BA682 | 5 |
| SM253032823 | DIODE SCHOTTKY 2823 | 11 |
| SM270030020 | TRANSISTOR NPN BFS20 | 1 |
| SM270130092 | TRANSISTOR NPN BFR92A | 40 |
| SM270130093 | TRANSISTOR NPN BFR93A | 3 |
| SM270140092 | TRANSISTOR NPN BFR92AR | 1 |
| SM275030092 | TRANSISTOR PNP BFT92 | 8 |
| SM275030093 | TRANSISTOR PNP BFT93 | 4 |
| SM275030550 | TRANSISTOR PNP BF550 | 2 |
| SM275040092 | TRANSISTOR PNP BFT92R | 4 |
| SM275330858 | TRANSISTOR PNP BC858C | 22 |
| SM280120416 | TRANSISTOR JFET N MMBF4416 | - 5 |
| SM289240061 | TRANSISTOR NPN BCV61 | 4 |
| SM289240062 | TRANSISTOR ARRAY BCV62 | 8 |
| SM289772003 | TRANSISTOR ARRAY 2003 | 4 |
| SM300446150 | INDUCTOR . 015 UH | 1 |
| SM300486104 | INDUCTOR WOUND 100uH | 8 |
| SM301502001 | BEAD (FERRITE CHIP) | 35 |
| SM310900015 | CRYSTAL 15.5029MHZ | 1 |
| SM454120025 | CONN 1MM FEMALE 25 | 1 |
| SM651104182 | RES CHIP 1\% 25PPM 1.8K | 1 |
| SM651104183 | RES CHIP 1\% 25PPM 18 K | 1 |
| SM651104201 | RES CHIP 1\% 25PPM 200 OHM | 1 |
| SM651104204 | RES CHIP 1\% 25PPM 200 K | 1 |
| SM651104241 | RES CHIP 1\% 25PPM 240 OHM | 1 |
| SM651104392 | RES CHIP 1\% 25PPM 3.9K | 1 |
| SM652101100 | RES CHIP (E24) 1\% 10 OHMS | 27 |
| SM652101101 | RES CHIP (E24) $1 \% 100$ OHM | 58 |
| SM652101102 | RES CHIP (E24) 1\% 1 K | 43 |
| SM652101103 | RES CHIP (E24) 1\% 10 K | 92 |
| SM652101104 | RES CHIP (E24) 1\% 100 K | 2 |
| SM652101105 | RES CHIP (E24) 1\% 1 M | 29 |
| SM652101112 | RES CHIP (E24) 1\% 1.1 K | 5 |
| SM652101114 | RES CHIP (E24) 1\% 110 K | 4 |
| SM652101120 | RES CHIP (E24) 1\% 12 OHMS | 4 |
| SM652101121 | RES CHIP (E24) 1\% 120 OHM | 26 |
| SM652101122 | RES CHIP (E24) 1\% 1.2 K | 19 |
| SM652101131 | RES CHIP (E24) 1\% 130 OHM | 17 |
| SM652101151 | RES CHIP (E24) 1\% 150 OHM | 37 |
| SM652101152 | RES CHIP (E24) $1 \% 1.5 \mathrm{~K}$ | 11 |
| SM652101153 | RES CHIP (E24) $1 \% 15 \mathrm{~K}$ | 10 |
| SM652101163 | RES CHIP (E24) 1\% 16 K | 9 |

PART: F9354-31

COMPONENT
SM652101181
SM652101182
SM652101183
SM652101185
SM652101201
SM652101202
SM652101220
SM652101221
SM652101223
SM652101240
SM652101241
SM652101271
SM652101272
SM652101301
SM652101302
SM652101330
SM652101331
SM652101332
SM652101333
SM652101334
SM652101360
SM652101390
SM652101391
SM652101392
SM652101431
SM652101470
SM652101471
SM652101472
SM652101474
SM652101475
SM652101510
SM652101511
SM652101512
SM652101561
SM652101562
SM652101621
SM652101680
SM652101683
SM652101684
SM652101750
SM652101751
SM652101820
SM652101821
SM652101822
SM652101823

DESC: DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T

| PART DESCRIPTION | QTY PER ASSEMBLY |
| :---: | :---: |
| RES CHIP (E24) 1\% 180 OHM | 107 |
| RES CHIP (E24) $1 \% 1.8 \mathrm{~K}$ | 19 |
| RES CHIP (E24) 1\% 18 K | 1 |
| RES CHIP (E24) 1\% 1.8 M | 4 |
| RES CHIP (E24) 1\% 200 OHM | 74 |
| RES CHIP (E24) 1\% 2 K | 2 |
| RES CHIP (E24) 1\% 22 OHMS | 34 |
| RES CHIP (E24) 1\% 220 OHM | 33 |
| RES CHIP (E24) 1\% 22 K | 13 |
| RES CHIP (E24) 1\% 24 OHMS | 13 |
| RES CHIP (E24) 1\% 240 OHM | 1 |
| RES CHIP (E24) 1\% 270 OHM | 5 |
| RES CHIP (E24) 1\% 2.7 K | 5 |
| RES CHIP (E24) $1 \% 300$ OHM | 31 |
| RES CHIP (E24) 1\% 3 K | 13 |
| RES CHIP (E24) 1\% 33 OHMS | 18 |
| RES CHIP (E24) 1\% 330 OHM | 7 |
| RES CHIP (E24) 1\% 3.3 K | 23 |
| RES CHIP (E24) 1\% 33 K | 4 |
| RES CHIP (E24) 1\% 330 K | 4 |
| RES CHIP (E24) 1 \% 36 OHM | 4 |
| RES CHIP (E24) 1\% 39 OHMS | 4 |
| RES CHIP (E24) 1\% 390 OHM | 16 |
| RES CHIP (E24) 1\% 3.9 K | 6 |
| RES CHIP (E24) 1\% 430 OHM | 36 |
| RES CHIP (E24) 47 OHMS | 16 |
| RES CHIP (E24) 1\% 470 OHM | 34 |
| RES CHIP (E24) 1\% 4.7 K | 4 |
| RES CHIP (E24) 1\% 470 K | 1 |
| RES CHIP (E24) 1\% 4.7 M | 5 |
| RES CHIP (E24) 1\% 51 OHMS | 33 |
| RES CHIP (E24) 1\% 510 OHM | 4 |
| RES CHIP (E24) $1 \% 5.1 \mathrm{~K}$ | 38 |
| RES CHIP (E24) 1\% 560 OHM | 8 |
| RES CHIP (E24) 1\% 5.6 K | 12 |
| RES CHIP (E24) 1\% 620 OHM | 5 |
| RES CHIP (E24) 1\% 68 OHMS | 15 |
| RES CHIP (E24) 1\% 68 K | 5 |
| RES CHIP (E24) 1\%680 K | 1 |
| RES CHIP (E24) 1\% 75 OHMS | 28 |
| RES CHIP (E24) 1\% 750 OHM | 8 |
| RES CHIP (E24) 1\% 82 OHMS | 4 |
| RES CHIP (E24) 1\% 820 OHM | 1 |
| RES CHIP (E24) 1\% 8.2 K | 13 |
| RES CHIP (E24) 1\% 82 K | 1 |

PART: F9354-31
COMPONENT

SM652101824
SM652101910
SM652101911
SM652101913
SM652110904
SM652113523
SM652113954
SM652115062
SM653206222
SM654101000
SM661205472
SM661205822
SM661207102
SM661207103
SM661207104
SM661207223
SM661255010
SM661255022
SM661255027
SM661255033
SM661255056
SM661255100
SM661255101
SM661255102
SM661255121
SM661255150
SM661255152
SM661255180
SM661255181
SM661255270
SM661255330
SM661255560
SM661255820
SM661255821
SM661256120
SM661446474
SM661495561
SM661726103
SM666247106
SM666257336
SM666327225
SM666377226
SM666427105
SM669080181

DESC: DESC: MAIN CARD ( FRONT END, ADC, TDC ) FOR 9354A/T
PART DESCRIPTION
RES CHIP (E24) 1\% 820 K
RES CHIP (E24) 1\% 91 OHMS
QTY PER ASSEMBLY

RES CHIP (E24) 1\% 910 OHM
RES CHIP (E24) $1 \% 91 \mathrm{~K}$
RES CHIP 900K 0.5\% 7
RES CHIP (24) 0.3\% 52.63 K 4
RES CHIP (E24) $0.3 \% 950 \mathrm{~K} 4$
RES CHIP (E24) 5\% 6.2 OHMS 1
RESISTOR NTC $10 \% 2.2 \mathrm{~K} \mathrm{OHM} 8$
CHIP JUMPER ZERO OHMS 27
CAP CERA CHIP 5\% 4700 PF 4
CAP CERA CHIP 8200PF 5
CAP CERA CHIP 10\%.00IUF 8
CAP CERA CHIP 20\% .01UF ( 0 457
CAP CERA CHIP 20\%. 1 UF 169
CAP CERA CHIP 20\% . 022 UF 4
CAP CERA CHIP 1.0 PF 1
CAP CERA CHIP 2.2 PF 1
CAP CERA CHIP 2.7 PF 1
CAP CERA CHIP 3.3 PF 5
CAP CERA CHIP 5.6 PF 10
CAP CERA CHIP 10PF 2
CAP CERA CHIP 5\% 100 PF 10
CAP CERA CHIP $5 \% 1000 \mathrm{PF} 1$
CAP CERA CHIP $5 \% 120 \mathrm{PF} 8$
CAP CERA CHIP 5\% $15 \mathrm{PF} \quad 2$
CAP CERA CHIP $5 \% 1500 \mathrm{PF} 4$
CAP CERA CHIP 5\% 18PF 9
CAP CERA CHIP $5 \% 180 \mathrm{PF} 1$
CAP CERA CHIP 27PF 5
CAP CERA CHIP 5\% 33 PF 5
CAP CERA CHIP 56PF 2
CAP CERA CHIP 5\% 82 PF 4
CAP CERA CHIP 5\% 820 PF 1
CAP CERA CHIP $10 \% 12 \mathrm{PF} 4$
CAP CERA CHIP 10\%.47 UF 2
CAP CERA CHIP 5\% 560 PF 5
CAP CERA CHIP $10 \%$. 01 UF ( 2 15
CAP MOLD TANT CHIP 10 UF 4
CAP MOLD TANT CHIP 33 UF 4
CAP MOLD TANT CHIP 2.2 UF 43
CAP MOLD TANT CHIP 22 UF 4
CAP MOLD TANT CHIP 1 UF 5
CHIP FERRITE BEAD 8


