OPERATING MANUAL

MODEL 3325A SYNTHESIZERIFUNCTION GENERATOR

Serial Numbers: All

IMPORTANT NOTICE
This manual applies to all instruments. Docu-mentation changes required after the printing of this manual are shown an a manual changes supplement which accompanies this manual.

WARNING I

To prevent potential fire or shock hazard, do not expose equipment to rain or moisture.

Manual Part No. 03325-90013
© Copyright Hewlett-Packard Company 1978, 1981, 1984
P.O. Box 69, Marysville, Washington 98270

The following general safety precautions must he observed during all phases of operation, service, and repair of this Instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates saf ety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power ca ble must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an el ectrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove Instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packa rd Sales and Service Office for service and repair to ensure that safety features are main-tained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

Abstract

WARNING I

Dangerous voltages, capable of causing death, are present in this Instrument. Use extreme caution when handling, testing, and adjusting.

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this

-I-- 0R	symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.
	Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked). Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.
$\left(\frac{1}{2}\right.$	Low-noise or noiseless, clean ground (earth) terminal. Used for a Signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installatiop (operating) manual, and before operating the equipment.
	Frame or chassis terminal. A connection to the Frame (chassis) of » 7 0R the equipment which normally includes all exposed metal struc-tures.
	Alternating current (power line).
	Direct current (power line).
	Alternating or direct current (power line). The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.
WARNING I	The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.
CAUTION	
	The NOTE sign denotes important information. lt calls attention to procedure, practice, condition or the like, which is essential to highlight.

TABLE OF CONTENTS

TABLE OF CONTENTS (Cont'd)

-24
3-148.................. Interrogating Entry Parameters
-25
3-150.)nterrogating Function (Waveform)3-25
3-152. Interrogating Miscellaneous

Table	Page	
1.1	Specifications	$1-2$
$1-2$.	Supplemental Information	$1-3$
$1-3$.	HP-1B Interface Capability	$1-6$
$1-4$.	HP-IB Response Times	$1-7$
1-5.	Recommended Test Equipment	$1-8$
2-1.	HP-1B Addresses	$2-4$
3-1.	Operating Information	$3-1$
3-2.	Amplitude Limits of AC Functions ..	$3-5$
3-3.	High Voltage Output Amplitudes	
	(Option 002)	$3-6$
3-4.	Maximum DC Offset	
	with any AC Function	$3-7$

Section Page
IV. PERFORMANCE TESTS 4-1
4-1. Introduction 4-1
4-3. Calculator-Controlled Test 4-1
4-5. Operational Verification 4-1
4-8. Required Test Equipment 4-1
4-10. Self Test 4-1
4-12. Sine Wave Verification 4-1
4-14. Square Wave Verification 4-2
4-16. Triangle and Ramp Verification 4-3
4-18. Amplitude Flatness Check 4-3
4-20. Sync Output Check 4-4
4-22. Frequency Accuracy 4-4
4-24. Output Level and Attenuator Check 4-4
4-26. Harmonic Distortion Test 4-5
4-28. Close-In Spurious Signal Test 4-6
4-30. HP-IB Interface Test 4-6

LIST OF TABLES

LIST OF ILLUSTRATIONS

Figure
2-1. Power Cables 2-2
2-2. HP-IB Connector 2-2
2-3. Rack Mount and Handle Kits 2-5
3-1. Front and Rear Panel Controls 3-2
3-2. Maximum DC Offset with AC Functions 3-8Page FigurePage
3-3. Interface Connections and Bus Structure 3-13
4-1. Harmonic Distortion Verification (High Voltage Output) $4-5$)

SECTION GENE AL INF R AT ON

table of contents

Paragraph Page
1-1. Int roduction 1-1
1-5. Instrument Descri ption 1-1
1-9. Specifications 1-1
1-11. Supplemental Operating Information 1-1
1-13. Remote Control 1-1
1-15. Options 1-1
1-17. Accessories Supplied 1-5
1-19. Accessories Available 1-5
1-21. Instrument and Manual Ide fication 1-6
1-24. Safety Considerations 1-6
1-27. Recommended Test Equipment 1-6
LIST OF TABLES
'Fable Page
1-1. Specifications 1-2
1-2. Supplemental Information 1-3
1-3. HP-IB Interface Capability 1-6
1-4. HP-IB Response Times 1-7
1-5. Recommended Test Equipment 1-8

Sine wave	20 MHz
Square wave	10 MHz
Triangle	10 kHz
Positive slope ramp	10 kHz
Negative slope ramp	10 kHz

Frequency may be selected with up to eleven digits of resolution. Output amplitude is 1 mV to 10 V peak-topeak. The output level may also be selected or displayed in V rms or in dBm (50 ohms). Any function may be dc offset up to $\pm 4.5 \mathrm{~V}$, or the output may be dc only up to $\pm 5 \mathrm{~V}$. An optional high voltage output produces up to 40 V p-p into a 500 ohms load.

1-7. Frequency sweep of all functions is provided in linear or \log sweep, at sweep times of 10 milliseconds to 99.99 seconds for linear sweep. Maximum time for \log sweep is 99.99 seconds and minimum time is 2 seconds for single \log sweep and 0.1 second for continuous log sweep. Single linear sweep may be up or down, while continuous sweep is up/down/up, etc., in the linear mode and up/up, etc., in log mode.

1-8. The Model 3325A is fully programmable through the rear panel Hewlett-Packard Interface Bus (HP-IB) connector. A device such as a programmable calculator is capable of remotely controlling the 3325A. Interface information is given in Section 11 of this manual, and programming information is in Section III.

1-9. SPECIFICATIONS.

1-10. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument is tested. Any changes in specifications due to manufacturing, design or traceability to the U.S. National Bureau of Standards are included in Table 1-1 of this manual and/or the Manual Changes Supplement.

1-11. SUPPLEMENTAL OPERATING INFORMATION.

1-12. Table 1-2 contains information describing general operating characteristics of the 3325A. This informa-tion is supplemental operating information and is not to be considered as specifications.

1-13. REMOTE CONTROL.

1-14. Table 1-3 lists the HP-I8 interface capabilities of the Model 3325A in conformity with IEEE Standard 4881978, "Standard Digital Interface for Programmable Instrumentation". HP-IB response times are given in Table 1-4.

1-15. OPTIONS.

1-16. The following options extend the frequency stability and output amplitude capabilities of the Model 3325A:

Option 001 High Stability Frequency Reference Option 002 High Voltage Output

The following options indicate the line voltage to which the instrument was set at the factory:

Option 100 Nominal 100 V ac
Option 120 Nominal 120 V ac
Option 220 Nominal 220 V ac
Option 240 Nominal 240 V ac

FUNCTIONS AND FREQUENCIES

Sine VVave:

Signal Output (Front or Rear Panel):
0.000001 Hz to 20999999.999 Hz

Auxiliary Output (Rear Panel):
21000000.000 Hz to 60999999.999 Hz • Underrange to 19000000.001 Hz
Square Wave: 0.000001 Hz to 10999999.999 Hz

Triangle: 0.000001 Hz to 10999.999999 Hz

Positive and Negative Slope Ramp: 0.000001 Hz to 10999.999999 Hz

FREQUENCY RESOLUTION
$1 \mu \mathrm{~Hz}$ for frequencies below 100 kHz
1 mHz for frequencies 100 kHz and higher
FREQUENCY ACCURACY (Standard Instrument(
$\pm 5 \times 10^{-6}$ of selected value (20° to $30^{\circ} \mathrm{C}$)
FREQUENCY STARILTY (Standard Instrument)
$\pm 5 \times 10^{-6}$ per year $\left(20^{\circ}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$

SIGNAL CHARACTERISTICS

Sine Wave:
Harmonic Distortion relative to the amplitude of the

Fundamental No Harmonic Freauency Greater

Spurious: All non-harmonically related output signals will be more than 70dB below the carrier (-60 dB with DC off-s et), or less than -90 dBm , whichever is greater.
Phase Noise: -60 dB (Option 001 Only) for a 30 kHz band centered on a 20 MHz carrier (excluding $\pm 1 \mathrm{~Hz}$ about the carrier).

Square Wave:
Rise/Fall Time: s 20 nanoseconds, 10\% to 90% at full output
Symmetry: 5.02% of period +3 nanoseconds Overshoot: zs. 5% of peak to peak amplitude at full output Triangle:

Linearity, 10% to 90%, best fit straight line: \pm 0.05% of full $p-p$ output for each range

Ramps (Positive or Negative Slope):
Linearity, 10% to 90%, best fit straight line: $\pm 0.05 \%$ of full $p-p$ output for each range
RetraCe Time: 53 microseconds, 90\% to 10\% Ramp
Period Variation: < $\pm 1 \%$ of period, maximum

. Specifications.

AMPLTUDE
Amplitude Accuracy with no Attenuation (Attenuator range 1) into 50 ohm load. (No D.C. offset)

Function and Tolerance relative to
frequency range. programmed amplitude

Sine Wave .001 Hz to 100 kHz	$\pm 0,1 \mathrm{~dB}$
Square Wave .001 Hz to 100 kHz	$\pm 1.0 \%$
Triangle	
.001 Hz to 2 kHz	$\pm 1.5 \%$
2 kHz to 10 kHz	$\pm 5 \%$
Ramps	$- \pm 1.5 \%$
.001 Hz to 500 Hz	$\pm 10 \%$
500 Hz :rd 10 kHz	

Flatness with no attenuation Tolerance elative to
(Attenuator Range 1) into programmed amplitude at a 50 Ohm load 1 kHz

Sine Wave 100 kHz to 20 MHz	$\pm 0.3 \mathrm{~dB}$
Square Wave 100 kHz to 10 MHz	$\pm 10 \%$

Amplitude accuracy with Tolerance elative to D.C. offset and no programmed amplitude. attenuation (Range 1) into
a 50 ohm load.

Sine Wave .001 Hz to 100 kHz	$\pm 0.3 \mathrm{~dB}$
Square .001 Hz to 100 kHz	$\pm 3 \%$
Triangle	
.001 Hz to 2 kHz	
2 kHz to 10 kHz	$\pm 4 \%$
Ramps .001 Hz to 500 Hz 500 Hz to 10 kHz	$\pm 4 \%$

Attenuator Accuracy (these Tolerance relative to errors are additive with the programmed amplitude. amplitude accuracy errors)

.001 Hz to 20 kHz Attenuator Range 1	No Error
.001 Hz to 100 kHz Attenuator ranges 2 through	$\pm 0.1 \mathrm{~dB}$
100 kHz to 10 MHz Attenuator ranges 2 through 8	$\pm 0.2 \mathrm{~dB}$
10 MHz to 20 MHz Attenuator ranges 2 through 4	$\pm 0.2 \mathrm{~dB}$
Attenuator ranges 5 through 8	$\pm 0.5 \mathrm{~dB}$

Table 1-1. Specifications (Cont'd).

```
Accuracy of DC Offset linto 50 ohms):
    DC Only (No AC Functionl: }\pm0.4%\mathrm{ of full peak out-
    put for each range*
    'Except lowest attenuator range where accuracy is }\pm2
    V.
    DC + AC, \pm 1.2%,Ramps \pm 2.4%
    DC + AC, >1 MHz: }\pm3
```

AMPLITUDE MODULATION (of Sine Fundion onlyl

Modulation Envelope Distortion: - 30 d 8 to 80\% modula-tion at $1 \mathrm{kHz}, 0 \mathrm{~V}$ dc Offset

PHASE OFFSET

Range: $\pm 719.9^{\circ}$ with respect to arbitrary s ar ing phase, or assigned zero phase

Resolution: 0.1°
Stability: $\pm 1^{\circ}$ phase $/{ }^{\circ} \mathrm{C}$
Increment Accuracy: $\pm 0.2^{\circ}$
PHASE MODULATION

Linearity (Sine Functionl: 0.5\%, best fit straight live
SYNC OUTPUT
Output Levels into 50 ohms:
Square wave with $\mathrm{V}_{\mathrm{h}, \mathrm{g},}+1.2 \mathrm{~V}, \mathrm{~V}_{10 \prime \prime \prime \prime}<+0.2 \mathrm{~V}$
X DRIVE OUTPUT

Amplitude: 0 to +10 V dc linear ramp proportional to sweep frequency (sweep up only)

Linearity, 10% to 90%, best fit straight line: $\pm 0.1 \%$ of final value. Specified for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time.

OPTION 001

HIGH STABILITY FREQUENCY REFERENCE

Ambient Stability: $\pm 5 \times 10^{\prime} 8\left(0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$ referenced to $4\left(30^{\circ} \mathrm{C}\right)$

Aging Rate: $\pm 5 \times 10^{8}$ per week (alter 72 hours continuous operationl $\pm 1 \times 10^{-7}$ per month (after 15 days continuous operation)

OPTION 002

HIGH VOLTAGE OUTPUT

Frequency Range:
Sine and Square Wave: $1 \mu \mathrm{~Hz}$ to 1 MHz Triangle and Ramps: 1 irHz to 10 kHz

Amplitude:
Range: $4 \mathrm{mVp}-\mathrm{p}$ to $40 \mathrm{Vp}-\mathrm{p} 1>5000$, < 500pF load)
maximum output current, $\pm 40 \mathrm{~mA}$
Accuracy (at 2 kHz): $\pm 2 \%$ of full output for each range

Flatness: $\pm 10 \%$ of programmed amplitude
DC Offset:
Range: 4 times the range of the standard instrument
Accuracy: $\pm(1 \%+25 \mathrm{mV})$ of full output for each range

Signal Characteristics:
Sine Wave Harmonic Distortion (relative to the fundamental frequency at full output into a500 ohms, < 500 pF)

Fundament al	No Harmonic Greater Than
10 Hz to 50 kHz 50 kHz to 200 kHz 200 kHz to 1 MHz	-65 dB -60 dB

Square Wave:
Rise/Fall Time: 5125 nanoseconds, 10\% to 90% at full output with k 500'ohm, < 500pF load

Overshoot: <10\% of peak amplitude with ?/. 500 ohm, <500 pF load

Talge 1.2 Supp mental Inter at

Takle 1.2. Supplemental Information (Contd).

z

High Voltage Output Option 002:
Amplitude and Ranges: 4 times the standard Instrument amplitudes

Output Impedance: <22 at DC to <102 at 1 MHz
Square Wave Settling Time: <1 As to settle to within . 05% of final value for frequencies of 10 Hz to 500 kHz , tested at full output with no load

FREQUENCY SWEEP

Sweep. Time:
Linear Sweep: 0.01 second to 99.99 seconds Isingie or continuous)

Log Sweep:
Single Sweep: 2 seconds to 99.99 seconds Continuous Sweep: 0.1 second to 99.99 seconds

Maximum Sweep Width: 1 Hz to maximum frequency of the function selected

Minimum Sweep Width (Linear):

	Minimum Sweep Width	
Sweep Time	Sweep Time 99.99 seconds	
Function 0.01 second		
Sine	0.1 mHz 999.9 mHz	
Square Trial	0.05 mHz 499.5 mHz	
angle	0.005 mHz 49.95 mHz	
Ramps	0.01 mHz 99.99 mHz	

Minimum Sweep Width (Log): 1 decade
Phase Continuity: Sweep is phase continuous over the full frequency range

WARMUP TIME

Standard Instrument: 20 minutes to within aspect ed accuracy

Option 001 High Stability Frequency Reference: Reference will be within . $\pm 1 \times 10$ (${ }^{7}$ of final value 15 minutes.after turnon at $25^{\circ} \mathrm{C}$ for an off time of less th an 24 hours

AUXILIARY INPUTS (May In floated a maximum of $\pm 42 \mathrm{~V}$ peak lac + dd from chassis IearthI ground)

Reference: For phase-locking the 3325A to an external frequency reference of 10 MHz or a subharmonic of 10 MHz down to 1 MHz . Level must be 0 dBm to +20 dBm into 50 ohms. Rear panel BNC connector.

Amplitude Modulation Input (Sine Function Only):
Modulation depth at full output for each range: 0 to 100\%

Modulation frequency range: DC to 500 kHz (0 to 21 MHz carrier frequency)

Sensitivity: 5 V peak for 100\% modulation
Input Impedance: 10 kft
Connector: Rear panel BNC
Phase Modulation:
Modulation Frequency Range: DC to 5 kHz
Modulation Depth

Function	Depth or -)
Sine	850°
Square	425°
Triangle	42.5°
Ramps	85°
Impedance: 20 kO	

Input Impedance: 20 kO
Connector: Rear panel BNC

AUXILIARY OUTPUTS May he floatete maximum of $\pm \mathbf{4 2} \mathrm{V}$ peek la dd from chassis leerfhl Ofound)

Auxiliary Frequency Output (ac coupled output):
Frequency Range: 21 MHz to 60.999999999 MHz , with underrange coverage to 19.000000001 MHz

Amplitude: 0 dBm
Output Impedance: 50 ohms
Connector: Rear panel BNC
1 MHz Reference Output (for phase ocking other in struments to 3325A):

Amplitude: 0 dBm
Output Impedance: 50 ohms
Connector: Rear panel BNC
Marker Output (Linear sweep only)

Levels: High to Low TTL compatible voltage transition at selected marker frequency, sweep up only.

Connector: Rear Panel BNC
;

Table 1.2. Supplemental Information (Cont'd).

The following accessory options are also available for the Model 3325A:

Option 907	Front Handle Assembly
Option 908	Rack Mount Flange Kit
Option 909	Rack Mount Flange Kit/Front
	Handle Assembly Option 910Additional Operating and Service Manual

1-17. ACCESSORIES SUPPLIED.
1-18. A special connector is supplied with the High Stability Frequency Reference Option 001 for connecting the rear panel Reference Output to the Reference Input. This connector is Part No. 1250-1499.

X Drive Output (Sweep up only):
Amplitude: 0 to +10 V linear ramp proportional to sweep frequency

Connector: Rear panel BNC

Z Blank Output:
Levels (TTL compatible voitage levels):
Linear Sweep:
Single: Low at start of sweep, High at srop. Remains High until start of next sweep.

Continuous: Low during sweep up, High during sweep down.

Log Sweep:
Single: Low at start of sweep, High at stop. Remains High until start of next sweep.

Continuous: Low during sweep. Goes High momentarily at stop frequency.

10 MHz Oven Reference Output, Option 001, for phase locking the 3325A to the optional high stability frequency ref erence:

Amplitude: $0 \mathrm{dBm}, 50$ ohms
Connector: Rear panel BNC, Must be connected to the rear panel EXT REF IN connector.

REMOTE CONTROL

Hewlett-Packard Interface Bus (HP-IB) Control: (HP-IB is Hewlett-Packard Companys implementation of IEEE Standard 488-1978). Time shown is in addition to programming time.

