OSCILLOSCOPE OS-9020G SERVICE MANUAL

(1) LG Precision Co., Ltd.

OS-9000,3000SRS 변경내용
Previous New Aurt No. Part No.
Model name Model Name Rfore change After Change befire Change

NO	변경전모델명	분졍후모표ig	변경전뭄목번호		변경전 품명	변겨오 품영	수량
15	OS-902R8	OS 50888	1369-101	360-101-2	KNOB 3	kNOB 3. HITE	
16	OS-902RB	05-50299	369-102	369-102-1	KNOB $4 \mathrm{~V} / \mathrm{D}$	WW08 4 VIO, WHITE	2
17	OS-902RB	05-50298	369-103	369-103-3	KNOB 5 A T/D	KMOB 5 A T/D, WIIIE	1
18	OS-902RB	OS-50298	369-104	369-104-1	KNOB $6 \mathrm{~L} / \mathrm{H}$	KNOB 6 L/H, W/ITE	1
19	0S-90288	05-50288	369-105R1	369-105-1	KNOB B T/D REV 1	KNOB B T/TO, HITE -	1
20	OS-902R8	0 0-50288	369-106-1R2	369-106-2	KNOB B T/0 2	K400 B 17002 VHITE	1
21	OS-902RB	05-502818	369-107R2	369-107-1	EXT ROD	EXT ROD, MIITE	3
22	OS-902RB	OS-50993	397-001-1	397-001-2	REAR FOOT	fear foot caay	4
23	OS-902RB	OS 50988	397-002-1	397-002-2	OOWN FOOT	OOMN FOOT CRAY	4
24	OS-902RB	OS-50298	415-539-C	415-539-A	READOUT OSCOPE	CAPTON BOX OSCOPE	1
25	OS-902RB	0s-50288	587-043-2	587-043-1	(자재독록ㅁㅜㅜㅇㅛ)FILTER	FILTER BLUE.	1
1	OS-9020P	0s-9020	215-134	215-134-1	FRONT CASE	FPONT CASE, WHIIE	1
2	OS-9020P	05-0020	219-197-2R3	219-197-5	COVER TOP STEEL 9020P	COVEA TOP STEEL 9020.	1
3	OS-9020P	0s-9020	219-198R3	219-198-1	COVER BOTTOM	COVEA BOITOM, WhIIE	1
4	OS-9020P	05-9020	242-275-5	242-275-11	REAR PLATE OS9020P	REAR PLATE OSSO2O	1
5	OS-9020P	OS-9020	247-152R3	247-169	FRONT PANEL OS9020P	FRONT PAMEL OS9020	1
6	OS-9020 P	CS-9020	277-675-10	211-709-1	NaME LABEL OS9020P	NAME LABEL OS9020	1
7	OS-9020P	0s-9020	282-522-1K	282-528-3K	MANUAL OP OS9020P KOR	WANLAL OP OS9020 KOA	1
8	OS-9020P	OS 50020	282-522-181	282-528-3	MANUAL OP OS9020P ENG	MANUAL OP OS9020 ENG	1
9	OS-9020P	0S-9020	282-522S	282-528-35	MANUAL SVC OS902OP	MANUAL SVC OS9020	1
10	OS-9020P	10s-9020	367-429R?	367-429-1	HANDLE	HANOLE MITE	1
11	OS-9020P	05-9020	369-038-1	369-038-2	KNOB POWER SW	KHOB POWEA SHI, SKY BLUE	1
12	OS-9020P	05-9020	369-101-1	369-100-1	KNOB 2	KNOB 2, WIITE	7
13	OS-9020P	05-9020	369-101	369-101-2	KNOB 3	6408 3, MiITE	2
14	OS-9020P	Os 90020	369-102	369-102-1.	KNOB 4 V/D	KNOB 4 V VID, WIITE	2
15	OS-9020P	0s-9020.	369-103-1	369-103-4	KNOB A T/D	KNOB A TIO BELTON, WITE	1
16	OS-9020P	0s-9020	369-112	369-112-1	KNOB EKT	KNOB ET, WHITE	1
17	OS-9020P	OS-9020	369-113	369-113-1	KNOB SLIDE	KN08 SL LIEE WHIIE	4
18	OS-9020P	0s-9020	369-114	369-114-1	KNOB SLIIDE	KMOB SLIDE, MUIIE	6
19	OS-9020P	0s-0020	397-001-1	397-001-2	REAR FOOT	PEAA FOOT caay	4
20	OS-9020P	05-9020	397-002-1	397-002-2	Down F00T	DOMI FOOT CPAY	4
21	OS-9020P	05-9020	587-043-2	587-043-1	((자재 목록물요)FILTER	FILIER BLUE	
1	OS-9020G	05-50206	215-134	215-134-1	FRONT CASE	FPONT CASE WIIIE	
2	OS-9020G	05-50206	219-197-3R3	219-197-6	COVER TOP STEEL	COVEA TOP STEEL, HITE	
3	OS-9020G	05-50206	219-19883	219-198-1	COVER BOTTOM	COVER BOTIOM, MIIIE	
4	OS-9020G	Cs-50209	242-245-1	242-245-4	PLATE RUBBER 1	PLAIE PUBBER I M WITE	5
5	OS-9020G	0s-50209	242-275-1R14	242-275-7	REAR PLATE OS9020G	fear Plate OS50206	
6	OS-9020G	OS-50206	247-145R4	247-168	FRONT PANEL OS9020G	FPONT PANEL OS50206	
7	OS-9020G	0s-50206	277-675-7	277-709-3	NAME LABEL OS9020G	NAIE LABEL OS50209	
8	0S-90206	0s-50206	282-515-3K	282-528-2K	MANUAL OP OS9020G KOR	MAMUA OP OS50209 KOR	1
9	OS-9020G	105-50200	282-515-3R1	282-528-2	MANUAL OP OS9020G ENG	MANUAL OP OS50206 ENG	1
10	OS-9020G	05-50200	282-515S	282-528-25	MANUAL SVC OS9020G	MANLAL SUC OS50206	1
11	OS-9020G	05-50206	367-429R2	367-429-1	HANOLE	HANOLE, MHIIE	
12	OS-9020G	OS 502000	369-038-1	369-038-2	KNOB POWER SW	KNOB POMER SH, SKY BLUE	1
13	OS-9020G	OS-50206	369-055-11/4	369-055-2	CONTROL KNOB	CONTPOL KMOB, WHIIE.	10
14	OS-9020G	OS -50206	369-100	369-100-1	KNOB 2	K409 2. WIITE	5
15	OS-9020G	OS 5 50200	369-101	369-101-2	KNOB 3	KN08 3.MHITE	4
16	OS-9020G	05-50200	369-102	369-102-1	KNOB 4 V/D	KNOB 4 V/0, WHITE	2
17	OS-9020G	0s-50206	369-103-1	369-103-4	KNOB A T/D	KNOB A TID BELTON, WHITE	1
18	OS-9020G	05-50206	369-104	369-104-1	KNOB $6 \mathrm{~L} / \mathrm{H}$	KNOB 6 L/H, WUITE	2
19	OS-90206	05-50206	369-107R2	369-107-1	EXT ROD	EXT ROD, \#1ITE	2
20	OS-9020G	0s-50206	397-001-1	397-001-2	REAR FOOT	PEAR FOOT GPAY	4
21	OS-90206	0s-50206	397-002-1	397-002-2	OOWN FOOT	DOH1 FOOT GAAY	4
22	OS-9020G	OS-50206	587-043-2	587-043-1	(자재목록물요)FILTER	FILIEf BLUE	1
1	OS-9020A	OS-9020A	215-134	215-134-1	FRONT CASE	FRONT CASE, WIITE	1
2	OS-9020A	OS-9020A	219-197-3R3	219-197-6	COVER TOP STEEL	COVER TOP STEEL MHITE	
3	OS-9020A	OS=9020A	219-198R3	219-190-1	COVER BOTTOM	Cover bolionimilte	1
5	OS-9020A	0s-90204	242-275-4R14	242-275-10	REAR PLATE OS9020A	REAA PLATE OS9020A	1
5	OS-9020A	OS-9020A	242-30584	242-305-1	RUBBER PLATE	BUBBER PLATE, MIITE	3
6	OS-9020A	05-9020A	247-154-1	247-162	FRONT PANEL OS9020A	FRONT PAMEL OS9020A. GRAY	1
7	OS-9020A	0s-90204	277-675-2	277-709-2	NAME LABEL OS9020A	NALE LABEL OS9020A	1
8	OS-9020A	05-9020A	282-521-7K	282-528-11K	MANUAL OP OS9000SAS KOR	MANUAL OP OS 500058 S KOR	1
9	OS-9020A	OS -90204	282-521-7R2	282-528-1	MAAUAL OP OS9000SAS ENG	MANAL OP OSSOOSSRS ENG	,
10	OS-9020A	OS-9020A	282-521S	282-520-1S	MANUAL SVC OS9000SAS	MANUAL SUC OS5000SAS.	1
11	OS-9020A	0s-90204	367-429R2	367-429-1	HANDLE	HANOLE Mititer	1
12	OS-9020A	OS -90204	369-038-1	369-039-2	KNOB POWER SW	KNO8 POMGY SW, SKY BLUE	1
13	OS-9020A	OS -9020A	369-100	369-100-1	KNOB 2		4
14	OS-9020A	0S-9020A	369-101	369-101-2.	KNOB 3		3
15	OS-9020A	05-9020A	369-102	369-102-1	KNOB $4 \mathrm{~V} / \mathrm{D}$	RNOB 4 V/D. WHITE	2
16	OS-9020A	OS-9020A	369-103-2	369-103-5	KNOB A T/D	KN0B A T/D HOBLE, WHITE	-
17	OS-9020A	OS-9020A	369-104	369-104-1	KNOB $6 \mathrm{~L} / \mathrm{H}$	KNOB 6 L/H,MHITE	1
18	OS-9020A	OS $=9020 \mathrm{~A}$	369-107R2	369-107-1	EXT R00	EXT R00, mil	2

Please read all instructions in the service manual throughly before servicing.
Disconnect power cord from power source before opening the enclosure.

Instructions

1. To maintain the precision and reliability of the product use it in the standard setting (temperature $10^{\circ}-35^{\circ}$ centigrade, humidity 45% ~ 85%)
2. After turning on power, please allow a 15-minute pre-heating period before use.
3. Triple-line power cord is to be used for the product. But when you are using the doubleline cord, make sure to connect the earth terminal of the product to the earth at the power source for safety.
4. For quality improvement the exterior design and specifications of the product can be changed without prior notice.

Warranty

Warranty service covers a period of one year from the date of original purchase.
In case of technical failure within a year, repair service will be provided by our service center or sales outlet free of charge. We charge for repairs after the one year warranty period expires. When the failure is a result of user's neglect, natural disaster or accident, we charge for repairs regardless of the warranty period.

Notice

This Serivce Manual describes the most typical product of this model. If there are any specific differences between this Manual and the servicing unit, please contact Goldstar Precision sales office in your area.

CONTENTS

1. GENERAL 4
2. SPECIFICATIONS 5
3. ACCESSORIES 8
4. PREVENTIVE MAINTENANCE 9
5. CIRCUIT DESCRIPTION 10
6. CALIBRATION 14
6-1. Calibration Interval 14
6-2. Test Equipment Required. 1
6-3. Preliminary Procedure 14
6-4. Preliminary Control Settings 15
6-5. Initial Starting Procedure 15
7. SEMICONDUCTOR LEAD CONFIGURATIONS 28
8. ELECTRICAL PARTS ARRANGEMENT <WITH ADJUSTMENT LOCATIONS) 29
9. ELECTRICAL PARTS LIST 32
1Ø. BLOCK DIAGRAM 51
10. WIRING DIAGRAM 52
11. SCHEMATIC DIAGRAMS 53
12. MECHANICAL PART宅LİST \& EXPLODED VIEW 69
13. EXTERNALVIEWS 74

1. GENERAL

This product of OS-9020G is as shown on Fig. 1 and to generate triangular wave, sine wave and rectangular wave which have the frequency range and DC offset function from $\emptyset .1 \mathrm{~Hz}$ to 1 Hz as well as the waveform meter that has frequency range from DC to 20 情 and is a multipurpose portable oscilloscope mounted by a function producer that generates otherwise pills of total level of the same frequency as above.

Fig. I. OS-9020G Oscilloscope

PARTS	SPECIFICATIONS
* CRT 1) Configration and useful screen	6-inch rectangular screen with internal graticule ; 8x10 Div (1 div $=1 \mathrm{Cm}$) , marking for measurement of rise time. 2 mm subdivisions along the central axis.
2) Accelerating potential	approx. +1.9 KVDC (ref. cathode)
3) Phosphor	P31 (standard)
4) Focussing	possible
5) Trace rotation	provided
6) Intensity control	provided
* Vertical Deflection 1) Band-width (-3dB) DC coupled AC coupled	DC to 20 MHz normal (x 1) DC to 7 MHZ magnified (x 5)
	10 Hz to 20 MHz normal (xl) 10 Hz to 7 MHz magnified (x5)
2) Modes	$\begin{array}{r} \text { CH1, CH2, ADD, DUAL (CHOP ; Time/div switch }-0.2 \mathrm{~s} \text { to 5mS. } \\ \text { ALT ; Time/div switch }-2 \mathrm{mS} \text { to Ø. 2uS) } \end{array}$
3) Deflection Factor	5mV/div to 5V/div in 10 calibrated steps of a l-2-5 sequence continuously variable between steps at least 1:2.5 (x5 MAG ; lmV/div to 1V/div in 10 calibrated steps.)
4) Accuracy	normal ; $\pm 3 \%$, magnified ; $\pm 5 \%$
5) Input impedance	approx. 1 M -ohm in parallel with 25 pF
6) Maximum input voltage	```Direct ; 250V(DC+peak AC), with probe ; refer to probe specification```
7) Input coupling	DC - GND - AC
8) Rise time	17. 5 nS or less (50 nS or less: at x 5 MAG)
9) Cli1 out	$20 \mathrm{mV} / \mathrm{div}$ into 50 ohms ; Dc to 10 MHz (-3 dB)
(0) Polarity invertior	CH2 only
* Horizontal Deflection	xl , xl0, X-Y
2) Time base A	Ø. 2us - Ø. 2S/div in 19 calibrated steps, 1-2-5 sequence. uncalibrated continuous control between steps at least 1:2.5
3) Hold-off time	variable with the holdoff control

3. ACCESSORIES

(1) Cable (BNC to CLIP) 1
(2) Probe (Option) 2
(3) Fuse (2 A for 100 V or 120 V set or 1 A for 220 V and 230 V set 1
(4) Power supply code 1
(5) Operation manual 1

4. PREVENTIVEMAINTENANCE

Preventive maintenance, when performed on a regular basis, can prevent instrument breakdown and may improve the reliability of the oscilloscope. The severity of environment to which this instrument is subjected will determine the frequency of maintenance. A convenient time to perform preventive maintenance is preceding recalibration of the instrument.

Disassembly

Remove the top cover and the bottom cover of the instrument. Most of the internal parts of the instrument are now accessible, if access to the front of the circuit board are necessary, remove the knobs from the external control shafts on the board.

Cleaning

The instrument should be cleaned as often as operating conditions require. Accumulation of dirt in the instrument can cause component breakdown.
The covers provide protection against dust in the interior of the instrument. Loose dust accumulated on these covers can be removed with a soft cloth or small brush. Dirt that remains can be removed with a soft cloth dampened in a mild detergent and water solution. abrasive cleaners should not be used. Cleaning the interior should only be occasionally necessary. The best way to clean the interior is to blow off the dust with a dry, lowvelocity stream of air. A soft-bristle brush or a cottontipped applicator is useful for cleaning in narrow spaces or for cleaning more delicate components.

Visual Inspection

The instrument should be inspected occasionally for such defects as brocken connections, improperly seated transistors, damaged circuit boards, and heat-damaged parts. the corrective procedure for most visible defects is apparent ; however, particular care must be taken if heat-damaged components are found. Overheating usually indicates other trouble in the instrument ; therefore, correcting the cause of the overheating is important to prevent recurrance of the damage.

5. CIRCUITDESCRIPTION

The block diagram (page 51) shows the overall relationship between all of the circuits. Complete schematics of each circuit are also given in section schmatics diagrams (page 52 to 68). Refer to these diagrams throughout the following circuit description for electrical values and relationship.

ATTENUATOR

Signals applied to the input connector can be either AC coupled or DC coupled, or they can be disconnected to the internal circuit when S201 (S301) is GND position.
Attenuation is determined by the setting of the VOLT / DIV switch. The attenuator that is controlled by the VOLT / DIV switch has $\div 1 / 2, \div 1$, $\div 10,3100$ circuit.
$\div 2, \div 5, \div 10$ circuits are in RA201 (RA301) and $\div 10, \div 100$ circuits are between S202 (S302) and S203 (S303).

CH1 (CH2) INPUT AMPLIFIER

Signal from the input attenuator is connected to source follower Q201
(Q301). When excessively high-amplitude signals are applied to the source follower, the signals will be Q202 (Q302) and the gate-source junction of Q201 (Q301). When S202D (S302D) is open (PULL×5MAG), the signal that is feed back to OP AMP through R239 (R328) amplfies the output signal of Q204 (Q304) by 5 times.
And the signal of Q206 (Q306) base is converted from a single-ended signal to a paraphrase signal by differential amplifier.