Section 8 Schematics, Layouts, Parts list




9300-4 REV:D

PART: F9300-4

| Location | Part Number | Description |
| :---: | :---: | :---: |
| A1 | 207440232 | MAX232 |
| A2 | 200333000 | 74 HCT 00 |
| A3 | 207470161 | 75161 |
| A4 | 207470160 | 75160 |
| A5 | 207552661 | 2661A |
| A6 | 207197210 | 7210 |
| A7 | 205750000 | C16R4L |
| C1 | 103327103 | .01uF |
| C2 | 102484471 | 470 pF |
| C3 | 102484471 | 470pF |
| C4 | 102484471 | 470 pF |
| C5 | 102484471 | 470 pF |
| C6 | 102484471 | 470 pF |
| C7 | 103327103 | .01uF |
| C8 | 103327103 | .01uF |
| C9 | 147436033 | 33uF-16V-AL-RA |
| C10 | 147436033 | 33uF-16V-AL-RA |
| C11 | 147436033 | 33uF-16V-AL-RA |
| C12 | 147436033 | 33uF-16V-AL-RA |
| C13 | 103327103 | .01uF |
| C14 | 103427104 | .1uF |
| C15 | 103427104 | .1uF |
| C16 | 103427104 | .luF |
| C17 | 102484471 | 470pF |
| C18 | 103427104 | . 1 uF |
| C19 | 103327103 | .01uF |
| C20 | 103427104 | .14F |
| J5 | 454511040 | 2x20-RA-M-RE |
| J6 | 455413009 | DB9-RA-M-SC |
| J8 | 453521024 | GPIB24-F-ME |
| R1 | 161225682 | 6.8 K |
| R2 | 161225302 | 3K |
| R3 | 161225471 | 470 |
| R5 | 161225682 | 6.8 K |
| RN1 | 190832102 | 1K-8SS |
| Y1 | 309040005 | K1100A-4.9152MHZ |

$\qquad$

PART: F9300-4
COMPONENT

102484471
103327103
103427104
147436033
161225302
161225471
161225682
190832102
200333000
205750000
207197210
207440232
207470160
207470161
207552661
309040005
453521024
454511040
455413009
455980002
550130108
550430106
551430400
709300411
709300421
719300403

DESC: GPIB + RS232 INTERFACE CARD
PART DESCRIPTION
QTY PER ASSEMBLY

CAP CERA DISC 100 V 470 PF
CAP CERA MONO 50 V .01 UF 5
CAP CERA MONO 100 V .1 UF 5
CAP ALUM METAL CAN 33 UF 4
RES COMP $1 / 8 \mathrm{~W} 5 \% 3 \mathrm{~K} \quad 1$
RES COMP $1 / 8 \mathrm{~W} 5 \% 470$ OHMS 1
RES CARBON FILM 6.8 K 2
RES NETWORK 1 K 1
IC QUAD 2-IN NAND HCT00 1
IC AND-OR GATE ARRAY 16V8 1
IC BUS INTERF CONTR $7210 \quad 1$
IC XMTR/RCVR MAX 2321
IC OCTAL BUS XCVR 75160A 1
IC OCTL BUS XCEIR 75161A 1
IC INTERFACE 2661A 1
CRYSTAL OSCIL. $4.9152 \mathrm{MHZ} \quad 1$
CONN RT ANGLE IEEE FEM 241
HDR SOLD TAIL/MALE/40/RT 1
CONN RT ANGLE MALE 9 S-CLIP 1
MOUNTING HDW FOR CONN SHELL 2
SCREW CYL HD M3X8 2
SCREW CYL HD PHIL M3X6 1
WASHER SHAKEPROOF M3 1
GPIB-RS232 INTERFACE BRACKET D 1
LABEL RS232-IEEE488-2 A 1
PC BD PREASS'Y 9300-4 D 1




Page 8-165



Section 8 Schematics, Layouts, Parts list



Page 8-169

Section 8 Schematics, Layouts, Parts list


Page 8-170

$\qquad$



Page 8-173

Sectiom 8 Schematics, Layouts, Parts list

PART: F9300-6

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A1 | 205750000 | C16L8L | CR2 | SM253032823 | HSMS2823 |
| A2 | SM227063201 | MCS3201 | CR3 | SM232120070 | BAV70 |
| A3 | 205750000 | C16L8L | J1 | 454511026 | 2x13-RA-M-RE |
| A4 | SM207878245 | SM74HCT245 | J2 | 454511040 | $2 \times 20-\mathrm{RA}-\mathrm{M}-\mathrm{RE}$ |
| A5 | SM200178374 | SM74HCT374 | J3 | 454520025 | DB25-RA-F-SC |
| A6 | SM200178374 | SM74HCT374 | J4 | 454511020 | 2x10-RA-M-RE |
| A7 | SM200178139 | SM74HCT139 | Q1 | SM270130092 | BFR92A |
| A8 | SM200278390 | SM74HCT390 | R1 | SM652101472 | SM4.7KS |
| A9 | SM201170112 | SM74HCT112 | R2 | SM652101472 | SM4.7KS |
| A10 | SM207170036 | SMi74HCT365 | R3 | SM652101472 | SM4.7KS |
| All | SM207170036 | SM74HCT365 | R4 | SM652101472 | SM4.7KS |
| A12 | SM207170036 | SM74HCT365 | R5 | SM652101472 | SM4.7KS |
| C1 | SM661207103 | SM.01uF | R6 | SM652101472 | SM4.7KS |
| C2 | SM661207103 | SM.01uF | R7 | SM652101103 | SM10KS |
| C3 | SM661207103 | SM.01uF | R8 | SM652101106 | SM10MS |
| C4 | SM661207103 | SM.01uF | R9 | SM652101472 | SM4.7KS |
| C5 | SM661207103 | SM.01uF | R10 | SM652101510 | SM51S |
| C6 | SM661255100 | SM10pF | R11 | SM652101510 | SM51S |
| C7 | SM661255100 | SM10pF | R12 | SM652101510 | SM51S |
| C8 | SM661207103 | SM.01uF | R13 | SM652101472 | SM4.7KS |
| C9 | SM661255471 | SM470pF | R14 | SM652101510 | SM51S |
| C10 | SM661255471 | SM470pF | R15 | SM652101510 | SM51S |
| C11 | SM661255471 | SM470pF | R16 | SM652101510 | SM51S |
| C12 | SM661255471 | SM470pF | R17 | SM652101472 | SM4.7KS |
| C13 | SM661255471 | SM470pF | R18 | SM652101510 | SM51S |
| C14 | SM661255470 | SM47pF | R19 | SM652101510 | SM51S |
| C15 | SM661255471 | SM470pF | R20 | SM652101510 | SM51S |
| C16 | SM661207103 | SM.01uF | R21 | SM652101510 | SM51S |
| C17 | SM661255471 | SM470pF | R22 | SM652101510 | SM51S |
| C18 | SM661255471 | SM470pF | R23 | SM652101510 | SM51S |
| C19 | SM661255471 | SM470pF | R24 | SM652101510 | SM51S |
| C20 | SM661255471 | SM470pF | R25 | SM654101000 | SM0S-2P |
| C21 | SM661207103 | SM.01uF | R26 | SM652101510 | SM51S |
| C22 | SM661207103 | SM.01uF | R27 | SM652101472 | SM4.7KS |
| C23 | SM661255471 | SM470pF | R28 | SM652101472 | SM4.7KS |
| C24 | SM661207103 | SM.0luF | R29 | SM652101472 | SM4.7KS |
| C25 | SM661255471 | SM470pF | R30 | SM652101472 | SM4.7KS |
| C26 | SM661255471 | SM470pF | R31 | SM652101472 | SM4.7KS |
| C27 | SM661255471 | SM470pF | R32 | SM652101472 | SM4.7KS |
| C28 | SM661207103 | SM.01uF | R33 | SM652101472 | SM4.7KS |
| C29 | SM661207103 | SM.0luF | R34 | SM652101472 | SM4.7KS |
| C30 | SM661207103 | SM.01uF | R35 | SM652101472 | SM4.7KS |
| C32 | SM661207103 | SM.01uF | R40 | SM654101000 | SM0S-2P |
| CR1 | SM232120070 | BAV70 | R41 | SM652101472 | SM4.7KS |

PART: F9300-6
Location


## R42

R43
R44
Y1

PART: F9300-6

Component

205750000
454511020
454511026
454511040
454520025
455980002
550430106
551430400
709300611
709300621
719300603
SM200178139
SM200178374
SM200278390
SM201170112
SM207170036
SM207878245
SM227063201
SM232120070
SM253032823
SM270130092
SM310900024
SM652101103
SM652101106
SM652101472
SM652101510
SM654101000
SM661207103
SM661255100
SM661255470
SM661255471

DESC: CENTRONICS/FLOPPY/PRINTER INTERFACE

Part Number
----------------

SM652101510
SM652101472
SM652101472
SM310900024

Description
--------------

SM51S
SM4.7KS
SM4.7KS
SM24MHz

## DESC: CENTRONICS/FLOPPY/PRINTER INTERFACE

Part Description Qty Per Assembly

IC AND-OR GATE ARRAY 16 V 82

HDR SOLD TAIL/MALE 20 ..... 1
HDR SOLD TAIL/MALE 26 ..... 1
HDR SOLD TAIL/MALE/40/RT ..... 1
CONN RT ANGLE FEM 25 S-CLIP ..... 1
MOUNTING HDW FOR CONN SHELL ..... 2
SCREW CYL HD PHIL M3X6 ..... 4
WASHER SHAKEPROOF M3 ..... 4
CENTR. FLOPPY INTERF. BRACKET B
LABEL PARA-INTERF. CENTRONICS A ..... 1
PC BD PREASS'Y 9300-6 C ..... 1
IC 2-TO-4-LINE DEC HCT139 ..... 1
IC D-TYP FLOP 74HCT374 ..... 2
IC 4-BIT RIPPLE COUNTER ..... 1
IC DUAL JK FF WITH SET-RESET ..... 1
IC HEX BUFFER 3-STATE ..... 3
IC BUS TRANSCVR HCT 245 ..... 1
IC IBM PC FLOPPY DISK CONTR. ..... 1
DIODE ARRAY BAV70 ..... 1
DIODE SCHOTTKY 2823 ..... 1CRYSTAL 24 MHZ SMD
TRANSISTOR NPN BFR92A ..... 1
RES CHIP (E24) $1 \% 10 \mathrm{~K}$ ..... 1
RES CHIP (E24) 1\% 10 MEG ..... 1
RES CHIP (E24) 1\% 4.7 K ..... 21
RES CHIP (E24) 1\% 51 OHMS ..... 15
CHIP JUMPER ZERO OHMS ..... 2
CAP CERA CHIP 20\% .01UF ..... 14
CAP CERA CHIP 10PF ..... 2
CAP CERA CHIP 47PF ..... 1
CAP CERA CHIP 5\% 470 PF ..... 14