Frequency Switching and Settling Time:*
$<10 \mathrm{~ms}$ to within 1 Hz of final value for 100 kHz span
$<25 \mathrm{~ms}$ to within 1 Hz of final value for 1 MHz span <70
ms to within 1 Hz of final value for 20 MHz span

Phase Switching and Settling Time:*
$<15 \mathrm{~ms}$ to within 90° of phase lock for 20 MHz frequency change

Amplitude Switching Time: * $<30 \mathrm{~ms}$ to within amplitude specificaticins
*Times shown are in addition to programming time

GENERAL
Operating Environment:
Temperature: 0° to $55^{\circ} \mathrm{C}$
Relative Humidity: $<95 \%, 0^{\circ}$ to $40^{\circ} \mathrm{C}$ Altitude: s 15,000 ft.

Storage Temperature: -50° to $+75^{\circ} \mathrm{C}$ Storage Altitude: 550,000 ft.

Power Requirements:
$100 / 120 / 220 / 240 \mathrm{~V}+5 \%,-10 \%, 48$ to 66 Hz 60 VA, 100 VA with all options, 10 VA standby

Dimensions in millimeters and (inches):
132.6 (5\%) high $\times 425.5(163 / 4)$ wide $\times 497.8(19-5 / 8)$
deep

Weight in kilograms and (lbs):
Net weight: 9120)
Shipping Weight 14.5 (32)

1-19. ACCESSORIES AVAILABLE.

1-20. The following accessories are available for use with the Model 3325A:

Number	Description
11048 C	50 ohm Feedthru Termination
11356 A	Ground Isolator
$03325-80001$	Oven Board Assy. (Converts 3325A to Option 001)
$03325-80002$	High Voltage Option (Converts 3325A to Option 002)
$5061-0077$	Rack Mount Flange Kit (Option 908) $5061-0083$
Rack Mount Flange/Front Handle Kit (Option 909)	
$5061-0089$	Front Handle Kit (Option 907)

1-21. INSTRUMENT AND MANUAL IDENTIFICATION.

1-22. The instrument serial number is located on the rear panel. Hewlett-Packard uses a two-section serial number consisting of a four-digit prefix and a five-digit suffix. A letter between the prefix and suffix identifies the country in which the instrument was manufactured (A = USA, G = West Germany, $\mathrm{J}=$ Japan, $\mathrm{U}=$ United Kingdom). All correspondence with Hewlett-Packard concerning this instrument should include the complete serial number.

1-23. The serial number prefix is the same for all identical instruments and changes only when a change is made to the instrument. The suffix is assigned sequentially and is different for each instrument. If the serial number of your instrument is lower than the serial number on the title page of this manual, refer to Section VII, MANUAL CHANGES, for the information that will adapt this manual to your instrument. This is especially important if the serial prefix of your instru-ment is different than the one shown on the title page of this manual. An instrument manufactured after the printing of this manual may differ in some respect from the information in this manual. In this case, a yellow Manual Changes supplement included with the manual explains how to adapt the manual to your instrument.

1-24. SAFETY CDNSIDERATIONS.

1-25. To ensure safe operation and to retain the instrument in a safe condition, this Operating and Service Manual contains information, cautions and warnings which must be adhered to by the user or service personnel.

Table 1-3. HP-IB Interface Capability.

Code Fun	nction
SH1 Source handshake capability	
AH1 Acc	eptor handshake capability • T6 Basic talker; Serial polt; Unaddressed to talk if addressed to listen L3 Basic listener; Listen only; Unaddressed to listen if addressed to talk
SR1 Servir	vice Request capability
RL1 Rem	note/Local capability
PPO No p	parallel polt capability
DC1 Dev	ice Clear capability
DTO No	device trigger capability
CO No co	ntroller capability
Et Open	collector bus drivers

1-26. The symbol
appearing on the front or rear panel of the 3325 A is an international symbol meaning "refer to the Operating and Service Manual". The symbol identifies important instructions reqüired to prevent damage to the instrument. To ensure the safety of the operating and maintenance personnel and retain the safe operating condition of the instrument, these instructions must be adhered to.

1-27. RECOMMENDED TEST EQUIPMENT.

1-28. Equipment required to maintain the Model 3325A is listed in Table 1-5. Other equipment can be substituted if it meets or exceeds the critical specifications listed in the fable.
'fable 1-4. HP-IB Response Times.

Function Mnemonic		Input Data Transfer Time	Device Time	Output Data Transfer Time
Function (Weyeform) FU 1 Digit		$\begin{aligned} & 450-500 \mathrm{Es} \\ & 225-250 \mathrm{as} \end{aligned}$	$\begin{gathered} 1600 \mathrm{~ms} \\ 2.8 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 450-500 \mathrm{Es} \\ & 225-250 \mathrm{Es} \end{aligned}$
Frequency s 11 Digits+Decimal Delimiters	$\begin{gathered} \mathrm{FR} \\ \mathrm{HZ}, \mathrm{KH}, \text { or } \mathrm{MH} \end{gathered}$	$\begin{gathered} 450-500 \text { az } \\ 225-250 \text { as each } \\ 450-500 \text { its } \end{gathered}$	$\begin{gathered} 7.0 \mathrm{~ms} \\ 2.8 \mathrm{~ms} \text { each } \\ 12.5 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 450-500 \text { as } \\ 225-250 \text { Es each } \\ 450-500 \text { Es } \end{gathered}$
Amplitude s 4 Digits +Decimai Delimiters	$\begin{gathered} \text { AM } \\ \text { VO or MV } \\ \text { VR or MR } \\ \text { DB } \end{gathered}$	$\begin{aligned} & 450-500 \text { Es } \\ & 225-250 / \mathrm{Äs} \\ & \text { each } 450-500 \\ & \text { as } 450-500 \text { Es } \\ & 450-500 \mu \mathrm{~s} \end{aligned}$	6.8 ms 2.8 ms each 90 ms 130 ms 250 ms	$\begin{aligned} & 450-500 \mathrm{gs} \\ & 225-250 \mathrm{Es} \\ & \text { each } 450-5001 . \\ & 4 \mathrm{~s} 450-500 \text { as } \\ & 450-500 \text { tts } \end{aligned}$
DC Offset 54 Digits+Decimal Delimiters	OF VO or MV	$\begin{gathered} 450-500 \text { as } \\ 225-250 \mu \mathrm{~s} \text { each } \\ 450-500 \mathrm{ps} \end{gathered}$	6.8 ms 2.8 ms each 82 ms	$\begin{gathered} 450-500 \text { its } \\ 225-250 \text { as each } \\ 450-500 \text { as } \end{gathered}$
Phase 54 Digits+Decimal Delimiter	$\begin{aligned} & \mathrm{PH} \\ & \mathrm{DE} \end{aligned}$	450-500 s 225-250 Es each 450-500 as	5 ms 2.8 ms each 28 ms	$\begin{gathered} 450-500 \text { as } \\ 225-250 \text { as each } \\ 450-500 \text { Es } \end{gathered}$
Sweep Start Frequency 5_ 11 Digits+Decimal Delimiters	$\begin{gathered} \mathrm{ST} \\ \mathrm{HZ}, \mathrm{KH}, \text { or } \mathrm{MH} \end{gathered}$	$\begin{gathered} 450-500 \text { Es } \\ 225-250 \text { as each } \\ 450-500 \text { as } \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450-500 \text { as } \\ 225-250 \text { as each } \\ 450-500 \text { Es } \end{gathered}$
Sweep Stop Frequency 11 Digits +Decimal Deiimiters	$\begin{gathered} \mathrm{SP} \\ \mathrm{HZ}, \mathrm{KH} \text { or } \mathrm{MH} \end{gathered}$	$\begin{gathered} 450-500 \text { Es } \\ 225-250 \text { Es each } \\ 450-500 \text { Es } \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450-500 \text { as } \\ 225-250 \text { as each } \\ 450-500 \mathrm{gs} \end{gathered}$
Sweep Marker Frequency s 11 Digits+Decimal Delimiters	$\begin{gathered} \text { MF } \\ \mathrm{HZ}, \mathrm{KH} \text { or } \mathrm{MH} \end{gathered}$	$\begin{gathered} 450-500 \text { Es } \\ 225-250 \text { Es each } \\ 450-500 \text { as } \end{gathered}$	7.0 ms 2.8 ms each 10.3 ms	$\begin{gathered} 450-500 \text { As } \\ 225 .-250 \text { Es each } \\ 450-500 \text { as } \end{gathered}$
$\begin{aligned} & \text { Sweep Time } \\ & \text { +4 Digits +Decimal } \\ & \text { Delimiter } \end{aligned}$	T1 SE	450-500 Es 225-250 Es each 450-500 ps	$\begin{gathered} 5.5 \mathrm{~ms} \\ 2.8 \mathrm{~ms} \text { each } \\ 7.0 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 450-500 \text { Es } \\ 225-250 \text { as each } \\ 450-500 \text { Es } \end{gathered}$
Store	SR	450-500 as	11 ms	
Recall	RE	450-500 Es	1700 ms	
Assign Zero Phase	AP	450-500 Es	5.2 ms	
Amptd Cal	AC	450-500 as	1500 ms	
Start Single Sweep	SS	450-500 as	300 ms	
Start Continuous Sweep	SC	450-500 Es	300 ms	
Interrogate (Add Parameter Mnemonic Time)	1	225-250 as	3 ms	
Mask Service Request	MS	450-500 As	4.5 ms	
High Voltage Output I HV		450-500 Es	48 ms	
Rear/Front Output	RF	450-500 Es	44.5 ms	
Seif Test	TE	450-500 as	$10,000 \mathrm{~ms}$	
Sweep Mode	SM	450-500 as	4.5 ms	
Data Transfer Mode	MD	450-500 i i . S	4.5 ms	
Interrogate Function	IFU	675-750 Es	1603 ms	
Interrogate Error	IER	675-750 as	11.5 ms	
Universal Commands		- 225 as per byte		
Amplitude Modulation	MA	450-500 Es	7.0 ms	
Phase Modulation	MP	450-500 as	7.0 ms	

Taille 1-5. Recommended Test Equipment.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Instrument} \& \multirow[b]{2}{*}{Critical Specifications} \& \multicolumn{4}{|c|}{Required For} \& \multirow[b]{2}{*}{Recommended Model} \\
\hline \& \& Oper. Ver. \& \begin{tabular}{l}
Perf. \\
Tests
\end{tabular} \& Adjustments \& Troubleshooting \& \\
\hline Oscilloscope \& \begin{tabular}{l}
Vertical \\
Bandwidth: dc to 100 MHz \\
Detlection: 0.01 V to \(10 \mathrm{~V} / \mathrm{div}\) \\
Horizontal \\
Sweep: 0.05 ks to \(1 \mathrm{~s} / \mathrm{div}\) x10 Magnitication \\
Delayed Sweep
\end{tabular} \& X \& X \& X \& X \& -hp- 1740A \\
\hline Electronic Counter \& \begin{tabular}{l}
Frequency Measurement \\
Frequency Range: to 20 MHz \\
Resolution: 8 digits \\
Accuracy: \(\pm 2\) counts Time Interval Average A to B Resolution: 0.1 ns
\end{tabular} \& X \& X \& X \& \& -hp- 5328A with Opt 01 and 040 or 041 \\
\hline Digital Voltmeter \& \begin{tabular}{l}
DC Function \\
Ranges: \(.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}\), \\
100 V \\
Accuracy: \(\pm .2 \%\) \\
Resolution: \(4 \frac{1}{2}\) digits \\
AC Function \\
Ranges: \(1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}\) \\
Accuracy: \(\pm .5 \%\) \\
Resolution: 4 digits \\
DC Function \\
Ranges: . \(1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}\), 100 V \\
Accuracy: \(\pm .05 \%\) \\
Resolution: 6 digits AC \\
Function: True RMS \\
Ranges: \(1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}\) \\
Accuracy: \(\pm .2 \%\) \\
Resolution: 6 digits Crest \\
Factor: 4:1
\end{tabular} \& X \& X \& X

x \& X \& -hp- 3466A
-hp- 3455A

\hline 50-ohm Load \& Accuracy: $\pm .2 \%$ Power Rating: 1 W \& X \& X \& X \& X \& -hp-11048C

\hline | High FrequencY |
| :--- |
| Spectrum Analyzer | \& | Frequency Range: 1 kHz to 100 MHz |
| :--- |
| Amplitude Accuracy: $\pm .5 \mathrm{~dB}$ | \& X \& X \& X \& \& \[

$$
\begin{aligned}
& \text {-hp- 141T/8552B/85538L } \\
& \text { 8566A/8568A }
\end{aligned}
$$
\]

\hline Low Frequency Spectrum Analyzer \& | Frequency Range: $20 \mathrm{~Hz}-50 \mathrm{kHz}$ |
| :--- |
| Amplitude Accuracy: $\pm .5$ de Spurious Responses: |
| 80 dB below reference | \& X \& X \& X \& \& -hp- 3580A/3585A

\hline Sine Wave Signal Source . \& | Frequency: 1 kHz |
| :--- |
| Amplitude: 1 V rams into 20 ko Frequency Range: | \& \& X \& X \& \& \[

$$
\begin{aligned}
& \text {-hp- 204C } \\
& \text {-hp- 3335A } 1 \mathrm{MHz}-20 \\
& \text { MHz } \\
& \text { Amplitude Range: } \\
& \text { to +7.0 dem } \\
& \text { Output Impedance: } 502 \\
& \text { Phase Noise (Integrated): } \\
& 9.9 \mathrm{MHz}:<-63 \mathrm{~dB} \\
& 20 \mathrm{MHz}:<-70 \mathrm{de} \\
& \text { Spurious: }>75 \mathrm{~dB} \text { below } \\
& \text { fundamental }
\end{aligned}
$$
\]

\hline Double Balanced Mixer \& | Impedance: 509 |
| :--- |
| Frequency: to 20 MHz | \& \& X \& \& \& \[

$$
\begin{aligned}
& \text {-hp- 10534A } \\
& \text { or } 10514 \mathrm{~A}
\end{aligned}
$$
\]

\hline 1 MHz Low Pass Filter \& | Cut-off Frequency: 1 MHz |
| :--- |
| Stopband Atten: |
| 50 de by 4 MHz |
| Stopband Freq: $4 \mathrm{MHz}-80 \mathrm{MHz}$ | \& \& X \& \& \& F882 1MHz Low Pass Filter, Impedance 509, C Shape Factor, Metal Can, BNCs Allen Avionics, Inc. 224 E. Second St. Mineola, NY 11501

\hline 15 kHz Noise Equivalent Filter \& | Consisting of: |
| :--- |
| Resistor: $10 \mathrm{kft} \pm 1 \%$ |
| Capacitor: 1600 pF $\pm 5 \%$ | \& \& X \& \& \& \[

$$
\begin{aligned}
& \text {-hp- 0757-0340 } \\
& \text {-hp- 0160-2223 }
\end{aligned}
$$
\]

\hline
\end{tabular}

Tahle 1-5. Recommended Test Equipment (Coned).

Instrument	Critical Specifications	Required For				Recommended Model
		Oper. Ver.	Perf. Tests	Adjust. ments	Troubleshooting	
AC Voltmeter	Ranges: 0.1 V to 1 V Frequency Range: $20 \mathrm{~Hz}-1 \mathrm{MHz}$ Input Impedance: 2.>. 21 M9 Met er: Log scale Acc (100 Hz to 10 kHz): $\pm 1 \%$		X			-hp- 400 FL
Resistor	$1 \mathrm{kf2} \pm 5 \%$			X		-hp- 0683-1025
Oscilloscope Probe	Division Ratio: 10 to 1 Impedance: $1 \mathrm{M} 12,12 \mathrm{pF}$			X	X	-hp- 10041A
DC Power Supply	Volts: $0-10 \mathrm{~V}$ Amps: 10 mA Floating output		X	X		-hp- 6214A
Frequency Standard (Required for Option 001 Only)	Frequency: 5 MHz Accuracy: $1 \times 10^{\prime 9}$			X		-hp-. 1058
Calculator (Required for automatic test g)	HP-18 Control Capability	X	X			-hp- 9825A vvith 98034A Interface, Gene ral I/O ROM, Extended I/O ROM
System Voltmeter	DC Voltage: 0 to 2 t 10 V Sample/Hold Measurement Extern al Trigger: Low True TTL Edge Trigger Trigger Delay: selectable, 10 zs to 140 Es		X			-hp- 3437A
BNC Tee Adapter BNC-to-Triax Adapter	Male-female-female BNC-to-dual banana plug Female BNC-to-Male Triez	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$		$\begin{aligned} & \text {-hp- 1250-0781 } \\ & \text {-hp- 1250-2277 } \\ & \text {-hp- 1250-0595 } \end{aligned}$
Signature Analyzer	Signature: 4-digit hexadecimal Characters: Othru 9,A,C,F,H,P,U Threshold Logic 1: +2.2 V Logic 0: +0.5 V Glock Frequency: .z..1.5 MHz				X	-hp- 5004A
Pulse Generator	Pulse Rate: 500 kHz Pulse Width: In 1 Es DC Offset: 1 V				X	-hp- 331 2A
Resistor	56.29 1\% 1/8W	X	X			-hp- 0757-0395
Thermal Converter	Input Impedance: 7512 Input Voltage: 0.5 V rms Frequency: 2 kHz to 20 MHz Frequency Response: ± 0.05 de 2 kHz to 20 MHz		X	X		-hp- 11050A
Resistive Divider	Consisting of: Resistor: 36.50 1\% Y2 W Resistor: $13.7121 \% 1 / 2$ W		X			$\begin{aligned} & \text {-hp- 0757-0996 } \\ & \text {-hp- 0698-4998 } \end{aligned}$
Resistive Divider	Consisting of: Resistor: $40.291 \% 1 / 2 \mathrm{~W}$ Resistor: 102 1\% $1 / 2 \mathrm{~W}$		X			$\begin{aligned} & \text {-hp- 0698-5022 } \\ & \text {-hp- 0757-0984 } \end{aligned}$
Resistive Divider	Consisting of: Resistor: 309 1\% 1/4 W Resistor: 20 (2 1\% Y. W		X			$\begin{aligned} & \text {-hp- 0698-7533 } \\ & \text {-hp- 0698-6296 } \end{aligned}$
Resistive Divider	$\begin{aligned} & \text { Consisting of: } \\ & \text { Resistor: } 100 \mathrm{k} 121 \% 1 / 8 \mathrm{~W} \\ & \text { Resistor: } 162 \mathrm{kf2} 1 \% 1 / 8 \mathrm{~W} \\ & \hline \end{aligned}$		X			$\begin{aligned} & \text {-hp- 0757-0465 } \\ & \text {-hp- 0757-0470 } \end{aligned}$
Termination	50 ohm Feedthrough 1\%		X			-hp 048C
Thermal Converter	BNC Connectors		X			-hp-11050A

ECTION II INSTALLATION

TABLE OF CONTENTS

Paragraph Page
2-1. Introduction 2-1
2-3. Initial Inspection 2-1
2-5. Preparation For Use 2-1
2-6. Power Requirements 2-1
2-8. Line Voltage Selection 2-1
2-10. Power Cable 2-1
2-12. HP-IB Connections 2-1
2-15. 3325A Listen/Talk Address 2-2
2-17. HP-IB Description 2-3
2-19. Connecting Oven Option 001 2-3
2-21. Operating Environment 2-3
2-23. Cooling System 2-3
2-26. Bench Operation 2-3
2-28. Rack Mounting 2-3
2-30. Storage and Shipment 2-3
2-31. Environment 2-3
2-33. Instrument Identification 2-5
2-35. Packaging 2-5

LIST OF ILLUSTRATIONS LIST OF TABLES

Figure Page Table Page

2-1. Power Cables ..2-2
2-2. HP-IB Connector...2-2
2-3. Rack Mount and Handle Kits 2-5

2-1. HP-1B Addresses ..2-4

2-1. INTRODUCTION.