CH1 (CH2) PREAMP \& TRIGGER PICK OFF

Vertical preamp circuits provide control of vertical position. They also contain a stage to provide a sample of the input signal to the trigger preamp circuit for internal triggering from the CH1 or CH2 signal only. And the trigger preamp of CH1 provides the CH1 input signal to the horizontal amplifier in the X-Y position of the TIME / DIV switch. The trigger preamp circuit amplifies the internal trigger signal to the level necessary to drive the trigger generator circuit.

```
VERTICAL CONTROL
```

The vetical switching circuit determines the input signal or combination of input signals to be connected to the vertical main amp. Input signal combinations that can be displayed are selected by D FLIP-FLOP that is controlled by the vertical mode switches and the X-Y position of the TIME / DIV switch.
In the DUAL modes, both channels are alternately displayed on a shared time basis.

VERTICAL MAIN AMPLIFIER

The vertical main amplifier circuit provides the final amplification for the vertical deflection signal before it is applied to the vertical deflection plates of the CRT.

TRIGGER GENERATOR

The Trigger Generator circuit produces trigger pulses to start the sweep generator circuit.
The Trigger Generator circuit consists of the trigger source, trigger mode switch, TV synchronization circuit, trigger amplifier, U603 and etc. The Trigger Source Switch selects one signal of the signals from the vertical trigger preamps, power line source applied to this instrument, external trigger input BNC connector connected to front panel.
The Trigger Generator Circuit has the circuit to control the trigger level
and slope.
The signal type is AC.
The Trigger mode Switch determines the operating mode for the trigger generator circuit.
In the NORM mode, the sweep signal is generated only the trigger signal
is generated, Operation in the AUTO, TV-V mode is the same operation as NORM mode, except that a free running trace is displayed when a trigger pulse is not present or the amplitude of the trigger signal is not adequate. The Base Signal of $Q 605$ which enters through three switches, Q601, Q602 and etc., is amplified by Q604, Q605.
The amplified signal, the collector signal of 2604 , enters the NO. 2 pin of U603, outputs in NO. 8 pin of U603.
The NO. 8 pin signal of $U 603$ is called trigger signal or trigger pulse.

SWEEP GENERATOR

Sweep generator circuit consists of sweep gate circuit and miller integrator. The sweep gate is on, a very little negative going signal is generated in the gate of Q612, input Miller Integrator, by $R-C$ network. The signal in the gate of $Q 612$ is amplified by Miller Integrator, the amplified signal appears in the Emitter of Q614, is called sweep signal and enters the Base of $\mathbf{Q} 627$ through R732. This sweep signal is generated on commend (trigger pulse) from the trigger generator circuit.
The sweep gate circuit produces an unblanking gate to unblank the CRT during sweep time.

HORIZONTAL OUTPUT AMPLIFIER

The Horizontal Output Amplifier provides the final signal amplification to drive the CRT horizontal deflection plates.
The Horizontal Output Amplifier consists of six cascade stage amplifiers. The first stage horizontal main amplifier has a low input impedance and requires very little voltage change at the input to produce the desired output change.
The output signal from complementary amplifier Q638, $Q 639$ drives the right
horizontal deflection plate.
The output signal from complementary amplifier $Q 636, \mathbf{Q} 637$ drives the left horizontal deflection plate.
The Horizontal Output Amplifier has the horizontal magnification and the horizontal position functions.
In all position of the TIME / DIV select switch except X-Y the input signal of the horizontal output amplifier is the sawtooth signal from the sweep generator. In the X-Y position of the TIME / DIV select switch the input signal of the Horizontal Output Amplfier is the signal from the channel 1 preamp circuit of the vertical deflection system.

POWER SUPPLY

The low voltage Power Supply Circuit provides five regulated sources (-12 Volts, +5 Volts, +12 Volts, +55 Volts, +140 Volts) and two unregulated source (195 Volts, +28 Volts) used to operate the vertical deflection system, horizontal deflection system and CRT driving circuit.

```
CRT CIRCUIT
```

The CRT Circuit provides the voltage levels and control circuits to operate CRT. The circuitry consists of the z-axis amplifier, high voltage oscillator, high voltage regulator, high voltage rectifier and the CRT controls.

The Probe adj. circuit produces a square wave output signal with accurate amplitude and frequency. This output signal available as a square wave Voltage at the 0.5Vp-p (1 KHz) connector.

FUNCTION GENERATOR CIRCUIT

The basic waveform generated in the function generator circuit is the triangle wave.
This is accomplished by charging and then discharging a capacitor by equal magnitude currents.
A dual comparator and flip flop (U4, SN75107A) determine whether the capacitor (C16, C17, C18, C20, C21, C27) is being charged or discharged.
when the voltage on the capacitor reaches the positive limit, the charging current is switched off and the capacitor discharges until the lower limit is reched at which time the charging current is then reapplied.
the output of the dual comparator is a square wave.
To produce a sine wave, the triangle wave is shaped by a special amplifier. (Q8, Q9, Q1Ø, Q13)
Range switching is accomplished by changing the magnitude of the current sources (U1, U2, Q1, Q3, Q6) and the timing capacitor.
Dial frequency tuning (VR8) is done by charging the magnitude of the current sources.
A frequency change of over a $10: 1$ is possible with the frequency Dial.

Goldstar Precision provides complete instrument repair and calibration at our oversea's office and authorized dealer. Contact your local Goldstar Precision office or representative.

6-1. Calibration interval

To maintain instrument accuracy, perform the calibration of the OS-9020G Units at least every 1000 hours of operations or every six month if used frequently.

6-2. Test equipment required

The following test equipment (Table 6-1) and accessories, or equivalent, are required for the complete calibration of the OS-9020G Units. The given specifications for the test equipment are the minimum necessary for accurate calibration. Therefore, the specifications of any test equipment used must meet or exceed the list specifications. All the test equipment is assumed to be correctly calibrated and operating within the listed specification. Operating instructions for the test equipment are not given in this procedure. Refer to the instruction manual for the test equipment if more information is needed.

6-3. Preliminary procedure

This instrument should be calibrated at an ambient temperature of +20 C ($\pm 5^{\circ} \mathrm{C}$) for best overall accuracy.

1. Connect the instrument to $A C$ line voltage, $50 / 60 \mathrm{~Hz}$ line source.
2. Set the instrument controls as given in the Preliminary Control Setting. Allow at least fifteen minutes of warmup before proceeding.
3. See the Adjustment Locations in the pullout pages.
```
6-4. Preliminary control settings
```

Preset the instrument controls to the settings given below, when starting the calibration procedures.

Controls	Settings	Controls	Settings
(1) FOCUS	Midrange	(1) PULLx10MAG	Normal, (pushed in)
(2) TRACE ROTATION1 As desired		(13) TIME/DIV	1 mS
(3) SCALE ILLUM Fully counterclockwise		- TRIG -	
- VERTICAL -		(3) LEVEL	Midrange, normal
(4) V-POSITION Midrange		(44) SLOPE	+ Normal
(5) V-VARIABLE	CAL(fully clockwise pushed in)	(1) MODE	Auto
		(16) HOLDOFF	Fully counterclockwise
(6) INPUT COUPLING	GND ($\mathrm{AC}-\mathrm{GND}-\mathrm{DC}$)	(17) TRIG SOURCE	CH1
(7) VOLTS/DIV 5] V/DIV		- FUNCTION GENERATOR -	
(8) V-MODE	CH1	(18) AMPLITUDE	full counterclockwise
(9) CH2 Invert	Normal (Pushed In)	(19) RANGE SW.	1
- HORIZONTAL -		(26) FREQ. DIAL	0.1
(0) H-POSITION	Midrange	(21) OFFSET	PUSH

6-5. Initial starting procedure

1. Push the POWER switch.
2. Wait a few seconds for the cathode ray tube (CRT) to warm up. A trace should appear on the display of the CRT.
3. If the trace disappears, increase (clockwise) the INTENSITY control setting until the trace is easily observed.
4. Adjust FOCUS control for the best focused display.
5. Readjust POSITION controls if necessary, to center the trace.

POW ERSUPPLYSYSTEM

NOTE : Before you begin, see ADJUSTMENT LOCATIONS in the pullout pages.
Control settings
Preset the controls as given in the Preliminary Control Settings.
[1] Check Low-voltage Supply, if necessary.
a. Connect the digital voltmeter (DVM) from the +12 volt line. $:+11.75 \mathrm{~V}$ to $+12.25 \mathrm{~V}(+12 \mathrm{~V}$ point of horizontal board)
b. Connect the DVM from the -12 volt line. : -11.75 V to $-12.25 \mathrm{~V}(-12 \mathrm{~V}$ point of horizontal board)
c. Connect the DVM from the +5 volt line. $:+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}(+5 \mathrm{~V}$ point of horizontal board)
d. Connect the DVM from the +55 volt line. $:+54 \mathrm{~V}$ to +58 V (+55 V point of horizontal board)
e. Connect the DVM from the +140 volt line. $:+135 \mathrm{v}$ to +143 v (+149 V point of horizontal board)
f. Connect the DVM from the +195 volt line. $:+19 \emptyset \mathrm{v}$ to $+21 \emptyset \mathrm{v} \quad(+195 \mathrm{~V}$ point of horizontal board)
[2] Adjust Low-voltage Supply.
Adjust the VR9ø1 for $D V M$ reading of $-12 \mathrm{~V}(\pm \emptyset .1 \mathrm{~V})$.
[3] Check High-voltage Supply.
a. Connnect the DVM to the H.V test point (CRT SOCKET B/D -K(20M)) by High-voltage Probe.
b. Check for DVM reading as $-1805 \mathrm{~V} \sim-1995 \mathrm{~V}$
c. Adjust the VR618 for DVM reading of -1900 V ($\pm 20 \mathrm{~V}$). (Horizontal B/D p/n ; 513-547 used only)

D I S P L A Y

Control Setting

Preset the controls as given in the Preliminary Control Setting.
[4] Check/Adjust CRT Bias.
Set the TIME/DIV switch to the 1mS
a. Rotate the INTENSITY to the direction of 10 o'clock as shown.

b. Observe the trace of CRT.
c. Adjust the CRT Bias Adjustment VR617 so that the trace makes an appear.
[5] Check/Adjust Trace Rotation.
a. Check that the trace is parallel to the horizontal center line.
b. Adjust the TRACE ROTATION for a trace that is parallel with the horizontal graticule lines.

[6] Check/Adjust ASTIGmatism and FOCUS
a. Vertical Mode switch to the CH2 [X-Y] position, and Display switch to the $[\mathrm{X}-\mathrm{Y}]$ position, and AC-GND-DC to GND.
b. Set the INTENSITY control for a small spot, as the following figure, using position controls.

The soot

c. Check that the spot is round.
d. Adjust the FOCUS adjustment and ASTIG adjustment VR616 for a round spot.

Control settings

Preset the controls as given in the Preliminary Control Settings.
[7] Check/Adjust Horizontal Gain.
a. Set the input $A C-G N D-D C$ to $D C$.
b. Set the TIME/DIV switch to the lms.
c. Check that the time marks align with the graticule line over the center eight DIVisions, within 3\%.
d. Adjust the H GAIN adjustment VR611 so that the time marks align with the center eight graticule lines.
[8] Check/Adjust Horizontal x 10 MAG Gain.
a. Set the TIME/DIV switch to the 1 mS .
b. Set x 10 MAG (Pull out the VARIABLE control).
c. Check that the one-cycle time marks align with the ten division graticule lines, within 5%.
d. Adjust the MAG GAIN adjustment VR612 so that the one-cycle time marks align with the ten division graticule lines.
e. Push in the VARIABLE control after check and adjustment.
[9] Check/Adjust MAG CENT.
a. Set the TIME/DIV switch to the 1 mS .
b. Being the VARIABLE control is in pulled out state (Xl0 MAG), the left end of the trace is brought to the center point and then the VARIABLE is depressed.
c. Observe the movement of the left end of the trace.
d. Adjust the MAG CENT adjustment VR614 for the movement of the end of the trace within $\pm \emptyset$. 2DIV.
[10] Check/Adjust low spaced sweep accuracy.
a. Set the time mark generator for 5 mS time marks.
b. Set the TIME/DIV switch to 5 mS .
c. Check that the time marks align with the graticule line over the middle eigth divisions, whth 3%.
d. Adjust the 5mS/DIV adjustment VR606 so that the time marks coincide with the middle eight graticule lines.
[11] Check/Adjust High speed sweep accuracy.
a. Set the input coupling switch to DC.
b. Set the time mark generator for $10 \mu \mathrm{~S}$ time marks.
c. Set the TIME/DIV switch to the $10 \mu \mathrm{~S}$.
d. Check that the time marks align with the graticule lines over the middle eigh divisions.
e. Adjust VC601 that the time marks coincide with middle eight graticule lines.

VERTIACALSYSEM

Control settings
Preset the controls as given in the Preliminary Control Settings.
[14] Check/Adjust DC Balance (Step attenuator balance).
a. Set the VOLTS/DIV switch to the 5 mV position.
b. Position the trace to the horizontal center line.
c. Change the PULL x5MAG switch to the 1mV position.
d. Check that the trace is within 0.1 division of the horizontal center line.
e. Adjust the CH1 (CH2) DC BAL adjustment, VR201 (CH1) or VR301 (CH2), for a trace at the horizontal center line.
f. Repeat part (a) through (e) until less than 0.05 division shift is noted when changing the VOLTS/DIV setting.
[15] Check/Adjust ADD BALANCE.
a. Set the TIME/DIV switch to the 1mS position.
b. Set the CH1 and CH2 AC-GND-DC switches to GND.
c. Set the V-MODE switch to [CH1].
d. Next, Adjust the vertical Position control that the trace is identical with the horizontal center graticule line.
e. Set the V-MODE switch to [CH2].
f. Next, Adjust the vertical Position control that the trace is identical with the horizontal center graticule line.
g. Set the V-MODE switch to [ADD].
h. Check that the trace is identical with the horizontal center graticule line within ± 0.5 division.
i. Adjust the ADD BALANCE adjustment VR501 for two times of the difference with the horizontal center graticule line.
[16] Check/Adjust Vertical Position Center.
a. Confirm the vertical POSITION control at the midrange.
b. Check that the trace is within 1 division.
c. Adjust the Position Center adjustment VR203 (CH1), VR303 (CH2) for a trace at the horizontal center line.
[17] Check/Adjust XlAC GAIN.
a. Set the TIME/DIV switch to the 1 mS position.
b. Set the VOLTWDIV switch to the 10 mV position.
c. Set the AC-GND-DC switch to DC.
d. Connect the square-wave generator(using 1 KHz output range).
e. Adjust the output amplitude of that generator for 5 division deflection of screen.
f. Check that the high-voltage level of pulse is flat.

g. Adjust the X1 AC GAIN adjustment VR202(CH1), VR302(CH2) for a flat level.
[18] Check/Adjust Vertical Gain.
a. Set the VOLTWDIV switch to the $1 \emptyset_{\mathrm{m}} \mathrm{V}$ position and $\mathrm{AC}-\mathrm{GND}-\mathrm{DC}$ switch to DC.
b. Connect the standard amplitude calibrator to the input Connector.
c. Set the standard amplitude calibrator for a $50 \mathrm{~m} V \mathrm{p}-\mathrm{p}$ signal.
d. Check for a display of five divisions.
e. Adjust the GAIN adjustment VR204 (CH1), VR304 (CH2) for a display of 5 divisions within 3%.
f. Check all the VOLTWDIV switch settings.
[19] Check/Adjust Input Capacity (ATT: $\div 1$).
a. Set the VOLTWDIV switch to the 10 mV position.
b. Set the AC-GND-DC switch to DC.
c. Connect the L-C meter to the input terminals.
d. Check the input capacity for approximately 25 pF .
[20] Check/Adjust Vertical Step Response.
a. Set the VOLTWDIV switch to the 10 mV position.
b. Set the TIME/DIV switch to the $0.2 \mu \mathrm{~S}$ position.
c. Connect the fast-rise, positive output ($50 \mathrm{mV}, 1 \mathrm{MHz}$) of the square-wave generator to the input. Use a 50Ω termination and cable.
d. Set the square-wave generator to 1 MHz . Adjust the square-wave generator output for a 5 divisions display.
e. CH1 : Adjust the VC503 for a square-wave that is flat. Then, adjust VC501 for over-shoot that is +0.15 DIV. CH2 : Adjust the VC306 for over-shoot that is + \quad. 15DIV.

[21] Check/Adjust Attenuation Compensation (ATT $\div 10 . \div 100$).
a. Set the AC-GND-DC switch to DC.
b. Connect the square-wave generator to the CH1 (CH2) input terminals, check for a square-wave that is flat (flat top) under the following settings.

ATT	VOLTWDIV	The square-wave generator output
$\div 10$	0.1 v	0.5 V
$\div 100$	1 V	5 v

c. Adjust the trimmer condenser for a square-wave (flat top) under the following settings.

ATT	VOLTWDIV	The square-wave generator output	Adjust CH1 (CH2)
$\div 10$	0.1 v	0.5 V	
$\div 100$	1	v	VC204 (VC304)

[22] Check/Adjust Input Capacity.
a. Connect the L-C meter to the input connector.
b. Check the input capacity for a approximately 25 pF .
c. Adjust the trimmer condensers for a 25 pF input capacity under the following settings.