Sectiom 8 Schematics, Layouts, Parts list $\qquad$


Page 8-176


Page 8-177


Page 8-178



| PART: F | F9300-7 | DESC: LTP | R CON | TROLLER |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Location | Part Number | Description | Location | Part Number | Description |
| A1 | SM200330125 | SM74HC125 | C32 | SM661255471 | SM470pF |
| A2 | SM208650393 | SMLM393 | C33 | SM661255471 | SM470pF |
| A3 | 309380016 | 16.000MHZ | C34 | SM661255471 | SM470pF |
| A4 | 207140007 | HA13007 | CR1 | SM236030099 | BAV99 |
| A5 | 208590350 | LM350T-P | CR2 | SM236030099 | BAV99 |
| A6 | SM227080500 | PT500GA1 | CR3 | SM236030099 | BAV99 |
| A7 | SMi227090501 | PT501P01 | CR4 | SM236030099 | BAV99 |
| A8 | 208122002 | 7805-P | CR5 | SNi236030099 | BAV99 |
| A9 | 208122002 | 7805-P | CR6 | SM236030099 | BAV99 |
| A10 | SM207470175 | SM75175 | CR7 | SM236030099 | BAV99 |
| A11 | SM207470175 | SM75175 | CR8 | SM208580336 | SMLM336-2.5 |
| A12 | SM207470175 | SM75175 | CR10 | SM236030099 | BAV99 |
| A13 | SM207470175 | SM75175 | J1 | 454111006 | 1x6-ST-M-2WS |
| C1 | 147494472 | $4.7 \mathrm{mF}-16 \mathrm{~V}$ | J2 | 454111002 | 1x2-ST-M-2WS |
| C2 | 146544471 | 470uF-25V | j3 | 454113003 | 1x3-ST-M-2WS |
| C3 | SM661207103 | SM.01uF | J4 | 454511020 | 2x10-RA-M-RE |
| C4 | SM661207103 | SM.01uF | J5 | 454511026 | 2x13-RA-M-RE |
| C5 | SM661207103 | SM.01uF | J6 | 454121003 | POWER1x3-M |
| C6 | SM661207103 | SM.01uF | Q1 | SM270330848 | BC848C |
| C7 | SM661207103 | SM.01uF | Q2 | SM270330848 | BC848C |
| C8 | SM661207103 | SM.01uF | R1 | SM654101000 | SM0S-4P |
| C9 | SM661207103 | SM.01uF | R2 | SM652101132 | SM1.3KS |
| C10 | SM661207103 | SM.01uF | R3 | SM652101132 | SM1.3KS |
| C11 | SM661207103 | SM.01uF | R4 | SM652101162 | SM1.6KS |
| C12 | SM661207103 | SM.01uF | R5 | SM652101162 | SM1.6KS |
| C13 | SM661207103 | SM.01uF | R6 | SM652101101 | SM100S |
| C14 | SM661207103 | SM.01uF | R7 | SM652101101 | SM100S |
| C15 | SM661207103 | SM.01uF | R8 | SM652101101 | SMi00S |
| C16 | SM661207103 | SM.01uF | R9 | SM652101101 | SM100S |
| C17 | SM661207103 | SM.01uF | R10 | SM652101101 | SM100S |
| C18 | SM661207103 | SM.01uF | R11 | SM652101101 | SM100S |
| C19 | SM661207103 | SM.01uF | R12 | SM652101101 | SM100S |
| C20 | SM661207103 | SM.01uF | R13 | SM652101101 | SM100S |
| C21 | SM661207103 | SM.01uF | R14 | SM652101101 | SM100S |
| C22 | SM661207103 | SM.01uF | R15 | SM652101101 | SM100S |
| C23 | SM661207103 | SM.01uF | R16 | SM652101101 | SM100S |
| C24 | SM661207103 | SM.01uF | R17 | SM652101101 | SM100S |
| C25 | SM661207103 | SM.01uF | R19 | SM652101103 | SM10KS |
| C26 | SM661127104 | SM.1uF | R20 | SM652101103 | SM10KS |
| C27 | SM661127104 | SM.1uF | R21 | SM652101103 | SM10KS |
| C28 | SM661255101 | SM100pF | R22 | SM652101103 | SM10KS |
| C29 | SM666377226 | SM22uF-15V | R23 | SM652101103 | SM10KS |
| C30 | SM666377226 | SM22uF-15V | R24 | SM652101103 | SM10KS |
| C31 | SM661255471 | SM470pF | R25 | SM652101103 | SM10KS |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: $\mathbb{F 9 3 0 0 - 7}$

Location Part Number

| --------- | $--------\cdots----\cdots$ |  |
| :--- | :--- | :--- |
| R26 | SM652101103 | SM10KS |
| R27 | SM652101103 | SM10KS |
| R28 | SM652101103 | SM10KS |
| R29 | SM652101103 | SM10KS |
| R30 | SM652101103 | SM10KS |
| R31 | SM652101103 | SM10KS |
| R32 | SM652101103 | SM10KS |
| R33 | SM652101103 | SM10KS |
| R34 | SM652101513 | SM51KS |
| R35 | SM652101103 | SM10KS |
| R36 | SM652101103 | SM10KS |
| R37 | SM652101103 | SM10KS |
| R38 | SM652101103 | SM10KS |
| R39 | SM652101103 | SM10KS |
| R40 | SM652101103 | SM10KS |
| R41 | SM652101103 | SM10KS |
| R42 | SM652101103 | SM10KS |
| R43 | SM652101103 | SM10KS-4P |
| R44 | SM652101102 | SM1KS |
| R45 | SM652101201 | SM200S |
| R46 | SM652101223 | SM22KS |
| R48 | SM652101301 | SM300S |
| R49 | SM652101301 | SM300S |

DESC: LTP 5446 PRINTER CONTROLLER
Description

| Location Part Number | Description |  |
| :--- | :--- | :--- |
| R--------------------- |  |  |
| R50 | SM652101301 | SM300S |
| R51 | SM652101303 | SM30KS |
| R52 | SM652101391 | SM390S |
| R53 | SM652101302 | SM3KS |
| R54 | SM652101472 | SM4.7KS |
| R55 | SM652101103 | SM10KS |
| R56 | SM652101472 | SM4.7KS |
| R57 | SM652101472 | SM4.7KS |
| R58 | SM652101514 | SM510KS |
| R59 | SM652101510 | SM51S |
| R60 | SM652101563 | SM56KS |
| R61 | SM652101563 | SM56KS |
| R62 | SM652101682 | SM6.8KS |
| R63 | SM652101621 | SM620S |
| R66 | SM652101621 | SM620S |
| R70 | SM652101132 | SM1.3KS |
| R71 | SM652101151 | SM150S |
| R77 | SM652101104 | SM100KS |
| RL1 | 430430001 | RL-FBR21-12 |
| RN1 | 190042103 | $10 K-S C$ |
| RN2 | 190042472 | 4.7K-SIPC |
| RN3 | 190042472 | 4.7K-SIPC |
| S1 | 416161003 | SW-P-SPST |

PART: $\mathbf{F 9 3 0 0 - 7}$

Component

146544471
147494472
190042103
190042472
207140007
208122002
208590350
309380016
416161003
430430002
454111002
454111006
454113003
454121003
454511020

DESC: LTP 5446 PRINTER CONTROLLER

Part Description
Qty Per Assembly
$\qquad$

CAP MINI ALUM 20\% 470UF I
CAP ALU COMPACT AXIAL 4700 UF 1
RESISTOR NETWORK 10 K 1
RESISTOR NETWORK 4.7 K 2
IC QUAD STEP MOTOR DRIVER 1
IC VOLT REG POS UA7805 2
IC ADJ POWER REG 3A LM350 1
CRYSTAL OSC (PROGR) 16 MHZ 1
SWITCH PUSHBUTTON SPST 1
RELAY 1 FORM C SPDT 1
HEADER STRAIGHT 2-PINS 1
HEADER STRAIGHT 6-PINS 1
HEADER STRAIGHT 3-PINS 1
BLOC FOR SOCKETS 3-PIN 1
HDR SOLD TAIL/MALE $20 \quad 1$

PART: F9300-7

Component

454511026
554435401
719300703
SM200330125
SM207470175
SM208580336
SM208650393
SM227080500
SM227090501
SM236030099
SM270330848
SM652101101
SM652101102
SM652101103
SM652101104
SM652101132
SM652101151
SM652101162
SM652101201
SM652101223
SM652101301
SM652101302
SM652101303
SM652101391
SM652101472
SM652101510
SM652101513
SM652101514
SM652101563
SM652101621
SM652101682
SM654101000
SM661127104
SM661207103
SM661255101
SM661255471
SM666377226

DESC: LTP 5446 PRINTER CONTROLLLER

| Part Description Qty | Qty Per Assembly |
| :---: | :---: |
| HDR SOLD TAIL/MALE 26 | 1 |
| RIVET "RIVSCREW" M 3.5 | 3 |
| PC BD PREASS'Y 9300-7 | 1 |
| IC QUAD BUFFER 74HC125 | 1 |
| IC QUAD DIFF LINE RECEIVER | 4 |
| IC REF DIODE LM336-2.5V | 1 |
| IC DUAL VOLT COMP LM393M | 1 |
| IC THERM PRINTER GATE ARRAY | Y |
| IC THERM PRINTER CPU | 1 |
| DIODE SO-PKG BAV99 | 8 |
| TRANSISTOR NPN BC848C | 2 |
| RES CHIP (E24) 1\% 100 OHM | 12 |
| RES CHIP (E24) 1\% 1 K | 1 |
| RES CHIP (E24) 1\% 10 K | 25 |
| RES CHIP (E24) 1\% 100 K | 1 |
| RES CHIP (E24) 1\% 1.3 K | 3 |
| RES CHIP (E24) 1\% 150 OHM | 1 |
| RES CHIP (E24) 1\% 1.6 K | 2 |
| RES CHIP (E24) 1\% 200 OHM | 1 |
| RES CHIP (E24) 1\% 22 K | 1 |
| RES CHIP (E24) 1\% 300 OHM | 3 |
| RES CHIP (E24) 1\% 3 K | 1 |
| RES CHIP (E24) 1\% 30 K | 1 |
| RES CHIP (E24) 1\% 390 OHM | 1 |
| RES CHIP (E24) 1\% 4.7 K | 3 |
| RES CHIP (E24) 1\% 51 OHMS | 1 |
| RES CHIP (E24) 1\% 51 K | 1 |
| RES CHIP (E24) $1 \% 510 \mathrm{~K}$ | 1 |
| RES CHIP (E24) 1\% 56 K | 2 |
| RES CHIP (E24) 1\% 620 OHM | 2 |
| RES CHIP (E24) 1\% 6.8 K | 1 |
| CHIP JUMPER ZERO OHMS | 1 |
| CAP CERA CHIP 20\% . 1 UF | 2 |
| CAP CERA CHIP 20\% .01UF | 23 |
| CAP CERA CHIP 5\% 100 PF | 1 |
| CAP CERA CHIP 5\% 470 PF | 4 |
| CAP MOLD TANT CHIP 22 UF | 2 |