2-2. This section contains instructions for installing and interfacing the Model 3325A Synthesizer/ Function Generator. Included are initial inspection procedures, p ower and grounding requirements, line voltage selection, environ mental requirements, Installation ins tructions, HP-113 connection procedure, and instructions for repackaging for shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the Instrument has been checked mechanically and electrically. This instrum ent was carefully inspected both mechanically and electrically before shipment. It should be free of mars and scratches and in perfect electrical order upon receipt. Procedures for checking electrical performance are given in Section IV. 1f there is mechanical damage or defect or if the Instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard Sales and Service Office listed at the rear of this manual. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping material for the carriers inspection. The warranty statement is located in the front of this manual.

2-5. PREPARATION FOR USE.

2-6. Power Requirements.

2-7. The Model 3325A requires a power source of 100, 120,220 , or 240 V ac, $+5 \%,-10 \% 48$ to 66 Hz single phasc. Power consumption is 100 VA maximum.

2-8. Line Voltage Selection.

Before connecting ac power to this Instrument. make sure it is set to the line voltage of the po wer source. Also ensure that the common connection of the power outlet is connected to a pro tective earth contact.

2-9. The line voltage selection switches are set at the factory to correspond to the line voltage option ordered. This information may be found on the rear panel.

Option	Line Voltage Selected
100	100 V
120	120 V
220	220 V
240	240 V

WARNING

The line voltage selection switches are located inside the top cover of the instrument. Line voltage reimton should be done by trained service personnel only.

2-10. Power Cable.

2-11. In accordance with international safety standards, this instrument is equipped with a three-wire cable. When c onnected to an appropriate power line outlet, this cable grounds the Instrument cabinet. The type of power cable s hipped with each Instrument depends on the country of destination. Refer to Figure 2-1 for the connector con-figur ation and -hp- part numbers of the available power cables.

2-12. HP—IB Connections.

2-13. Interconnection data concerning the rear panel HP-IB connector is provided in Figure 2-2. This connec-t or is compatible with the -hp- 10631 (A, B, or C) HP-IB cables. The lengths of there cables are as follows:

[^0]

Figure 2-1. Power Cables.
Up to 15 instruments (including the controller) may be connected in an HP -IB system. The HP-IB cables have identical stacking connectors an both ends so that several cables can be connected to a single source. As a practical matter, avoid stacking more than three or four cables an any one connector. If the stark gets too large, the forte an the stack can produce enough leverage to damage the connector mounting. Be sure that the connector screws are tightened firmly in place to keep it from working lause during use, and be sure to observe the

CAUTION of Figure 2-2.

2-14. Cable Length Restrictions. System components can be interconnected in virtually any configuration. However, to achieve reliable system performance, proper voltage levels and Urning relationships must be maintained. If the system cable is too lang, the Eines cannot be driven properly and the system will fall to perform. The maximum length of cable that can be used to connect a group of instruments must not exceed 2 meters (6.5 ft .) times the number of Instruments to be connected, or 20 meters (65.6 ft .), whichever is less.

2-15. 3325A Listen/Talk Address.

$2-16$. The 3325 A is normally shipped from the factory with the listen address set to ASCII character 1; talk address Q. The 3325A address switches are located inside the top cover near the center of the instrument. The possible HP-IB addresses are shown in Table 2-1. The five switches (marked 1 through 5) are set according to the ASCII code address chosen. The 3325A may be set to a "listen only" condition by having the switch marked LON set to the "I" position.

PIN	LINE	
1	D101	
2	D102	
3	D103	
4	0104	
13	0105	
14	D106	
15	D107	
16	DIW	
5	E01	
17	REN	
6	DAV	
7	NRFD	
8	NDAC	
9	1FC	
10	SRQ	
11	ATN	
12	SH1ELD-CHASSIS GROUND	
18	P/0 TWISTED PAIR WITH PIN 6	
19	P/0 TWISTED PAIR WITH PIN 7	
20	P/O TWISTED PAIR WITH PIN 8	THESE INNS
21	P10 TWISTED PAIR WITH PIN 9 P	ARE INTERNALLY
22	10 TWISTED PAIR WITH PIN 10	GROUNDED
23	P/0 TWISTED PAIR WITH PIN 11	
24	1SOLATED DIGITAL GROUND	

Figure 2-2. HP-IB Connector.
The 3336A contains metric threaded HP-IB cable mounting studs as opposed to English theads. Metric threaded -hp-106 $31 A, B$, or C HP-IB cable lockscrews must be used to secure the cable to the instrument. Identification of the two types of mounting studs and lockscrews is made by their color. English threaded fasteners are colored silver and metric threaded fasteners are colored bleck. DO NOT mate silver and bleck fasteners to each other or the threads or either or both will be destroyed. Metric threaded HP-18 cable hardware Illustration and pari numbers follow.
LOCKSCREW LONG MOUNTI NG STUD SHORT MOUNTING STUD 1390-0360 0380-0643 0380-0644

$+$
. .

Because die address switches are located in-side the instrument, they should be set by trained service personnel only.

2-17. HP-IB Description.

2-18. A description of the HP-IB is provided in Sexion III of this manual. A study of this information is necessary if you are not familiar with the HP-18 concept. Additional information conceming the design criteria and operation of the bus is available in IEEE Standard 4881978 "IEEE Standard Digital Interface for Programmable Instrumentation".

2-19. Connecting Oven Option 001.

2-20. In order to use the Oven Option 001, an external connection must be made between the rear panel 10 MHz OVEN OUTPUT and the REF IN connectors. A special connector for this purpose, -hp- Part No. 1250-1499, is s upplied with instruments having Option 001.

2-21. OPERATING ENVIRONMENT.

WARNING

WARNING

To prevent potential electrical or _Bre hazard. do not expose equipment to rein or moisture.

2-22. In order for the 3325A to meet the specifications listed in Table 1-1, the operating environment must be within the following limits:

2-23. Cooling System.

2-24. The cooling (an intake and the exhaust vent are located in the rear panel. When operating the instrument, provide at least 75 mm (3 inches) of clearance at the rear, and at least 7 mm ($1 / 4$ inch) on all sides of the instrument. Failure to allow adequate air circulation will result in excessive internal temperature, reducing instrument reliabi lity.
$2-25$. It is imperative that the fan filter be inspected frequently and cleaned or replaced as necessary to permit the free flow of air through the instrument. To clean the
filter, remove the tour nuts that secure the filter retainer. Remove the filter and flush with soapy water, rinse clean, and air dry.

2-26. Bench Operation.

2-27. The instrument has plastic feet attached to the bottom panel. The front feet contain foldaway tilt stands for convenience in bench operation. The tilt stand raises the front of the instrument for easier viewing of the con-trol panel. The plastic feet are shaped to make full width modular Instruments self-align when they are stacked. A front handle kit, -hp- part number 5061-0089 (Option 907), can be installed for ease of handling the instrument on the bench (see Figure 2-3). The kit is shipped with the instrument if Option 907 is also ordered. Otherwise, the front handle kit is available separately by its -hppart number.

2-28. Rack Mounting.

2-29. The 3325A can be rack mounted in a rack having an EIA standard width of 482.6 mm (19 inches). The instr ument can be rack mounted with or without a handle kit by use of the following items:
a. Rack mounting without handles; use Rack Mount Flange Kit -hp- Part No. 5061-0077 (Option 908).
b. Rack mounting with handles; use the combination Rack Mount Flange/Front Handle Kit -hp- Part No. 5061 -0083 (Option 909).

NOTE

The Rack Mount Flange Kit of item a will not provide the space requirement for rack mounting when used with dte bench handle a ssembly (-hp- part number 5060-9899, Option 907). To rock mount with handles, the co mbination kit of item b, (Option 909) muss be used (see Figure 2-3). If either Option 908 or 909 is ordered, the corresponding kit is shipped with the instrument. Otherwise, both kits are available separately by their -hp-part numhers.

2-30. STORAGE AND SHIPMENT. 2-

31. Environment.

2-32. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

> Temperature $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
> Relative Humidity 95% at $40^{\circ} \mathrm{C}$
> Altitude 15,300 meters
(50,000 feet)

Table 2-1. HP—IB Addresses.

NOTE: The Equivalent Codes shown correspond only to the 5 -bit binary switch code. These bits are the same for both listen and talk addresses, and the sixth and seventh bits determine whether the address is listen (01) or talk (10). Some controllers distinguish between listen and talk automatically, requiring onlythe 5-bit code equivalent to designate a device.

2 (4

RACK MOUNT FLANGE KIT

RACK MOUNTFLANGE/FRONT HANDLE KIT
Flgure 2-3. Reck Mount and Handle Kitt

3 de

table of contents

Paragraph Page
3-1. Introduction 3-1
3-3. Panel Features 3-3
3-5. Power/Warm-Up 3-3
3-8. Initial Conditions 3-3
3-10. Self Test 3-3
3-12. Front/Rear Signal Output 3-3
3-14. Sync Output 3-3
3-16. External Reference Input 3-4
3-18. 10MHz Oven Option 001 3-4
3-20. Manual Programming 3-4
3-22. Clear Display 3-4
3-24. Entry Errors 3-4
3-26. Function Selection 3-4
3-28. Frequency Entry 3-4
3-30. Frequency Limits 3-4
3-32. Frequency Display and Resolution 3-5
3-34. Auxiliary Output (Sine Function Only) 3-5
3-36. Amplitude Entry 3-5
3-39. Amplitude Calibration 3-5
3-41. High Voltage Output Option 002 3-6
3-43. DC Offset 3-6
3-46. Phase Entry 3-7
3-49. Frequency Sweep 3-7
3-55, \quad Sweep Marker 3-9
3-58. Sweep X Drive Output 3-10
3-60. Sweep Z Blank Output 3-10
3-62. Amplitude Modulation 3-10
3-66. Phase Modulation 3-11
3-68. Modify Keys 3-11
3-70. Store and Recall 3-11
3-72. Operator's Checks 3-11
3-74. Self Test 3-11
3-76. Output Checks 3-11
3-78. Operator's Maintenance 3-12
3-81. HP-IB Operation 3-12
3-83. General HP-IB Description 3-13
3-88. Definition of HP-IB Terms and Concepts 3-13
3-89. Basic Device Communication Capability, 3-14
3-91. Message Definitions 3-14
3-93. 3325A Response to Messages 3-14
3-95. HP-IB Work Sheet 3-14
3-97. HP-IB Addressing 3-14
3-100. 3325A Remote Programming 3-14
3-101. 3325A HP-IB Capabilities 3-14
3-103. Developing an HP-IB Program 3-15
3-107. Universal and Addressed Commands 3-17
3-109. Placing the 3325A in Remote 3-17
3-111. The 3325A Address 3-17
3-113. 3325A Data Message Formats 3-17
3-115. Data Transfer Mode 3-20
3-118. Programming Data Transfer Mode 3-21
3-120. Programming Entry Parameters 3-21
3-122. Programming Waveform Function 3-21
3-124. Programming Binary (On or Off) Functions 3-22
3-126. Programming Selection Functions 3-22
3-128. Programming Execution Functions 3-22
3-130. Programming Amplitude Units Conversion 3-23
3-132. Programming Storage Registers 3-23
3-134. Service Requests 3-23
3-136. Serial Poll 3-23
3-138. Status Byte 3-24
3-140. Busy Hag 3-24
3-142. Sweep Flag 3-24
3-144. Masking or Enabling Service Requests 3-24
3-146. Interrogating Program Errors 3-24
3-148. Interrogating Entry Parameters 3-25
3-150. Interrogating Function (Waveform) 3-25
3-152. Interrogating Miscellaneous Parameters 3-26
3-154. Using the Interrogate Capability 3-26
3-156. 3325A Programming Procedure 3-27
Appendix A. Meta Messages Block Diagrammed A-1
Appendix B. Programming the Model 3325A with. B-1the 9825A Calculator
LIST OF ILLUSTRATIONS LIST OF TABLES

3-1. INTRODUCTION.

3-2. This section of the manual contains instructions for manual operation and HP-1B (Hewlett-Packard In-
terface Bus) programming. The HP-IB information includes the basic concepts of the Interface bus operation, with which you may already be familiar. Use Table 3-1 to locate the information you need for your particular sit uation.

Tahle 3-1. Operating Information.

0 POWER STBY/ON Key. In the STBY position, power is applied to the Oven (Option 001), the HP-IB interface cir
cuits that are external to the isolation barrier, and the High voltage Output circuits (Option 002), in addition to High Voltage output circu
the power supply circuits.
O BLUE prefix key. This key must
O SWEEP key group. These are entry prefix keys for the sweep pararneters, plus the sweep start keys,
When preceded by the blue prefix key, the sweep parameter keys control sweep modification functions
and linear/ / log seiection.

LOCAL key. Returns 3325 A from remote to front panel control unless Local Lockout has been programmed. Whe n preceded by the blue prefix key, this key causes the
3325 A H-IB address to be displayed in decimal code.
STATUS annunciator group. These annunciators indicate the 3325 A HP-IB status: Remote; Addressed to Talk; Addressed to Listen; Request Service ISRQ).
ENTRY group. Prefix keys for programming signa
parameters.
0 ALPHANUMERIC display. Displays the value of the parameter selected, error Codes, failure modes, HP.-
address, amplitude and phase modulation state. DATA group. This group includes the numeric data
the data value suffix keys, the Store and Recall command keys, and the entry Clear key. When pre-cede
by the blue prefix key, the keys in the left column by the blue prefix key, the keys
MODIFY group. The horizontal arrow keys select the digit to be modified (indicated by a bright tidititl, and the
vertical arrow keys increment or decrement that digit.
UNITS annunciators. Display the units of volume represented by the numeric display. Entry annunciator indic ates that an entry is in progress.
91 FUNCTION group. These keys select the output signal function or dc only (see Paragraph 3-261.
12 EXT REF annunciator is on if an external reference or the Option 001 internal 10 MHz oven reference is con-nected to
the rear panel REF IN. Annunciator flashes if the 30 MHz internal reference is not phase locked to the external

13 MODULATION annunciator is on if either AM or Phase
is AMPTD CAL key. Automatically calibrates the amplitude and off set of the output signal (see Paragraph 3 -39). When preceded by the blue prefix key, initiates a sel
fest operation Isee Paragraph 3 -10).

CAUTION
The maximum peak voltage that can be safely ap-
plied petween chassis and the outer conductor of plied between chassis and the outer conductor of
pit of the 3325 input or output signal connec tors is $- \pm 42 \mathrm{~V}$

15 SYNC OUT. A square wave sync signal is available at this signal is always in sync with phe output signal cross-over point. (Zero volts or dc off set voltage, see Paragraph 3-14. J2.
16 AUX 21-60 MHz REAR annunciator. This annunciator is on when
aph $3-34)$
I REAR ONLY key. In standard Instruments, switches signal output from front to rear panel and vice versa. Re ar perle\} output is active when the annulciator in the center of the key is on. In Instruments with High Voltage
Output Option 002, this key switches from normal to high voltage output, and the annunciator indicates when
the high voltage output is on. The key is labeled " 40 the high voltage output is on. The key is labeled "40
Vpp, $40 \mathrm{~mA}, 0-1 \mathrm{MHz}$ for Option 002. In Option 002 $\mathrm{Vpp}, 40 \mathrm{~mA}, 0-1 \mathrm{MHz}$ for option 002 . In option 002
instruments, no rear panel signal output is pro-vided

18 SIGNAL output. Standard output impedance is 50 Ohms. High Voltage Output Option 002 output im-peda
nce is nominally <1 ohm at dc and <10 ohms at 1 hee is nominally <1 ohm at dc and <10 ohms at MHz. Load impedance must be at least 500 ohms.
Standard and High Voltage amplifier outputs are fused.
j1, ${ }^{\mathrm{j} 1}$

1010 MHz OVEN OUTPUT. This signal is present only in instruments with Option 001. To make use of the
Oven Output, it must be connected to the REF IN ven Output, it must be connected to the REF IN
connector, Item 21. A special connector, connector, Item 21 . A special connector, -hp- Part
No. $1250-1499$, is supplied with Option 001 for this
or-pose. 13 , No. 1250 -149.
pur-pose. 33 .

0 ac power input connector. El
0 ref in. An external reference may be used to phase lock the internal 30 MHz reference (see
Paragraph 3-16), 34 .

$$
\mathrm{O}_{\text {HP-IB connector. Remote control of the 3325A by }}
$$ means of an HP- IB system controller is accomplished

hrough this connector. Part of W6. REF OUT. A 1 MHz signal from the 332

SIGNAL. The output signal is switched to this connector
by the front panel nts with Option 002 do not have rear panel signal output.

NOTE

The rear panel signal output is inactive (no inter-
nal sigral connection) if die Instrument has the H nal signal connection) if die Instrument has the
gh Voltage Output Option 002 instalied. Instructions are given in the Operating and Service Manual, Section VIII, Service Group M, for ac-
tivating the rear panel signal output in one of two tivatitg the rear panel signal output in ore of two
ways: 1) Placing the standard/high voltage outvays. I) Pacing the standard/high vitage out-
put an the rear panel only disconnecting the fro
panel signal oputput, or Disabling the high panel signal output, or Disabling the high
ooltage output and enabfing the standard front/re r output configuration.
It the standard Instrument signal output is not ter-
minated by an external 50 -ohm load (a high im-pe minated by an external 50 -ohm load (a high im-pe
dance load, for example) undesirable distortion dance load, for example) undesirable distortion
may result, particularly at higher frequencies. Sim ar conditions may result if the High Voltage Outpu
(Option 002) is terminated by fess than 500 ohms.
$\mathrm{e}^{\text {SLOWER, bI }}$

0 phase mod. Input connector for a phase modulating signal of $\pm 5 \mathrm{~V}$ maximum peak voltage (
see Paragraph $3-66$). 77 .
0 amptd mod. Input connector for an arnplitude modulating signal. of $\pm 5 \mathrm{~V}$ maximum peak voltage (see
Paragraph 3-62). J8.