ATT	VOLTWDIV	Adjust CH1 (CH2)
$\div 1$	5 mV	(VC305)
$\div 10$	0.1 v	VC201 (VC301)
$\div 10 \varnothing$	1	v

TRIGGERINGSYSTEM

[23] Check/Adjust TRIG CENT.
a. Set the TRIG SOURCE switch to the CH1, the TRIG SLOPE knob pushed in, the VOLTS/DIV switch to 10 mV and the TIME/DIV switch to the $20 \mu \mathrm{~S}$.
b. Connect the sine-wave generator to the input connector for a Ø. 3DIV (50 KHz).
c. Set the TRIG LEVEL knob to the midposition.
d. Adjust the VR605 so that synchronization is effected on the waveform, 0 . 3DIV on the screen.
e. Next, set the TRIG SLOPE to -(pulled out state) and insure that synchronization is effected. After confirmation, leave the TRIG-SLOPE in the depressed state. Readjust when stepped out.
[24] X-Y Operation
[24-1] Check/Adjust X Gain.
a. Set the V-MODE switch to CH2, the TIME/DIV switch to the [X-Y], the AC-GND-DC switch of CH1 to DC, the AC-GND-DC switch of CH 2 to GND.
b. Set the VOLTS/DIV switch to the 10 mV , with Xl GAIN.
c. Connect the standard amplitude calibrator to the CH1 input connector.
d. Set the standard amplitude calibrator for a 50 mV .
e. Check for a display of 5 divisions.
f. Adjust the X GAIN adjustment VR610 for a display of 5 divisions within 5%.
[24-2] Check/Adjust X Position Center.
a. Set the TIME/DIV switch to the $[\mathrm{X}-\mathrm{Y}]$, the $\mathrm{V}-\mathrm{MODE}$ switch to CH 2 the horizontal POSITION control to the midposition and the AC-GND-DC switch to GND.
b. Check to see that round spot is near the center graticule and is within 0.2 division against the horizontal line.
c. Adjust the X CENT adjustment VR609 to position spot at the graticule center.

PROBEADJUST

[25] Check/Adjust Probe Adjust terminal ($0.5 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{KHz}$).
a. Connect the Probe Adjust terminal to the Digital Frequency Counter.
b. Check for the Probe Adjust frequency of 1 KHz , within 20%.
c. Next, connect the Probe Adjust terminal to the oscilloscope.
d. Check for the Probe Adjust output of 0.5 V , within 3%.
e. Adjust the 0.5 V adjustment VR1101 for the Probe Adjust output of 0.495 to 0.505 V .

FUNCTION GENERATOR SYSTEM

[26]

CHECK/ADJUST SYMMETRY
a. Setting of equipment for adjustment

* FUNCTION GENERATOR

* OSCILLOSCOPE

VOLTS/DIV	50	mV/DIV ()	2 V/DIV (*)		
TIME/DIV	50 uS/DIV (*)	$0.2 \mathrm{mS} / \mathrm{DIV}()$	1	$\mathrm{mS} / \mathrm{DIV}$ ()	
COUPLING	DC (*)	GND ()	AC ()		

b. Connect output terminal of $F / G(50 \Omega)$ and input terminal of oscilloscope with BNC to BNC cable.
c. To adjust VR2 (symmetry) of F / G so that may show as the following figure on the oscilloscope screen as adjusting as to be full of the oscilloscope screen by a cycle of triangular wave as turning knob of SWP var of the oscilloscope

* Adjust the length of $a \& b$ may be equal (in the time axis).
a. Setting of equipment for adjustment
- FUNCTION GENERATOR

FUNCTION	SINE (•)	SQUARE ()	TRIANGLE ()
RANGE	1 () 10 () 100 () 1 K (*) 10 K () 100 K () 1M ()		
FREQ. DIAL	0.1 ()		1.0 ()
AMPLITUDE	FULLY CCW (MIN) ()		FULLYCW (MAX) (*)
OFFSET	PUSH (*)		
	PULL ()	FULLY ccw ()	FULLYCW ()
OUTPUT	TTL ()		50Ω (*)

* OSCILLOSCOPE

VOLTS/DIV	$50 \mathrm{mV} / \mathrm{DIV}$ ()	5 V/DIV (*)	
TIME/DIV	0.1mS/DIV (*)	$0.2 \mathrm{mS} /$ DIV ()	1 mS/DIV ()
COUPLING	DC (*)	GND ()	AC ()

b. Connect by BNC to clip cable the optput terminal of F / G and $A F$ input terminal of distortion factor meter (DFM).
c. To adjust so that the hairline of meter may indicate 100% by adjusting set ref level Knob of the DFM.
d. To adjust 'Reject fundamental' Knobs (3 each) of DFM so that the hairline of meter be the minimum as gradually lowering the switch (S1) to 100\%, 30%, 10\% and 5\% located under METER upon aligning the function switch of DFM to 'distortion + noise' (to 1006拨)
e. To switch to 1% position for Sl of DFM and adjust VR4 (Sin) and VR5 (Sin-Bal) of F / G so that hairline of the meter may be the minimum. If the adjustment to 1% or less cannot be made in this instance to exactly adjust again the No. 1 item as the fundamental symmetry 1 was wrong
a. Equipment setting for adjustment

* FUNCTION GENERATOR

* OSCILLOSCOPE

VOLTS/DIV	$50 \mathrm{mV} / \mathrm{DIV}$ ()	0.5 V/DIV (*)	$5 \mathrm{~V} / \mathrm{DIV}$ ()
TIME/DIV	50 uS/DIV ()	$0.2 \mathrm{~ms} / \mathrm{DIV}$ ()	1 mS/DIV (*)
COUPLING	DC (*)	GND ()	AC ()

b. Connect output terminal of F / G and input terminal of oscilloscope with BNC to BNC cable.
c. Adjust amplitude by $2 \mathrm{Vp}-\mathrm{p}$ so that the oscilloscope screen may be equal to the figure as shown.

d. To switch range of F / G by sine.
e. Adjust VR3 (S-gain) so that the maximum value of sine position at $2 \mathrm{Vp}-\mathrm{p}$ on the oscilloscope screen.
f. Adjust VR6 (S-level) sothat Sine level may be positioned by 2 intervals up \& down on the GND as center on the oscilloscope screen.

g. Switch the function of F / G to square.
h. Adjust VR7 (square level) so that the oscilloscope screen may be $2 \mathrm{Vp}-\mathbf{p}$ as the following figure shown.

Table 6-1.

TEST EQUIPMENT REQUIRED

Description	Minimum Specification	Example of Usage
1. Constant Amplitude Signal Generator	50 KHz reference frequency ; maximum frequency 70 MHz ; Variable amplitude	Check horizontal, vertical and trigger bandwidth.
2. Standard Amplitude Calibrator	Amplitude accuracy : 0.25\%, Variable amplitude ; 5mV to 40 V ; frequency : 1 KHz square wave	Check horizontal and Vertical gain.
3. Square - wave Generator	Variable frequency : 10 Hz to 1 MHz ; output amplitude : 10 mV to $1 \emptyset 0 \mathrm{~V}$	Check probe and vertical compensation.
4. Digital Multimeter	0.1\% accuracy	Check power supply.
5. Digital Frequency Counter	0.1\% accuracy	Check CAL frequency. and function Generator frequency.
6. TimeMark Generator	0.1\% accuracy	Check horizontal timing.
7. Cable	Impedance : 50Ω; type : RG-58/U ; length : 42 inches ; connectors : BNC.	External trigger operation check. Horizontal gain check and adjustment.
8. Termination	Impedance : 50Ω; Connectors : BNC.	Vertical Amplifier compensati -on checks and adjustment.
9. Attenutor	Ratio : 10X ; connectors : BNC ; impedance : 50Ω	Vertical Amplifier bandwidth check.
10. T - Connector	Connectors : BNC.	External trigger operation checks.
11. DISTORTION FACTOR METER		Function Generator sin wave check.

Table Marking for transistor electrode (bottom view)

Type of transistor	Electrode	marking
$\begin{aligned} & \text { 2N3904 } \\ & \text { 2SA1206 } \\ & \text { 2N3906 } \\ & \text { KSC } 1674 \text { Y } \\ & \text { 2SC2901 } \end{aligned}$		1.Emitter 2.Base 3.Collector
2SK304E	1 1 23	1. Source 2.Gate 3.Drain
$\begin{aligned} & \text { 2SC1907 } \\ & \text { 2SC3468E } \\ & \text { KTA1015Y } \\ & \text { KTC1815Y } \\ & \text { KTA1266Y } \\ & \text { KTC3198Y } \\ & \text { 2SA1029D } \\ & \text { 2SA1371E } \end{aligned}$		```1.Emitter 2.Collector 3.Base```
$\begin{aligned} & 2 S C 2026 \\ & 2 S C 3779 \end{aligned}$	$\left.\begin{array}{lll} 12 & 3 \\ \hline & 0 & 0 \end{array}\right)$	```1.Base 2.Emitter 3.Collector```
2N2219 2N2905A		```1.Emitter 2.Base 3.Collector```

Table Marking for transistor electrode (front view)

Type of transistor	Electrode marking
2SB546Y 2SB861C 2SD362R 2SD613D KSD288-Y	
$\begin{aligned} & 2 S C 3503 E \\ & 2 S A 1381 E \end{aligned}$	

Table Marking for diode electrode

Type of diode	Electrode marking	Polarity
MA185		
IN4003		
1N4148		
1S953		
1SS88		
1SS133		
ESJA52-12		
$D Z-5.18$		
$D Z-5.6 B$		
$D Z-6.8 B$		
$D Z-7.58$		
$D Z-8.2 B$		
$D Z-12 B$		
$D Z-228$		

Table Marking for ICs
Type of IC Package outline

9. ELECTRICAL PARTS LIST

(1). ATTENUATORS

PAGE : 1

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C201	CAP M, F, 409V, K, 0. 047 UF	CH2GL473K	2	C293	CAP CER, 50V, J, 270PF	CK1HI271J
3	C204	CAP CER, 50V, J, 220PF	CK1HL221J	4	C295	CAP CER, 50V, J, 47PF(T. C BLACK)	CT1HLA70J
5	C301	CAP M. F, 400V, K, 0.047 UF	CH2GL473K	6	C303	CAP CER, 50V, J, 220PF	CK1HL221J
7	C304	CAP CER, 50V, J, 47PF (T. C BLACK)	CT1HL470J	8	C305	CAP CER, 50V, J, 270PF	CK1HL271J
9	R201	RES C. F, 1/8W, 5\%, 22	RD0AP220J	10	R202	RES M, F, 1/4W, 0. 5\%, 10. 1 K	RNBP10120
11	R293	RES M, F, 1/4W, 1\%, 15	RMBP15ROF	12	R204	RES C. F, 1/4W, $5 \%, 27$	RDDEBP270J
13	R205	RES C. F, 1/8W, 5\%, 27	RD0AP270J	14	R296	RES M. F, 1/4W, 0. $5 \%, 111 \mathrm{~K}$	R.MP1113D
15	R207	RES C. F, 1/8w, $5 \%, 10$	RD0AP106J	16	R2988	RES M. F, 1/4W, 0. $5 \%, 990 \mathrm{~K}$	RuBP9983D
17	R209	RES M. F, 1/4W, 0. 5\%, 900K	RMBP9003D	18	R210	RES C. F, 1/8W, 5\%, 150	RDOAP151J
19	R211	RES C. F, 1/4W, 5\%, 82	RD6BP8203	20	R301	RES C. F, 1/8w, 5\%, 22	RDOAP220J
21	R302	RES M. F, 1/4W, 0. $5 \%, 980 \mathrm{~K}$	RMBP9603D	22	R303	RES C. F, 1/8W, 5\%, 150	RDEAP151J
23	R304	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 10$	RDOAP100J	24	R305	RES M. F, 1/4W, 0. $5 \%, 111 \mathrm{~K}$	RUBP1113D
25	R306	RES C. F, 1/8W, 5\%, 27	RDOAP270J	26	R307	RES M. F, 1/4W, $0.5 \%, 990 \mathrm{~K}$	RMBP9903D
27	R308	RES C. F, 1/4W, 5\%, 82	RD9BP820J	28	R309	RES M. F, 1/4W, 0. 5\%, 10. 1 K	RUBP10120
29	R310	RES M. F, 1/4W, $1 \%, 15$	RMBP15R0F	30	R311	RES C. F, 1/4W, 5\%, 27	RD6BP270J
31	S201	SWITCH LEVER, SLLR-523N0	521-096	32	S202	SW ROTARY, ADR255SA, E773-1836	522-029
33	S301	SWITCH LEVER, SLLR-523N0	521-096	34	\$302	SW ROTARY, ADR255SA, E773-1036	522-022
35	VC201	CAP TRIMMER, TZO3N100NR, WHT	581-133-2	36	VC2082	CAP TRIMNER, TZO3N100NR, WHT	581-133-2
37	VC203	CAP TRIMMER, TZO3N100NR, WHT	581-133-2	38	VC294	CAP TRIMMER, TZO3N100NR, WHT	581-133-2
39	VC301	CAP TRIMMER, TZ®3N100NR, WHT	581-133-2	40	VC302	CAP TRIMNER, TZ83N100NR, WHT	581-133-2
41	VC303	CAP TRIMMER, TZQ3N106NR, WHT	581-133-2	42	VC384	CAP TRIMMER, TZO3N100NR, WHT	581-133-2

(2). CH1 INPUT AMP.

PAGE ; 2

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	No.	FND NO	DESCRIPTION \& SPEC.	P / N
	C206	CAP CER, 50V, J, 100PF(T. C BLACK)	CT1HL101J	2	C287	CAP CER, 50V, Z, 0. Ø1UF	CK1HL1932
3	C288	CAP CER, 500V, K, 1806PF	CK2HL102K	4	C289	CAP CER, 560V, C, 4PF(T. C BLACK)	CT2HL
	C211	CAP CER, 50V, $\mathrm{Z}, 0.01 \mathrm{VF}$	CK1HL103Z	6	C212	CAP CER, 50V, K, 1808PF	CK1HL182X
7	C213	CAP CER, 50V, $\mathrm{Z}, 0.01 \mathrm{VF}$	CK1HL103Z	8	C215	CAP CER, 50V, J, 22PF(T. C BLACK)	CT1H228S
9	C216	CAP ELE, 16V, M, 47UF(SM)	CE1CL476M	10	C218	CAP ELE, 16V, M, 47UF(SM)	CE1C1476M
11	C219	CAP ELE, 16V, M, 47UF(SM)	CE1CL476M	12	C220	CAP ELE, 16V, M, 47UF(SM)	CE1CLA76
13	C240	CAP CER, 50V, K, 180PF	CK1HL181K	14	D201	DIODE, $15 S 133$	585-120
15	D202	DIODE, 1SS133	585-120	16	D283	DIODE ZENER, DZ-7. 5B	585-875
17	L201	INDUCTOR, Ø. 47UH/LAL84NAR47M	628-178	18	Q281	FET, 2SK304-E	611-140
19	Q202	TRANSISTOR, KSC1674-Y	611-138-1	20	2283	TRANSISTOR, KSC1674-Y	611-136-1
21	Q284	TRANSISTOR, 2SA1029-D	611-133	22	R212	RES M. F, $1 / 8 W$ W, $1 \%, 68$	RMAP68ROF
23	R213	RES M. G, $1 / 2 \mathrm{~W}, 5 \%, 16 \mathrm{M}$	RG9CP166J	24	R214	RES C. F, $1 / 8 \mathrm{M}, 5 \%, 10$	RDDAP10a
25	R215	RES M. F, 1/4W, 0. $5 \%, 500 \mathrm{~K}$	RMBP5603D	26	R216	RES M. F, $1 / 4 \mathrm{~W}, 0.5 \%, 500 \mathrm{~K}$	RMBP5083D
27	R217	RES C. F, 1/8w, $5 \%, 10$	RD0AP190J	28	R218	RES M. F, 1/8W, 1\%, 750	RMAP750bF
29	R220	RES C. F, $1 / 8 \%, 5 \%, 1 \mathrm{~K}$	RD@AP102J	30	R222	RES C. F, $1 / 8 W, 5 \%, 430$	RDDAP431
31	R225	RES M. F, 1/8W, 1\%, 121	RMAP1210F	32	R226	RES C. F, $1 / 8 W, 5 \%, 10$	RDDAP100
33	R227	RES M. F, 1/4W, 0. $5 \%, 3 \mathrm{~K}$	RMBP3001D	34	R228	RES C. F, 1/8W, 5\%, 22K	RDDAP233.
35	R229	RES C. F, $1 / 8 W, 5 \%, 4.7 \mathrm{~K}$	RD6AP472J	36	R230	RES C. F. $1 / 8 \mathrm{~W}, 5 \%, 2.2 \mathrm{~K}$	RDDAP222
37	R231	RES M. F, $1 / 8 W, 1 \%, 10 \mathrm{~K}$	RMAP1002F	38	R232	RES M. F, 1/4W, 1\%, 3. 3 K	RMBP3301F
39	R233	RES M. F, $1 / 8 W, 1 \%, 3.9 \mathrm{~K}$	RMAP3901F	40	R234	RES C. F. 1/8W, $5 \%, 430$	RDEAP431.
41	R235	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 10$	RD9AP160J	42	R236	RES M. F. $1 / 8 \mathrm{~W}, 1 \%, 4.7 \mathrm{~K}$	RMAP4701F
43	R237	RES M. F, 1/4W, 1\%, 82	RMBP8200F	44	R238	RES M. F, 1/4W, 0. 5\%, 60K	RUBP66082]
45	R239	RES M. F, $1 / 4 \mathrm{~W}, 0.5 \%, 12 \mathrm{~K}$	RMBP1202D	46	R250	RES C. F, 1/8W, $5 \%, 10$	RDDAP180
47	R252	RES M. F, 1/8W, 0. $5 \%, 680$	RMAP6800D	48	R253	RES M. F. $1 / 4 W, 0.5 \%, 68$	RMBP68Red
49	RA201	RES ARRAY, RA-OSC-V	591-325	50	U281	IC OP AMP, TLD71CP MOTOROLA	591-279-2
51	1 VR201	RES SR, VG968TLIB-20KB	572-324-1	52	VR202	RES SR, VG968TL1B-2608	572-316-1

(3). CH2 INPUT AMP.