HDR SOLD TAIL/MALE 26 1
RIVET "RIVSCREW" M 3.53
PC BD PREASS'Y 9300-7 1
IC QUAD BUFFER 74HC125 1
IC QUAD DIFF LINE RECEIVER 4
IC REF DIODE LM336-2.5V 1
IC DUAL VOLT COMP LM393M 1
IC THERM PRINTER GATE ARRAY 1
IC THERM PRINTER CPU 1
DIODE SO-PKG BAV99 8
TRANSISTOR NPN BC848C 2
RES CHIP (E24) $1 \% 100$ OHM 12
RES CHIP (E24) 1\% 1 K 1
RES CHIP (E24) 1\% 10 K 25
RES CHIP (E24) $1 \% 100 \mathrm{~K} 1$
RES CHIP (E24) $1 \% 1.3 \mathrm{~K} 3$
RES CHIP (E24) $1 \% 150$ OHM 1
RES CHIP (E24) $1 \% 1.6 \mathrm{~K} 2$
RES CHIP (E24) $1 \% 200$ OHM 1
RES CHIP (E24) 1\% $22 \mathrm{~K} \quad 1$
RES CHIP (E24) $1 \% 300$ OHM 3
RES CHIP (E24) 1\% 3 K 1
RES CHIP (E24) 1\% 30 K 1
RES CHIP (E24) 1\% 390 OHM 1
RES CHIP (E24) $1 \% 4.7 \mathrm{~K} 3$
RES CHIP (E24) $1 \% 51$ OHMS I
RES CHIP (E24) $1 \% 51 \mathrm{~K} \quad 1$
RES CHIP (E24) $1 \% 510 \mathrm{~K} \quad 1$
RES CHIP (E24) 1\% 56 K 2
RES CHIP (E24) 1\% 620 OHM 2
RES CHIP (E24) $1 \% 6.8 \mathrm{~K} \quad 1$
CHIP JUMPER ZERO OHMS 1
CAP CERA CHIP 20\% . 1 UF 2
CAP CERA CHIP 20\% .01UF 23
CAP CERA CHIP $5 \% 100 \mathrm{PF} 1$
CAP CERA CHIP 5\% 470 PF 4
CAP MOLD TANT CHIP 22 UF 2

Section 8 Schematics, Layouts, Parts list


Page 8-184


Section 8 Schematics, Layouts, Parts list


Page 8-186


Section 8 Schematics, Layouts, Parts list

PART: F9300-8

| Location | Part Number | Description | Location | Part Number | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | L1 | SM300056332 | SM33uH |
| A1 | 205750000 | C16R4L | Q1 | SM280171005 | M.D10N05E |
| A2 | 205750000 | C16L8L | Q2 | SM275330858 | BC858C |
| A3 | SM201178175 | SM74HCT175 | R1 | SM652101334 | SM330KS |
| A4 | SM208470358 | SMLM358 | R2 | SM652101103 | SM10KS |
| A5 | SM208780109 | SM1 109-12 | R3 | SM652101104 | SM100KS |
| A6 | SM200178002 | SM74HCT02 | R4 | SM652101102 | SM1KS |
| A7 | SM207170036 | SM74HCT365 | R5 | SM652101103 | SM10KS |
| A8 | SM207170036 | SM74HCT365 | R6 | SM652101103 | SM10KS |
| A9 | SM206885245 | SM74ABT245 | R7 | SM652101103 | SM10KS |
| A10 | SM200178374 | SM74HCT374 | R8 | SM652101103 | SM10KS |
| Al1 | SM200178374 | SM74HCT374 | R9 | SM652101103 | SM10KS |
| A12 | SM207170036 | SM74HCT365 | R10 | SM652101103 | SM10KS |
| C1 | SM661207103 | SM.01uFS | R11 | SM652101220 | SM22S |
| C2 | SM661207103 | SM.01uFS | R12 | SM652101103 | SM10KS |
| C3 | SM661207104 | SM.luFS | R13 | SM652101334 | SM330KS |
| C4 | SM661207104 | SM.1uFS | R14 | SM652101102 | SMIKS |
| C5 | SM666377226 | SM22uF-15V | R15 | SM652101104 | SM100KS |
| C6 | SM666327225 | SM2.2uF-20V | R16 | SM652101334 | SM330KS |
| C7 | SM661207104 | SM.luFS | R17 | SM652101103 | SM10KS |
| C8 | SM661207103 | SM.01uFS | R18 | SM652101103 | SNi10KS |
| C9 | SM661255101 | SM100pFS | R19 | SM652101103 | SM10KS |
| C10 | SM661207104 | SM.1uFS | R20 | SM652101103 | SM10KS |
| C11 | SM661207103 | SM.01uFS | R21 | SM652101102 | SM1KS |
| C12 | SM666377226 | SM22uF-15V | R22 | SM652101103 | SM10KS |
| C13 | SM666377226 | SM22uF-15V | R23 | SM652101103 | SM10KS |
| C14 | SM661207103 | SM.01uFS | R24 | SM652101103 | SM10KS |
| C15 | SM661207103 | SM.01uFS | R25 | SM652101103 | SM10KS |
| C16 | SM661207103 | SM.01uFS | R26 | SM652101103 | SM10KS |
| C17 | SM661207104 | SM.1uFS | R27 | SM652101103 | SM10KS |
| C18 | SM661207104 | SM.1uFS | S1 | SM654101000 | SM0S-2P |
| C19 | SM661207103 | SM.01uFS | CR1 | SM232032814 | HSMS2814 |
| C20 | SM661207103 | SM.01uFS | CR2 | SM232032814 | HSMS2814 |
| C21 | SM661207103 | SM.01uFS | CR3 | SM232032814 | HSMS2814 |
| J1 | 454511040 | 2x20-RA-M-RE | CR4 | SM232032814 | HSMS2814 |
| J2 | 330100100 | 2x34-RA-CGE |  |  |  |

PART: F9300-8

| Component | Part Description Qty P | Qty Per Assembly |
| :---: | :---: | :---: |
| 205750000 | IC AND-OR GATE ARRAY 16V8 | 2 |
| 330100100 | PCMCIA HEADER ASS'Y TOP/LEFT | 1 |
| 389340009 | AUTO-ADHES. RUBBER BAND | 1 |
| 454511040 | HDR SOLD TAIL/MALE/40/RT | 1 |
| 550120606 | SCREW OVAL HD PHIL M2X6 | 4 |
| 550430106 | SCREW CYL HD PHIL M3X6 | 4 |
| 551430400 | WASHER SHAKEPROOF M3 | 4 |
| 552120100 | NUT HEX M2X0.5D | 4 |
| 594230002 | CABLE CLIP ADHESIVE BACK | 1 |
| 709300811 | 9300-8 PCMCIA III CONT.BRACKET | 1 |
| 709300821 | 9300-8 PCMICIA III CONT. COVER | 1 |
| 709300831 | 9300-8 PCMCIA III CONTR. LABEL | 1 |
| 719300803 | PC BD PREASS'Y 9300-8 | 1 |
| SM200178002 | IC 2-INPUT NOR HCT02 | 1 |
| SM200178374 | IC D-TYP FLOP 74HCT374 | 2 |
| SM201178175 | IC QUAD D FLIP/FLOP 74HCT175 | 1 |
| SM206885245 | IC BUS TRANSCVR ABT245 | 1 |
| SM207170036 | IC HEX BUFFER 3-ST. PC74HCT365 | 3 |
| SM208470358 | IC DUAL OP AMP 358D | 1 |
| SM208780109 | IC MICROPOWER DC-DC CONV. | 1 |
| SM232032814 | DIODE 2814 | 4 |
| SM275330858 | TRANSISTOR PNP BC858C | 1 |
| SM280171005 | TRANS POWER MOSFET MTD $10 N 05 \mathrm{E}$ | 1 |
| SM300056332 | INDUCTOR WOUND 33 UH | 1 |
| SM652101102 | RES CHIP (E24) 1\% 1 K | 3 |
| SM652101103 | RES CHIP (E24) 1\% 10 K | 18 |
| SM652101104 | RES CHIP (E24) 1\% 100 K | 2 |
| SM652101220 | RES CHIP (E24) 1\% 22 OHMS | 1 |
| SM652101334 | RES CHIP (E24) 1\% 330 K | 3 |
| SM654101000 | CHIP JUMPER ZERO OHMS | 1 |
| SM661207103 | CAP CERA CHIP 20\% .01UF (0805) | 10 |
| SM661207104 | CAP CERA CHIP 20\% . 1 UF | 6 |
| SM661255101 | CAP CERA CHIP 5\% 100 PF | 1 |
| SM666327225 | CAP MOLD TANT CHIP 2.2 UF | 1 |
| SM666377226 | CAP MOLD TANT CHIP 22 UF | 3 |

Section 8 Schematics, Layouts, Parts list


Page 8-190


Page 8-191


Page 8-192

## PART: F93XX-DEFLECTION

| Location | Description | Location | Description |
| :---: | :---: | :---: | :---: |
| C1 | 10 uF | D202 | 30DF6 |
| C2 | 680pF | D203 | SM-1XH12 |
| C3 | 22 nF | D204 | 334T |
| C4 | .1uF | D205 | BB4T |
| C5 | .14F | D206 | BB4T |
| C6 | 82nF | D207 | BB4T |
| C7 | . 1 uF | L201 | 5 nH |
| C8 | .IuF | V-DY | V-DY |
| C9 | 470uF | L202 | V-SIZE |
| C10 | .iuF | L203 | V-LIN |
| Cl 1 | .1uF | L204 | 5 nH |
| C12 | 470uF | Q1 | A733P |
| C13 | 4.7 nF 250 V | Q2 | A733P |
| C14 | $1 \mathrm{LF}-63 \mathrm{~V}$ | Q3 | C945 |
| C101 | 1000 pF | Q4 | A733P |
| C102 | 4700 pF | Q5 | J 177 |
| C103 | 1000 pF | Q6 | A733P |
| C104 | 1000 pF | Q7 | C945 |
| C105 | $1 \mathrm{uF}-50 \mathrm{~V}$ | Q8 | A733P |
| C106 | .1uF | Q9 | C945 |
| C107 | .1uF | Q10 | IRF630 |
| C108 | 47uF-35V | Q11 | C945 |
| C109 | . 1 uF | Q101 | H245 |
| C201 | $8.2 \mathrm{nF}-630 \mathrm{~V}$ | Q201 | IRF740 |
| C202 | $1000 \mathrm{pF}-500 \mathrm{~V}$ | R1 | 20K |
| C203 | $2.2 \mathrm{uF}-50 \mathrm{~V}$ | R2 | 10K |
| C205 | $1000 \mathrm{uF}-35 \mathrm{~V}$ | R4 | $6.65 \mathrm{~K}-1 \%$ |
| C206 | . $01 \mathrm{uF}-1 \mathrm{KV}$ | R5 | 10K |
| C207 | 47uF-100V | R6 | 7.5K |
| C208 | $10 \mathrm{uF}-100 \mathrm{~V}$ | R7 | 20K |
| C210 | $220 \mathrm{uF}-50 \mathrm{~V}$ | R8 | 2.2M |
| C211 | $47 \mathrm{uF}-100 \mathrm{~V}$ | R9 | 510 K |
| C212 | 100uF-25V | R10 | 10M |
| C213 | 47uF-25V | R11 | 2.26K-1\% |
| C214 | .luF | R12 | 13.3K-1\% |
| D1 | 1N4448 | R13 | 510K |
| D2 | 1 N 4448 | R14 | 1 M |
| D3 | 1N746A | R15 | 1 K |
| D4 | 1N746A | R16 | 220 |
| D5 | BYV36C | R17 | 470 |
| D6 | 1N758D | R18 | 1.5K |
| D7 | 1 N 758 D | R19 | 10K |
| D8 | 1 N 5245 B | R20 | 6.8 K |
| D201 | 30DF4 | R21 | 220K |