E SYNC OUT. This output is identical to
Hront panel sync connector, Item 15. J 10 .
\{0 AUX $21-60 \mathrm{MHz}$. A signal is available at this output when the sine wave frequency is programmed above MHz (see Paragraph 3-341. J9.
BLANK. A TTL compatible output is present during weep operation (see Paragraph 3-601. J11
$31 \times$ DRIVE. This output progresses from 0 V to +
10 V during a sweep-up operation (see Paragraph
58). J12.

O MARKER. This TTL compatible output goes lovv at
the selected marker frequency during a sweep up, and
high at completion of the sweep (see Paragraph 3 -551.
0 Power Transformer, T1.
0 Line Fuse, F1.

3 note

3 implementation of IEEE Standard 4881978. The HP-IB is Hewlett-Packard Company's

9 3-3. PANEL FEATURES.

9 3-4. Figure 3-1 identifies and describes the functions of the front and rear panel controls, indicators, and con-
3 nectors.

3 3-5. POWERIWARM-UP.

3-6. The Model 3325A requires a power source of 100, 120,220 , or $240 \mathrm{Vac},+5 \% \mathrm{a}-10 \%$, 48 to 66 Hz single p hase. The selection of line voltage and fuss is described
3 in Paragraph 2-8 and Figure 2-1.
3 3-7. The 3325A POWER switch has two positions, STBY and ON. Power is applied to some circuits at any 3 time the instrument is connected to the ac power source. If the instrument has the Oven Assembly Option 001 in-
9 stalled, it is important that it remain connected to the power source to maintain a constant oven temperature,
3 eliminating the nced for a long warm-up period. If an instrument with the Oven Assembly has been discon-nected from ac power no longer than 24 hours, a 15 -minute warmup period is sufficient to bring the reference frequency to within $\pm 1 \times 10$ of final value. 38. INITIAL CONDITIONS.

3-9. After the POWER switch has been set to ON, 9 the instrument status will be as follows:

Function Sine Frequency 1000 Hz Amplitude 1 mV p-p Phase 0 deg
 Front Signal Output Sweep Linear
 3 Start Frequency 1 MHz Stop Frequency 10 MHz
 3 Marker Frequency 5 MHz Time 1 sec

3 NOTES

3 1. If the display reads OSC FAIL the frequency synthesis circuits are not operating 3.

3-10. SELF TEST.

3-11. The seif test operation is initiated by pressing the blue prefix key, then the SELF TEST key (AMPTD CAL). This test uses the control, ROM, and control clo ck circuits to perform the following checks:

> LED check: Turns, on all LED's for about 2 seconds
> Check 1: Tests AMPTD CAL of the sine wave Check 2: Tests AMPTD CAL of the square wave Check 3: Tests AMPTD CAL of the triangle wave

Following each check the display indicates either PASS or FAIL for approximately one second. 1f all tests pass, this indicates that approximately 60% of all circuits are operating properly.
312. FRONTIREAR SIGNAL OUTPUT.

The maximum peak voltage that can be safely applied between chassis and the outer conductor of any of the 3325A input or output signal connectors is $\pm 42 \mathrm{~V}$.

3-13. The standard Model 3325A provides selectable front or rear panel 50 -ohm signal outputs. The rear pa nel signal output is selected by pressing the REAR ONLY key. The lighted indicator in the center of this ke y devotes that the signal output is at die rear panel.

NOTE

The rear panel SIGNAL output is not present on instruments equipped with the High Vollage Output Option 002.

314. SYNC OUTPUT.

3-15. A square wave sync output is provided at BNC connectors on both the front and rear panels. This sync s ignal is always in phase with the output signal, with the sync transition occurring at the signal zero crossing, or w hen the signal crosses the dc offset voltage. The output impedance of either front or rear panel sync output is ap proximately 50 ohms. When connected to a 50 -ohm coaxial cable that is terminated by a 50 ohm resistive load, the sync signal levels are as follows:

```
Low Level = < 0.2 V
High Level = > 1.2 V
```


NOTE

$L T$ a sync output is connected to a 50 -ohm coaxial cable that is terminated by a high impedance load 1 megohm) the voltage levels are approximately twice the values given above. However, the improper ter-
mination of the 50 -ohm system will cause ringing at the positive and negative franstdons of the sync signal.

3-16. EXTERNAL REFERENCE INPUT.

3-17. The 3325A may be operated with an external reference to control the standard 30 MHz internal referen ce oscillator frequency. The externel reference levei must be greater than 0 dBm (50 ohms), and the frequency must be within 10 PPM of 10 MHz or a submultiple thereof down to $1 \mathrm{MHz}(10,5,3.33,2.5$, or 1 M Hz). The front panel EXT REF annunciator will light to indicate that an external reference is being used. The internal reference oscillator is phase locked to the external reference, and a phase lock detector circuit causes the EXT REF light to flash if synchronization is lost.

3-18. 10 MHz OVEN OPTION 001.

$3-19$. Option 001 is a temperature stabilized 10 MHz oscillator which provides improved frequency stability (see specifications in Table 1-1). The output from this oscillator is at the rear panel 10 MHz OVEN OUTPUT connector. This output must be connected to the EXT REF input. A special connector, -hp- Part No. 1250-1499, is provided with Option 001 for this pur-pose.

3-20. MANUAL PROGRAMMING.

3-21. The following paragraphs describe the procedures for operating the 3325A from the front panel. Also in-clu ded are the limits for each parameter.

3-22. Clear Display.

3-23. Pressing the CLEAR key (in the left column of the DATA group) clears the display to zero. This key is useful when an error is made while entering data.

3-24. Entry Errors.

3-25. The word "Error" will appear in the display for approximately one second when an error in programming occurs. The incorrect entry will not be accepted.

ASCII Numeric	Eror
2	Entry parameter out of bounds (for example. Freq $\mathbf{2}$ $61 \mathrm{MHz})$ 3 Invalid delimiter Frequency too large for function (for example. Function im Triangle, Freq 2 II kHz)
4	Sweep time wo small or too large 5
6	Offset incompatible with amplitude, or amplitude incom-patible with offset Sweep frequency wo large for function; Sweep bandwidth too small; Stan frequency wo small (log sweep)r. Stan fit-q uency greater than stop frequency flog sweep)
7	Unrecognizable mnemonic received
$\mathbf{8}$	Unrecognizable data character received Option does not exist (High Voltage or Rear/Front)

3.26. Function Selection.

3-27. Any of the live functions may be selected by pressing the appropriate FUNCTION key. A light in the c enter of the key indicates the present function. Pressing the same key the second time removes the ac Signal, set ting the output to zero unless a dc offset has been programmed (see Paragraph 3-43). When the ac signal is removed in this way, the Instrument automatically displ ays dc offset, and the dc offset entry key light comes on. The ac signal can be restored by pressing the FUNCTION key again. The output signal for each functio n is centered about zero volts unless a dc offset has been programmed.

NOTE

The standard instrument signal output mau be terminated by an externe! 50-ohm load or sine wave distortion and square wave overshoot may result, particularly at higher fre-qu encies.

328. Frequency Entry.

NOTE
A lighted indicator in the center of any entry key denotes It as the active entry parameter. For example, if the FREQ entry key indicator is on, it is not necessary to press that key before entering data.

3-29. Enter frequency by first pressing the FREQ ENTRY key, then the numerical data, followed by the data suffix (delimiter) key ($\mathbf{H z}, \mathbf{k H z}, \mathrm{MHz}$). Numerical data must be entered most significant digit first, entering the decimal in theyroper place. The frequency parameter is stored in the 3325A when the delimiter key is pressed.

3-30. Frequency Limits.

3-31. The minimum frequency for all functions is $1 \mu \mathrm{~Hz}$. The nominal maximum frequency for each func-tion is shown below the function select key on the front
panel. However, because of the overrange capability of the 3325A, the maximum frequency for each function is as shown below:

Sine wave	20	999
Square wave	10	999999 Hz
Tra9.999 Hz		
Triangle	10	999.999999 Hz
Positive slope ramp	10	999.999999 Hz
Negative slope ramp	10	999.999999 Hz

3-32. Frequency Display and Resolution.

3-33. Frequency is always displayed in Hz , even though the entry may have been made in kHz or MHz . For ex-ample, an entry of 1.2 MHz is displayed as 1200 000.0 Hz . Non-significant zeroes to the right of the first digit following the decimal point are not displayed except during a "modify" condition (see Paragraph 368). The maximum resolution is I $\mu \mathrm{Hz}$ for frequencies up to and including 99999.999999 Hz , and 1 mHz for frequencies of 100000.000 Hz and higher.

3.34. Auxiliary Output (Sine Function Only).

3-35. A rear panel auxiliary output can be used for frequencies above 19 MHz to a maximum of 60999999. 999 Hz . The output level is a nominal 0 dBm into 50 ohms. The output automatically switches to the AUX ou tput when frequencies of 21000000.000 Hz or higher are programmed. For this reason, the AUX output is lab eled "21-60 MHz". Frequencies between 19 MHz and 21 MHz can be obtained at the AUX output only by first entering 21 MHz or higher, then entering the desired frequency. For example, if the desired frequency is 19. 5 MHz , first enter "FREQ 21 MHz ", then " 19.5 MHz ". Then, if a Front panel SIGNAL output of 19.5 MHz (or any frequency between 19 MHz and 21 MHz) is desired, enter any frequency 19 MHz or lower, then enter 19.5 MHz.

NOTE

Only one signal output is active at one time. A lighted "21-60 MHz Rear" annunciator in-dic ates that die rear panel $A U X, 0 \mathrm{dBm}, 21-60$. MHz output is active. A lighted "Signal, Rear Only" annunciator indicates Mai the rear panel signal output is active. Neil her light on, indicates the front panel signal output is activ e.
3.36. Amplitude Entry.

3-37. Amplitude is entered and displayed with 4-digit resolution. Press the AMPTD ENTRY key, then the nu merical data, followed by the V, mV, V rms, mVrms , or dBm key. The V and mV keys enter peak-to-peak v alue of ac function. Maximum and minimum amplitudes for each function are shown in Table 3-2.
$3-38$. The 3325A will convert an amplitude value between peak-to-peak, rms, or dBm for any function. For e xample, if a sine wave amplitude of $10 \mathrm{Vp}-\mathrm{p}$ has been entered, press the Vrms or mVrms key to display the sa me amplitude as 3.536 Vrms , or press the dBm key to display the value as $(+) 23.98 \mathrm{dBm}$.

3.39. Amplitude Calibration.

3.40. The 3325A will calibrate the outpu signal when the AMPTD CAL key is pressed. The output goes.to less than 4 mV p-p while the calibration is in process. An amplitude and offset calibration is performed auto-matic ally whenever the function is switched and at in-strument turn-on.

NOTE

If A-CAL FAIL appears in the display momentarily after an AMPTD CAL opera-ti on, the instrument should be referred to qualified service personnel for repair.

3-41. High Voltage Output Option 002.

3-42. The high voltage output is selected by pressing the key in the lower right corner of the front panel. This op-tion provides a maximum output of 40 V p-p into a high impedance. The load resistance must be greater than 500 ohms or distortion will result, particularly at higher fre-quencies. To assure square wave overshoot <5\% of peak-to-peak output, the total capacitance connected to the output should be <500 pF . The same entry pro-cedures and display features apply as in the standard Operation. Maximum and minimum amplitudes are shown in Table 3-3. Maximum frequency for sine and square wave functions is I MHz (10 kHz for triangle and ramps).

NOTE

The rear panel signal output is inactive (no Internat Signal connection) if the instrument has the High Voltage Output Option 002 installed. Instructions are given in the Operatin g and Service Manual, Section VI!!, Service Group M, for (mimring the rear panel signal output in one of (wo ways:
Placing the standard/high voltage output an the rear panel only, disconnecting the front panel signal output, or 2) Disabling the high voltage output and enabling the standard front/rear output configuration.

343. DC Offset.

Table 3.3. High Voltage Output Amplitude; (Option 002).

function	Peak-to-Peak		r111/3	
	Max.	Min.4	Max.	Min.
Sine	40 V	4 mV	14.14 V	1.42 mV 2.
Sauere	40 V	4 mV	20.0 V	0 mV 1.18
Triangle	40 V	4 mV	11.55 V	mV 1.16 mV
\pm Raine	40 V	4 mV	11.55 V	

3-44. Offset Only, No AC Fundton. When no ac function is present, the dc voltage output may be programmed from OmV to $\pm 5 \mathrm{~V}$, with 4 digit resolution. When no ac function is present, the DC OFFSET entry prefix is au-toma tically selected. It is necessary merely to enter the numerical data followed by the V or mV delimiter. The rms keys cannot be used to enter offset.

NOTE
 When the High Voltage Output is selected (Option 002), minimum amplitude for dc only (no ac function) is 0.01 mV and maximum is 20.0 V .

3-45. Offset with AC Fundion. When dc offset is to be added to any ac function, there are minimum and max-im um offset limits which must be observed. These Limits t : are affected by the ac voltage and the resulting attenuator settings, which are shown in Table 3-4. Figure 32 is a set of graphs which show the approximate maximum dc offset permissible for a given ac peak-to-peak vol tage. The following equation may be used to deter-mine maximum offset voltage.

Maximum dc offset $\mathrm{A}_{\mathrm{A}}-{ }^{5}{ }_{\mathrm{A}_{2} \mathrm{mptcl}}$
Where $\mathbf{A}=$ Attenuator factor (from Table 3-4)
Amptd = Amplitude in V p-p of the ac function

NOTES

1. If an attempt is made to enter a dc offset that is 100 great for the amplitude already p rogrammed, "Error 5" will appear in the display momentarily, and the dc offset entry will not be accepted.
2. After a dc offset has been entered, if the amplitude lite) is then increased beyond die level where the amplitude and offset are compatible, "Error 5" will appear in die display momentarily, and the ac amplitude entry will not be accepted.
3. The minimum and maximum permissible dc offset voltages when the High Voltage Output is selected (Option 002) may be determined by multiplying the amplitude and offset values in Table 34 by four. This also applies for Figure 3-2. Change the above equation (for determining maximum dc offset) to the following:

20
Maximum dc offset $=7-A m 1 p t d$

4. Resolution of a dc offset entry (with ac function) is determined by the

3-46. Phase Entry.

3-47. The phase of the SIGNAL output can be shifted up to $\pm 719.9^{\circ}$ with respect to the 1 MHz REF OUT (rear panel). Phase shift entry resolution is 0.1°. To pro-gram phase shift, press the PHASE ENTRY key, enter
number of degrees of phase desired, then press the " deg" key. For a negative phase shift, press the " - " key before entering the numerical data. For square wav frequencies below 25 kHz , phase changes greater than 25° may result in a phase shift $\pm 180^{\circ}$ from the desired amount.
3-48. After entering a phase shift, the new phase may be assigned the zero phase position, and subsequent changes in phase referenced to that point. To assign zero phase, press the blue entry prefix key, then press ASGN ZERO 0 (PHASE) key.

3-49. Frequency Sweep.

3-50. Frequency sweep is phase continuous over the full frequency range; that is, there are no discontinuities in the output waveform. When the Instrument is turned on, the sweep mode is set to linear, and the parameters are set as follows:

Start Frequency	1000000.0 Hz
Stop Frequency	10000000.0 Hz
Marker Frequency	5000000.0 Hz
Time	10 sec

Table 3-4. Maximum DC Offset with any AC Function.

AC Amplitud e Entry lpealc-to-peek)	Maximum DC Offset I .1- or -1		Minimum DC Offset Entry	Rang.	Attenuati on Factor
$\begin{gathered} 1.000 \mathrm{mV} \\ \text { to } \\ 3.333 \mathrm{mV} \end{gathered}$	with with	$\begin{aligned} & 4.500 \mathrm{mV} \\ & 3.333 \mathrm{mV} \end{aligned}$	0.001 mV	7	$A=1000$
$\begin{aligned} & 3.334 \mathrm{mV} \\ & \text { to } \\ & 9.999 \mathrm{mV} \end{aligned}$	with with	$\begin{aligned} & 14.99 \mathrm{mV} \\ & 11.66 \mathrm{mV} \end{aligned}$	0.001 mV	6	$A=300$
$\begin{gathered} 10.00 \mathrm{mV} \\ \text { to } \\ 33.33 \mathrm{mV} \end{gathered}$	with with	$\begin{aligned} & 45.00 \mathrm{mV} \\ & 33.33 \mathrm{mV} \end{aligned}$	0.010 mV	5	$A=100$
$\begin{aligned} & 33.34 \mathrm{mV} \\ & \text { to } \\ & 99.99 \mathrm{mV} \end{aligned}$	with with	$\begin{aligned} & 149.9 \mathrm{mV} \\ & 116.8 \mathrm{mV} \end{aligned}$	0.010 MV	4	$A=30$
$\begin{aligned} & 100.0 \mathrm{mV} \\ & \text { to } \\ & 333.3 \mathrm{mV} \end{aligned}$	with with	$\begin{aligned} & 450.0 \mathrm{mV} \\ & 333.3 \mathrm{mV} \end{aligned}$	0.100 mV	3	$\mathrm{A}=10$
$\begin{aligned} & 333.4 \mathrm{mV} \\ & \text { to } \\ & 999.9 \mathrm{mV} \end{aligned}$	with with	$\begin{aligned} & 1.499 \mathrm{~V} \\ & 1.186 \mathrm{~V} \end{aligned}$	0.100 mV	2	$A=3$
$\begin{gathered} 1.000 \mathrm{~V} \\ \text { to } \\ 9.998 \mathrm{~V} \end{gathered}$	with with	$\begin{aligned} & 4.500 \mathrm{~V} \\ & 0.001 \mathrm{~V} \end{aligned}$	1.000 mV	1	A rii 1

Figure 3-2. Maximum DC Offset With AC Functions.

3-51. Linear Sweep. In linear mode, either CONTINUOUS or SINGLE sweep may be used. Single sw eep is from START to STOP frequency, and either START or STOP may be the higher frequency. To be gin a single sweep:

Press "RESET/START" key to set output and display to the start frequency selected and reset X Drive ramp.

Press "RESET/START" key again to start the sweep.

w

I Indicator is ON during a sweep

NOTE

The Marker Frequency must be lower than Stop Frequency by a sufficient amount to pe rmit the Marker pulse width to be approximately 400 microseconds. See Paragraph 355.