PAGE ; 3

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C396	CAP CER, 590V, K, 1069PF	CK2HL102K	2	C307	CAP CER, 50V, Z, ¢0.01UF	CK1HL1832
3	C308	CAP CER, 50V, J, 190PF(T. C BLACK)	CT1HL101J	4	C309	CAP CER, 50V, K, 10909F	CK1HL182\%
5	C310	CAP CER, 50V, J, 22PF(T. C BLACK)	CT1HL220J	6	C312	CAP ELE, 16V, M, 47UF(SM)	CE1CLA76
	C313	CAP CER, 50V, D, 5PF(T. C BLACK)	CT1HLD58D	8	C314	CAP CER, 50V, Z, ¢. 01uF	CK1HL1832
9	C316	CAP ELE, 16V, M, 47UF(SM)	CE1CL476M	10	C317	CAP ELE, 16V, M, 47UF(SM)	CE1C1476
11	C332	CAP CER, 50V, 2, 0.01 uF	CK1HL103Z	12	CR313	CAP CER, 509V, C, 2PF	Сर2HL1828С
13	D301	DIODE, 1SS133	585-120	14	D302	DIODE, $15 S 133$	585-120
15	D363	DIODE ZENER, DZ-7. 5B	585-875	16	L301	INDUCTOR, \varnothing. 47UH/LAL64NAR4TM	628-178
17	Q361	FET, 2SK304-E	611-140	18	Q382	TRANSISTOR, KSC1674-Y	611-136-1
19	Q363	TRANSISTOR, KSC1674-Y	611-136-1	28	Q394	TRANSISTOR, 2SA1029-D	611-133
21	R312	RES M. F, 1/8W, 1\%, 750	RMAP7500F	22	R313	RES M. F, 1/4W, 0. 5%, 566K	RMBP59b3D
23	R314	RES M. F, 1/4W, 0. 5\%, 500 K	RMBP5083D	24	R315	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 10$	RDOAP180]
25	R317	RES C. F, $1 / 8 W, 5 \%, 1 \mathrm{~K}$	RD®AP102J	26	R319	RES M. G, 1/2W, 5\%, 16M	RG9CP166J
27	R326	RES M. F, $1 / 8 W, 1 \%, 68$	RMAP68ROF	28	R321	RES M. F. $1 / 4 \mathrm{~W}, 0.5 \%, 3 \mathrm{~K}$	RMBP3001D
29	R322	RES C. F, $1 / 8 W, 5 \%, 4.7 \mathrm{~K}$	RD8AP472J	30	R322	RES C. F, 1/8W, 5\%, 4.7K	RDDAP472
31	R323	RES C. F, 1/8W, $5 \%, 43 \varnothing$	RDDAP431J	32	R325	RES M. F, 1/4W, 9. $5 \%, 60 \mathrm{~K}$	RUBP68082
33	R326	RES M. F, 1/4W, $0.5 \%, 68$	RMBP68ROD	34	R327	RES M. F, 1/8W, 9. 5\%, 680	RMAP6808D
35	R328	RES M. F, 1/4W, 0. $5 \%, 12 \mathrm{~K}$	RMBP1202D	36	R329	RES C. F, 1/8W, $5 \%, 22 \mathrm{~K}$	RDEAP223J
37	R330	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 10$	RD0AP100J	38	R331	RES M. F, 1/8\%, 1\%, 4.7K	RMAP4701F
39	R332	RES C. F, $1 / 8 \mathrm{~W}, 5 \% 10$	RD®AP100J	48	R333	RES M. F. $1 / 4 \%, 1 \%, 3.3 \mathrm{~K}$	RMBP3301F
41	R334	RES M. F, 1/4W, 14.820	RMBP8200F	42	R335	RES C. F, 1/8W, $5 \%, 12 \mathrm{~K}$	RDEAP123J
43	R336	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 2.2 \mathrm{~K}$	RD9AP222J	44	R337	RES M. F, 1/8W, 1\%, 16K	RMAP1062F
45	R338	RES M. F, 1/8W, 1\%, 121	RMAP1210F	46	R339	RES M. F, 1/8w, 1\%, 3.9K	RMAP3901F
47	R341	RES C. F, 1/8W, 5\%, 430	RDEAP431J	48	R354	RES C. F, 1/8w, $5 \%, 10$	RDEAP100S
49	R355	RES C.F. $1 / 8 \%, 5 \%, 10$	RDCAP108J	50	RA301	RES ARRAY, RA-OSC-V	591-325
51	U301	IC OP AMP, TLD71CP MOTOROLA	591-279-2	52	VC365	CAP TRIMMER, TZO3ZO70NR, BLU	581-213
53	VR301	RES SR, VG968TL1B-20KB	572-324-1	54	VR302	RES SR, VG968TL1B-200B	572-316-1

(4). CH1 PREAMP. \& TRIGGER PICK-OFF

PAGE : 4

No.	FND NO	DESCRIPTION \& SPEC.	P/N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C221	CAP ELE, 16V, M, 47UF(SM)	CE1CL476M	2	C222	CAP CER, 50V, Z, 0. 01UF	CK1HL183Z
3	C223	CAP CER, 50V, Z, Ø. Ø1UF	CK1HL1032	4	C225	CAP CER, 50V, J, 476PF	CK1HL471J
5	C226	CAP CER, 50V, J, 33PF	CK1HL336J	6	C227	CAP CER, 50V, J, 479PF	CK1HL471J
7	C229	CAP CER, 56V, J, 82PF(T.C BLACK)	CT1HL828J	8	C23b	CAP CER, 50V, D, 3PF(T. C Black)	CT1HLC36D
9	C231	CAP CER, 50V, Z, ¢. 010 F	CK1HL183Z	18	C232	CAP CER, 50V, J, 15PF(T. C BLACK)	CT1HL15aJ
11	C233	CAP CER, 56V, J, 15PF(T. C BLACK)	CT1HL150J	12	C234	CAP CER, 50V, J, 33PF(T. C BLACK)	CT1H33 ${ }^{\text {a }}$
13	C235	CAP CER, 50V, Z, ¢. 01 UF	CK1HL1032	14	C237	CAP CER, 50V, Z, 0. 01 UF	CK1HL1832
15	C238	CAP CER, 25V, $2,0.10 \mathrm{~F}$	CK1EL104Z	16	D205	DIODE ZENER, DZ-6. 8B	585-161
17	P203	CONNECTOR WAFER, LA-0640-03	531-902-9	18	Q285	TRANSISTOR, 2N3964	611-806-1
19	Q296	TRANSISTOR, 2N3984	611-086-1	20	Q287	TRANSISTOR, 2N3986	611-822-1
21	Q298	TRANSISTOR, 2N3996	611-022-1	22	Q209	TRANSISTOR, 2N3966	611-822-1
23	Q210	TRANSISTOR, 2N3996	611-922-1	24	Q212	TRANSISTOR, KTC3198-Y	611-001-1
25	Q213	TRANSISTOR, 2SC1907	611-184	26	R240	RES M. F, $1 / 8 \%$, $14,86.6$	RMAP86R6F
27	R241	RES C. F. $1 / 8 W, 5 \%, 470$	RD9AP471J	28	R242	RES C. F. $1 / 8 W, 5 \%, 100$	RDDAP101J
29	R243	RES C. F, $1 / 8 \%, 5 \%, 1 \mathrm{~K}$	RD9AP102J	36	R244	RES C. F, $1 / 8 \%, 5 \%, 47$	RDEAP470,
31	R245	RES M. F, $1 / 8 \mathrm{~W}, 1 \%, 2 \mathrm{~K}$	RMAP2001F	32	R246	RES C. F, $1 / 8 W, 5 \%, 10$	RDDAP100J
33	R248	RES M. F, $1 / 8 \mathrm{~W}, 1 \%, 1 \mathrm{~K}$	RMAP1001F	34	R249	RES C. F. $1 / 8 W, 5 \%, 1.8 \mathrm{~K}$	RDEAP182J
35	R251	RES M. F, $1 / 8 W, 1 \%, 1.5 \mathrm{~K}$	RMAP1501F	36	R255	RES C. F, $1 / 8 W, 5 \%, 228$	RDDAP221J
37	R256	RES M. F, 1/8W, 1\%, 1. 5K	RMAP1501F	38	R257	RES C. F, 1/8W, 5\%, 4, 7K	RDEAP472J
39	R258	RES C. F, $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RDbAP472J	48	R260	RES C. F, 1/8\%, 5%, 47	RDgaP478J
41	R261	RES C.F, $1 / 8 \%, 5 \%, 10$	RDOAP100J	42	R262	RES C. F, 1/8W, $5 \%, 47$	RD9AP470J
43	R263	RES C. F, $1 / 8 W, 5 \%, 1 \mathrm{~K}$	RDOAP102J	44	R264	RES C. F, 1/8W, $5 \%, 47$	RDDAP470J
45	R265	RES C. F. $1 / 8 \%, 5 \%, 1.5 \mathrm{~K}$	RD0AP152J	46	R266	RES M. F, 1/4W, $1 \%, 1.5 \mathrm{~K}$	RMBP1501F
47	R267	RES M. F. $1 / 4 \mathrm{~W}, 1 \%, 1.5 \mathrm{~K}$	RMBP1501F	48	R268	RES C. F, 1/8W, 5\%, 4.7 K	RD9AP472J
49	R269	RES C. F, $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RDQAP472J	50	R270	RES C. F, $1 / 4 \%, 5 \%, 820 \mathrm{~K}$	RDOBP824J
51	R271	RES C. F, $1 / 8 \mathrm{~W}, 5 \%, 22 \mathrm{~K}$	RD8AP223J	52	R272	RES C. F, 1/8W, $5 \%, 22$	RDDAP2zas
53	R273	RES C. F. $1 / 8 \mathrm{~W}, 5 \%, 2.7 \mathrm{~K}$	RD9AP272J	54	R274	RES C. F, $1 / 8 W, 5 \%, 1 \mathrm{~K}$	RDDAP102J
55	R275	RES C. F, 1/8W, $5 \%, 22$	RD@AP220J	56	R276	RES C. F, $1 / 8 W, 5 \%, 1 \mathrm{~K}$	RDEAP102J
57	R277	RES C. F, $1 / 8 \%, 5 \%, 100$	RD0AP101J	58	R278	RES M. F, 1/8W, $1 \%, 68$	RMAP68R8F
59	R279	RES C.F, $1 / 8 W, 5 \%, 10$	RDOAP100J	60	R280	RES C. F, 1/8W, 5\%, 120	RDOAP121J
61	R281	RES C. F, $1 / 8 \%, 5 \%, 2.7 \mathrm{~K}$	RDEAP272J	62	R282	RES C. F, 1/8W, 5\%, 180	RDDAP191J
63	R283	RES C. F. $1 / 8 W, 5 \%, 100$	RD6AP101J	64	R284	RES C. F, 1/4W, 5\%, 22	RD6BP2280
65	VR203	RES SR, VG968TL1B-50KB	572-328-1	66	VR284	RES SR, VG968TL1B-190B	572-327
67	VR205	RES VAR, K162A06-10KB X2	571-308				

(5). CH2 PREAMP. \& TRIGGER PICK-OFF

PAGE ; 5

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	No.	FND NO	DESCRIPTION \& SPEC.	P / N
	C320	CAP CER, 50V, J, 479PF	CK1HL471J	2	C322	CAP CER, 50V, Z, 0. 01UF	CK1
3	C323	CAP CER, 50V, J, 47@PF	CK1HL471J	4	C324	CAP CER, 50V, J, 82PF(T. C BLACK)	CT1H2203
	C327	CAP CER, 50V, $2,0.010 \mathrm{~F}$	CK1HL1032	6	C328	CAP CER, 50V, Z, 0. 010 F	CK1HL183Z
	C329	CAP CER, 50V, J, 15PF(T. C BLACK)	CT1HL150J	8	C330	CAP CER, 50V, J, 15PF(T. C BLACK)	CT1HL150
	C331	CAP CER, 50V, $2,0.010 \mathrm{~F}$	CK1HL1032	10	D364	DIODE ZENER, DZ-6. 8B	585-161
11	0385	TRANSISTOR, 2N3904	611-096-1	12	Q366	TRANSISTOR, 2N3984	611-066-1
13	0387	TRANSISTOR, 2N3906	611-022-1	14	Q308	TRANSISTOR, 2N3996	611-822-1
15	Q309	TRANSISTOR, 2N3996	611-022-1	16	Q310	TRANSISTOR, 2N3996	611-022-1
17	Q311	TRANSISTOR, 2N3996	611-022-1	18	0312	TRANSISTOR, 2N3966	611-822-1
19	Q313	TRANSISTOR, 2SC1907	611-184	20	R342	RES C. F, 1/8W, 5\%, 10	RD9AP108J
21	R344	RES M. F, $1 / 8 \mathrm{M}, 1 \%, 1 \mathrm{~K}$	RMAP1081F	22	R345	RES M. F, 1/8W, 1\%, 2K	RMAP2801F
23	R346	RES M. F, $1 / 8 \%, 1 \%, 1.5 \mathrm{~K}$	RMAP1501F	24	R347	RES M, F, 1/8W, 1\%, 1.5K	RMAP1501F
25	R348	RES C. F, 1/8W, 5\%, 220	RDEAP221J	26	R349	RES C. F, $1 / 8 \%, 5 \%, 10$	RDOAP109J
27	R350	RES C. F, 1/8W, $5 \%, 47$	RDEAP479J	28	R352	RES C. F. $1 / 8 W, 5 \%, 4.7 \mathrm{~K}$	RDEAP472J
29	R353	RES C.F, 1/8\%, $5 \%, 4.7 \mathrm{~K}$	RDEAP472J	38	R356	RES C. F, 1/8W, $5 \%, 47$	RDEAP470J
31	R357	RES M. F, 1/8W, 1\%, 1. 5K	RMAP1501F	32	R358	RES M. F, 1/8W, $1 \%, 1 \mathrm{~K}$	RMAP1601F
33	R359	RES M. F, 1/8W, 1\%, 1 K	RMAP1001F	34	R360	RES M. F. $1 / 4 \%, 1 \%, 1.5 \mathrm{~K}$	RMBP1501F
35	R361	RES M. F, 1/8W, 1\%, 1.5K	RMAP1501F	36	R362	RES C. F, 1/8W, $5 \%, 47$	RDEAP470J
37	R363	RES M. F, 1/4W, 1\%, 1.5K	RMBP1501F	38	R364	RES C. F, $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RDEAP472J
39	R365	RES C. F, 1/8w, 5\%, 4. 7 K	RD6AP472J	40	R366	RES C. F, $1 / 4 \%, 5 \%, 8201 \mathrm{~K}$	RDEBP824J
41	R367	RES C. F. $1 / 8 \%$, $5 \%, 120$	RDPAP121J	42	R368	RES C. F, 1/8W, $5 \%, 1 \mathrm{~K}$	RDDAP102J
43	R369	RES C. F. $1 / 8 \%, 5 \%, 1.2 \mathrm{~K}$	RD9AP122J	44	R370	RES C. F, 1/8W, $5 \%, 22$	RDEAP2zau
45	R371	RES C. F, 1/8W, 5%, 22K	RDOAP223J	46	R372	RES C. F, 1/8W, 5\%, 180	RDEAP101J
47	R373	RES M. F, 1/8W, 1\%, 68	RMAP68R8F	48	R374	RES C. F, $1 / 8 W, 5 \%, 10$	RDDAP108J
49	R375	RES C. F. $1 / 8 \%$, $5 \%, 2.7 \mathrm{~K}$	RDQAP272J	50	R376	RES C. F, 1/8W, 5\%, 120	RDDAP121J
51	R377	RES C. F, $1 / 8 \%, 5 \%, 2.7 \mathrm{~K}$	RD0AP272J	52	R378	RES C. F, 1/8W, 5\%, 180	RDDAP101J
53	R379	RES C. F, 1/8W, 5\%, 180	RD9AP101J	54	VC366	CAP TRIMMER, TZ03P450NR, YEL	581-132-3
55	VR303	RES SR, VG968TL1B-50KB	572-320-1	56	VR384	RES SR, VG968TL1B-100B	572-327
57	VR306	RES VAR, V16L4 PCB(E113-10961)	571-057	58	W301	WIRING HARNESS, WH101	55b-621-B