Section 8 Schematics, Layouts, Parts list $\qquad$

PART: F93XX-DEFLECTION

| Location | Description | Location | Description |
| :---: | :---: | :---: | :---: |
| --------- | -------------- | ------ | -------------- |
| R22 | 5K | VR101 | 10K |
| R23 | 5K | VR202 | 250 K |
| R24 | 300 | VR203 | 200-2W |
| R25 | 30K | VR206 | 2 M |
| R26 | 510 | ZD201 | 12 V |
| R27 | 300 |  |  |
| R28 | 7.5 K | PART : | F93XX-VIDEO |
| R29 | 2.7 |  |  |
| R30 | 300 | Location | Description |
| R31 | 300 | ---------- | -- |
| R32 | 5 K | C1 | $100 \mathrm{uF}-16 \mathrm{~V}$ |
| R33 | 510 | C2 | 220 pF |
| R34 | 300 | C3 | 150pF |
| R35 | 7.5 K | C4 | 100 nF |
| R36 | 2.7 | C5 | $100 \mathrm{uF}-16 \mathrm{~V}$ |
| R37 | 910 | C6 | $10 \mathrm{uF}-16 \mathrm{~V}$ |
| R38 | 6.2-1/2W | C7 | 100 nF |
| R40 | 1.5 K | C8 | $220 \mathrm{uF}-25 \mathrm{~V}$ |
| R41 | 1.5 K | C9 | 100 nF |
| R42 | 7.5 K | C10 | $100 \mathrm{uF}-100 \mathrm{~V}$ |
| R101 | 1 K | C11 | $100 \mathrm{nF}-100 \mathrm{~V}$ |
| R102 | 1 K | C12 | $100 \mathrm{nF}-100 \mathrm{~V}$ |
| R103 | $1 \mathrm{~K}-1 / 2 \mathrm{~W}$ | D1 | 5.0 V |
| R104 | 150 | D2 | MV5075C |
| R105 | 1K | L1 | 3.3 uH |
| R106 | 39 K | Q1 | 2SC1906 |
| R107 | 18K | Q2 | 2SC1906 |
| R108 | 56K | Q3 | 2SC1906 |
| R109 | 22K | Q4 | 2SC1906 |
| R110 | 12K | Q5 | 2SC3953 |
| R111 | 18K | R1 | 75 |
| R112 | 22 K | R2 | 10K |
| R201 | 10 | R3 | 50 |
| R202 | 10K | R4 | 10 |
| R203 | 100-2W | R5 | 10 |
| R204 | 1.2M-1/2W | R6 | 10 |
| R205 | 10K-1/2W | R8 | 680 |
| R206 | 100 K | R9 | 4.7 K |
| R207 | 220 K | R10 | 330-1/2W |
| R208 | 56K | R11 | 5 K |
| R209 | 10K | R12 | 100 |
| T201 | HT | R13 | 820-1/2W |
| U1 | LM3080 | R14 | 100 |
| U2 | LF353 | R15 | 47-1/2W |
| U3 | LF353 | R16 | 10 |

Section 8 Schematics, Layouts, Parts list


Page 8-195

Section 8 Schematics, Layouts, Parts list $\qquad$


Page 8-196

PART: M935X

| COMPONENT | PART DESCRIPTION | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| 315910006 | COMBI FILTER WITH FUSES - 6AMP | 1 |
| 377051005 | LABEL "DANGER-------ONLY" | 1 |
| 377131001 | LABEL (GROUND SYMBOL) | 1 |
| 433162630 | FUSE SLO-BLO 250V 6.3AMP | 2 |
| 485023462 | FOOT BUMPON GREY | 4 |
| 485123001 | BUMPER (FOOT) SQUARE GREY RUB | 2 |
| 530301009 | BLK HANDLE W/2 BLACK END CAPS | 1 |
| 550430106 | SCREW CYL HD PHIL M3X6 | 11 |
| 550430116 | SCREW CYL HD PHIL M3X16 | 6 |
| 550430120 | SCREW CYL HD PHIL M3X20 | 10 |
| 550430508 | SCREW FLAT HD PHIL M3X8 | 2 |
| 550430706 | SCREW ECO-FIX M3X6 | 7 |
| 550440605 | SCREW OVAL HD PHIL M4X5 | 8 |
| 550440608 | SCREW OVAL PHIL M4X8 | 7 |
| 551430400 | WASHER SHAKEPROOF M3 | 6 |
| 551450400 | WASHER SHAKEPROOF M5 | 2 |
| 554030101 | NUT BANC-LOK TYPE MV M3 | 7 |
| 554035101 | CLIP-ON NUT DIAM. 3.5 | 4 |
| 554425003 | SCREW S/TAP PHIL M2.5X6 BLACK | 6 |
| 554435003 | SCREW PT PHIL KA35X20 | 4 |
| 554435004 | SCREW PT PHIL KA35X10 | 4 |
| 554435005 | SCREW CYL HD PHIL 3.5X9.5 | 4 |
| 554440001 | SCREW PT PHIL KA 40 X 12 | 4 |
| 554440202 | FLAT WASHER M4 | 4 |
| 560032008 | SCREW PHILIPS 10-32X1/2 | 2 |
| 594120003 | TIEWRAP | 1 |
| 709300911 | LABEL CE | 1 |
| $7093 \times X 041$ | FOOT SUPPORT 93XX | 2 |
| $7093 \mathrm{XX051}$ | FOOT 93XX | 2 |
| $7093 \times X 091$ | FRONT FRAME BRACKET 93XX | 4 |
| $7093 \times X 321$ | MAIN CARD STANDOFF 12MM | 2 |
| $7093 \times X 902$ | FAN 93XX-9 ASSEMBLY | 1 |
| $7093 \mathrm{XX931}$ | INTERF. HOLE CLOSURE 93XX-9 | 2 |
| 709424096 | INSERTION GUIDE FOR MC | 1 |
| 780661104 | FLAT CABLE $2 \times 7$ (4 CM) | 1 |
| 780671110 | FLAT CABLE 2X20 (10 CM) | 1 |
| 780721105 | FLAT CABLE 2 X 10 ( $5,5 \mathrm{CM}$ ) | 1 |
| 780834509 | GROUND CABLE YELLOW/GREEN | 1 |
| 93XX-DISPLAY | RASTER MONITOR KIT | 1 |
| FF93X1 | FRONT FRAME DSO 93XX | 1 |
| LC93X1 | LOWER COVER DSO 93XX | 1 |
| PS9351 | POWER SUPPLY | 1 |
| RP9354-9 | REAR PANEL 9354-9 | 1 |
| UC93X1 | UPPER COVER DSO 93XX | 1 |
| US9354-3 | UPPER SHIELD ASSEMBLY | 1 |

DESC: MECHANICAL FOR 9354A/T

PART DESCRIPTION
COMBI FILTER WITH FUSES - 6AMP 1
LABEL "DANGER-------ONLY" 1
LABEL (GROUND SYMBOL) 1
FUSE SLO-BLO 250V 6.3AMP 2
FOOT BUMPON GREY 4
BUMPER (FOOT) SQUARE GREY RUB 2
BLK HANDLE W/2 BLACK END CAPS 1
SCREW CYL HD PHIL M3X6 11
SCREW CYL HD PHIL M3X16 6
SCREW CYL HD PHIL M3X20 10
SCREW FLAT HD PHIL M3X8 2
SCREW ECO-FIX M3X6 7
SCREW OVAL HD PHIL M4X5 8
SCREW OVAL PHIL M4X8 7
WASHER SHAKEPROOF M3 6
WASHER SHAKEPROOF M5 2
NUT BANC-LOK TYPE MV M3 7
CLIP-ON NUT DIAM. 3.54
SCREW S/TAP PHIL M2.5X6 BLACK 6
SCREW PT PHIL KA35X20 4
SCREW PT PHIL KA35X10 4
SCREW CYL HD PHIL 3.5X9.5 4
SCREW PT PHIL KA 40 X 124
FLAT WASHER M4 4
SCREW PHILIPS 10-32X1/2 2
TIEWRAP 1
LABEL CE 1
FOOT SUPPORT 93XX 2
FOOT 93XX 2
FRONT FRAME BRACKET 93XX 4
MAIN CARD STANDOFF 12MM 2
FAN 93XX-9 ASSEMBLY 1
INTERF. HOLE CLOSURE 93XX-9 2
INSERTION GUIDE FOR MC 1
FLAT CABLE 2X7 (4 CM) 1
FLAT CABLE 2X20 (10 CM) 1
FLAT CABLE 2X10 (5,5CM) 1
GROUND CABLE YELLOW/GREEN 1
RASTER MONITOR KIT 1
FRONT FRAME DSO 93XX 1
LOWER COVER DSO 93XX 1
POWER SUPPLY I
REAR PANEL 9354-9 1
UPPER SHIELD ASSEMBLY 1

Section 8 Schematics, Layouts, Parts list

## PART: ACCESSORIES-9354 DESC: ACCESSORIES FOR 9354A/T

| COMPONENT | PART DESCRIPTION | QTY PER ASSEMBLY |
| :---: | :---: | :---: |
| 407099008 | PLUG FOR AC LINE - ENGLAND | 1 |
| 433162630 | FUSE SLO-BLO 250V 6.3AMP | 2 |
| 589202200 | AC CORD/PLUG FOR GERMANY | 1 |
| 589203100 | AC CORD/"SEV-ASE" PLUG | 1 |
| 589203218 | AC CORD/US-CANADA PLUG | 1 |
| 597930001 | CARTON FOR 93XX | 1 |
| 597930002 | ETHAFOAM FOR 93XX | 2 |
| 597940014 | PLASTIC BAG FOR 94XX \& 93XX | 2 |
| 597940015 | MANUAL/ACCESSORY CTN 9400 | 2 |
| 7093XX061 | FRONT COVER 93XX | 1 |
| 931X-RCM-E | 931X SERIES REMOTE CONTROL MAN 1 |  |
| 935X-OM-E | 9350/54 OPERATOR'S MANUAL ENG. | 1 |
| PP002 | PASSIVE PROBE 10 MOHM 10:1 | 4 |
| PP092 | 2GS/s ADAPTOR FOR 9354 | 1 |