To change any of the sweep parameters, press the appropriate SWEEP entry key, then enter the desired dat a. To select LOG sweep, press the blue prefix key and then the LOG (TIME) key. The log indicator should light. The sweep mode is linear unless this light is on.

1 inalicator is UN auring a sweep

The output frequency sweeps to the STOP frequency selected and remains there. This frequency appears in t he display. Continuous sweep is up-down-up, etc., and begins when the "START CONT" key is pressed. Con-tin uous sweep may be stopped by pressing the "START CONT" key again, or by pressing "START SINGLE", " FREQ ENTRY", or "PHASE ENTRY". The display will indicate the frequency at which the sweep stopped.
The sweep will stop while any other parameter is being changed, then will restart. Pressing "AMPTD CAL", " SELF TEST", "ASSIGN ZERO 0 ", or changing the function will also stop continuous sweep.

SIndicator is ON during sweep

3-52. Log Sweep. In either single or continuous log sweep mode, the stop frequency must be higher than the start fre quency, and sweep is up only. (Continuous sweep is start to stop, start to stop, etc.) The minimum bandwidth for log sweep is one decade. Single log sweep is a linesegmented \log approximation in one-tenth decade seg-
ments, and continuous log sweep is a two-segment \log approximation.

NOTE

Because of the computation time required by the control circuits in log sweep, the actual sto p frequency (which is disp/ayed at the end of a single sweep) will be higher than the selected stop frequency, but a/ways within 0 . 25%. The error decreases as sweep time is increased.

3-53. Sweep Time. The maximum time per sweep (up or down) for all sweep modes is 99.99 seconds, with .01 sec ond resolution for times .e_ 1 second, and .001 second resolution for times < I second. Minimum times are as foll ows:

> Linear sweep, single or cominuous...0.
> 010 s Log sweep
> Single 2000 s
> Continuous 0100 s

NOTE

In single log sweep, the sweep time is increased by the processing time required b etween segments. The time increase (in seconds) is approximately equal to

$$
.045\left(10 \mathrm{log} \quad \frac{\text { stop frequency }}{.0}\right. \text { starr frequency }
$$

3-54. Sweep Bandwidth. The maximum sweep bandwidth is the full frequency range for the function selecte d, except that in log sweep, the minimum fre-quency is 1 Hz . The minimum bandwidth for log sweep is one decade. Minimum bandwidth for each function (linear sweep) is as follows:

```
Sine (10 mHz/s) x (sweep time)
Square (5 mHz/s) x (sweep time)
Triangle ( }0.5\textrm{mHz}/\textrm{s})\times\mathrm{ (sweep time)
Ramps (1 mHz/s) x (sweep time)
```

For sweep bandwidths of less than 100 times the minimum, Bandwidth selected should be an integral multiple of the minimum. In linear sweep mode the sweep bandwidth may be multiplied or divided by two by pressing the blue prefix key and then "afx2" or " $\mathrm{M}=2{ }^{\prime \prime}$. These bandwidth modification keys do not operate in \log sweep mode.

3.55. Sweep Marker.

3-56. The marker frequency may be set to any point within the sweep band up to within approximately 400 microseconds of the stop frequency. If the marker frequency is set beyond this point, the stop frequency will automatically be increased so that the marker pulse is
approximately 400 microseconds wide. The following equation may be used to determine the approximate maximum marker frequency:

Max. marker freq. $=$ stop freq. $.0004 \times$ bandwidthsweep time

The rear panel MARKER output is at TTL compatible voltage levels. It is High at the start of a sweep up, goes Low at the selected marker frequency, then High again at the stop frequency. No marker output is present dur-i ng sweep down or during a log sweep. Set the marker frequency by pressing the "MKR FREQ" key and entering the numerical data and the frequency suffix.
$3-57$. The sweep band can be moved up or down to center on the marker frequency by pressing the blue pre fix key and then the MKR - CF(MKR FREQ) key. This does not change the sweep bandwidth unless either the new upper or lower limit would be beyond the frequency limit for the present function.

3.58. Sweep X Drive Output.

3-59. The rear panel X DRIVE output is as follows:
Linear sweep:
Single: 0 V at start, increasing linearly to > + 10 V at stop, whether the sweep is up or down. Re-mains at essentially this voltage until reset prior to the start of another sweep. (Vottage will dritt downward less than $10 \mathrm{mV} / \mathrm{s}$.) Continuous: Increases linearly from 0 V to > +10 V during sweep up, then goes to 0 V at beginning of sweep down and remains at 0 V during sweep down.

Log sweep: Starts at 0 V and increases to > +10 V with the sweep segments.

NOTE

The X DRIVE output has a nominal voltage of +10.5 V at die end of a sweep. This final voltage is specified to be greater than 10.0 V to ensure compatibility with oscilloscopes having a horizontal senstlive of 10.0 V for ful bscreen defleetion.

X DRIVE output voltage is linear with time in both linear and log sweep mode:

3-60. Sweep Z Blank Output.

3-61. The Z BLANK output voltages are TTL compatible, and the output logic levels are as follows:

Linear sweep:

Single: Goes LOW at start of sweep, HIGH at stop, whether the sweep is up or down. Remains until start of next sweep.
Continuous: LOW during sweep up, HIGH during sweep down.

Log sweep: Goes LOW at start frequency, HIGH at stop. In single sweep, remains HIGH until start 04 next sweep. In continuous sweep, is 111 GH momen-tarily at stop frequency.

When the Z BLANK output is low, it is capable of sink-ing current through a relay or other device. The max-imum ratings are:

Maximum current sink: 200 mA
Allowable voltage range: 0 V to +45 V dc
Maximum power (voltage at output x current): 1 W
3-62. Amplitude Modulation.

3-63. To program amplitude modulation, press the blue, prefix key, then press the "AM ON" (STORE) key. To remove the modulation, press the blue key, then " AM OFF" (RECALL). The display shows "A ON" or "A OFF" momentarily to indicate the status of the amplitu de modulation. The status of phase modulation (P ON or 1^{2} OFF) is displayed at the same time. The modulation input must be connected to the rear panel AMPTD MOD input. The impedance of this input is 20 kf) (10 kf 2 when AM is OFF).

3-64. When amplitude modulation is programmed, the amplitude of the output signal (with no modulation) is ha Ived; however, the display still indicates the programmed amplitude. Then, when the output (carrier) is modul ated 100%, the maximum amplitude of the modulated output equals the programmed amplitude. A modulation input of approximately 5 V peak results in 100% modulation. Modulation frequency may be 0 to 50 kHz . If amplitude modulation is ON when 3325A functions other than sine wave are selected, the output may be gated, depending on the levet of the modulation input. Amplitude modulation should be used only with the sine wave function, and the modulation input should not exceed $\pm 10 \mathrm{~V}$ peak.

3-65. A dc voltage may be applied to the AMPTD MOD input to control the 3325A output levet, or a pulse may be used to gate the output. Approximately +5 VC cuts off the output signal, while approximately -5 V doubles the output. (Maximum output is 10 Vp -
3.66. Phase Modulation.

3-67. To program phase modulation, press the blue prefix key, the the "OM ON" (CLEAR) key, and to remov e phase modulation, press the blue key, then "OM OFF" $(-)$. The phase modulation signal at the rear panel PHASE MOD input may be up to $\pm 10 \mathrm{~V}$ peak. The in-put impedance is 10 kf). The modulating signal frequen-cy may be dc to 5 kHz . An input of $\pm 5 \mathrm{~V}$ results in the following approximate phase deviation ($\pm 170^{\circ}$ per volt f or sine function):

3325A Function
Phase Deviation

Sine	850°
Square	$\pm 425^{\circ}$
Triangle	$\pm 42.5^{\circ}$
\quad Ramp	$\pm 85^{\circ}$

.168. Modify Keys.

3-69. The numerical data of any parameter may be changed by use of the MODIFY keys. First press the pre fix key of the parameter to be modified, placing the information in the display. Next, press the ${ }_{0}$ or 0 key
to move the bright digit cursor to the digit you want
to modify. Then press the 0 . or 0 key momentarily
to increase or decrease the value of that digit by I. If the modify key is held, the digit will continue to increment or decrement after a slight delay. As the modified digit passes 9 (incrementing) or 0 (decrementing) the digit to its left will increment or decrement.

370.Storeand Recall.

3-71. An entire program may be stored in any one of 10 registers by pressing the "STORE 0-9" key, then the register number. This stores all the information that is in the current program memory. Other programs may then be entered. All stored information is lost when power is removed from these circuits by setting the POWER switch to STBY or disconnecting ac power from the instrument.

note

Any phase information stored is invalid when recalled because the Instrument performs an amplitude calibration an RECALL. Phase relationship between the output Signal and th e reference is not maintained when AMPTD CAL occurs.

3-7 OPERATORSCHECKS.

3-73. The following Checks provide the operator with a means of determining whether the instrument is operational. They are not intended to verify any specifications. 1f the instrument falls any of these checks, it sho uld be referred to qualified service personnel for repair.

334. Seif Test.

3-75. Press the blue prefix key, then SEIF TEST (AMPTD CAL). All the front panel display and annunciator LEDs should light for approximately two seconds, then the instrument performs an automatic calibration of the sine, square, and triangle functions and the display indicates momentarily whether each test passed or failed. The dc offset is also checked in these tests.

NOTE

If the display reads OSC FALL at any time, the frequency synthesis circuits are not functioning properly. Refer the instrument to qualified service personnel for repair.

3-76. Output Checks.
3-77. An oscilloscope (-kp-1740A or equivalent) is required for these checks. Connect the 3325A output thro ugh a 50-ohm feedthru termination (-hp-11048C) to the oscilloscope input (input dc coupled), or set the 1740A input switch to 50 ohms.

FUNCTIONS

a. Make the following 3325A keyboard selections:

FUNCTION Sine
FREQUENCY 2 kHz AMPLITUDE 10 V p -p
b. Set the oscilloscope controls as follows:

Vertical $5 \mathrm{~V} /$ div
Horizontal $05 \mathrm{~ms} / \mathrm{div}$
Trigger Auto
c. Adjust oscilloscope controls for a stable display, which should show a sine wave approximately two divisions peak-to-peak and one cycle per division.
d. Select square wave, triangle, positive slope ramp, and negative slope ramp and veri-fy that each function i ndicates the same frequency and peak-to-peak amplitude.

AMPLITUDE AND DC OFFSET

e. Set the 3325A as follows:

FUNCTION Square
FREQUENCY 2 kHz
AMPLITUDE 10 V p-p
f. Set the oscilloscope controls as follows:

Vertical $2 \mathrm{~V} /$ div
Horizontal $05 \mathrm{~ms} / \mathrm{div}$
Trigger Auto
g. Oscilloscope display should show one square wave per division, 5 divisions peak-to-peak vertical. This checks the output with no attenuation. Actual display will depend greatly upon the accuracy of the oscilloscope amplifiers and display.
h. Change 3325A amplitude to $1 \mathrm{~V} p-\mathrm{p}$, and change oscilloscope vertical to $.2 \mathrm{~V} / \mathrm{div}$. Oscilloscope display sho uld again be 5 divisions peak-to-peak. This checks the 3 attenuator section.
i. Change 3325A amplitude to 500 mV p-p, and change oscilloscope vertical to $.1 \mathrm{~V} / \mathrm{div}$. Oscilloscope display should be 5 divisions peak-to-peak. This checks the 10 attenuator section.
j. Change 3325A amplitude to $50 \mathrm{mV} \mathrm{p-p}$, and change oscilloscope vertical to $.01 \mathrm{~V} / \mathrm{div}$. The square wave display should be 5 divisions peak-to-peak. This checks the $\div 100$ attenuator section.
k. Press the 3325A SQUARE WAVE FUNCTION key to remove the square wave output. The indicator in the DC OFFSET Entry key should light and the 3325A display should show 0.0 mV .
I. Set the oscilloscope vertical control to $2 \mathrm{~V} /$ div. Ground the input and set the trace to the center line. input to dc coupled.
m. Enter 5 V offset in the 3325A. The oscilloscope trace should be 2.5 divisions above the center line. Enter - 5 V offset in the 3325A. The oscilloscope trace should go to 2.5 divisions below the center line.
n. Enter 0 V offset in the 3325A. Trace should be on the center line.

FREQUENCY

o. Set the 3325A as follows:

FUNCTION Sine
FREQUENCY 100 Hz
AMPLITUDE 10 V p-p
p. Set the oscilloscope controls as follows:

Vertical $2 \mathrm{~V} /$ div
Horizontal $1 \mathrm{~ms} /$ div

q. Oscilloscope display should show one cycle of sine wave, which should be free of any apparent irregularities.
r. Enter 20 MHz in the 3325A. Change oscilloscope horizontal to $.05 \mathrm{as} / \mathrm{div}$. Oscilloscope should display o ne cycle of sine wave per division.

High Voltage OUTPUT (OPTION OO2)

s. Remove the 50 -ohm feedthru termination between the 3325A output and the oscilloscope input. Press the k ey in the lower right corner of the 3325A front panel to select the High Voltage output.
t. Set the 3325A as follows:

FUNCTION Sine
FREQUENCY 2 kHz
AMPLITUDE 40 V p-p
u. Set the oscilloscope controls as follows:

Vertical $10 \mathrm{~V} / \mathrm{div}$
Horizontal $05 \mathrm{~ms} / \mathrm{div}$
v. The oscilloscope display should show a sine wave four divisions peak-to-peak, one cycle per division. This chccks the high vohage output amplifier.

3-78. OPERATOR'S MAINTENANCE.

3-79. Maintenance by the operator is limited to cleaning or replacing the rear panel fan filter, or replacing the ac li ne fuse on the rear panel. Generally, if the ac line fuse requires replacement there is a failure within the instrument, which should be referred to qualified service personnel. Disconnect the ac line cord before replacing the f use Be sure to use the correct replacement fuse:

Nominal Line Voltage	Fuse -hp- Part No.	
$100 / 120$	1 A 0.	$2110-0001$
V	5 A	$2110-0012$
$220 / 240 \mathrm{~V}$		

$3-80$. The fan Filter should be inspected frequently and cleaned or replaced as necessary to allow free flow of air. To remove the filter, disconnect ac power from the Instrument and remove the four nuts that secure the filter retainer. Remove the Filter and wash thoroughly with soapy water, rinse clean, and air dry.

181. HP.IB OPERATION.

3-82. The Model 3325A is remotely controlled by means of the Hewlett-Packard Interface Bus (HP-IB).

Figure 3-3. Interface Connections and Bus Structure.

Table 3.5. General Interface Management Lines.

Name	Mnemonic	Description
Attention	ATN	Enables a device to Interpret data on the bus as a controller command (command mode) or ata transfer (Data Mode).
Interface Clear	IFC	Initializes the HP-II3 system to an idle state (no activity on the bus.)
Service Request	SRQ	Alert the controller to a need for communication.
Remote Enable End Or 'dente	REN	Places Instruments under re- mote program control. Indicates last data transmission during a data transfer sequence: used with ATN to poll devices for their status.

Operator - The person that operates either the system or any device in the system.

Address - The characters sent by a controller to specify which device will send information on the bus and which device(s) will receive information. A device may also have its address fixed so that it may only receive Information (listen only) or only send information (talk only).

Polling - Polling is a means by which a controller can identify a device that needs interaction with it. The controller may poll devices for their operational condition one at a time, which is termed a serial poll, or as groups of devices simultaneously, which is termed a parallel poll.

3.89. Basic Device Communication Capability.

3-90. Devices which communicate along the interface bus fall into three basic categories.

Talkers - Devices which send information on the bus when they have been addressed.

Listeners - Devices ihich receive information sent on the bus when they have been addressed.

Controllers - Devices that can specify the talker and listener(s) for an information transfer. The controller can be an active controller or a system controller. The active controller is defined as the current controlling devi ce on the bus. The system controller can take con-trol of die bus even if it is not the active controller. Each system can have only one system controller, even if sev eral controllers have system control capability.
called "messages". Some of the messages consist of two basic parts, the address portion and the information I portion. Others are general messages to all devices. Messages can be classified into twelve types, which are referred to as "meta messages". These are defined in Table 3-6. A block diagram presentation of meta messages and their implementation will be found in Appendix A-3 at the rear of)his section.

NOTE

The meta message in itself is not a pro-gram
code or an HP-IB command. It is only intended as a tool to translate a program writ-t en as an algorithm into the controller's code:

3.93. 3325A Response to Messages.

$3-94$. The 3325A is capable of implementing only those messages indicated in Table 3-7. In order for those messa ges to be implemented, certain bus actions are re-quired, which are shown in the Interface Functions col-umn.

3-95. NP-I6 Work Sheet.

3-96. A work sheet is provided at the end of this section for listing the address and message capabilities of each i nstrument in your HP-113 system. When this sheet is Mied out, it will provide a summary of the system capabi lities.
3.97. HP . 113 Addressing.

3-98. Certain messages require that a specific talker and listener be designated. Each Instrument on the bus has its own distinctive listen and/or talk address which distinguishes it from other devices. The 3325A receives programming instructions when addressed to listen. When addressed to talk, it will respond to the instruc-tio ns it received prior to being addressed to talk, such as an interrogation or serial poll.

3-99. Addressing usually takes the form of "universal unlisten, device talk. device(s) listen". The universal unlis ten command removes all listeners from the bus, allowing only the listener(s) designated by the device(s) I isten parameter to receive information. The Information is sent by the talker designated by the device talk parameter. The system controller may designate itself as either talker or listener.

3.100. 3325A REMOTE PROGRAMMING.

HL Message Definitions. 3101. 3325A HP-1E1 Canah'kies.

3-92. Information is transferred on the HP-IB from 3-102. Table 3-8 lists the HP-113 capabilities of the 3325A, one device to one or more other devices in quantities which are compatible with IEEE Standard 488-1978.

Table 3-6. Definition of Mets Messages.

3-103. Developing an HP-IB Program.

3-104. Basically, the 3325A is programmed remotely in the same manner as it is programmed manually. The sequence in which the various parameters are programmed is not important. At the end of this section (III) there is a summary of the HP-I13 Programming Codes. This chart may be removed from the manual and/or copied to be used as a programming referende.
a. Completely define the operation(s) the system is required to perform.
b. Write the program in flowchart or algorithm form. (An algorithm may be defined as a fixed step-bystep procedure for Einding a solution to a problem.) Use the key words for meta messages shown in Table 3-6 in developing the program. The twelve key words are repeated here for reference.