(6). VERTICAL CONTROL

PAGE : 6

NO.	FND N0	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C401	CAP CER, 50V, J, 680PF	CK1HL681J	2	C482	CAP CER, 56V, J, 686PF	CK1HL681J
3	C403	CAP CER, 50V, Z, 0.01 UF	CK1HL103Z	4	C494	CAP CER, 50V, Z, Ø. 010 F	CK1HL1232
5	C485	CAP ELE, 59V, M, 1UF(BP)	581-117	6	C496	CAP CER, 50V, K, 5606PF	CK1HL562K
7	C467	CAP CER, 50V, J, 220PF	CK1HL221J	8	C498F	CAP CER, 50V, J, 220PF	CK1H221J
9	C499	CAP CER, 50V, Z, Ø. 01 UF	CK1HL1832	10	C413	CAP CER, 50V, Z, 0.01uF	CK1HL183Z
11	D495	DIODE, 1SS133	585-120	12	D406	DIODE, 1SS133	585-128
13	D407	DIODE, 1 SS133	585-120	14	D498	DIODE, 1SS133	585-120
15	D499	DIODE, 1 SS 133	585-120	16	D410	DIODE, 1SS133	585-120
17	D411	DIODE, 1SS133	585-120	18	D412	DIODE, 1 SS133	585-128
19	D414	DIODE, 1N4148 OR DS4148	585-902	28	D415	DIODE, 1N4148 OR DS4148	585-082
21	D416	DIODE, 1N4148 OR DS4148	585-0102	22	D417	DIODE, 1SS133	585-120
23	P401	CONNECTOR WAFER, LW- $0640-64$	531-003-7	24	Q401	TRANSISTOR, KTC3198-Y	611-001-1
25	0402	TRANSISTOR, 2SC1907	611-184	26	Q403	TRANSISTOR, 2SC1987	611-184
27	R401	RES C. F, 1/4W, 5\%, 27	RDPBP270J	28	R482	RES C. F. $1 / 8 \mathrm{~W}, 5 \%, 1.8 \mathrm{~K}$	RD9AP182J
29	R463	RES C. F, 1/8W, 5\%, 220	RDEAP221J	36	R484	RES C. F, 1/4W, $5 \%, 27$	RDEBP270J
31	R465	RES C. F. $1 / 8 \mathrm{~W}, 5 \%, 1.8 \mathrm{~K}$	RD@AP182J	32	R496	RES C. F, 1/8W, 5\%, 220	RDOAP221J
33	R499	RES C.F. $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RD®AP472J	34	R410	RES C. F. $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RD6AP472J
35	R411	RES C. F. $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RD9AP472J	36	R412	RES C. F, 1/8\%, 5\%, 4. 7 K	RDDAP472J
37	R413	RES C. F. $1 / 8 \%, 5 \%, 4.7 \mathrm{~K}$	RDOAP472J	38	R414	RES C. F, $1 / 8 W, 5 \%, 10$	RDOAP106J
39	R415	RES M. F, 1/8W, 1\%, 300	RMAP3008F	40	R416	RES M. F, 1/8W, 1\%, 360	RMAP3680F
41	R417	RES M. F. $1 / 8 \mathrm{~W}, 1 \%, 2.7 \mathrm{~K}$	RMAP2701F	42	R418	RES M. F. $1 / 8 \mathrm{~W}, 1 \%, 2.7 \mathrm{~K}$	RMAP2701F
43	R419	RES M. F, 1/4W, 1\%, 1. 2 K	RMBP1201F	44	R420	RES M. F, 1/8W, 1\%, 332	RMAP3328F
45	R421	RES C. F, $1 / 8 W, 5 \%, 82 \mathrm{~K}$	RD8AP823J	46	R422	RES C. F. $1 / 8 W, 5 \%, 100 \mathrm{~K}$	RDDAP104J
47	R423	RES C. F, 1/8W, 5%, 2806	RD0AP2043	48	R424F	RES C. F, 1/8W, 5\%, 22 K	RDEAP223J
49	R425	RES M. F, 1/8W, 1\%, 332	RMAP3320F	50	R426	RES M. F, 1/8W, 1\%, 332	RMAP3328F
51	R427	RES M. F, 1/8W, 1\%, 332	RMAP3320F	52	R428	RES M. F, 1/8W, 1\%, 2 K	RMAP2801F
53	R429	RES M. F, 1/8W, 1\%, 86.6	RMAP86R6F	54	R430	RES M. F, 1/8W, 1\%, 2 K	RMAP2801F
55	R431	RES M. F, 1/8W, 1\%, 86, 6	RMAP86R6F	56	S401	SWITCH LEVER, SLLR-524N0	521-108
57	U401	IC TTL, GD74LS74AP GSS	591-163-9	58	W402	WIRING HARNESS, WH120	550-640-A

(7). VERTICAL MAIN AMP.

PAGE : 7

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1		INSULATOR SILICON APEX-2 HOLE	919-022	2	C501	CAP CER, 50V, J, 160PF (T. C BLACK)	CT1HL101J
3	C504	CAP CER, $50 \mathrm{~V}, \mathrm{~J}, 82 \mathrm{PF}$ (T. C BLACK)	CT1HL820J	4	C509	CAP ELE, 16V, M, 47UF(SM)	CE1CLA76m
5	C510	CAP CER, 50V, Z, 0.01 L	CK1HL1032	6	C511	CAP CER, 50V, J, 47PF(T. C BLACK)	CT1HI470J
7	C512	CAP CER, 50V, Z, 0.01UF	CK1HL1032	8	C513	CAP ELE, 16V, M, 47UF(SM)	CE1CLA76M
9	C514	CAP ELE, 160V, M, 1UF(SM)	CE2CL105M	10	C515	CAP CER, 500V, K, 4700PF	CK2HL472K
11	C516	CAP CER, $50 \mathrm{~V}, \mathrm{~J}, 68 \mathrm{PF}$ (T. C BLACK)	CT1HL680J	12	C517	CAP CER, 590V, C, 2PF	СК2\%LD28С
13	C518	CAP CER, 509V, C, 2PF	CK2HLD20C	14	C519	CAP CER, 500V, K, 4700PF	CK2HLA72K
15	C520	CAP CER, 500V, K, 1088PF	CK2HL102K	16	C521	CAP CER, 500V, K, 10008F	CK2HL182K
17	C522	CAP CER, 500V, K, 0.01UF	CK2HL103K	18	C523	CAP CER, 500V, K, 0.01UF	CK2HL103K
19	C524	CAP CER, 50V, J, 2201F	CK1HL221J	20	C913	CAP ELE, 16V, M, 47JF(SM)	CE1CLA76w
21	C914	CAP CER, 50V, Z, 0.01 OF	CK1HL103Z	22	C915	CAP ELE, 16V, M, 47JF(SM)	CE1CLA76M
23	C916	CAP CER, 50V, Z, 0.01 UF	CK1HL1032	24	D591	DIODE ZENER, DZ-5. 1B	585-111
25	D502	DIODE ZENER, DZ-5. 1B	585-111	26	D503	DIODE ZENER, DZ-5. 1B	585-111
27	L501	INDUCTOR, 2. 2UH/LAL04NA2R2M	628-179	28	L502	INDUCTOR, 2. 2UH/LALD4NA2R2M	628-179
29	0581	TRANSISTOR, 2SC2901	611-151	30	0502	TRANSISTOR, 2SC2901	611-151
31	0505	TRANSISTOR, 2SC3779	611-650	32	2506	TRANSISTOR, 2SC3779	611-650
33	Q507	TRANSISTOR, 2SC3503-E	611-159	34	2508	TRANSISTOR, 2SA1381-E	611-169
35	Q599	TRANSISTOR, 2SC3503-E	611-159	36	4510	TRANSISTOR, 2SA1381-E	611-169
37	2511	TRANSISTOR, 2SA1206	611-021	38	4512	TRANSISTOR, 2SA1206	611-021
39	R501	RES M. F, 1/8w, 1\%, 150	RMAP1506F	40	R502	RES M. F, 1/8w, 1\%, 150	RMAP150bF
41	R503	RES C. F, 1/8W, $5 \%, 4.7 \mathrm{~K}$	RD0AP472J	42	R504	RES M. F, 1/8W, 1\%, 2.7 K	RMAP2701F
43	R506	RES C. F, 1/8W, 5\%, 5. 6	RDOAP5R6J	44	R507	RES M. F, 1/4W, 1\%, 27	RMBP2TROF
45	R508	RES C. F, 1/8w, $5 \%, 10$	RDOAP100J	46	R509	RES C. F, $1 / 4 W, 5 \%, 910$	RDPBP911J
47	R510	RES C. F, 1/4W, 5\%, 910	RDOBP911J	48	R511	RES C. F, 1/4W, $5 \%, 47$	RDEBP470J
49	R519	RES M. F, 1/8W, 1\%, 270	RMAP2700F	50	R523	RES M. F, 1/8W, 1\%, 270	RMAP2790F
51	R524	RES C. F, 1/8w, $5 \%, 470$	RDOAP471J	52	R525	RES C.F, 1/4W, 5\%, 100	RDPBP101J
53	R526	RES C. F, 1/8w, $5 \%, 470$	RD0AP471J	54	R527	RES C. F, 1/8W, 5\%, 22	RDDAP220.J
55	R528	RES C. F, 1/8W, 5\%, 39	RDOAP390J	56	R529	RES C. F, 1/8w, 5\%, 39	RDOAP390J
57	R530	RES C. F, 1/8\%, 5\%, 39	RD0AP390J	58	R531	RES C. F, 1/8W, 5\%, 39	RDPAP390J
59	R532	RES M. 0, 1W, $5 \%, 27 \mathrm{~K}$	RS01P273J	60	R533	RES C. F, 1/8W, $5 \%, 22$	RDOAP220J
61	R534	RES C. F, 1/8w, $5 \%, 22$	RD0AP220J	62	R535	RES C. F, 1/8W, 5\%, 22	RD0AP220J
63	R536	RES M. $0,2 \mathrm{~W}, 5 \%, 12 \mathrm{~K}$	RS02P123J	64	R537	RES M. $0,2 \%, 5 \%, 10 \mathrm{~K}$	RS02P103J
65	R538	RES C. F, 1/4W, $5 \%, 180$	RD9BP181J	66	R540	RES M. F, 1/4W, 1\%, 115	RMBP1150F
67	R541	RES C. F, 1/8W, $5 \%, 1 \mathrm{~K}$	RD9AP102J	68	R542	RES M. $0,2 \mathrm{~W}, 5 \%, 12 \mathrm{~K}$	RSO2P123J
69	R543	RES M. $0,2 \%, 5 \%, 10 \mathrm{~K}$	RS02P103J	70	R544	RES C. F, 1/8W, $5 \%, 1 \mathrm{~K}$	RDOAP102J
71	R545	RES M. F, 1/4W, 1\%, 115	RMBP1150F	72	R547	RES C.F, 1/4W, $5 \%, 180$	RDOBP181J
73	R548	RES M. F, 1/8W, $1 \%, 18$	RMAP18R0F	74	TH501	THERMISTOR, NTC-4. 7-OHM	579-015
75	VC501	CAP TRIMMER, TZ03P450NR, YEL	581-132-3	76	VC503	CAP TRIMMER, TZO3P450NR, YEL	581-132-3
77	VR501	RES SR, VG968TL1B-500B	572-319-1				

(8). TRIGGER AMPLIFIER

PAGE : 8

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
	C180	CAP CER, 560V, J, 47PF	CK2HL470J	2	0601	CAP ELE, 25V, M, 22UF(SW)	CE1EI2263
3	C602	CAP ELE, 25V, M, 22UF(SW)	CE1EL226m	4	0604	CAP ELE, 25V, M, 22UF(SM)	CE1EL 2263
5	C605	CAP CER, 50V, Z, 0.010 F	CK1HL103Z	6	C606	CAP CER, 50V, Z, 0.01UF	CX1HL1832
7	C607	CAP ELE, 25V, M, 22UF(SM)	CE1EL226m	8	C608	CAP ELE, 25V, M, 22UF(SM)	CE1EI226\%
	C609	CAP ELE, 50V, M, 1UF(BP)	581-117	10	0610	CAP ELE, 25V, M, 22UF(SM)	CE1EI2264
11	C611	CAP MYLAR, 50V, K, 0.01 VF	CP1HL103K	12	C612	CAP M, F, 400V, K, 0. 047 T	CH2GIA73K
13	C614	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	14	C616	CAP ELE, 50V, M, 10UF(BP)	581-143
15	C730	CAP CER, 50V, D, 5PF(T. C BLACK)	CT1HLD50D	16	D601	DIODE, 1N4148 OR DS4148	585-962
17	D602	DIODE, 1N4148 OR DS4148	585-062	18	L601F	BUS WIRE, 101MM, PI-Ø. 6MW	871-656
19	P601	CONNECTOR WAFER, LW-0640-94	531-603-7	28	P602	CONNECTOR WAFER, LW-0640-03	531-062-7
21	P603	CONNECTOR WAFER, LW-9640-83	531-082-7	22	0601	TRANSISTOR, KTA1266-Y	611-014-1
23	0602	FET, 2SK304-E	611-140	24	0683	TRANSISTOR, 2 N3904	611-866-1
25	Q604	TRANSISTOR, 2N3964	611-906-1	26	0665	TRANSISTOR, 2 N3904	611-906-1
27	R100	RES C. F. $1 / 4 \%, 5 \%, 470 K$	RD9BP474J	28	R601	RES C. F, 1/4W, 5\%, 4.7K	RDEBP472J
29	R602	RES C. F, 1/4W, $5 \%, 10$	RDOBP100J	30	R693	RES C. F, 1/4W, 5\%, 2. 7 K	RDEBP272J
31	R604	RES C. F, 1/4W, 5\%, 4. 7 K	RDEBP472J	32	R665	RES C. F, $1 / 4 W, 5 \%, 1 \mathrm{~K}$	RDEBP102J
33	R696	RES C. F, $1 / 4 W, 5 \%, 47 \mathrm{~K}$	RD9BP473J	34	R607	RES C. F, 1/4W, $5 \%, 22$	RDEBP2zas
35	R608	RES C.F, $1 / 4 \%, 5 \%, 10$	RDEBP100J	36	R609	RES C.F, $1 / 4 \%, 5 \%, 10$	RDDEP1003
37	R615	RES C. F. $1 / 4 W, 5 \%, 680$	RD6BP681J	38	R616	RES C. F, 1/4W, 5\%, 2. 7 K	RDCBP272
39	R617	RES C. F, $1 / 4 W, 5 \%, 1.2 \mathrm{~K}$	RD9BP122J	48	R619	RES C. F, 1/4W, $5 \%, 1.2 \mathrm{~K}$	RDEBP122J
41	R620	RES C. F, 1/4W, $5 \%, 2.7 \mathrm{~K}$	RDQBP272J	42	R621	RES C. F, $1 / 4 W, 5 \%, 10 \mathrm{~K}$	RDCBP103J
43	R622	RES C. F, 1/4W, 5\%, 24K	RDCBP243J	44	R624	RES C. F, 1/4\%, 5%, 1M	RDEBP105J
45	R625	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RDEBP103J	46	R626	RES C. F, $1 / 4 W, 5 \%, 15 \mathrm{~K}$	RDEBP153J
47	R656	RES C. F, $1 / 4 \%, 5 \%, 1.2 \mathrm{~K}$	RDOBP122J	48	R830	RES C. F, 1/4W, 54,220	RDEBP221J
49	R834	RES C. F, 1/4W, 54,180	RDOBP101J	58	S681	SWITCH LEVER, SLLR-524N0	521-100
51	S602	SWITCH LEVER, SLLR-524NO	521-180	52	VR601	RES VAR, V16L5DS(E113D-B2470)	571-312
53	VR605	RES SR, VG968TL1B-10KB	572-314-1				