PART: 93XX-FDGP DESC: GRAPHIC PRINTER \& FLOPPY DISK

## COMPONENT

334000402
334000832
335023203
530040005
550425104
550430106
551430100
551430400
552430300
554030101
554430002
594120003
709450523
70FD01021
70FD01031
70GP01031
70GP01041
70GP01051
70GP01061
780210030
780721022
780791604
780791630
780801015
BOX-GP01
COVER-GP01
CUP-FD01
F9300-6
F9300-7
UC93X1-FDGP

PART DESCRIPTION

THERMAL PAPER FOR SEIKO PRINT
THERMAL PRINTER UNIT
FLOPPY DISK DRIVE 31/2"
SLIDE LATCH TAB STYLE 2
SCREW CYL HD PHIL M2,5X4 4
SCREW CYL HD PHIL M3X6 6
FLAT WASHER M3 3
WASHER SHAKEPROOF M3 4
NUT OPEN-END ACORN M3 3
NUT BANC-LOK TYPE MV M3 2
SCREW S/TAP PHIL M3X5 10
TIE WRAP 2
PUSH SWITCH EXTENDER 1
FLOPPY DISK DRIVE SUPPORT 1
FLOPPY DISK DRIVE FRAME 1
GRAPHIC PRINTER FRAME 1
GRAPHIC PRINTER COVER AXLE . 1
GRAPHIC PRINTER CUTTER 1
GRAPHIC PRINTER SWITCH BUTTON 1
DISPLAY POWER CABLE 1
FLAT CABLE 2X10 (22CM) 1
FLAT CABLE 2X13 (4CM) 1
FLAT CABLE 2X13 (30CM) 1
FLAT CABLE 2X20 (3 CONNECT.) 1
GP01 GRAPHIC PRINTER BOX 1
GP01 GRAPHIC PRINTER COVER 1
FD01 FLOPPY DISK DRIVE CUP 1
CENTRONICS/FLOPPY/PRINTER INT 1
LTP 5446 PRINTER CONTROLLER 1
UPPER COVER FOR FD/GP OPTIONS 1
$\qquad$

PART: 93XX-FD01
COMPONENT

335023203
550425104
550430106
551430400
551430400
554030101
554430002
70FD01021
70FD01031
780791630
780801015
CUP-FD01
F9300-6
UC93X1-FD01

PART: 93XX-GP01

COMPONENT
------------------

340000402
334000832
530040005
550430106
551430100
551430400
552430300
554430002
594120003
709450523
70GP01031
70 GP 01041
70GP01051
70GP01061
780210030
780721022
780791604
780801015
BOX-GP01
COVER-GP01
F9300-6
F9300-7
UC93X1-GP01

DESC: FLOPPY DISK
PART DESCRIPTION

FLOPPY DISK DRIVE 31/2"
SCREW CYL HD PHIL M2,5X4
SCREW CYL HD PHIL M3X6
WASHER SHAKEPROOF M3
WASHER SHAKEPROOF M3
NUT BANC-LOCK TYPE MV M3
SCREW S/TAP PHIL M3X5 4
FLOPPY DISK DRIVE SUPPORT 1
FLOPPY DISK DRIVE FRAME 1
FLAT CABLE 2X13 (30CM) 1
FLAT CABLE 2X20 (3 CONNECT.) 1
FD01 FLOPPY DISK DRIVE CUP 1
CENTRONICS/FLOPPY/PRINTER INT. B 1
UPPER COVER FOR FD01 OPTION 1

DESC: GRAPHIC PRINTER

PART DESCRIPTION

THERMAL PAPER FOR SEIKO PRINT 1
THERMAL PRINTER UNIT 1
SLIDE LATCH TAB STYLE 2
SCREW CYL HD PHIL M3X6 4
FLAT WASHER M3 3
WASHER SHAKEPROOF M3 4
NUT OPEN-END ACORN M3 3
SCREW S/TAP PHIL M3X5 6
TIE WRAP 2
PUSH SWITCH EXTENDER 1
GRAPHIC PRINTER FRAME 1
GRAPHIC PRINTER COVER AXLE 1
GRAPHIC PRINTER CUTTER 1
GRAPHIC PRINTER SWITCH BUTTON 1
DISPLAY POWER CABLE 1
FLAT CABLE 2X10 (22CM) 1
FLAT CABLE 2X13 (4CM) 1
FLAT CABLE 2X20 (3 CONNECT.) 1
GP01 GRAPHIC PRINTER BOX 1
GP01 GRAPHIC PRINTER COVER 1
CENTRONICS/FLOPPY/PRINTER INT 1
LTP 5446 PRINTER CONTROLLER 1
UPPER COVER FOR GP01 OPTION 1

## Digital Storage Oscilloscope

Section 9 Mechanical Parts


Figure 9.1 : 9354A/T DSO Exploded View
Page 9-2

| 9.1.1 | 9354A/T Assembly | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 1.1 | 9354A/T lower cover assembly | LC93X1 | 1 |
| 1.2 | 9354A/T upper shield assembly | US9354-3 | 1 |
| 2. | 9354A/T front frame assembly |  | 1 |
| 3. | 9354A/T Rear panel assembly |  | 1 |
| 4. | PS9351Power supply | PS9351 | 1 |
| 5.1 | Screw oval head M4x8 | 550440608 | 4 |
| 5.2 | Screw eco fix M3x6 | 550430706 | 1 |
| 5.3 | Screw cyl head M3x20 | 550430120 | 10 |
| 5.4 | Screw M3x16 | 550430116 | 2 |
| 5.5 | Self tapping screw M2.5x6 | 554425003 | 6 |
| 5.6 | Screw M3x6 | 554430706 | 3 |
| 5.7 | Screw oval head M4x8 | 550440608 | 1 |
| 5.8 | Screw M4x5 | 550440605 | 2 |
| 5.9 | 9354A/T Upper cover | UC 93X1 | 1 |
| 5.10 | Screw oval head M4x8 | 550440608 | 2 |
| 5.11 | Screw M4x5 | 550440605 | 2 |
| 5.12 | Foot bumpon grey 6 mm | 485023462 | 2 |

$\qquad$


Figure 9.2 : 9354A/T Lower Cover Exploded View

| 9.2.1 | 9354A/T Lower Cover Assembly | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 1.1 | Lower cover | LC 93X1 | 1 |
| 1.2 | Nut Banc-Lock M3 | 554030101 | 7 |
| 1.3 | Main card standoff 12 mm M3 | 7093 XX 321 | 2 |
| 1.4 | Handle with caps | 530301009 | 1 |
| 1.5 | Screw cy! head 10-32 x 1/2 | 560032008 | 2 |
| 1.6 | Lockwasher M5 | 551450400 | 2 |
| 1.7 | Foot | 7093 XX 051 | 2 |
| 1.8 | Foot support | 709 3XX 041 | 2 |
| 1.9 | Foot bumpon grey 3 mm | 485123001 | 2 |
| 1.10 | Main board 9354A/T | F9354-31 | 1 |
| 1.11 | Main board panel 9354A/T | FP9354-3 | 1 |
| 1.12 | Probe ring contact | 709 3XX P91 | - 6 |
| 1.13 | Probe holder | 709 3XX P41 | 6 |
| 1.14 | Self tapping screw M2,5x6 | 554425003 | 6 |
| 1.15 | 9354A/T base shield | 709354331 | 1 |
| 1.16 | Left lower partition | 709354361 | 1 |
| 1.17 | Nail rivet 1.6x6 | 554416000 | 2 |
| 1.18 | Lower partition | 709354351 | 5 |
| 1.19 | Screw eco-fix M3x6 | 550430706 | 3 |
| 1.20 | Screw cyl head M3x6 | 550430106 | 5 |
| 1.21 | Screw cyl head M3x16 | 550430116 | 4 |
| 1.22 | Self locking nylon spacer | 520000118 | 2 |
| 1.23 | 9354A Acquisition memory card | F9350-21 | 2 |
|  | 9354.AM Acquisition memory card | F9350M-21 | 2 |
|  | 9354AL Acquisition memory card | F9350L-2 | 2 |
|  | 9354T Acquisition memory card | F9350T-21 | 2 |
|  | 9354TM Acquisition memory card | F9350TM-21 | 2 |
| 1.24 | Upper shield assembly | US9354-3 | 1 |
| 1.25 | Upper shield | 709354321 | 1 |
| 1.26 | Upper partition shield | 709354341 | 6 |
| 1.27 | Shieid contact | 709 3XX 371 | 6 |
| 1.28 | Nail rivet M2,5x6 | 554425004 | 12 |
| 1.29 | Shield finger stock | 530009002 | 4 |
| 1.30 | 9354A \& 9354T Processor card | F9302-1-4 | 1 |
|  | 9354AM \& 9354TM Processor | F9302-1-8 | 1 |
|  | 9354AL Processor card | F9302-1-16 | 1 |
| 1.31 | Memory card insertion guide | 709424096 | 1 |
| 1.32 | Self adhesive foot | 485023462 | 2 |

$\qquad$


Figure 9.3 : 9354A/T Front Frame Exploded View

| 9.3.1 | 9354A/T Front Pamel Assembly | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 2.1 | Front frame | FF 93X1 | 1 |
| 2.2 | Front label 9354A | 709354 A16 | 1 |
|  | Front label 9354AM | 709354 AM16 | 1 |
|  | Front label 9354AL | 709354 AL16 | 1 |
|  | Front label 9354T | 709354 T16 | 1 |
|  | Front label 9354TM | 709354 TM16 | 1 |
| 2.3 | Front frame bracket | 709 3XX 091 | 4 |
| 2.4 | Screw oval head M4x5 | 550440605 | 4 |
| 2.5 | Front panel assembly | F9354-5 | 1 |
| 2.6 | Front panel keyboard ass'y | 729354513 | 1 |
| 2.7 | Front parel pcb ass'y | 9354-5 | 1 |
| 2.8 | Screw PT KA 35x10 | 554435004 | 1 |
| 2.9 | Knob diameter 10mm | 709 3XX 511 | 7 |
| 2.10 | Knob diameter 14 mm | 709 3XX 521 | 4 |
| 2.11 | 20 lines flat cable | 780721105 | 1 |
| 2.12 | Screw PT KA $35 \times 20$ | 554435003 | 4 |
| 2.13 | Raster monitor kit | 93XX-Display | 1 |
| 2.14 | 9 inch CRT | 93XX-CRT | 1 |
| 2.15 | Flat washer M4 | 554440202 | 4 |
| 2.16 | Screw PT KA 40x12 | 554440001 | 4 |
| 2.17 | Deflection board | 93XX-Deflection | 1 |
| 2.18 | Screw PT KA $35 \times 10$ | 554435004 | 4 |
| 2.19 | Deflection yoke | 93XX-Yoke | 1 |
| 2.20 | Video board | 93XX-Video | 1 |
| 2.21 | Monitor cable |  | 1 |
| 2.22 | 14 lines flat cable | 780661104 | 1 |