3-105. Several steps are needed to develop an HP-1B program.

$$
\begin{aligned}
& \text { NOTE } \\
& \text { lt may be necessary to refer to some para- } \\
& \text { graphs on manual operation for descriptions } \\
& \text { of certain signals and requirements. }
\end{aligned}
$$

progr

Data
*Trigger
Clear
Remote
Local
Local Lockout
Clear Lockout and Set Local
Require Service

Table 3.7. 3325A Implementation of Messages.

Message	Implementation'	Interface Functions"		3325 A Response
		Sender	Receiver	
Data	SR	T. SH	C, AH	Will send or recewe as instructed
Trigger	NA	T, SH	LA, AH	None
Clear-ID Clearall	$\begin{aligned} & \mathbf{R} \\ & \mathbf{R} \end{aligned}$	$\begin{aligned} & \text { C, SH } \\ & \text { C, SH } \end{aligned}$	$\begin{gathered} \text { DC", L, AH } \\ \text { DCh, AH } \end{gathered}$	Device Clear sets 3325A to initlal turn-on conditions. See Para. 3-8.
Remote	R	C, SM	$\begin{gathered} \text { RL". L. AH } \\ \text { RI.. AH } \end{gathered}$	Goes to Remote. Can be set to Local by LOCAL ke y.
Local	R	C, . SH	RL",	Goes to Local.
Local Lockout	R	C. SH	L. AH RL. AH	Goes to Remote. Cannot be set to Local by LOCAL key. .
Clear Lockout and Set Local	R	C,	RL	Goes to Local from Local Lockout.
Require Service	5	SR"	C	Sets SRO True.
Status Byte	5	SR", T, SH	I.". AH	Sands byte which mdl. cates if service required and reason.
Status Bit	NA	na ${ }^{\text {b }}$	C	None
Pass Control	NA	$\mathrm{C}_{\mathrm{A}}, \mathrm{SH}$	Co, T. AH	None
Abort	R	C,		Unaddress

- S a Send Only • -SH a Source Handshake

R = Receive Only AH - Acceptor Handshake
SR at Send and Receive T= Talker lincludes TE=Extended TalkerI
NA =Not Applicable L = Listener lincludes LE = Extended Listener)
SR =Service Request
FIL = Remote/Local
PP = Parallel Poll
DC = Device Clear
DT= Device Trigger
C = Any Controller
$C_{N} z_{0}^{\prime} A$ specific controller (for example, C_{A}, C_{A})
C5 = The System Controller
X iii Indicates message can be sent to/by one or more devices simulteneously

Status Byte
'Status Bit
*Pass Control Abort
*Not implemented by the 3325A

NOTE

The meta message in itself is not a program code or an HP-18 command. It is only in-tend ed as a wo/ to translate a program written as an algorithm into the controller's code.

Table 3-8. Interface Functions.

Code	unction
SH I S	purce handshake capability
AH1 A	ceptor handshake capability
	TB Basic talker; Serial Poll; Unaddressed to talk if addressed to listen
	L3 Basic listener; Listen Only;
	Unaddressed to listen if addressed to talk
SR1 S	rvice Request capabilitV •
RL1 Re	mote/Local capability
PPD N	parallel polt capability
DC1 D	vice clear capability
.DTO N	o device trigger capability
CO No	controller capability
Et Ope	h collector bus drivers

"DCL and SDC commands set the 3325A to its initial turn-on conditions (see Paragraph 3-8) and cause an A MPTD CAL operation. Any data in the HP-1B input buffer is lost. The storage registers, SRQ masking, and t he status byte are not affected.

3-109. Placing the 3325A in Remote.

s-liU ine ss is will go to kemote when AIN is true, REN is true, and it receives its listen address.

3-112. The 3325A address is normally sei at the factory to:

	ASCII Character	5-Bit Octal	(5-Bit Octal Equivalent) Decimal Hexadecimal
Listen	1	21	17 I 1
Talk	Q	21	17 II

The 3325A can be made to display its address in decimal code by pressing the blue prefix key and the BUS ADRS (LOCAL) key.

NOTES

1. All programming is shown in ASCII code.
2. Table 3-9 is a summary of the 3325A program data messages and program times. Tab le 3-10 lisis program codes in binary, octal, decimal, and hexadecimal. At the end of this section (III) there is also a summaty of the HP-IB programming codes. This chart may be removed from the manual and/or copied to be used as a programming reference..
3. The following fron' panel key actions cannot remotely programmed:

Modify group

Sweep bandwidth x 2
Sweep bandwidth $\div 2$
Set sweep center frequency to merker frequency
Display bus address
Clear display
4. The 3325,4 must be set to REMOTE and addressed to LISTEN before it will accept devic e dependent data messages.

3-113. 3325A Data Message Formats.

3-114. The following are valid programming strings (data messages) for the 3325A:

Mnemonic, Data, Delimiter, EOS
Mnemonic, Data, EOS
Mnemonic, EOS
I, Mnemonic, EOS

Where I is the ASCII character 1 and EOS is the end-of-string character, which is required for Data Transfer Mode 2 (see following paragraphs)...Valid EOS characters are:

$$
\begin{aligned}
& \text { LF }=\text { Line Feed. }=12 \text { octal } \\
& \bullet=\text { Asterisk }=52 \text { octal }
\end{aligned}
$$

Table 3-9. Summary of 3325A Programming (ASCII Characters)."

Parameter or Operation	Mnemonics ASCII Code	Data	ASCII Code Delimiters	Approximate Programming Time*
Data Transfer Mode Data Mode 1 Data Mode 2	$\begin{aligned} & =M D \\ & =M D \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	NA	$\mathrm{MD}=4.5 \mathrm{~ms}$
Function	=FU	$\begin{gathered} 0 \text { DC Only } \\ =\text { Sine } \\ 2=\text { Square } \\ 3=\text { Triangle } \\ 4=\text { Positive Ramp } \\ 5=\text { Negative Ramp } \end{gathered}$	NA	$\mathrm{FU}^{-}=1500 \mathrm{~ms}$
Frequency	$=F R$	s 11 Digits and Decimal	$\begin{aligned} & \mathrm{HZ}=\text { Hert } \\ & \mathrm{KH}=\text { Kilohertz } \\ & \text { MH }=\text { Megahertz } \end{aligned}$	FR $=7.0 \mathrm{~ms}$ Each digit or decimal $=2.8 \mathrm{~ms}$ HZ, KH, or $\mathrm{MH}=12.5 \mathrm{~ms}$
Amplitude	$=A M$	< 4 Digits and Decimal. Also -- sign if negative $\mathrm{dBm} .+$ sign is valid but not required.	$\begin{aligned} & \mathrm{VO}=\text { Volts (p-pi } \\ & \text { MV }=\text { MilIivolts }(p-p) \\ & \text { VR --k Volts rms } \\ & \text { MR }=\text { Millivolts rms } \\ & D B=d B m \end{aligned}$	$\begin{aligned} & \text { AM }=6.8 \mathrm{~ms} \\ & \text { Each digit, decimal or decimal }=2.8 \mathrm{rns} \\ & \text { VO or } M V=90 \mathrm{~ms} \\ & \text { VR or } M R=130 \mathrm{~ms} \\ & D B=250 \mathrm{~ms} \end{aligned}$
DC Offset	$=\mathrm{OF}$	si 4 Digits and Decimal. Also -- si gn if negative dc off set. + sign is v alid but not required.	$\begin{aligned} & \text { VO= Volts } \\ & \text { MV }=\text { Millivolts } \end{aligned}$	OF $=6.8 \mathrm{~ms}$ Each digit, decimal, or - sign $=2.8 \mathrm{~ms}$ VO or $\mathrm{MV}=82 \mathrm{~ms}$
Phase	$=\mathrm{PH}$..s. 4 Digits - minus sign	DE = Degrees	PH=5 ms; DE=28 ms Each digit and - sign $=2.8 \mathrm{~ms}$
Sweep Start Frequency Sweep Stop Frequency Swee p Marker Frequency	$\begin{aligned} & =S T \\ & =S P \\ & =M F \end{aligned}$	s 11 Digits and Decimal	$\begin{array}{\|l\|} \hline \mathrm{HZ}=\text { Hertz } \\ \mathrm{KH}=\text { Kilohertz } \\ \text { MH = Megahertz } \end{array}$	ST, SP, or MF $=7.0 \mathrm{~ms}$ Each digit or decimal $=2.8 \mathrm{~ms}$ HZ, KH, or $\mathrm{MN}=10.3 \mathrm{~ms}$
Sweep Time	= T 1	s 4 Digits and Decimal	SE= Seconds	$\mathrm{TI}=5.5 \mathrm{~ms} ; \mathrm{SE}=7.0 \mathrm{~ms}$ Each digit and decimal $=2.8 \mathrm{~ms}$
Sweep Mode Linear Logarithmic	=SM	2	NA	$\mathrm{SM}=4.5 \mathrm{~ms}$
Rear or Front Panel Output Front Panel Rear Panel	$=\mathrm{RF}$		NA	$\mathrm{RF}=44.5 \mathrm{~ms}$
Store Program Recall Program	$\begin{aligned} & =S R \\ & =R E \end{aligned}$	1 Digit, 0-9	NA	$\begin{aligned} & \mathrm{SR}=11 \mathrm{~ms} ; \\ & \mathrm{RE}=1700 \mathrm{~ms} \end{aligned}$
Execution Functions Assign Zero Phase Perfor m Auto-Cal Start Single Sweep Start Continuous Sweep Perform SelfTest	$\begin{aligned} & =\mathrm{AP} \\ & =\mathrm{AC} \\ & =\mathrm{SS} \\ & =\mathrm{SC} \\ & =\mathrm{TE} \end{aligned}$	NA NA	NA NA	$\begin{aligned} & \mathrm{AP}=5.2 \mathrm{~ms} \\ & \mathrm{AC}=1500 \mathrm{~ms} \\ & \mathrm{SS}=300 \mathrm{~ms} \\ & \mathrm{SC}=300 \mathrm{~ms} \\ & \mathrm{TE}=10,000 \mathrm{~ms} \end{aligned}$
Interrogate Program Error	=IER	NA	NA	IER $=-11.5 \mathrm{~ms}$
Interrogate Entry Parameters Frequency Amplitude Offset Phase Sweep Start Frequency Sweep Stop Frequency Svveep Marker Frequency Sweep Time	$\begin{aligned} & =\text { IFR } \\ & =\text { IAM } \\ & =1 O F \\ & =\text { IPH } \\ & =\text { IST } \\ & =\text { ISP } \\ & =\text { IMF } \\ & =I T I \end{aligned}$	NA	NA	$\mathrm{FR}=10 \mathrm{~ms}$ AM $=9.8 \mathrm{~ms}$ OF $=9.8 \mathrm{~ms}$ $\mathrm{PH}=8 \mathrm{~ms}$ $\mathrm{ST}=10 \mathrm{~ms}$ $\mathrm{SP}=10 \mathrm{~ms}$ $\mathrm{MF}=10 \mathrm{~ms}$ TI 98.5 ms
Interrogate Function	= IFU	NA	NA	IFU=1603 ms
Mask Service Requests	= MS	$\begin{aligned} & \text { See Para. } \\ & 3-144 \end{aligned}$	NA	$\mathrm{MS}=4.5 \mathrm{~ms}$
Binary (ON/OFF) Functions High Voltage Output Amplit ude Modulation Phase Modulation	$\begin{aligned} & =H V \\ = & M A \\ = & M P \end{aligned}$	$\begin{aligned} & \mathrm{OFF}=0 \\ & \mathrm{ON}=1 \end{aligned}$	NA	$\begin{aligned} & \mathrm{HV}=48 \mathrm{~ms} \\ & \mathrm{MA}=7.0 \mathrm{~ms} \\ & \mathrm{MP}=7.0 \mathrm{~ms} \end{aligned}$

3	Taille 3-10. Programming Codes.					
3	Instruction	ASCII Characters	Binary Code	Octal Code	Decimal Code	Hexadecimal Code
	Entry Frequency	$\begin{aligned} & \mathrm{F} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 1000110 \\ & 1010010 \\ & \hline \end{aligned}$	$\begin{aligned} & 106 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 46 \\ & 52 \end{aligned}$
	Amplitude	$\begin{gathered} \mathrm{A} \\ \mathrm{M} . \end{gathered}$	$\begin{aligned} & 1000001 \\ & 1001101 \end{aligned}$	$\begin{aligned} & \hline 101 \\ & 115 \end{aligned}$	$\begin{aligned} & \hline 65 \\ & 77 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 4 D \end{aligned}$
	Offset	$\begin{aligned} & \hline 0 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1001111 \\ & 1000111 \end{aligned}$	$\begin{aligned} & 117 \\ & 106 \end{aligned}$	$\begin{aligned} & 79 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{~F} \\ & 46 \\ & \hline \end{aligned}$
	Phase	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1010000 \\ & 1001000 \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 48 \end{aligned}$
A 3	Sweep Start Frequency	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~T} \\ & \hline \end{aligned}$	$\begin{array}{r} 1010011 \\ 1010100 \\ \hline \end{array}$	$\begin{array}{r} 123 \\ 124 \\ \hline \end{array}$	$\begin{aligned} & 83 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 54 \\ \hline \end{array}$
	Stop FrequencY	$\begin{aligned} & \hline 5 \\ & \mathrm{P} \\ & \hline \end{aligned}$	$\begin{aligned} & 1010011 \\ & 1010000 \\ & \hline \end{aligned}$	$\begin{aligned} & 123 \\ & 120 \end{aligned}$	$\begin{aligned} & 83 \\ & 80 \end{aligned}$	$\begin{aligned} & 53 \\ & 50 \end{aligned}$
	Marker Frequenc Y	$\begin{gathered} \bar{M} \\ F \end{gathered}$	$\begin{aligned} & 1001101 \\ & 1000110 \end{aligned}$	$\begin{aligned} & 115 \\ & 106 \end{aligned}$	$\begin{aligned} & \hline 77 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 46 \\ & \hline \end{aligned}$
3	Time	$\begin{aligned} & \hline \mathrm{T} \\ & \mathrm{I} \end{aligned}$	$\begin{array}{r} 1010100 \\ 1001001 \\ \hline \end{array}$	$\begin{aligned} & 124 \\ & 111 \end{aligned}$	$\begin{aligned} & \hline 84 \\ & 73 \end{aligned}$	$\begin{aligned} & 54 \\ & 49 \end{aligned}$
	Start Continuous	$\begin{aligned} & \hline \mathrm{s} \\ & \mathrm{c} \end{aligned}$	$\begin{aligned} & 10100011 \\ & 10000011 \end{aligned}$	$\begin{aligned} & 123 \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 83 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 53 \\ & 43 \end{aligned}$
3	Start Single Imust be sent twicel	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{aligned} & 1010011 \\ & 1010011 \\ & \hline \end{aligned}$	$\begin{array}{r} 123 \\ 123 \\ \hline \end{array}$	$\begin{aligned} & 83 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{r} 53 \\ 53 \\ \hline \end{array}$
	Sweep Mode	$\begin{aligned} & \mathrm{S} \\ & \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 1010011 \\ & 1001101 \\ & \hline \end{aligned}$	$\begin{aligned} & 123 \\ & 115 \end{aligned}$	83	$\begin{array}{r} 53 \\ 4 \mathrm{D} \\ \hline \end{array}$
3 y	Numerical Data 0 1 2 3 4 5 6 7 7 8 8 9 .(decimall --(minusl	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	0110000 0110001 0110010 0110011 0110100 0110101 0110110 0110111 ○ 111 oo 0 0111001 010.1110 0101101	060 061 062 063 064 065 066 067 070 071 056 055	$\begin{aligned} & 48 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 46 \\ & 45 \\ & \hline \end{aligned}$	30 31 32 33 34 35 36 37 38 39 $2 E$ $2 D$
	Data Suffix IDelimiter) Hertz	$\begin{aligned} & \mathrm{H} \\ & \mathrm{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & 1001000 \\ & 1011.010, \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 132 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 5 \mathrm{~A} \end{aligned}$
3	Kilohertz	$\begin{aligned} & \hline \mathrm{K} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1001011 \\ & 1001000 \end{aligned}$	$\begin{aligned} & \hline 113 . \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 72 \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$
	Megahertz	$\begin{gathered} \hline \mathrm{M} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & 1001101 \\ & 1001000 \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \end{aligned}$	$\begin{aligned} & 77 \\ & 72 \end{aligned}$	$\begin{aligned} & 4 D \\ & 4 A \end{aligned}$
	Volts (p-p or dc)	$\begin{aligned} & \mathrm{V} \\ & 0 \end{aligned}$	$\begin{aligned} & 1010110 \\ & 1001111 \end{aligned}$	$\begin{aligned} & \hline 126 \\ & 117 \end{aligned}$	$\begin{aligned} & 86 \\ & 79 \end{aligned}$	$\begin{aligned} & 56 \\ & 4 \mathrm{~F} \end{aligned}$
	Minivolts (P-O or de)	$\begin{gathered} \mathrm{M} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10011101 \\ & 1010110 \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 126 \end{aligned}$	$\begin{aligned} & 77 \\ & 86 \end{aligned}$	$\begin{aligned} & 40 \\ & 56 \end{aligned}$
	Volts rms	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 1010110 \\ & 1010010 \end{aligned}$	$\begin{aligned} & 126 \\ & 122 \end{aligned}$	$\begin{aligned} & 86 \\ & 82 \end{aligned}$	$\begin{aligned} & 56 .- \\ & 52 \end{aligned}$
	Mililivolts rms	$\begin{gathered} M \\ \hline \mathrm{R} \end{gathered}$	$\begin{aligned} & 1001101 \\ & 1010010 \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 122 \end{aligned}$	$\begin{aligned} & 77 \\ & 82 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 52 \end{aligned}$
	dBrn	$\begin{aligned} & \hline D \\ & B \end{aligned}$	$\begin{aligned} & 1000100 \\ & 1000010 \end{aligned}$	$\begin{aligned} & 104 \\ & 102 \end{aligned}$	$\begin{aligned} & 68 \\ & 66 \end{aligned}$	$\begin{aligned} & 44 \\ & 42 \end{aligned}$
	Degrees	$\begin{aligned} & \bar{D} \\ & E \end{aligned}$	$\begin{aligned} & 1000100 \\ & 100010.1 \end{aligned}$	$\begin{aligned} & \hline 104 \\ & 105 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 44 \\ & 45 \end{aligned}$
	Seconds	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & 1010011 \\ & 1000101 \end{aligned}$	$\begin{aligned} & 123 \\ & 105 \end{aligned}$	$\begin{aligned} & 83 \\ & 69 \end{aligned}$	$\begin{aligned} & 53 \\ & 45 \end{aligned}$
	Store	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 1010011 \\ & 1010010 \end{aligned}$	$\begin{aligned} & \hline 123 \\ & 122 \end{aligned}$	$\begin{aligned} & 83 \\ & 82 \end{aligned}$	$\begin{aligned} & 53 \\ & 52 \end{aligned}$
+	Recall	$\begin{gathered} \mathrm{R} \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & 1010.010 \\ & 1000101 \end{aligned}$	$\begin{aligned} & 122 \\ & 105 \end{aligned}$	$\begin{aligned} & \hline 82 ' \\ & 69 \end{aligned}$	$\begin{gathered} 52 \\ 45 \end{gathered}$

Table 3-10. Programming Codes (Coried).