PAGE ; 9

NO.	FND N0	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C615	CAP ELE, 50V, M, 2. 2UF(SM)	CE1HL225M	2	C617	CAP ELE, 25V, M, 22UF(SM)	CE1EL226m
3	C640	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	4	C642	CAP CER, 50V, Z, 0.01UF	CK1HL1832
5	C651	CAP CER, 50V, J, 10PF(T. C BLACK)	CT1HL108J	6	C652	CAP ELE, 25V, M, 22UF(SM)	CE1EL2204
7	C653	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	8	C656	CAP CER, 50V, J, 82PF(T. C BLACK)	CT1HL8203
9	C657	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	10	C658	CAP ELE, 25V, M, 22UF(SM)	CE1EI226M
11	C659	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	12	C668	CAP ELE, 25V, M, 22UF(SM)	CE1EI226M
13	C672	CAP CER, 506V, Z, 0. 01 UF	CK2HL103Z	14	C731	CAP CER, 50V, J, 33PF	CK1H330J
15	D606	DIODE, 1SS133	585-120	16	D669	DIODE, 1N4148 OR DS4148	585-8082
17	D610	DIODE, 1SS133	585-120	18	D660	DIODE, 1N4148 OR DS4148	585-902
19	P611	CONNECTOR WAFER, LW-0640-03	531-602-7	20	Q669	TRANSISTOR, 2SC2826	611-128
21	0610	TRANSISTOR, 2 N3906	611-022-1	22	0611	TRANSISTOR, KTC3198-Y	611-091-1
23	0612	FET, 2SK364-E	611-148	24	Q613	TRANSISTOR, 2N3904	611-006-1
25	0614	TRANSISTOR, KTC3198-Y	611-001-1	26	Q624	TRANSISTOR, KTC3198-Y	611-001-1
27	R610	RES C. F, 1/4W, $5 \%, 10$	RD6BP106J	28	R611	RES C. F, 1/4W, $5 \%, 47$	RDPBP470J
29	R 612	RES C.F. $1 / 4 W, 5 \%, 4.7 \mathrm{~K}$	RD@BP472J	30	R613	RES C. F, 1/4W, $5 \%, 3.3 \mathrm{~K}$	RDEBP332J
31	R614	RES C. F, $1 / 4 W, 5 \%, 3.3 \mathrm{~K}$	RD9BP332J	32	R618	RES C. F, 1/4W, $5 \%, 4.7 \mathrm{~K}$	RDEAP472J
33	R627	RES C. F, $1 / 4 \%, 5 \%, 100 \mathrm{~K}$	RD9BP104J	34	R629	RES C. F, 1/4W, $5 \%, 56 \mathrm{~K}$	RDEBP563J
35	R632	RES C. F, 1/4W, $5 \%, 10$	RD9BP108J	36	R633	RES C.F. $1 / 4 \%, 5 \%, 10$	RDCBP100J
37	R634	RES C. F, $1 / 4 W, 5 \%, 15 \mathrm{~K}$	RD9BP153J	38	R678	RES M. F. $1 / 4 \mathrm{MW}, 1 \%, 2.2 \mathrm{~K}$	RMBP2281F
39	R680	RES C. F, $1 / 4 \mathrm{~W}, 5 \%, 10 \mathrm{~K}$	RD9BP103J	48	R681	RES C. F, 1/4W, 5%, 10K	RDEBP103J
41	R685	RES C. F, $1 / 4 \%, 5 \%, 10$	RD8BP100J	42	R686	RES M. F, 1/4W, 1\%, 4, 7 K	RMBP4761F
43	R695	RES M. F, $1 / 4 \%, 1 \%, 3.18 \mathrm{~K}$	RMBP3181F	44	R696	RES C. F, 1/4W, 5\%, 180	RDEBP101J
45	R698	RES M. F, 1/4W, 1\%, 12K	RMBP1282F	46	R699	RES C. F, 1/4W, $5 \%, 82$	RDEBP820J
47	R700	RES C. F, 1/4W, 5\%, 2. 2 K	RD6BP222J	48	R782	RES C. F, $1 / 4 W, 5 \%, 4.7 \mathrm{~K}$	RDEBP472J
49	R703	RES C. F, $1 / 4 W, 5 \%, 4.7 \mathrm{~K}$	RDEBP472J	56	R784	RES C. F. $1 / 4 \%, 5 \%, 100$	RDOBP101J
51	R785	RES C. F, $1 / 4 W, 5 \%, 10$	RDEBP180J	52	R798	RES C. F, $1 / 4 W, 5 \%, 4.7 \mathrm{~K}$	RDOBP472
53	R717	RES C. F, $1 / 4 W, 5 \%, 10$	RDEBP100J	54	R728	RES C. F, $1 / 2 W, 5 \%, 68 \mathrm{~K}$	RD9CP683J
55	R729	RES C. F, $1 / 4 W, 5 \%, 10$	RDEBP100J	56	R730	RES C.F, $1 / 4 W$, $5 \%, 10$	RDOBP189]
57	R731	RES C. F, $1 / 4 W, 5 \%, 160$	RD9BP101J	58	R732	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 18 \mathrm{~K}$	RUBP1082F
59	R831	RES C. F. $1 / 4 \%, 5 \%, 100$	RD9BP101J	60	R832	RES C. F. $1 / 4 \mathrm{~W}, 5 \%, 47 \varnothing$	RDDEP471J
61	R833	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RDABP103J	62	U662	IC TTL, GD74LS10	591-845-9
63	U663	IC TTL GD74LS60	591-001-9	64	U664	IC TTL, HD74LS122P	591-212
65	U665	IC TTL, GD74LS14	591-075-9	66	U606	IC TTL GD74LS74AP GSS	591-163-9
67	7 VC601	CAP TRIMMER, TZ®3P450NR, YEL	581-132-3	68	VR609	RES SR, VG968TL1B-509B	572-31-1
69	9 VR610	RES SR, VG968TL1B-1KB	572-315-1				

(1@). TIMING CIRCUITS
PAGE ; 10

No.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C618	CAP CER, 50V, Z, ¢. Ø1UF	CK1HL1032	2	C619	CAP ELE, 25V, M, 22UF(SM)	CE1E1226m
3	C620	CAP M, F, 480V, K, Ø. 647 JF	CH2GLA73k	4	C621	CAP ELE, 50V, M, 2. 2UF(SM)	CE1H225M
5	C622	CAP CER, 50V, J, 479PF	CK1HL471J	6	0623	CAP M. F, 10.V, F, Q. 010 F	CH2AL1建
7	C624	CAP CER, 50V, J, 569PF	CK1HL561J	8	C625	CAP M. F, 100V, F, 1UF	CH2AL185F
9	C626	CAP ELE, 25V, M, 22UF(SM)	CE1EL226m	10	C732	CAP CER, 50V, Z, 0.010 F	CK1HL1032
11	0687	TRANSISTOR, KTA1266-Y	611-014-1	12	0688	TRANSISTOR, KTC3198-Y	611-081-1
13	R628	RES C. F, 1/4W, 5\%, 680	RD0BP681J	14	R630	RES C. F, 1/4\%, $5 \%, 8.2 \mathrm{~K}$	RDDBP822J
15	R631	RES C. F, $1 / 4 \%$, 5%, 10	RDOBP100J	16	R635	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RDEBP103J
17	R636	RES C. F, $1 / 4 W, 5 \%, 1 \mathrm{~K}$	RDOBP102J	18	R637	RES C. F, 1/4M, 5%, 1 K	RDEBP102J
19	R638	RES M. F, 1/4W, 0. 5%, 330K	RMBP3303D	28	R639	RES M. F, 1/4W, 0. 5\%, 1.65M	RUBP1654D
21	R640	RES M. F, 1/4W, 0. 5%, 165K	RMBP1653D	22	R641	RES M. F. $1 / 4 W, 0.5 \%, 825 \mathrm{~K}$	RMBP8253D
23	R642	RES M. G, 1/2W, 0. 5\%, 3. 3M	RGCP3364D	24	R643	RES M. F, 1/4W, © . $5 \%, 82.5 \mathrm{~K}$	RMBP8252D
25	R644	RES C. F, 1/4W, 5\%, 2. 2 M	RD9BP225J	26	R645	RES M. F. $1 / 4 \mathrm{~W}, 0.5 \%, 33 \mathrm{~K}$	RMBP33020
27	R646	RES C. F, 1/4W, 5\%, 560	RD9BP561J	28	R649	RES C.F, 1/4W, $5 \%, 10$	RDEBP100s
29	S603	SW ROTARY, SRAAA2309X, 2320X	522-027-9	30	VR603	RES VAR, V16L5ZS(E113-3281)	571-365
31	VR606	RES SR, VG968TL1B-28KB	572-324-1				

(11). CHOP PULSE GENERATOR

PAGE ; 11

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C660	CAP CER, 509V, K, 1060.9F	CK2HL182K	2	C661	CAP CER, 50V, J, 390PF	CK1HL391J
3	C662	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	4	C663	CAP CER, 50V, J, 10@PF (T. C BLACK)	CT1HL191J
5	C734	CAP CER, 50V, Z, 0. 01UF	CK1HL1032	6	D635	DIODE, 1N4148 OR DS4148	585-602
7	D636	DIODE. 1N4148 OR DS4148	585-002	8	0606	TRANSISTOR, KTC3198-Y	611-001-1
9	R709	RES C. F, 1/4W, 5\%, 270	RD0BP271J	10	R710	RES C. F, 1/4W, 5%, 2. 2 K	RDEBP222J
11	R711	RES C. F, 1/4W, $5 \%, 2.2 \mathrm{~K}$	RD0BP222J	12	R712	RES C. F, 1/4W, 5\%, 4. 7K	RDOBP472J
13	R713	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RDDBP103J	14	R714	RES C. F, $1 / 4 W, 5 \%, 10$	RDOBP100 J
15	R715	RES C. F, 1/4W, $5 \%, 2.2 \mathrm{~K}$	RD0BP222J	16	R716	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RDOBP103J
17	U601	IC TTL, GD74LS02	591-054-9	18	W609	WIRING HARNESS, JW602	550-651-A
19	W701	WIRING HARNESS, WH112	550-632-A	20	W702	WIRING HARNESS, WH102	550-622-A
21	W703	WIRING HARNESS, WH129	550-648-A	22	W795	WIRING HARNESS, WH103	550-623-A

(12). HORIZONTAL MAIN AMPLIFIER

PAGE : 12

No.	FND No	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C644	CAP ELE, 25V, M, 22UF(SM)	CE1EL226m	2	C645	CAP CER, 50V, z, 0.010 F	CK1HL1832
3	C646	CAP ELE, 25V, M, 22UF(SM)	CE1EI226M	4	C647	CAP ELE, 25V, M, 22UF(SM)	CE1EL226\%
5	C648	CAP ELE, 25V, M, 22UF(SM)	CE1EI226M	6	C649	CAP CER, 50V, J, 196PF(T.C BLACK)	CT1HL181J
	C650	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	8	C676	CAP CER, 50V, J, 82PF(T. C BLACK)	CT1HL828J
9	C677	CAP CER, 500V, $\mathrm{Z}, 0.01 \mathrm{UF}$	CK2HL1032	10	C678	CAP CER, 500V, C, 1PF(T. C BLACK)	CT2HLD10C
11	C680	CAP M. F, 409V, K, ©. 047 T	CH2GLA73K	12	C681	CAP M. F, 406V, K, ¢. 047 JF	CH2GIA73K
13	C682	CAP M. F, 490V, K, 0. 847 UF	CH2GL473K	14	C683	CAP M. F, 406V, K, ¢. 847 T F	CH2GLA73K
15	C684	CAP CER, 590V, C, 1PF(T. C BLACK)	CT2HL®18C	16	D612	DIODE, 1N4148 OR DS4148	585-682
17	D613	DIODE, 1N4148 OR DS4148	585-082	18	D614	DIODE, 1 N4148 OR DS4148	585-262
19	D615	DIODE, 1 SS133	585-120	20	D623	DIODE ZENER, DZ-6. 8 B	585-161
21	D625	DIODE, 1N4148 OR DS4148	585-682	22	D626	DIODE, 1N4148 OR DS4148	585-962
23	P609	CONNECTOR WAFER, LA-6640-03	531-682-9	24	0626	TRANSISTOR, KTC3198-Y	611-001-1
25	0627	TRANSISTOR, KTC3198-Y	611-681-1	26	6628	TRANSISTOR, 2N3966	611-022-1
27	0629	TRANSISTOR, 2 N3906	611-822-1	28	6630	TRANSISTOR, KTC3198-Y	611-001-1
29	0631	TRANSISTOR, 2N3906	611-822-1	30	8632	TRANSISTOR, 2 N3906	611-022-1
31	2633	TRANSISTOR, KTC3198-Y	611-001-1	32	Q634	TRANSISTOR, KTC3198-Y	611-601-1
33	0635	TRANSISTOR, KTC3198-Y	611-901-1	34	Q636	TRANSISTOR, 2SA1371-E	611-615
35	6637	TRANSISTOR, 2SC3468-E	611-616	36	Q638	TRANSISTOR, 2SC3468-E	611-616
37	6639	TRANSISTOR, 2SA1371-E	611-615	38	R687	RES M. F, 1/4\%, $1 \%, 3.18 \mathrm{~K}$	RMBP3181F
39	R735	RES C. F, 1/4W, 5%, 10	RD9BP100J	40	R736	RES M. F, 1/4W, $1 \%, 6.8 \mathrm{~K}$	RMBP6801F
41	R737	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 16 \mathrm{~K}$	RMBP1602F	42	R738	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 16 \mathrm{~K}$	RMBP1602F
43	R739	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 16 \mathrm{~K}$	RMBP1602F	44	R740	RES M. F, 1/4W, $1 \%, 6.8 \mathrm{~K}$	RMBP6801F
45	R741	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 12 \mathrm{~K}$	RMBP1202F	46	R742	RES C. F, $1 / 4 W, 5 \%$, 24 K	RDEBP243J
47	R743	RES C. F, 1/4W, $5 \%, 10$	RD9BP100J	48	R744	RES C. F, 1/4WI, $5 \%, 10$	RDOBP190J
49	R745	RES M. F, $1 / 4 W, 1 \%, 16 \mathrm{~K}$	RMBP1602F	50	R746	RES M. F. $1 / 4 \mathrm{~W}, 1 \%, 4.7 \mathrm{~K}$	RMBP4791F
51	R747	RES C. F, 1/4W, 5\%, 2.2 K	RDQBP222J	52	R748	RES M. F, 1/4W, 1\%, 4. 7 K	RMBP4791F
53	R749	RES C. F, $1 / 4 W, 5 \%, 120$	RDPBP121J	54	R758	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 330$	RMBP3360F
55	R751	RES M. F. $1 / 4 W, 1 \%, 470$	RUBP4780F	56	R752	RES M. F, 1/4W, 1\%, 4, 7 K	RMBP47ø1F
57	R753	RES M. F, $1 / 4 W, 1 \%, 4.7 \mathrm{~K}$	RWBP4701F	58	R754	RES M. F. $1 / 4 \%, 1 \%, 330$	RMBP3306F
59	R755	RES C. F. $1 / 4 W, 5 \%, 47 \varnothing$	RDPBP471J	60	R756	RES M. F. $1 / 4 \%, 1 \%, 470$	RUBP4790F
61	R757	RES M. F, 1/4W, 1\%, 750	RMBP7500F	62	R758	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 4.32 \mathrm{~K}$	RMBP4321F
63	R759	RES M. F, 1/2W, 1\%, 120K	RMCP1203F	64	R761	RES M. F, 1/2W, 1\%, 1206	RMCP1283F
65	R762	RES M. F, 1/4W, 1\% 4. 32 K	RvBP4321F	66	R763	RES M. F, 1/4W, 1\%, 2. 2 K	RNBP2281F
67	R764	RES M. F. $1 / 4 W, 1 \%, 430$	RUBP4309F	68	R765	RES M. F, 1/4W, 1\%, 2. 2 K	RUBP2281F
69	R766	RES M. F. $1 / 4 W, 1 \%, 430$	RMBP4308F	76	R767	RES M. F. $1 / 2 \mathrm{~W}, 1 \%, 82 \mathrm{~K}$	RMCP82828
71	R768	RES M. F, 1/4W, 1\%, 1.5K	RMBP1501F	72	R769	RES M.F. $1 / 4 \%, 1 \%, 5.6 \mathrm{~K}$	RMBP5601F
73	R770	RES M. F, 1/4W, 1\%, 5.6 K	RMBP5601F	74	R771	RES M. F, 1/4W, 1\%, 1.5K	RMBP1501F
75	R772	RES C. F, 1/2W, 5\%, 56K	RDACP563J	76	R773	RES C. F, 1/4W, 5%, 100	RDCBP101.
77	R774	RES C.F. $1 / 4 W, 5 \%, 160$	RD9BP101J	78	R775	RES C. F. $1 / 2 \mathrm{~W}, 5 \%, 56 \mathrm{~K}$	RDECP563
79	R776	RES M. F, 1/2W, 1\%, 82K	RMCP8202F	80	R846	RES C. F. $1 / 4 W, 5 \%, 680$	RDCBP681
81	VR602	RES VAR, K162A96-10KB X2	571-308	82	VR611	RES SR, VG968TL1B-2KB	572-318-1
83	VR612	RES SR, VG968TLIB-200B	572-316-1	84	VR614	RES SR, VG9681L1B-1KB	572-315-1
85	W603	WIRING HARNESS, JW601	550-650-A				