$\qquad$


Figure 9.4 : 9354A/T Rear Panel Exploded View

| 9.4 .1 | 9354A/T Rear Pamel Assembly | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 3.1 | Rear panei | RP 9354-9 | 1 |
| 3.2 | Serial number plate | 709354913 | 1 |
| 3.3 | Taping screw | 554500001 | 2 |
| 3.4 | Fan asssembly | 709 3XX 902 | 1 |
| 3.5 | Clip on nut 3.5 | 554035101 | 4 |
| 3.6 | Screw 3.5 X 9.5 | 554435005 | 4 |
| 3.7 | Line input module Fuse holder Fuse 6.3A / 250 V | 315910006 433162630 | $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$ |
| 3.8 | Screw flat head M3x8 | 550430508 | 2 |
| 3.9 | RS232/GPIB interface assembly | F9300-4 | 1 |
| 3.10 | Interface card bracket | 709300411 | 1 |
| 3.11 | Interface card | 9300-4 | 1 |
| 3.12 | Screw cyl head M3x6 <br> Washer Shakeproof M3 | $\begin{aligned} & 550430106 \\ & 551430400 \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \end{aligned}$ |
| 3.13 | Mounting hardware | 455980002 | 2 |
| 3.14 | Connector kit | 435521024 | 2 |
| 3.15 | Label " RS232C " | 709300421 | 1 |
| 3.16 | Interface hole closure | 709 3XX 931 | 1 |
| 3.17 | Screw cyl head M3x6 <br> Washer shakeproof M3 | $\begin{aligned} & 550430106 \\ & 551430400 \end{aligned}$ | 4 1 |
| 3.18 | Ground wire cable | 780834509 | 1 |
| 3.19 | 40 lines flat cable | 780671110 | 1 |

$\qquad$


Figure 9.5 : PS9351 Power Supply Exploded View
Page 9-10

| 9.5.1 | Power supply PS9351 | Part Description | Quantity per Ass |
| :---: | :---: | :---: | :---: |
| 4.1 | Power supply bracket | 709351041 | 1 |
| 4.2 | Power supply insulator | 709351031 | 1 |
| 4.3 | Power supply board | PS 1724 | 1 |
| 4.4 | Power supply line sync card | FPS9351-2 | 1 |
| 4.5 | Lockwasher M3 | 551430400 | 7 |
| 4.6 | Screw cyl head M3x6 | 550430106 | 7 |
| 4.7 | Power supply input cable | 780811622 | 1 |
| 4.8 | Power supply output cable | 780872972 | 1 |
| 4.9 | Lockwasher M3 | 551430400 | 1 |
| 4.10 | Screw cyl head M3x6 | 550430106 | 1 |
| 4.11 | Tie wrap | 594120006 | 3 |
| 4.12 | Power supply cover | 709351051 | 1 |
| 4.13 | Lockwasher M3 | 551430400 | 7 |
| 4.14 | Screw cyl head M3x5 | 550430105 | 7 |
| 4.15 | Label " Danger....only " | 377051005 | 1 |

$\qquad$


Figure 9.6 : FD01 Floppy Option
Page 9-12

| 9.6.1 | FD01 Floppy Option | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 6.1 | Floppy drive option | 93XX-FD01 | 1 |
| 6.2 | Upper cover | UC93X1-FD01 | 1 |
| 6.3 | Floppy drive | 335023203 | 1 |
| 6.4 | Cup | CUP-FD01 | 1 |
| 6.5 | Support | 70FD01021 | 1 |
| 6.6 | Frame | 70FD01031 | 1 |
| 6.7 | Floppy/Printer/Cent interface | F9300-6 | 1 |
| 6.8 | Flat cable 26 P | 780791630 | 1 |
| 6.9 | Flat cable 40 P | 780801015 | 1 |
| 6.10 | Screw M3x6 | 550430106 | 2 |
|  | Washer M3 | 551430400 | 2 |
| 6.11 | Nut banc lock M3 | 554030101 | 2 |
| 6.12 | Screw M3x6 | 550430106 | 2 |
| 6.13 | Screw M2.5x4 | 550425014 | 4 |
| 6.14 | Screw self taping M3x5 | 554430002 | 4 |
| 8.1 | Floppy and Printer options | 93XX-FDGP | 1 |
| 8.2 | Floppy\&Printer Upper cover | UC93X1-FDGP | 1 |

Section 9 Mechanical Parts $\qquad$


Figure 9.7 : GP01 Printer Option

| 9.7.1 | GP01 Primter Option | Part Description | Quantity per Assembly |
| :---: | :---: | :---: | :---: |
| 7.1 | Graphic printer option | 93XX-GP01 | 1 |
| 7.2 | Upper cover | UC93X1-GP01 | 1 |
| 7.3 | Graphic printer | 334000832 | 1 |
| 7.4 | Box | BOX-GP01 | 1 |
| 7.5 | Frame | 70GP01031 | 1 |
| 7.6 | Printer interface card | F9300-7 | 1 |
| 7.7 | Cover | COVER-GP01 | 1 |
| 7.8 | Switch push button | 709450523 | 1 |
| 7.9 | Floppy/Printer/Cent interface | F9300-6 | 1 |
| 7.10 | Flat cable 26 P | 780791604 | 1 |
| 7.11 | Flat cable 40 P | 780801015 | 1 |
| 7.12 | Flat cable 20 P | 780721022 | 1 |
| 7.13 | Power supply cable | 780210030 | 1 not used |
| 7.14 | Cover Axle | 70GP01041 | 1 |
| 7.15 | Cutter | 70GP01051 | 1 |
| 7.16 | Slide latch | 530040005 | 2 |
| 7.17 | Flat washer M3 | 551430100 | 3 |
| 7.18 | Nut acorn M3 | 552430300 | 3 |
| 7.19 | Screw self taping M3x5 | 554430002 | 2 |
| 7.20 | Push switch extender | 70GP01061 | 1 |
| 7.21 | Screw M3x6 | 550430106 | 4 |
|  | Washer M3 | 551430400 | 4 |
| 7.22 | Screw M3x5 | 554430002 | 4 |
| 7.23 | Screw M3x6 | 550430106 | 2 |
|  | Washer M3 | 551430400 | 2 |
| 7.24 | Thermal paper roll | 344000042 | 1 |
| 7.25 | Auto adhesive rubber band |  | 1 |
| 8.1 | Floppy and Printer options | 93XX-FDGP | 1 |
| 8.2 | Floppy\&Printer Upper cover | UC93X1-FDGP | 1 |

$\qquad$


Figure 9.8 : 9354A/T DSO Front View


Figure 9.9 : 9354A/T DSO Rear View
Page 9-17
$\qquad$


ALL DIMENSIONS ARE IN mm
WEIGHT 11.5 kg

Figure 9.10 : 9354A/T DSO Dimensions

## SECTION 10 CONNECTING the 9354A/T to a PLOTTER or a PRINTER

### 10.1 Introduction

LeCroy oscilloscopes are supplied with a list of plotters and printers known to work with them.
This list is not final, so any suggestions are welcome.
HP plotter responses to some RS-232 configuration commands have been evolved. Consequently, the 9354A/T generation DSO support HP plotters of two types, 7470A and 7550A. The only difference lies in the RS-232 initialization codes. They may however, despite these changes, work with HPGL compatible plotters from other manufacturers. If the HPGL data is used as input for a CAD or word processing system, it might be necessary to remove the data preceding the in command. Before connecting a plotter to a $9354 \mathrm{~A} / \mathrm{T}$, do not forget to select the appropriate settings in the printer setup menu and the GPIB \& RS- 232 setup menu.

GPIB \& RS232


GPIB Device
Talk Only

$\qquad$

## RS-232 connection

The following settings are assumed for the scope.

| Baud rate | $: 9600$ |
| :--- | :--- |
| Character | $: 8$ bits |
| Parity | $:$ none |
| Stop bits | $: 1$ |

Any exceptions will be mentioned.

## RS 232 interface

```
Pin 1 : DCD
    2 : RD
    3 : TD
    4: DTR
    5 : GND
    6 : DSR
    7 : RTS
    8 : CTS
    9 : RI
```

A cable with the following pinout can be used in almost every case:


The cable has D25 connector with male pins on the plotter side, and a D9 connector with female pins on the 9354A/T oscilloscope side.

## GPIB Connection

To have a plot done through GPIB initiated with the front panel screen dump push button, you must set the 9354 A /T in talk only mode by selecting remote control from RS-232, and the plotter in listen only mode.
If a computer controls the GPIB Bus, both the scope and the plotter must be set in addressed mode (remote control from GPIB).
Remark: the listen only mode does not work on some old HP plotters such as HP7585B or HP7475. The plotter must be set to listener before being able to receive any commands, which is a violation of the GPIB standard.

### 10.2 Plotters

### 10.2.1 HP 7470A Plotter

Switch settings:

- RS-232 Connection:

$$
\begin{array}{ll}
\text { S1 and S2 } & : 00 \\
\text { Y/D } & : \text { D } \\
\text { A4/US } & : \text { User selectable } \\
\text { B4 to B1 } & : 1010
\end{array}
$$

- GPIB listen only:

$$
\begin{aligned}
& \text { A4/US }: \text { User selectable } \\
& 16 \text { to } 1
\end{aligned}: 11111
$$

- GPIB Addressed:

A4/US : User selectable
16 to $1: 00111$

### 10.2.2 HP 7550A Plotter

Responses to some ESC characters commands are not the same in this plotter as in older HP models like the 7470A. In fact, ESC sequences of commands which give excellent results in the 7470A can prevent any handshake in RS-232.
Problems of this kind have been reported in the case of ESC.R and ESC.@ commands. When combined with ESC.I and ESC.N, ESC.@ breaks up all handshakes.

RS-232 configuration:

- Enter into display 5 (HP-IB MONITOR...).
- Select STANDARD OF STANDARD/ENHANCED.
- Enter into SERIAL sub-menu (display 6)
- For DATA_FLOW, select REMOTE. Either STANDALONE or EAVESDROP may be chosen.
- Enter into display 7 (DUPLEX, PARITY, BAUD).
- Select FULL duplex.
- Configuration PARITY and BAUD rate to the same values as on the DSO.