Instruction	ASCII Charecters	Binary Code	Octai Code	Decimal Code	Hexadecimal Code
High Voltage Output	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~V} \end{aligned}$	$\begin{array}{lllllll} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & & 1 & 1 \end{array} 0$	$\begin{aligned} & 110 \\ & 126 \end{aligned}$	$\begin{array}{r} 72 . \\ 86 \end{array}$	$\begin{aligned} & 48 \\ & 56 \end{aligned}$
Modulation-Amplitude	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~A} \end{aligned}$	1 0 0 1 1 0 1 1 0 0 0 0 0	$\begin{aligned} & 115 \\ & 101 \end{aligned}$	$\begin{aligned} & 77 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 4 D \\ & 41 \end{aligned}$
Modulation-Phase	$\begin{gathered} \hline M \\ P \end{gathered}$	$\begin{array}{\|llllllll} \hline 1 & 0 & 0 & 1 & & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 115 \\ & 120 \end{aligned}$	$\begin{aligned} & 77 \\ & 80 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$
Rear or Front Output	$\begin{gathered} \hline \mathrm{R} \\ \mathrm{~F} \end{gathered}$	$\begin{array}{\|lllllll} \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & & 1 & 1 \end{array} 0$	$\begin{aligned} & 122 \\ & 106 \end{aligned}$	$\begin{aligned} & 82 \\ & 70 \end{aligned}$	$\begin{aligned} & 52 \\ & 46 \end{aligned}$
Data Transfer Mode	$\begin{gathered} \mathrm{M} \\ 0 \end{gathered}$	1 0 0 1 1 0 1 1 0 0 0 1 0 0	$\begin{aligned} & 115 \\ & 104 \end{aligned}$	$\begin{aligned} & 77 \\ & 68 \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \end{aligned}$
Assign Zero Phase Reference	$\begin{aligned} & \text { A } \\ & \text { P } \end{aligned}$	10 0 0 0 0 1 10 1 0 0 0 0	$\begin{aligned} & 101 \\ & 120 \end{aligned}$	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 41 \\ & 50 \end{aligned}$
Perform Auto Cal.	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \end{aligned}$	1 0 0 0 0 0 1 1 0 0 0 0 1 1	$\begin{aligned} & 101 \\ & 103 \end{aligned}$	$\begin{aligned} & 65 \\ & 67 \end{aligned}$	$\begin{aligned} & 41 \\ & 43 \end{aligned}$
Perform Self Test	$\begin{aligned} & \mathrm{T} \\ & \mathrm{E} \end{aligned}$	$\begin{array}{\|lllllll\|} \hline 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & & 1 & 0 \end{array}$	$\begin{aligned} & 124 \\ & 105 \end{aligned}$	$\begin{aligned} & \hline 84 \\ & 69 \end{aligned}$	$\begin{aligned} & 54 \\ & 45 \end{aligned}$
Mesk SRG	$\begin{gathered} \mathrm{M} \\ \mathrm{~S} \end{gathered}$	$\begin{array}{\|llllllll} \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & & 0 & 1 & 1 \end{array}$	$\begin{aligned} & 115 \\ & 123 \end{aligned}$	$\begin{aligned} & 77 \\ & 83 \end{aligned}$	$\begin{aligned} & 40 \\ & 53 \end{aligned}$
Interrogate (Parameter)	I	1001001	111	73	49
Interrogate Error	$\begin{aligned} & \mathrm{I} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	1 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0	$\begin{aligned} & \hline 111 \\ & 105 \\ & 122 \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & 69 \\ & 82 \end{aligned}$	$\begin{aligned} & 49 \\ & 45 \\ & 52 \end{aligned}$
EOS (End of String) Line Feed Asterisk	LF	$\left\lvert\, \begin{array}{lllll} 0 & 0 & 0 & 1 & 0 \end{array} 100\right.$	$\begin{aligned} & 12 \\ & 52 \end{aligned}$	$\begin{aligned} & 10 \\ & 42 \end{aligned}$	$\begin{array}{r} \mathrm{A} \\ 2 \mathrm{~A} \end{array}$

All spaces (40 octal), carriage returns (15 octal), com-mas (54 octal), and all lower case alphabetics are ig-nored by the 3325A.

NOTE

A program string may program one parameter or all parameters. For example, the string "FU2FRIOKHAM3VO" programs the following:

$$
\begin{aligned}
& F U 2=\text { Square wave function } \\
& F R I O K H=10 \mathrm{kHz} \\
& A M 3 V O=3 \mathrm{Vp}-\mathrm{p}
\end{aligned}
$$

The EOS.character should follow the complete string, or a maximum of 48 characters (see Paragraphs 3-115 through 3-118).

3-115. Data Transfer Mode.

3-116. The 3325A accepts data from the HP-IB in either of two modes. If speed of communication is a cri tical factor on your HP-1B system, Mode 2 is preferrable. The characteristics of the two modes are:

Data Mode 1. The 3325A turns an in Data Mode I. In this mode, each device dependent character (byte) is processed when received.

Line feeds and Asterisks (EOS characters) are ignored. No other device dependent data communications are permitted on the bus until the entire 3325A program string has been accepted and all but the last character processed.

Data Mode 2. Device dependent characters are accepted and stored in an internal buffer and not processed until the EOS character is received or the buffer is filled (48 bytes). Co nsequently, other communications an the bus are permitted after the program string h as been accepted (at the rate of approximately 150 to 200 microseconds per charact er). If the program string contains 48 characters or more, the 3325A will hold up t he bus while it processes the 48 characters before accepting and storing the rest of the s tring. Because the Instrument turns on in Data Mode 1, Mode 2 must be programmed r emotely. It will then remain in Mode 2 until Mode 1 is programmed or until the POWER s witch is set to STBY.
$3-117$. While the 3325A is processing data it will accept and respond to universal commands. For this reason, wh en operating in Mode 2, the controller can send a program string (48 characters or less) to the 3325A, and

3 while this data is being processed the controller can unaddress the 3325A to listen and then communicate
348 characters. the bus will be held up until the first 48 with another device. However, if the string is more than 3 characters have been processed and the remaining characters accepted. In order for the bus to be used dur-i ng 3325A processing time for communication between other devices, a program st ring greater than 48 characte rs should be divided and an EOS character sent 3 after (or at a convenient place before) the 48th byte. The remaining program can then constitute a second string.
3 While the 3325A is processing input information, a "Busy" (lag is set in the status byte (See Paragraph
3 3-136). This flag can be used to determine when die 3325A has finished processing.

3 NOTE

3 The 33214 will handshake bus communica-tions even though the POWER switch is set
3 to STBY. This will not interfere with the operation of the bus unless it was set to 3 STBY while addressed to talk. Before it is set to STBY, make sure it is not addressed to talk, or eise disconnect the HP-IB cable from the 3325A. The addressed to talk con-
3 dition can be cleared by an /FC command, even when the 3325A is in Standbv.

3-118. Programming Data Transfer Mode.
3-119. Instructions for programming Data Transfer
Frequency
9 Amplitude
Offset
Phase
Sweep Start Frequency
Sweep Stop Frequency
Sweep Marker Frequency
Sweep Time
The programming syntax for these parameters is:
3
9
3

3

3 Valid mnemonics:

$$
\mathrm{FR}=\text { Frequency }
$$

3 AM = Amplitude

$$
O F=O f f s e t
$$

PH = Phase
ST = Sweep Start Frequency
SP = Sweep Stop Frequency
MF = Sweep Marker Frequency
Ti = Sweep Time
Valid data:
0 thru 9 = ASCII numerics (if wo many digits are sent, the extra digits will be ignored or rounded)

$+=\quad$ ASCII plus sign (plus sign is accepted but not required)

$-=$ ASCII minus sign (minus sign will be ignored if sent for parameters that cannot be negative)
. = ASCII decimal (Floating decimal entries not valid)

Valid delimiters:

```
HZ = Hertz
KH = Kilohertz
MH = Megahertz
VO = Volts (peak-to-peak or dc)
MV = Millivolts (peak-to-peak or dc)
\(\mathbf{V R}=\) Volts rms
MR \(=\) Millivolts rms
\(D B=d B m\)
\(D E=\) Degrees
SE = Seconds
```


NOTE

When operating in Data Mode 1, an EOS character is not required. When in Mode 2, th e EOS character should not be sent und! the end of the program string tor after 48 biles; see Paragraph 3-117).
3-122. Programming Waveform Function.
3-123. The selectable functions are:

DC only
Sine wave
Square wave
Triangle wave
Positive Slope Ramp
Negative Slope Ramp
The programming syntax for selecting function is:
Mnemonic, Data, EOS
Valid mnemonic:
FU $=$ Function

Valid data: 3-127. The programmable selection functions are:
$0=$ Function off (dc only)
Rear Output/Front Output
Linear Sweep/Logarithmic Sweep
Data Transfer Mode
The programming syntax for the selection functions is:
Mnemonic, Data, EOS
Valid mnemonics:

```
RF = Rear or Front Output
SM = Sweep Mode
MD = Data Transfer Mode
```

Valid data for RF is:
I = Select Rear Output
$2=\quad$ Select Front Output (If the 3325A receives the RF mnemonic but does not have rear output capability (Option 002, for example) SRQ (if enab led) and an error code will be generated. See Paragraph 3-134.)

Valid data for SM is:

1 = Linear Sweep (The 3325A turns on in Linear Sweep function. This function need not be pro-gra mmed except to change from Linear to Log 1 Sweep or to return to Linear.)
2 = Logarithmic Sweep

Valid data for MD is:

1 = Data Mode 1 (The 3325A turns on in Data Mode I. This function need not be programmed if it is desired to remain in Data Mode I.)
$2=$ Data Mode 2

3-128. Programming Execution Functions.

3-129. The programmahle execution functions are:
Assign Zero Phase Reference
Perform Amplitude Calibration
Start Single Sweep
Start Continuous Sweep
Perform Self Test
The programming syntax for execution functions is:
Mnemonic, EOS
Valid mnemonics:
AP = Assign Zero Phase Reference
AC = Perform Amplitude Calibration
SS = Start Single Sweep

SC = Start Continuous Sweep The programming syntax for storage register functions
$\mathrm{TE}=$ Perform Self Test is:

```
NOTES Mnemonic, Data, EOS
```

I. The Start Single mnemonic must be sent Valid mnemonics: twice (5555). The first SS sets the output (and display) to the starr frequency, and the SR = Store second SS starts the sweep. RE $=$ Recall
2. White the 33254 is in Continuous Sweep Valid data: mode, if It receives the mnemonics $S C, S S$, $F R, P H, A C, A P$, or TE, it will slot sweep- 0 thru $9=$ ASCII numerics specifying register ing. It must receive SC again in order to number resume continuous sweeping; or if a single sweep is to be programmed, SSSS is re- NOTES quired.
3. The "Busy"flag (bit 7 in the status byte, see Paragraph 3-138) will be "I" for the dura tion of a Seif Test operation. After Seif Test, the 33254 returns to the previously programmed conditions, except that if a swe ep was in progress the sweep will remain stopped.
3130. Programming Amplitude Units Conversion.
1.3-131. The programming syntax for converting ampli-tude units (Vp-p, Vrms, dBm) is:

Mnemonic, Delimiter, EOS
Mnemonic $=\mathrm{AM}=$ Amplitude
Delimiter $=$ The units to which you want to convert:

$$
\begin{aligned}
& V O=V p-p \\
& M V=m V p-p \\
& V R=V r m s \\
& M R=m V r m s \\
& D B=d B m
\end{aligned}
$$

Example: 1 f amplitude was programmed in Vp -p, it may be converted to dBm by programming "AMDB". If amplitude was the last parameter programmed and is shown in the display, only the delimiter "DB" needs to be programmed.

3-132. Programming Storage Registers.

3-133. The data that will be stored includes the current program of Entry Parameters, Function (Waveform), Binary Functions, and Selection Functions. The storage register functions are:

0 Store Data in Register N
Recall Data from Register N
I. If no data has been stored in a register, the recall command for that register will be ig nored.
2. An amplitude calibration is performed when a register is recalled.
3. The numeric value for the phase is stored, but the phase of the output is not changed wh en the register is recalled. (Phase may need to be reprogrammed.)
4. DCL (Device Clear) and SDC (Selected Device Clear) commands do not affect the storage registers.

1134. Service Requests.

3-135. The 3325A will set the SRQ line true for any of the following reasons, if enabled by the SRQ mask (see Paragraph 3-144):

Program String Error
Sweep Started or Sweep Stopped
System Failure (Possible component problem)
Failed Self Test
Failed Amplitude Calibration
External Reference Unlocked
Main Oscillator Unlocked

1136. Serial Pell.

3-137. When the system controller determines that the SRQ line is true, it may conduct either a Serial Poll or a Parallel Poll to determine which device(s) initiated the Service Request, and the reason(s) for the request. The 3325A responds to a Serial Poll, which is conducted in the following manner:

Controller places ATN true (command mode)
Controller sends Serial Poll Enable (SPE) an lins
DI01-8 (ASCII CAN, binary code x 0011000)

```
Controller sends 3325A Talk address, controller Listen address
Controller places ATN reise (data mode) 3325A responds by sending status byte on DIOI8 Controller places ATN true (after each device has been polled)
Controller sends Serial Poll Disable (SPD) on DI01-8 (ASCII EM, binary code x0011001)
```

Serial Poll Disable clears the SRQ message originated by the 3325A, resetting bits 0 through 3 and bit 6 in the status byte.

NOTE

Some of the above Serial Roll operations are performed automatically by some controllers in response to certain programming st atements. Refer so Ute programming instructions for your particular controller.
1138. Status Byte.

3-139. A status byte consists of one 8-bit byte on the HP-IB data lines. A "I" in bit 6 indicates that the 3325A did request service (placed SRQ true), ende " 0 " in bit 6 indicates that it did not request service. The 3325A status byte contains the following information:

```
76543210 Status byte bits
(8765432 DIO lines)
    F RFx SSSS F= Flag; R= Request Service:
                        S = Status
```



```
                Failed Self Test
                Failed Amptd Cal
                Ext Rd Unlocked
                Main Osc Unlocked
    Sweep Flag. I = Sweep in Progress.
        Does not cause SRQ.
        RQS Message. 1 = Service Request.
        Busy Flog. I= 3325A busy processing
        data. Does not cause SRQ.
```


31 40. Busy Rag.

3-141. The Busy Flag (status byte bit 7) is high (1) while the 3325A is processing data. This bit can be monitored
by the controller to determine when the 3325A is ready for more data.
3142. Sweep Flag.

3-143. The Sweep Flag (bit 5 of the status byte) is high (1) while the 3325A is in the process of sweeping. This bit can be monitored by the controller to determine when the end of a sweep occurs.

3-144. Masking or Enabling Service Requests.
3-145. Bits 3 through 0 in the status byte can be masked so that the corresponding conditions will not cause a ser vice request. However, a "1" will still appear in the status byte if the condition exisis, and can be cleared only by a serial polt. At instrument turn-on all SRQ con-ditions are masked. The programming syntax for mask-ing and enabling SRQ conditions is:

Mnemonic, Data, EOS
Mnemonic = MS
Valid Data is shown in Tobte 3-11.
3146. Interrogating Program Errors.

3-147. The "Program Error" service request may result from the following Errors:

ASCII
 Numeric Error

Entry parameter out of bounds (for exam-ple, Freq e 61 MHz)

2 Invalid delimiter
3 Frequency wo large for function (for ex-ample, Function $=$ Triangle, Freq k I l kHz)

4 Sweep time too small or too large
5 Offset incompatible with amplitude, or amplitude incompatible with offset

6 Sweep frequency wo large for function; Sweep bandwidth wo small; Start fre-quency wo small (log sweep); Start fre-quency greater than stop frequency (log sweep)

7 Unrecognizable mnemonic received
8 Unrecognizable data character received
9 Option does not exist (High Voltage or Rear/Front)

Table 3-11. SRQ MaskIEnable Data.

ASCII Character	Bits 3 thru 0	System Fail Bit 3	Sweep Start Bit 2	Sweep Stop Bit 1	Program Error Bit 0
@	'0000	Mask	Man	Mask	Mask
A	0001	Mask	Mask	Mask	Enable
B	0010	Mask	Mask	Enable	Mask
C	0011	Mask	Man	Enable	Enable
0	0100	Mask	Enable	Mask	Mask
E	0101	Mask	Enable	Mask	Enable
F	0110	Mask	Enable	Enable	Mask
G	0111	Mask	Enable	Enable	Enable
H	1000	Enable	Mask	Mask	Mask
I	1001	Enable	Mask	Mask	Enable
J	1010	Enable	Mask	Enable	Mask
K	1011	Enable	Man	Enable	Enable
L	1100	Enable	Enable	Mask	Mask
M	1101	Enable	Enable	Mask	Enable
N	1110	Enable	Enable	Enable	Mask
O	1111	Enable	Enable	Enable	Enable

The programming syntax for interrogating error is:

$$
\text { A } \quad \text { Mnemonic }=\text { IER }
$$

\} "After receiving IER, the 3325A will send back the following the next time it is addressed to talk: Mnemonic, Data, CR (ASCII carriage return), LF \& E01 (ASCII line feed with E01 sein simultaneously)
Mnemonic = ER

Data $=\quad$ The ASCII numeric corresponding to the first error that occurred (see list above).

If no error occurred, the code returned is 0 . When the first error will be returned. After interrogation, the

3-148. Interrogating Entry Parameters.
3-149. Each entry parameter can be interrogated by the controller to determine its value. The programming Syntax for interrogating entry parameters is:

I = die ASCII character I and indicates interrogation desired.
' Valid mnemonics (Parameter to be interrogated):

$$
\begin{aligned}
& \mathrm{FR}=\text { Frequency } \\
& \text { AM }=\text { Amplitude } \\
& \mathrm{OF}=\text { Offset }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PH }=\text { Phase } \\
& \text { ST }=-\bullet \text { Sweep Start Frequency } \\
& \text { SP }=\text { Sweep Stop Frequency } \\
& \text { MF = Sweep Marker Frequency } \\
& \text { TI = Sweep Time }
\end{aligned}
$$

After receiving a parameter interrogation, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic. Data, Delimiter, CR (ASCII Carriage Return), LF \& E01 (ASCII Line Feed with E01 sent simultaneously)

Mnemonic $=$ The mnemonic of the parameter being in-terrogated

Data $=$ II digits of ASCII numerics equal to the value of the specified parameter plus decimal point. If the val ue is negative, the first digit is a minus sign.