PAGE ; 13

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1		SHOULDER BUSHING	919-083	2		INSULATOR SILICON APEX-AR	919-016
3	0634	CAP CER, 50V, 2,0.01UF	CK1HL1032	4	C664	CAP ELE, 35V, M, 100UF(SM)	CE1VL107M
5	C665	CAP MYLAR, 100V, J, 0. 22UF	CP2AL224J	6	C666	CAP ELE, 25V, M, 22UF(SM)	CE1EI226M
7	C667	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	8	C669	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M
9	C670	CAP ELE, 25V, M, 22UF (SM)	CE1EL226M	10	C671	CAP CER, 50V, K, 5660PF	CK1HL562K
11	C675	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	12	C685	CAP MYLAR, 400V, K, 0.022 UF	CP2GI223K
13	C686	CAP M. F, 400V, K, 0. 047UF	CH2GL473K	14	C687	CAP ELE, 25V, M, 22UF(SM)	CE1EL 226 M
15	C688	CAP ELE, 35V, M, 33UF(SM)	CE1VL336M	16	C689	CAP CER, 500V, C, 1PF(T. C BLACK)	CT2HL1010C
17	C690	CAP CER, 506V, Z, 0.01UF	CK2HL1032	18	C691	CAP ELE, 160V, M, 1UF(SM)	CE2CL105M
19	C692	CAP ELE, 160V, M, 1UF (SM)	CE2CL105M	20	C693	CAP CER, 560V, K, 1060.PF	CK2HL102K
21	C694	CAP CER, 2KV, Z, 0.01 UF	CK2FL1032	22	C695	CAP CER, 2KV, K, 1060.PF	CK2FL102K
23	C696	CAP CER, 2KV, K, 1068PF	CK2FL102K	24	C697	CAP CER, 2KV, K, 1060PF	CK2FL102K
25	C698	CAP CER, 2KV, Z, 0.01UF	CK2FL1032	26	C699	CAP CER, 2KV, Z, 0. 01 UF	CK2FL1032
27	C700	CAP CER, 2KV, Z, 0.01 VF	CK2FL1032	28	D627	DIODE, 1SS133	585-120
29	D628	DIODE, 1N4148 OR DS4148	585-002	30	D631	DIODE, 1N4148 OR DS4148	585-002
31	D637	DIODE, 1N4148 OR DS4148	585-002	32	D638	DIODE. 1N4685	585-154
33	D639	DIODE, 1N4005	585-154	34	D640	DIODE, 1N4605	585-154
35	D641	DIODE, 1N4005	585-154	36	D642	DIODE, ESJA52-12	585-149
37	D643	DIODE, ESJA52-12	585-149	38	D644	DIODE, MA185 OR 1SS83	585-259
39	D645	DIODE, MA185 OR 1SS83	585-259	40	D646	DIODE, MA185 OR 1SS83	585-259
41	D647	DIODE, MA185 OR 1SS83	585-259	42	F601	FUSE, 125V 0. 5A, 5MM WITH LEAD	563-032
43	J605	BUS WIRE, 10MM, PI-0. 6MM	871-056	44	J625A	BUS WIRE, 10MM, PI-0. 6MM	871-856
45	NL601	NEON LAMP, NE-98	561-022	46	NL602	NEON LAMP, NE-98	561-022
47	P664	CONNECTOR WAFER, LW-064D-03	531-0.02-7	48	P685	CONNECTOR WAFER, LA-0640-66	531-088-9
49	P606	CONNECTOR WAFER, LA-0640-03	531-062-9	50	P607	CONNECTOR WAFER, LA-9640-63	531-0682-9
51	P612	CONNECTOR WAFER, LW-0640-02	531-001-7	52	6615	TRANSISTOR, KTA1266-Y	611-014-1
53	0616	TRANSISTOR, KTC3198-Y	611-001-1	54	Q640	TRANSISTOR, 2SC3468-E	611-616
55	Q641	TRANSISTOR, 2SA1371-E	611-615	56	Q642	TRANSISTOR, KTC3198-Y	611-601-1
57	Q643	TRANSISTOR, KTC3198-Y	611-001-1	58	0645	TRANSISTOR, 2SD613-D	611-125Y
59	Q646	TRANSISTOR, KTA1266-Y	611-014-1	60	0647	TRANSISTOR, KTC3198-Y	611-001-1
61	R657	RES C. F, 1/4W, $5 \%, 1.2 \mathrm{~K}$	RD9BP122J	62	R658	RES C. F, 1/4W, $5 \%, 47$	RDOBP470J
63	R718	RES C. F, 1/4W, 5\%, 10	RD9BP106J	64	R720	RES C. F, 1/4W, 5\%, 1. 2 K	RDOBP122J
65	R721	RES M. F, 1/4W, 1\%, 243K	RNBP2433F	66	R722	RES C. F, 1/4W, 5\%, 10	RDOBP109J
67	R723	RES C. F, 1/4W, $5 \%, 2.7 \mathrm{~K}$	RDEBP272J	68	R724	RES C. F, 1/4\%, 5\%, 470	RDOBP471J
69	R725	RES C. F, 1/4W, $5 \%, 100 \mathrm{~K}$	RDABP104J	70	R726	RES C.F. $1 / 4 \%, 5 \%, 2.2 \mathrm{~K}$	RD9BP222J
71	R777	RES C. F, $1 / 4 \%, 5 \%, 220 \mathrm{~K}$	RDOBP224J	72	R778	RES C. F, 1/4W, $5 \%, 10 \mathrm{~K}$	RD9BP103J
73	R779	RES C. F, 1/4W, $5 \%, 1.5 \mathrm{~K}$	RDEBP152J	74	R780	RES C. F, 1/2W, 5\%, 47K	RDPCP473J
75	R781	RES C. F, 1/4W, 5\%, 100K	RDGBP104J	76	R782	DIODE ZENER, DZ-22B	585-118-1
77	R783	RES C. F, 1/4W, $5 \%, 100 \mathrm{~K}$	RD0BP104J	78	R784	RES C. F, 1/4W, $5 \%, 82 \mathrm{~K}$	RDCBP823J
79	R785	RES C. F, 1/4W, 5\%, 220	RD9BP221J	80	R786	RES M. G, 1W, 1\%, 16M	RG1P1605F
81	R788	RES C. F, 1/4W, $5 \%, 330 \mathrm{~K}$	RD9BP334J	82	R792	RES C. F, 1/4W, $5 \%, 1 \mathrm{~K}$	RDCBP102J
83	R793	RES C. F, 1/2W, $5 \%, 47 \mathrm{~K}$	RDECP473J	84	R794	RES C. F, 1/4W, 5\%, 3. 9 K	RDEBP392J
85	R795	RES C. F, 1/4W, $5 \%, 470$	RD0BP471J	86	R796	RES C. F, 1/4W, 5\%, 56K	RD98P563J
87	R797	RES C. F, 1/4W, $5 \%, 3.3 \mathrm{~K}$	RD0BP332J	88	R799	RES C. F, $1 / 4 W, 5 \%, 10$	RDPEPP100
89	R883	RES C. F, 1/4\%, $5 \%, 12 \mathrm{~K}$	RD0BP123J	90	R884	RES C. F, 1/4W, 5\%, 390	RDPBP391J

PAGE : 14

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	No.	FND NO	DESCRIPTION \& SPEC.	P / N
91	R885	RES C. F, 1/4\%, $5 \%, 1.5 \mathrm{~K}$	RDOBP152J	92	R806	RES C. F, 1/4W, 5%, 680	RDDAP681J
93	R811	RES C. F, 1/4W, 5\%, 3. 9K	RD6BP392J	94	R813	RES M. F, 1/4W, 1%, 13	RIMP13PEF
95	R814	RES C. F, 1/4W, $5 \%, 1001$	RD9BP104J	96	R815	RES M. G, 1/2W, 1\%, 3M	RGCP3064F
97	R816	RES M. G, 1/2W, $5 \%, 16 \mathrm{M}$	RG9CP166J	98	R835	RES C. F, 1/4\%, 5%, 10	RDCBP109J
99	R836	BUS WIRE, 10MM, PI- 0.6 6IM	871-056	108	R837	RES C. F, 1/4w, 5%, 47	RDEEPP470J
101	R838	RES C. F, 1/4W, $5 \%, 47$	RDEBP478J	102	T601	TRANSFORMER, HVT-3D(4011)	622-017-8
103	VR604	RES SR, H1022A-10KB	572-257-1	104	VR616	RES SR, VG968TL1B-200kB	572-317-1
185	VR617	RES SR, VG068TL1B-2006KB	572-317-1	106	VR618	RES SR, VG968TL1B-20KB	572-324-1

PAGE : 15

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C901	CAP ELE, 16V, M, 1060UF (SM)	CE1CL108M	2	C982	CAP ELE, 100V, M, 47JF(SU)	
3	C903	CAP ELE, 250V, M, 47UF(SM)	CE2EL476M		C985	CAP ELE, 160V, M, 47UF(SH) CAP ELE, 25V, M, 22aQuF(SUS)	CE2ALA76M
5	C986	CAP ELE, 25V, M, 2206UF(SMS)	581-142	6	C907	CAP ELE 25V, M, 22UF(SM)	581-142 CE1FI2264
7	C908	CAP M. F, 400V, K, 0. 047UF	CH2GL473K	8	C989	CAP ELE, $160 \mathrm{~V}, \mathrm{M}, 10 \mathrm{FF}$ (SM)	CE2CL196
9	C910	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	10	C911	CAP ELE, 250V, M, 10UF(SM)	CE2EL106m
11	C912	CAP ELE, 109V, M, 33UF(SM)	CE2AL336M	12	C917	CAP ELE, 16V, M, 100UF(SM)	CE1CLIOTM
13	C918	CAP CER, $50 \mathrm{~V}, \mathrm{Z}, 0.01 \mathrm{UF}$	CK1HL1032	14	C920	CAP ELE, 16V, M, 19buF(SM)	CE1CL107M
15	C921	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	16	C922	CAP CER, 50V, Z, 0.01UF	CK1HL1632
17	D901	DIODE, 1N4985	585-154	18	D902	DIODE, 1N4065	$.54$
19	D903	DIODE, 1N4085	585-154	20	D994	DIODE, 1N4005	585-154
21	D905	DIODE, 1N4065	585-154	22	D906	DIODE, 1N4065	585-154
23	D987	DIODE. 1N4905	585-154	24	D998	DIODE, 1N4685	585-154
25	D909	DIODE, 1N4605	585-154	26	D910	DIODE, 1N4005	585-154
27	D911	DIODE, 1N4085	585-154	28	D912	DIODE, 1N4605	585-154
29	D913	DIODE, 1N4065	585-154	30	D915	DIODE, 1N4148 OR DS4148	585-982
31	D916	DIODE ZENER, DZ-22B	585-118-1	32	D917	DIODE ZENER, DZ-22B	585-118-1
33	D920	DIODE, 1N4148 OR DS4148	585-002	34	D922	DIODE ZENER, DZ-8.2B	585-162
35	D923	DIODE ZENER, DZ-5. 6B	585-056-1	36	D924	DIODE ZENER, DZ-12B	585-131
37	P901	CONNECTOR WAFER, LA-0640-08	531-066-9	38	P902	CONNECTOR WAFER, LW-0640-03	531-062-7
39	P903	CONNECTOR WAFER, LW-0640-03	531-8082-7	40	P904R	CONNECTOR WAFER, LW-0640-05	531-018-7
41	P905	CONNECTOR WAFER, LW-0640-07	531-859-7	42	0901	TRANSISTOR, KTC3198-Y	611-801-1
43	Q987	TRANSISTOR, KSD288-Y	611-599	44	Q998	TRANSISTOR, KSD288-Y	611-599
45	6909	TRANSISTOR, 2SB861-C	611-189	46	0911	TRANSISTOR, KSD288-Y	611-599
47	R901	RES C. F, 1/4W, 5\%, 47K	RDOBP 473 J	48	R902	RES C. F, 1/4W, 5\%, 2, 2M	RDOBP225,
49	R903	RES C. F, $1 / 4 \%, 5 \%, 68 \mathrm{~K}$	RD9BP683J	50	R904	RES C. F, 1/4W, $5 \%, 470$	RDOBP 471 J
51	R905	RES C. F, $1 / 4 W, 5 \%, 47 \mathrm{~K}$	RD9BP473J	52	R906	RES C. F, 1/4W, 5\%, 100	RDEBP101J
53	R907	RES C. F, 1/2W, 5\%, 2.2	RDACP2R2J	54	R908	RES M. F, 1/4W, 1\%, 820	RMBP8290F
55	R999	RES C. F, $1 / 4 \mathrm{~W}, 5 \%, 47 \mathrm{~K}$	RDOBP473J	56	R910	RES C. F, 1/4W, 5\%, 100	RDDBP101J
57	R911	RES C. F, $1 / 4 W, 5 \%, 5.6$	RD0BP5R6J	58	R912	NEON LAMP, NE-98	561-022
59	R913	RES C. F, 1/2W, 5\%, 2.2	RDOCP2R2J	68	R914	RES M. F, 1/8W, 1\%, 3. 9 K	RMAP3901F
61	R915	RES M. F, 1/4W, 1\%, 12K	RMBP1202F	62	R916	RES C. F, $1 / 4 \%, 5 \%, 1 \mathrm{~K}$	RDOBP102J
63	R917	RES M. F, 1/4W, 1\%, 139K	RMBP1393F	64	R918	RES M. F, 1/4W, 1\%, 270	RNBP2700F
65	R919	RES M. F, 1/4W, 1\%, 9, 1K	RMBP9101F	66	R920	RES C. F, 1/4W, 5\%, 390	RDOBP391J
67	R921	RES M. 0, 2W, 5\%, 8. 2 K	RSO2P822J	68	R923	RES M, F, 1/4W, 1\%, 12K	RMBP1282F
69	R924	RES M. F, 1/4W, 1\%, 12K	RMBP1202F	70	R925	RES C. F, 1/4W, 5\%, 2.2	RDEBP2R2J
71	R926	RES C. F, 1/4W, 5\%, 2.2	RD9BP2R2J	72	R927	RES M, F, 1/4W, 1\%, 1. 5 K	RMBP1501F
73	R928	RES C. F, $1 / 4 \mathrm{~W}, 5 \%, 1 \mathrm{~K}$	RD9BP102J	74	R 929	RES M, F, 1/4W, 1\%, 5.1 K	RMBP5101F
75	R930	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 5.6 \mathrm{~K}$	RMBP5601F	76	R935	RES C. F, 1/4W, 5\%, 33K	RDOBP333J
77	U901	IC OP AMP, TLO72CP	591-323	78	U902	IC OP AMP, TLD72CP	$591-323$
79	VR901	RES SR, VG668TL1B-1KB	572-315-1	80	W901	WIRING HARNESS, WH111	$\|550-631-A\|$
81	W902	WIRING HARNESS, WH119	550-639-A				5 631-A

(15). CRT CONTROL \& CAL. OUT

PAGE : 16

No.	FND N0	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1	C1101	CAP CER, 50V, K, 1960PF	CK1HL1022	2	C1102	CAP CER, 50V, J, 18PF(T. C BLACK)	CT1HL108J
3	C1103	CAP ELE, 16V, M, 47UF(SM)	CE1CL476M	4	C1184	CAP MYLAR, 106V, J, 0.6220 F	CP2AL223J
5	C1185	CAP ELE, 25V, M, 22UF(SM)	CE1EI226m	6	P1101	CONNECTOR WAFER, LA-9646-64	531-233
7	P1102	CONNECTOR WAFER, LA-0648-03	531-882-9	8	P1183	CONNECTOR WAFER, LA-0640-63	531-062-9
9	P1107	CONNECTOR WAFER, LA-9648-85	531-212	18	Q1101	TRANSISTOR, KTA1266-Y	611-014-1
11	Q1182	TRANSISTOR, KTC3198-Y	611-901-1	12	01193	TRANSISTOR, KTC3198-Y	611-001-1
13	R1101	RES C. F, 1/4W, 5%, 2 K	RD9BP282J	14	R1102	RES C. F, $1 / 4 \%$, $5 \%, 10$	RDOBP1893
15	R1103	RES C. F. 1/4W, $5 \%, 270$	RD9BP271J	16	R1164	RES C. F, $1 / 4 W, 5 \%, 10 \mathrm{~K}$	RDEAP103J
17	R1185	RES C. F, 1/4W, $5 \%, 15 \mathrm{~K}$	RD6BP153J	18	R1196	RES C. F, 1/4W, $5 \%, 39 \mathrm{~K}$	RDPBP393J
19	R1107	RES C. F, 1/4W, $5 \%, 4.7 K$	RDGBP472J	20	R1198	RES C. F, 1/4W, 5\%, 47K	RDEBP473J
21	R1109	RES C. F, 1/4W, $5 \%, 27 \mathrm{~K}$	RDEBP273J	22	R1110	RES C. F, 1/4W, 5\%, 33K	RDEAP333J
23	R1114	RES C. F, 1/4W, $5 \%, 10$	RDCAPP100J	24	R1115	RES C. F, 1/4W, $5 \%, 1 \mathrm{~K}$	RDOBP102J
25	S1101	SW POWER, SDDG5PETL	521-097	26	U1101	IC TTL , GD74LS74AP GSS	591-163-9
27	VR1101	RES SR, H1022A-10KB	572-257-1	28	VR1182	RES VAR, K162A06-10KB X2	571-368
29	VR1193	RES VAR, VM16(PH2D)N-E708-1088	571-024-1				