A standard cable may be used.
Do not start a plot while a sheet of paper is being loaded!
GPIB configuration:
If the scope is in TALK ONLY, the plotter must be in LISTEN ONLY.
Selection will be done at display 5 .
Note : Its seems that the plotter must be powered off, then on again, to take any
configuration change into account.
$\qquad$

### 10.2.3 Hitachi 672 Graph Plotter (or NSA 672)

As this plotter is compatible with the 7470 A , select this mode on the plotter menu page. Switch settings

- RS-232 Connection:

Sw. A, 1 and 2 : 11 (ISO A3) or (ISO A4).
Sw. A, 3 to 8 : 101101
Sw. B : 1111
Note : When switches are set to ISO A4, the pen must be manually repositioned at the top of the page (or plotter reset by powering it off and on) before loading a new sheet of paper.

### 10.3 Printers

Interfacing is possible through RS-232, GPIB directly, and in option through
Centronics. The parallel interface F9300-6 ( Centronics ) is an option, see section 4.5.

### 10.3.1 Cemtromics Printers

Most printers use a Centronics parallel connection which makes direct connection possible if the $9354 \mathrm{~A} / \mathrm{T}$ is equipped with the optional Centronics interface F9300-6 board. If the printer has a Centronics connector then it's a parallel printer, and the F9300-6 board is required or a serial to parallel converter.

If a serial to parallel converter is used, in the printer setup menu select device type Epson, and remote control from RS-232.

RS-232 Remote control port settings:
Baud rate : 9600 or 19200
Characters length (bits): 8
Parity : none
Number of stop bits : 1
The following printers and printer switch positions have been tested via serial to parallel adapter.

Switch 1

1. Epson LQ-1000 1, 2, 3, $4:$ ON 2, 6, 7:ON
2. Diconix 150P 1: ON 2, 6, 7:ON
3. HP-ThirkJet 2225C 2, 4, 5 : ON
4. HP-DeskJet 550 C all down

## Switch 2

6 up for 19200 bauds

Note: all Epson and Epson Compatible printers are likely to work if the switches are set properly, ( Some experimentation may be required ).

Some available serial to parallel converters need power through the RS-232 lines. Do not use them, as we do not guarantee that the serial port is able to furnish enough power.

### 10.3.2 RS-232 Printers

### 10.3.2.1 Epson FX80

It is possible to use the standard RS-232 cable. Such a printer has the optional RS-232 interface " \#8143" installed. The configuration that follows is valid for the default scope setting. The standard cable is usable.

In the particular case of an FX850:

- the main switches SW1 SW2 remain at the factory configuration

| SW1 $:$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | OFF | OFF | ON | OFF | OFF | ON | ON |
|  | ON |  |  |  |  |  |  |  |

SW2 : $1 \begin{array}{llll} & 2 & 3\end{array}$
ON OFF OFF OFF

- the 8143 switches are set to:

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ON | OFF | OFF | OFF | n/a | OFF | OFF | ON |

- the 8143 jumpers remain at the factory settings:

| J 1 | J 2 | J 3 | y | J 5 | JC | JNOR JRVE JF JX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

OFF OFF OFF OFF ON OFF ON OFF ON OFF
Note: Epson printers only support XON/XOFF support handshake if they have a print buffer. Such printer are : FX, FX+, JX-80, LQ-800/1000, EX-800 and LQ-25000. Otherwise, use DTR/RTS handshake.

### 10.3.2.2 Citizen 120D

To use this printer with the default RS-232 setting and default printer setting of the $9354 \mathrm{~A} / \mathrm{T}$, select the foliowing switch configuration:
DIP switch bank 1 : all OFF except 3 and 8, DIP switch bank 2 : all OFF.

### 10.3.2.3 $\mathbb{H P}$ LaserJet

Make sure that page feed is ON in the plotter menu to use the LaserJet. It is advisable to start out in single density with a size of A5. Then, depending upon the internal buffer size on the LaserJet, the image size and/or density can be increased. At one point, the internal buffer size of the DSO is also reached. The image is simply truncated, indicating that either density or size have to be reduced.

### 10.3.2.4 HIP QuietJet

### 10.3.2.5 HP ThinkJet

To use printer with the default RS-232 setting and with the default cable select the following switch configuration:

- mode switch:
1234
5678
$00000: 11^{\prime \prime}$ page length 0000
$1: 12$ " page length
- RS-232 switch:

| 1 | 23 | 45 |
| :---: | :---: | :--- |
| 1 | 00 | 00 |
| (use DTR handshake) | (8bits, parity none) | (9600 bauds) |

Note : it may be possible that old ThinkJet recognize only the Epson protocol. If it is the case use the Epson.

### 10.3.2.6 HIP DeskJet 550C

The standard cable is usable. The printer has been tested at 19200 bauds with the following configuration :

Switch 1 or Bank A: all down
Switch 2 or Bank B : 6 up for 19200 bauds, all the other down

### 10.3.2.7 Brother Printers

The Brother M-1509 and M-1709 have been tested with a serial connection. On the oscilloscope select "Epson FX-80 or compatible printer".

The switch settings are identical for both the printers:


### 10.3.3 GPIB Printers

### 10.3.3.1 HP QuietJet

Make sure the dip switches on the backplane of the printer are set to

- SRQ enable: 0
- GPIB listen only:

Listen always: 1
A5 to A1:
00111

- GPIB Addressed:

Listen always:
A5 to A1:

0
00111

### 10.3.3.2 HP ThinkJet (HIP 2225A)

Make sure the dip switches on the backplane of the printer are set to

- SRQ Enable: 0
- GPIB listen only:

Listen always 1
A5 to Al: $\quad 00111$

- GPiB Addressed:

Listen always: 0
A5 to Al:
00111

### 10.3.3.3 HP PaintJet (black/white omly)

Make sure the dip switches near the GPIB connector are set to:

- GPIB Listen only:

NORM/SCS: NORM
A3 to Al: 111
PC8/ROM8: N/A
ENG/MET: $\quad$ has to match paper size $\mathrm{ENG}=11^{\prime \prime}$ MET = 12"

- GPIB addressed:

NORM/SCS: NORM
A3 to A1: any combination except 111
(correspond to add. 0-6)
$\begin{array}{ll}\text { PC8/ROM8: } & \text { N/A } \\ \text { ENG/MET: } & \text { has to match paper size } E N G=11^{\prime \prime} \text { MET }=12^{\prime \prime}\end{array}$

### 10.4 Imformation on GPIB

### 10.4.1 Introduction

This section is a simple description of the GPIB interface as an aid to understanding the interface in the $9354 \mathrm{~A} / \mathrm{T}$ DSO: it is not intended as a complete specification of the system.

The GPIB system is designed for the interaction of a number of devices, which may transmit or receive information as required. The system includes data lines over which the actual data are sent, bus management lines for control, and handshake lines to ensure correct acceptance of data at the right destination. The main features of the bus are summarized below:

Maximum number of devices 15
Maximum bus length 20 meters or 2 meters per device, whichever is less.
Connection star or chain

Note that more than half of any connected devices must be powered up, even if they will not be used.
Data lines $\quad 8$ DIO $\quad 1$ to 8

| Handshake lines | DAV | Data available |
| :--- | :--- | :--- |
|  | NRFD | Not ready for data |
|  | NDAC | not data accepted |

Bus management lines EOI End or identity
IFC Interface clear
SRQ Service request
ATN Attention
REN Remote enable
Active level $\quad+0.4 \mathrm{~V}$
Inactive level $\quad+3,3 \mathrm{~V}$
Note that all signal lines are active low, and that they are wire 0Red to allow participation by all devices.
In addition, there are 8 ground lines, making a total of 24 lines.

### 10.4.2 Functions in the GPIB

In order to allow satisfactory interconnection of several devices the following functions must be provided

- Enabling any device to transmit data
- Preventing any device from transmitting data
- Enabling any device to receive data
- Preventing any device to receive data
- Transmitting data to a specific device
- Ensuring that only one device is transmitting
- Ensuring that transmitting takes place only when reception is possible
- Enabling any device to request servicing
- Identify type of data to be sent

Any device can be activated into the "talk" or "listen" state, and can be deactivated by the commands "untalk" and "unlisten". Also a device can be a "controller".

Maximum number of current talkers 1
Maximum number of current listeners 14
Maximum number of current controllers 1
Function of bus lines:

- DAV Data available; talker says the data on the line are valid.
- NRFD Not ready for data; listener says it is not ready for more data. All listeners must release the NRFD line, i.e., let it go high, before talker can send.
- NDAC Not data accepted; listener says it has not yet accepted the data. Talker must hold all data lines steady until all listeners have released this line, i.e., it goes high.

Clearly, the NRFD and NDAC are easy to implement by a wired OR system, so that any one device asserting the signal prevents progress to the next step. Progress is made at the speed of the slowest listener. A simple timing diagram is given in figure 10.1, and another way of presenting the system is given in figure 10.2.

The bus management lines functions as follows:

- EOI End Or Identify; talker sends this with last byte of a block transfer to indicate last byte. Also used with ATN to parallel poll devices for their status bit.
- IFC InterFace Clear; places the GPIB system into a quiescent state.
-SRQ Service ReQuest; any device can send it to the controller to indicate need for attention, and tc request interruption of current operations.
- ATN ATeNtion; controller sends this to specify whether DIO tines are to be used for interface messages, e.g., addressing, or for data.
- REN Remote ENable; selects a device as being under local or remote control.

Addressing of the devices on the GPIB bus consult a specialized GPIB-IEEE488 document.
$\qquad$

The principles of GPIB are quite simple - the system must wait for all users, and lines are wire ORed so that all can pull the lines down. The handshake sequence is illustrated in two ways. In figure 10.1 the signal waveforms are sketched.


Figure 10.1 : DATA BYTE TRANSFER IN GPIB IEEE-488
The handshake timing sequence proceeds as follows:
Preliminary The source checks for presence of listeners and places the next data byte on the data lines DI01-8.
$\mathrm{t}-1 \quad$ Acceptors one by one become ready for byte. Last one allows NRFD to go high.
t0
t1
t2
t3
t4
t5
Sources pulls down DAV to validate data.
The first litener to accept the data pulls down NRFD to show it is no longer ready for a new byte.
The listeners one by one accept the data, and the last one lets NDAC go high.
The source sets DAV high to show this byte is no longer valid. The listeners one by one accept this, the first one pulling NDAC low for the next cycle.
As for $\mathrm{t}-1$.


[^0]:    Version 1.0

[^1]:    Copyright (©) May, 1993. LeCroy is a registered trademark of LeCroy Corporation. All rights reserved. Information in this publication supersedes all earier versions. Specifications subject to change without notice.