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1.	C 1	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	2	C 2	CAP ELE, 25V, M, 22UF(SM)	CE1EJ2264
3	C 3	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	4	C 4	CAP CER, 50V, K, 0.01UF	CK1HL123K
5	C 5	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	6	C 6	CAP ELE, 25V, M, 22UF(SM)	CE1FL206M
7	C 7	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	8	C 8	CAP ELE, 25V, M, 22UF(SM)	CE1EL226\%
9	C 9	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	10	C10	CAP CER, 50V, J, 39PF	CK1HL3903
11	C11	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	12	C12	CAP ELE, 25V, M, 22UF(SM)	CE1EL228\%
13	C13	CAP CER, 50V, K, 330PF	CK1HL331K	14	C14	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M
15	C15	CAP ELE, 25V, M, 22UF(SM)	CE1EL226M	16	C16	CAP CER, 50V, J, 150PF (T. C BLACK)	CT1HL151J
17	C17	CAP P. P STYROL 25V 2200PF	CO1EL222K	18	C18	CAP M. F, 50V, K, 0.022UF	CH1HL223K
19	C19	CAP CER, 50V, J, 39PF	CK1HL390J	28	C20	CAP M. F, 100V, K, 0. 22UF	CH2AL224K
21	C21	CAP M. F, 109V, K, 2. 2UF	CH2AL225K	22	C22	CAP CER, 50V, K, 0.01UF	CK1HL103K
23	C24	CAP CER, 50V, K, 220PF	CK1HL221K	24	C25	CAP CER, 50V, J, 39PF	CK1HL390.
25	C26	CAP CER, 50V, J, 150PF(T. C BLACK)	CT1HL151J	26	C27	CAP CER, 50V, J, 20PF(T. C BLACK)	CT1HL208J
27	D1	DIODE ZENER, DZ-5. 1B	585-111	28	D2	DIODE, 1N4148 OR DS4148	585-082
29	D3	DIODE, 1N4148 OR DS4148	585-002	30	D4	DIODE, 1N4148 OR DS4148	585-062
31	D5	DIODE, 1N4148 OR DS4148	585-002	32	D6	DIODE, 1N4148 OR DS4148	585-082
33	D7	DIODE, 1N4148 OR DS4148	585-002	34	D8	DIODE, 1N4148 OR DS4148	585-082
35	P1	CONNECTOR WAFER, LW-0640-03	531-092-7	36	P2	CONNECTOR WAFER, LW-0640-03	531-082-7
37	P3	CONNECTOR WAFER, LW-0640-03	531-0.62-7	38	Q 1	TRANSISTOR, 2 N3984	611-006-1
39	Q 2	TRANSISTOR, 2N3906	611-022-1	40	Q 3	TRANSISTOR, 2N3904	611-006-1
41	Q 4	FET, 2SK304-E	611-140	42	Q 5	FET, 2SK304-E	611-140
43	Q 6	TRANSISTOR, 2N3906	611-022-1	44	Q 7	TRANSISTOR, 2N3904	611-066-1
45	Q 8	TRANSISTOR, KTC3198-Y	611-001-1	46	Q 9	TRANSISTOR, KTC3198-Y	611-001-1
47	Q10	TRANSISTOR, KTC3198-Y	611-081-1	48	Q11	TRANSISTOR, KTC3198-Y	611-001-1
49	012	TRANSISTOR, 2 N3904	611-066-1	50	Q13	TRANSISTOR, 2N3994	611-066-1
51	014	TRANSISTOR, 2 N3906	611-022-1	52	Q15	TRANSISTOR, 2 N2219	611-036
53	Q16	TRANSISTOR, 2N2985	611-054	54	R 1	RES C. F, 1/4W, 5\%, 33	RDOBP3310.
55	R 2	RES C. F, $1 / 4 \mathrm{~W}, 5 \%, 4.7 \mathrm{~K}$	RD0BP472J	56	R 4	RES M, F, 1/4W, $1 \%, 1 \mathrm{~K}$	RMBP1001F
57	R 5	RES M. F, $1 / 4 \%, 1 \%, 1 \mathrm{~K}$	RMBP1001F	58	R 6	RES C.F, 1/4W, $5 \%, 4.7 \mathrm{~K}$	RD9BP472J
59	R 7	RES C. F, 1/4W, $5 \%, 120$	RD0BP121J	60	R 8	RES C. F, 1/4W, 5\%, 470	RDOBP471J
61	R 9	RES C. F, $1 / 4 W, 5 \%, 470$	RD9BP471J	62	R10	RES C. F, $1 / 4 W, 5 \%, 100$	RDOBP101J
63	R11	RES M, F, 1/4W, 1\%, 10K	RMBP1902F	64	R12	RES M, F, 1/4W, 1\%, 220	RMBP2200F
65	R13	RES M. F, 1/4W, 1\%, 10K	RMBP1092F	66	R14	RES M.F, 1/4W, $1 \%, 1.5 \mathrm{~K}$	RNBP1501F
67	R15	RES M. F, 1/4W, $1 \%, 150 \mathrm{~K}$	RMBP1503F	68	R16	RES M.F, $1 / 4 \%, 1 \%, 330$	RMBP3300F
69	R17	RES C. F, 1/4W, $5 \%, 2 \mathrm{~K}$	RD9BP202J	70	R18	RES M, F, 1/4W, 1\%, 2 K	RMBP2901F
71	R19	RES M. F, 1/4W, 1\%, 309K	RMBP3093F	72	R20	RES M, F, 1/8W, $1 \%, 3 \mathrm{~K}$	RMBP3001F
73	R21	RES C. F, 1/4W, 5\%, 220	RDOBP221J	74	R22	RES M. F, $1 / 4 W, 1 \%, 1 \mathrm{~K}$	RMBP1081F
75	R23	RES C. F, 1/4W, $5 \%, 10$	RDDBP190J	76	R24	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 1 \mathrm{~K}$	RMBP1001F
77	R25	RES M. F, 1/4W, $1 \%, 1 \mathrm{~K}$	RMBP1001F	78	R26	RES M. F, $1 / 4 \%, 1 \%, 10 \mathrm{~K}$	RNBP1002F
79	R27	RES M. F, 1/4W, 1\%, 820	RMBP8200F	80	R28	RES M. F, 1/4W, 1\%, 220	RNBP22067
81	R29	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 1 \mathrm{~K}$	RMBP1061F	82	R30	RES C. F, 1/4W, $5 \%, 220$	RD9BP221J
83	R31	RES M. F, 1/4W, 1\%, 10K	RMBP1062F	84	R32	RES M. F, 1/4W, $1 \%, 1.5 \mathrm{~K}$	RIMBP1501F
85	R33	RES M. F, 1/4W, 1\%, 750	RMBP7500F	86	R34	RES M. F, 1/4W, 1\%, 360	RMBP30607
87	R35	RES C. F, 1/4W, $5 \%, 7.5 \mathrm{~K}$	RD9BP752J	88	R36	RES M. F, $1 / 4 \mathrm{~W}, 1 \%, 2 \mathrm{~K}$	RMBP2001F
89	R38	RES M. F, 1/4W, 1\%, 750	RMBP7506F	98	R39	RES M. F, 1/4W, 1\%, 270	RMBP2780F

(16). FUNCTION GENERATOR

PAGE ; 18

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND No	DESCRIPTION \& SPEC.	P / N
91	R48	RES C. F, 1/4W, 5\%, 750	RDEBP751J	92	R41	RES M. F, 1/4W, 1\%, 5. 6K	RIMBP5601F
93	R42	RES C. F, $1 / 2 \mathrm{~W}, 5 \%, 1 \mathrm{~K}$	RDPCP102J	94	R43	RES M, F, 1/4W, 1\%, 5. 6K	RUBP5601F
95	R44	RES C.F, $1 / 4 \%, 5 \%, 10$	RD0BP160J	96	R45	RES C. F, 1/4W, 5\%, 510	RDEBP511J
97	R46	RES C. F, 1/4W, 5%, 10	RDOBP1903J	98	R47	RES C. F, 1/4W, 5%, 1 K	RDEBP102J
99	R48	RES M. F, 1/4W, 1\%, 228	RIMBP22b0F	100	R49	RES M. F, 1/4W, 1\%, 12.1	RMBP12R1F
101	R50	RES M. F, 1/4M, 1%, 1 K	RMBP1001F	182	R51	RES C. F, $1 / 4 \mathrm{~W}, 5 \%, 68 \mathrm{~K}$	RDQBP683
183	R52	RES C. F, 1/4W, $5 \%, 306$	RD6BP301J	104	R53	RES M. F, 1/4W, $1 \%, 1 \mathrm{~K}$	RMBP1061F
185	R54	RES M. F, 1/4\%, 1%, 1 K	RMBP1001F	106	R55	RES M. F, 1/4W, 1\%, 330	RU14P3390]
107	R56	RES C. F, 1/4W, $5 \%, 750$	RD6BP751J	188	R57	RES C. F, 1/4W, $5 \%, 4.7$	RDOBP4R7J
189	R58	RES C. F, $1 / 2 W, 5 \%, 100$	RDPCP101J	110	R59	RES C. F, 1/2W, $5 \%, 100$	RDPCP101J
111	R60	RES C. F, $1 / 4 W, 5 \%, 4.7$	RDEBP4R7J	112	R61	RES M. F, 1/4W, $1 \%, 150$	RUBP1590F
113	R62	RES M. F, 1/4W, 1\%, 430	RMBP43907	114	R63	RES C.F, 1/4W, $5 \%, 22$	RDEBP2z80
115	S1	SW PUSH, SPUN-30	521-980	116	S2	SW PUSH, SPUN-70	521-294
117	U1	IC OP AMP, GL324	591-131-9	118	U2	IC OP ANP, GL324	591-131-9
119	U3	IC TTL GD74S60	591-275-9	128	U4	IC SN75107A	591-316-1
121	VR1	RES VAR, V16L5DS(E113D-B2544)	571-312-1	122	VR2	RES SR, VG968TLiB-506B	572-319-1
123	VR3	RES SR, VG068TL1B-1KB	572-315-1	124	VR4	RES SR, VG968TL1B-106B	572-327
125	VR5	RES SR, VG968TL1B-109kB	572-313-1	126	VR6	RES SR, VG968TL1B-1KB	572-315-1
127	VR7	RES SR, VG968TL1B-2KB	572-318-1	128	VR8	RES VAR, K161106-10kB, $\mathrm{L}=15 \mathrm{MM}$	571-056-1
129	W1	WIRING HARNESS, WHFG184	550-721-A				

PAGE ; 19

NO.	FND NO	DESCRIPTION \& SPEC.	P / N	NO.	FND NO	DESCRIPTION \& SPEC.	P / N
1		SHOULDER BUSHING	919-603	2		INSULATOR SILICON APEX-AR	919-016
3	F101	FUSE 250V1A, MF51NM TYPE	563-841	4	L101	ROTATION COIL	638-965
5	P101	CONNECTOR, BNC (CH1 OUT)	531-164	6	P102	CONNECTOR, BNC (EXT TRG)	531-164
7	P103	CONNECTOR, BNC (EXT BLANKING)	531-164	8	P184	TERMINAL, PROBE ADJUST	539-010
9	P105	CONNECTOR, BNC (CH1. X)	531-164	18	P106	CONNECTOR, BNC (CH2. Y)	531-164
11	P107	AC INLET, BACI-06 BELTON	535-038	12	P108	TERMINAL, GROUND 2-948	537-018
13	P109	CONNECTOR, BNC ($50-\mathrm{OHM}$ OUT)	531-164	14	P1301	CONNECTOR WAFER, LW-0640-04	531-683-7
15	P1392	SOCKET, CRT	535-917	16	R260	RES C. F, 1/4W, $5 \%, 10$	RDCBP100]
17	R300	RES C. F, $1 / 4 W, 5 \%, 10$	RD9BP1003	18	SCD	PCB, FUNCTION GENERATOR BOARD	513-531
19	SCD2	PCB, VERTICAL BCARD	513-546	28	SC06	PCB, HORIZONTAL BOARD	513-547
21	SC11	PCB, CRT CONTROL BOARD	513-468	22	SC13	PCB, CRT SOCKET BOARD	513-467
23	T101	POWER TRANSFORMER, OS-9880	622-040	24	V101	CRT, 150BTB31A	631-0807-8
25	WH199	WIRING HARNESS, WH109	550-629-A	26	WH109-1	WIRING HARNESS, WH109-1	551-629-B
27	WH115-A	WIRING HARNESS, WH115-A	550-635-A	28	WH115-B	WIRING HARNESS, WH115-B	550-635-B
29	WH115-C	WIRING HARNESS, wH115-C	550-635-C	39	WH124	WIRING HARNESS, wH124	551-643-A
31	WH126	WIRING HARNESS, WH126(LED)	550-645-A	32	WH128	WIRING HARNESS, WH128	550-647-A
33	WH130	WIRING HARNESS, wH130	550-649-A	34	wH139	WIRING HARNESS, WH13@	550-649-A
35	WHFG101	WIRING HARNESS, WHFG101	550-718-A	36	WHFG102	WIRING HARNESS, WHFG162	556-719-A
37	WHFG103	WIRING HARNESS, wHFG103 TTL	550-720-A	38	WHFG105	WIRING HARNESS, CH1 OUT	550-722-A
39	Y+Y-	WIRING HARNESS, WH123	550-654-A				

PART-LISTS of MODEL OS-9820G Rev. B // The End
Printed Date : 1993. 3. 5

a3sn LON: - 310N

(200

13. MECHANICAL PARTS LIST \& EXPLODED VIEW

순 번	PART NO	DESC	Q' TY	REMARK
1	219-190	COVER, TOP	1	
2	219-191	COVER, BOTTOM	1	
3	215-134	FRONT CASE	1	
4	242-278	FRONT PLATE	1	
5	227-098	FRAME - MID	1	
6	227-100	FRAME - L	1	
7	227-999	FRAME - R	2	
8	242-275-1R2	REAR PLATE	1	
9	242-279	SHIELD PLATE	1	
10	511-465-F	V-B/D ASS' Y	1	
11	511-466-F	H-B/D ASS' Y	1	
12	511-531-A	F/G B/D ASSY	1	
13	511-468-A	CONTROL B/D ASS'Y	1	
14			1	
15				
16	511-467-A	CRT SOCKET B/D ASSY	1	
17				
18				
19				
20	229-ø25	CRT BASE	1	
21	235-238	CONTROL BKT	1	
22	242-281	SHIELD PLATE	1	
23	873-623	μ-METAL PLATE	1	
24	358-047	RUBBER, CRT WRAP	1	
25	556-012	TIE WRAP, L=190mm	1	

순 번	PART NO	DESC	Q' TY	REMARK
26	631-007-9	CRT, 150BTB31A	1	
27	638-005	ROTATION COIL	1	
28				
29				
30	247-145	FRONT PANEL	1	
31	587-643-2	FILTER, GRAY	1	
32	265-015	CRT MTG BLOCK	4	
33	235-119	CRT BAND (1)	1	
34	358-ø3ø-1	RUBBER, CRT BAND	2	
35	235-ø2ø	CRT BAND (2)	1	
36	277-675-7	LABEL, GOLD STAR	1	
37	358-026-1	STAND STOPPER	2	
38	818-0ø1	STAND BAR	1	
39	397-002-1	DOWN FOOT	2	
40	566-461	HEAT SINK	2	
41	239-032-7	NYLON SUPPORT L=22. \emptyset	1	
42	219-192	H/V COVER	1	
43	242-273	H/V PLATE	1	
44	397-001-1	REAR FOOT	4	
45	239-032-1	NYLON SUPPORT L=5. \emptyset	2	
46	535-038	POWER INLET	1	
47	622-040	TRANSFORMER	1	
48	317-649	REINFORCED NUT	4	
49	369-Ø38-1	KNOB POWER S/W	1	
50	369-107	KNOB EXTENTION ROD	2	

순 번	PART NO	DESC	Q' TY	REMARK
51	367-427-1	HANDLE, EPDM	1	
52	367-427-2	HANDLE COVER	2	
53	399-006	EARTH STRIP	1	
54				
55				
56				
57	369-103	KNOB 5, AT/D	1	
58	369-102	KNOB 4, V/D	2	
59	369-104	KNOB 6, L/H	2	
60	369-055-1	KNOB PUSH	10	
61				
62	369-100	KNOB2	5	
63	369-101	KNOB3	4	
64	539-010	TERMITAL CAL OUT	1	
65	537-618	TRRMITAL Z-948	1	
66	531-164	BNC CONNECTOR	6	
67	919-ø23	INSULATOR SILICON	2	
68	919-016	INSULATOR SILICON	5	
69	919-003	SHOULDER BUSHING	5	
70				
71	588-025	LAMP HOLDER	1	
72	MBC03-06J	BIND HEAD SCREW	32	
73	MCC04-12U	C'SK HEAD SCREW	2	
74	MPC03A16J	ASSEMBLED SCREW	2	
75	MCC03-12U	C'SK HEAD SCREW	4	

순 번	PART N0	DESC	Q' TY	REMARK
76	MPC03A08J	ASSEMBLED SCREW	10	
77	277-001	LABEL, DANGER H. V	1	
78	МСТØ3-06J	C'SK HEAD TAPTITE	2	
79	MBTø3-06C	TAPTITE SCREW	5	
80	MPC64A12J	ASSEMBLED SCREW	4	
81	MBCø4-ø8J	BIND HEAD SCREW	3	
82	313-009-1	RING NUT M7	2	
83	319-001-1	BLIND RIVET	19	
84	919-øø8-1	INSULATOR (1)	1	
85	919-9ø8-2	INSULATOR (2)	1	
86	537-041	GROUND LUG, M6	1	
87	NHC06-øøJ	HEXAGON NUT	1	
88	319-øø7	SNAP RIVET	2	
89				
90				
91				
92				
93				
94				
95				
96				

Leere Seite

GoldStar

LG Precision Co., Ltd.

Kookmin Life Insurance B/D 168
Kongdok-dong, Mapo-gu, Seoul 120-020 Korea
Tel : (02) 3773-1114 Fax : (02) 3271-5454

LG Precision

13013 East 166th Street Cerritos, Ca. 90701-2226, U.S.A.
Tel : (213) 404-0101
Fax : (213) 921-6227
Tix: 910-583-5719 LGILA