Delimiter $=$ The data suffix mnemonic denoting the parameter value (see Paragraph 3-120)

NOTE

Only one parameter can be interrogated by each interrogation message.

3-150. Interrogating Function (Waueform).
3-151. The 3325A may be interrogated by the controller to determine the current function programmed. The prog ramming syntax for interrogating function is:

[^1]Mnemonic $=$ FU $=$ Function
After receiving IFU, the 3325A will send back the following the next time it is addressed to talk:

Mnemonic, Data, CR (ASCII Carriage Return), LF \& EOI (ASCII Line Feed with E01 sent simul-taneously)

Mnemonic $=$ FU
Data $=$ One ASCII numeric indicating function as follows:
= DC Only (Offset)
1 = Sine
2 = Square
3 = Triangle
4 = Positive Slope Ramp
$5=$ Negative Slope Ramp

3-152. Interrogating Miscellaneous Parameters.

3-153. The other parameters shown below can be inter-rogated by the controller to determine their present state. The programming syntax is:

1, Mnemonic, EOS
$\mathrm{I}=\quad$ The ASCII character 1 and indicates interrogation desired

Valid Mnemonics (parameter to be interrogated):
SM = Sweep Mode
RF = Rear or Front Output•
HV = High Voltage Output•
MA = Amplitude Modulation
MP = Phase Modulation
-Rear/Front output and High Voltage Output (Option 002) are mutually exclusive. If either RF or HV is inter-ro gated, the mnemonic and data returned will indicate the actual capability of the Instrument and its state. For example, if the High Voltage option is present and OFF, HVO will be returned in response to either IRF or $\mathbf{1 1 4 V}$.

After receiving an interrogation, the 3325A will send back the following the next Urne it is addressed to talk:

> Mnemonic, Data, CR (ASCII Carriage Return), LF \& E01 (ASCII Line Feed with E01 sein simul-taneously)

Mnemonic $=$ The mnemonic of the parameter being in-terrogated

Data $=\quad$ I ASCII digit specifying the state of the parameter. This is the same digit that would be used program the parameter to that state.

3-154. Usieg the Interrogate Capability.

3-155. When the 3325A is changed from local to remote operation or vice versa, it retains its currently pro-gramm ed state until this program is changed by the operator or controller. This feature can be useful in set-ting up a program string for HP-IB programming. For example, using the 3325 A in local, the operator can determine experimentally the parameters required to perform the Operation or test desired. Then the 3325A can be placed in remote and its function and entry parameters interrogated. Each item can be stored by the controller and then combined to form the 3325A pro-gram string to be incorporated into the total HP-IB pro-gram.

3-156. 3325A Programming Procedure.

- -157 . The following examples are given to itlustrate the basic procedure for developing a program. Program examples are shown in Appendix B-3, using the -hpModel 9825A Calculator as the system controller. Appendix A-3 diagrams the required messages.

Example 1:
Address controller to talk, 3325A to listen

Send Program Data

Address Controller To Talk, 3325A To Listen

Send Program Data

Example 2:
Address controller to talk, 3325A to listen

Send Program Data
Check for Require Service message

If yes, determine reason from 3325A Status Byte

Take corrective action if necessary

APPENDIX A
 SECTION III
 META MESSAGES
 BLOCK DIAGRAMMED

TRIGGER - The Trigger message causes all addressed instruments wich this capability to execute some predefined function simultaneously.

The 3325A does not have Trigger capability.

REN MOST 8E TRUE BEFORE EXE-
CUTING THE TRIGGER MESSAGE.

CLEAR - The Clear message may be implemented for addressed devices or for all devices an the bus capable of responding. In both cases the controller places the bus in the command mode to execute the message.

REMOTE - Only the system controller can ',face the device into the Remote operating con-dition. To implement the Remote message, the controller must set the REN line true. The HP-IB is then in the Remote Enable mode. The controller then sends the listen addresses of those devices that are to be placed in the Remote operating condition. Some instruments have been designed to enter the Remote mode as soon as REN is true.

LOCAL - The Local message will remove addressed devices from the Remote operating mode to local (front panel) control. The controller must place the HP-IB into the command mode and address to listen all devices that are to he returned to local. The Local message does not remove the HP-IB from the Remote mode, only the listening devices.

LOCAL LOCKOUT - The Local Lockout message prevents the operator from placing the instrument into local control from the front panel. The controller must be in the command mode to send the Local Lockout message.

REQUIRE SERVICE - The Require Service message is implemented by a device setting the SRQ line true. The Require Service message and, therefore, the SRQ line is held true until a poll is conducted by the controller to determine the sause of the request for service, or until the device no longer needs service.

> • REFER TO THE STATUS BYTE MESSAGE FON THE SPECIFICATIONS REGUIRED TO FORCE SRO FALBE.

STATUS BYTE - The Status Byte message represents the operational status of a single Instrument during a Serial Poll. A controller usually Serial Potts devices in response to a Require Service message. The controller requests device status from one device at a time. The status information byte (8 bits) sent by the device will teil whether that device needed service and why. A device will stop requesting service upon being Serial Polled, or if it no longer needs service. The controller initiates the message by placing the bus into the command mode, sending the Serial Poll Enable command, and addressing the specific devices to be polled, one at a time. The device then sends its Status Byte and clears the SRQ line provided the cause for the require Service message is no longer present. The controller then places the bus in the command mode to terminate the message with a Serial Poll Disable command.

STATUS BIT - The Status Bit message is sent by a device to the controller to indicate its operational status in response to a Parallel Polt. Parallel Polling consists of the controller requesting one bit of status from each device simultaneously. The Parallel Polt may consist of three types of operations: Configuring, Polling, and Unconfiguring. In Configuring, the controller assigns each device a logic level and bit (on the bus data lines) for a polt. response. During polling, each device responds on its assigned data line with the appropriate logie level. In Unconfiguring, the controller negates the bit and level assignments for all or selected devices. Several devices may be assigned to the same bit and level, causing their response bits to be logically ORed or ANDed.

3

OR

The 3325A does not respond to Parallel Poll.

PASS CONTROL - The Pass Control message transfers bus management responsibilities from the active controller to another controller. In order to pass control, the active controller must enter the command mode, send the talk address, and the HP-IB characters for talk control.

*THE RECEIVING CONTROLLER TAKES CONTROL AT THIS TIME.

The 3325 A does not respond to The Pass Control message.

ABORT - The system Controller implements the Abort Message to regain control of the HP-IB from the active controller.

APPENDIX 8
 SECTION III
 PROGRAMMING THE MODEL 3325A
 with the
 MODEL 9825A CALCULATOR

The following basic examples are provided to assist the Operator in developing programs for the Model 3325A in an HP-1B system which uses the -hp- Model 9825A Calculator as the system controller. The calculator must be equipped with a General I/O ROM and an HP-1B Interface set to select code 7 . The calculator (controller) normally holds the REN line true, unless the "lel 7" (local) command is sent. REN may be returned to the true state by the " rem 7" (remote) command.

Example 1: This is a basic program statement which accomplishes the following:

Address the controller to talk
Address the 3325A to listen
Sent Program Data:
Function: Sine
Frequency: 5 kHz
Amplitude: $3 \mathrm{Vp}-\mathrm{p}$
Offset: + 1.5 V
This portion places the bus in the command mode, addresses the calculator to talk and the 3325A to listen

The last parameter programmed can be changed without sending the parameter mnemonic. For example, following the program string above, the offset (OF) may be changed to 1 V by sending " IVO".

Example: 2: This program sets up sweep parameters and initiates a single sweep.
Address the controller to talk
Address the 3325A to listen
Send Program Data:
Function: Sine
Amplitude: 3 Vrms
Start Frequency: I kHz
Stop Frequency: 10 kHz
Marker Frequency: 5 kHz
Sweep Time: 2 seconds
Start Single Sweep

NOTE

To starr a single sweep the mnemonic "SS" raust be sent twice. The first "SS" sets die 3325A to the Start frequency, and the second "SS" starts the sweep.

FU I CVRST K H3P lai<HVIP-ik: -11" I 2SE 39S3 "

Example 3: This example checks the "Require Service" status of the 3325A and if it did re-quest service, determines the reason.

0
e: wrt, 7179 'MSOF
U3AM 3VOST 1K HSP1
5K HF51(HT
I5SESC
1: wait 1090
if bit $(6,3)=1$
; Prt "Request
Service"; esb 533
4: dsp
PROCEED WITH
PROGRAM"; stp
5: if bit (0) $=1^{-}$
;Prt "Prosram Error":
wrt 717,w "IER";
red 717;E_
6: if E=1;prt "
Parameter out
of Bounds"
7: if E=2;prt "
Invalid Delimi
ter"
3: if E=3;prt "
Frei too lar9e
for Function"
9: if E=4;prt "
Sweep Time
Invalid"
19: if $\mathrm{E}=5$; Prt
"Offset ArnPtd
Incompatible"
11: if E=6;prt "
Sweep Paramete
r Error"
12: if E=7;Prt "
Unrecoeinizable
Mnemonic"
13: if E=8;Prt "
Unrecoenizable
Data Char"
14: if $\mathrm{E}=9$;
prt "Option
Does Not
Exist"
I. Enables all service request conditions.
2. Program data contains an error. Stop frequency (SP15KH) is too large for triangle function (FU3).
3. Wait statement allows time for sweep to start before reading status.
4. Read status byte from the 3325A and place in the calcutator variable "S".
5 If bit 6 of the status byte $=1$, the 3325 A did request service. Go to subroutine to determine the reason.
6. Programming continues at this point if the 3325A did not request service or upon returning from the su broutine.
7. If service request resulted from a program string error, interrogate the 3325A to determine the error code and place in the calcutator variable "E".
8. Determine the nature of the program error.
15: if bit(19
53=1;prt "Sweep
StoPPed"
16: if bit(2, s)
=1:prt "Sweep
Started"
17: if bit (39 8)
=1; prt "SYsti
m Fai1ure"
$18:$ if bit (5, s)
$=1:$ prt "Sweep
in9"
$19:$ if bit (79
S1=1:Prt "Busy"
9. Determine other reason for service request and if " Sweeping" or "Busy" Rags were true.
10. Return from subroutine.
11. Printer records the results of the serial pot!.
12. If the program string were corrected to make all data valid, this printout would result from the above program.

```
Request Service Pro9ram Error ep
Sweep Parameter
Error
```

Reuest Service
Sweep Started
Sweepinie

Example 4: The 3325A can be set up manually to the optimum parameters needed for the test to be performed, then the calculator can interrogate the 3325A to determine and record these parameters. This example program interrogates:

Function: !FU
Frequency: 1FR
Amplitude: IAM
DC Offset: 10F

Elt tdrt. 7179 "IFLI"
red 7175 w : f
xd b
1: prt "Function =", 14

Line 0 Write statement interrogates Function; read statement addresses 3325A to talk, calculator to listen, and places data in variable W; "fxd 6" fixes six decimal places.

Line 1 Because only numerical data can be placed in the variables, print statements may include in quotes the parameter interrogated.

2: wrt 7175" IFR" ; red 7175F
3: prt. "Freauenc.
-r = '.F." Hz"
4: wrt 7175" IRM" ; red 7175R
5: prt "Rmplitud e ="
9 A
6: wrt 7175" IOF" ; red 71750
7: prt "Offset =" 505 "V"

Lines 2-7 Other parameters are interrogated. Amplitude data acquired by this program does not indicate the units programmed. Frequency is always returned in Hz and DC Offset in Volts.

```
Function =
    1.000000
Frequency =
        1008.800080
Hz
Amplitude =
22.310000 Offset =
    0.001000
```

If the calculator is equipped with a String Variable ROM, the interrogate program may be changed to the following. Because string variables accept both alpha and numeric characters, the resulting printout includes the mnemonics and delimiters (units).

```
0: dim WS [50] F$
C50] Re[50] 0$ (
50]
1: wrt 7175" IFU"
    ; red 7175la;
prt
2: wrt 7175"
IFR" ; red 717.
F$9• prt F$
3: wrt 717. "IAH"
; red 717.RS;
prt
4: wrt 71.75"
10F" 1red 717.
0$1 prt 0$
```

FU1 FR00001000. $000 \mathrm{HZ} \mathrm{AM}{ }^{13} 30000022$. 3100E OF00000. 001000V0

Example 5: The 3325A can be made to sweep amplitude (in steps) if a for/next statement is used in the calculator program. It is recommended that the upper and lower amplitude limits selected be on the same range because irregularities in the sweep will occur if the attenuator relays are switched.

```
0: wrt 717,"FU1F
R1KHOFOVORM3V0"
1: for I=3
to 10 by .
liwrt 717.Iy"
vo"
2: next I
3: for 1=10
to 3 by -.1;
wrt 717,I,"Vo"
4: next I
5: st* 1
```

Line 0 DC Offset (OFOVO) is programmed to Zero because any offset would be incompatible with the 10 V maximum amplitude of this sweep.

Line I The sweep limits (3 to 10) are on the same range. The sweep increment is in . 1 V steps. Because amplitude was the last parameter programmed, the write statement does not require the "AM" mnemonic.

Line 2 The calculator returns to Line 1 until $\mathrm{I}=10$, then proceeds to Line 3.

Line 3 The sweep decrement is also in .1 V steps.
Line 5 Return to Line 1 to continue sweeping.

The sweep speed is determined by calculator and 3325A data transfer and processing times. If a slower sweep time is desired, wait statements may be added before the "nem I" statements.

HP-IB IMPLEMENTATION WCRKSHEET

DEVICE IDANIITCAIION													
LISTEN													
ADDRESS TALK													
DECIMAL													
MESSAGE						EVICE I	IMPLEMEN	NTATION					
DA JA													
TRIGGER													
CLEAR													
LOCAL													
REMOTE													
LOCAL LOCKOUT													
CLEAR LOCKOUT AND SET LOCAL													
REOUIRE SERVICE													
STATUS BYTE													
STATUS BIT													
PASS CONTROL													
ABORT													

meS=SEND ONLY R=RECEIVE ONLY SR=SEND AND RECEIVE N=NOT IMPLEMENTED

4-1. INTRODUCTION.

4-2. This section contains tests which are in-cabinet procedures to determine whether the Instrument is operating properly. In the Operating and Service Manual two sets of procedures are provided:
a. Operational Verification procedures which are recommended for incoming inspection and general a fter-repair tests.
b. Performance Tests which compare the Instrument operation to the specifications listed in Table 1-1. The Operating Supplement contains only the Opera-tional Verification Procedures.

4-3. CALCULATOR-CONTROLLED TEST.

4-4. The only calculator-controlled test in these procedures tests the HP-IB interface circuits for proper Op eration. All input and output lins are tested. The program used for this test is written specifically for the -hp- Model 9825A Calculator but may be adapted to other controllers. The calculator prints the test results. This test is recommended for both the Operational Verification Checks and the Performance Tests.

4-5. OPERATIONAL VERIFICATION.

4-6. The following procedures are recommended for incoming inspection and for testing the instrument after r epair. Additional tests to be performed following repair of certain circuits are indicated in Section VIII. An Operational Verification Record is Iocated at the end of this section. For ease of recording the test data at various times, copies of the blank Operational Verifica-ti on Record may be made without written permission from Hewlett-Packard.

4-7. Operational Verification includes the following procedures:

```
Par. No. Test
    4-10 Self Test
    4-12 Sine Wave' Verification
    4-14 Square Wave Verification
    4-16 Triangle and Ramp Verification
    4-18 Amplitude Flatness Check
    4-20 Sync Output Check
    4-22 Frequency Accuracy
    4-24 Output Level and Attenuator Check
    4-26 Harmonie Distortion Test
    4-28 Close-in Spurious Signal Test
    4-30 HP-IB Interface Test
```


4-8. Required Test Equipment.

4-9. A list of test equipment required for die Operational Verification procedures is given in Table 4-1. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended m odel.

4-10. Seil Test.

4-11. This test uses the control, ROM, and control clock circuits to verify operation of these and other ci cuits. The following front panel indications result from this test.

LED check: Turns an all LED's for about two seconds
The following messages are displayed for about one second:

> OSC FAIL - displayed only if the VCO is not
> con-trolled (displayed continuously after test)
> PASS or FAIL 1 - tests AMPTD CAL of sine wave
> PASS or FAIL 2 - tests AMPTD CAL of square wave
> PASS or FAIL 3 - tests AMPTD CAL of triangle

Press the blue entry prefix key, then press SELF TEST (AMPTD CAL) key. All LEDs should light, and the display should not indicate any failures.

4-12. Sine Wave Verification.

$4-13$. This procedure visually checks the sine wave out-put for the correct frequency and any visible irregularities.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, set the input switch to the 50 -ohm posi-tion. If your oscilloscope does not have a 50 -ohm input, use a 50 ohm load (-hp- Model I1048C 50-ohm Feed-thru Termination) at the input.
b. Set the 3325A as follows:

High Voltage Output (Option 002) Off
Function Sine
Frequency 20 MHz
Amplitude 10 V p-p

Table 4-1. Test Equipment Required for Operational Verification.

Instrument	Critical Specifications	Recommended Model
Oscilloscope	Vertical: Bandwidth: dc to 100 MHz Deflection: 1 V to $5 \mathrm{~V} /$ div Horizontal: Sweep: $.05 \mu \mathrm{~s}$ to $1 \mathrm{~s} / \mathrm{div}$ External Sweep Input	-hp-1740A
Electronic Counter	Frequency measurement to 20 MHZ Accuracy: ± 2 counts Resolution: 8 digits	$\begin{aligned} & \text {-hp- 5328A } \\ & \text { with Opt. } 040 \text { or } 041 \end{aligned}$
DC Digital Voltmeter	Ranges: 0.1 V to 100 V Resolution: 6 digits Accuracy: $\pm 0.1 \%$	-hp- 3455A
50-ohm load	Accuracy: $\pm 0.2 \%$ Power Rating: 1 W	-hp- 11048C
High Frequency Spectrum Analyzer	Frequency Range: 1 MHz to 80 MHz Amplitude Accuracy: ± 0.5 d8 Noise: $>70 \mathrm{~dB}$ below reference	$\begin{aligned} & \text {-hp- 141T/8552B/8553B/ } \\ & \text { 8566A/8568A } \end{aligned}$
Low frequency Spectrum Analyzer	Frequency Range: 100 Hz to 50 kHz Amplitude Range: 2 m V to 20 V Noi se: $>80 \mathrm{~dB}$ below input reference or -140 d 8 v	-hp-3580A/3585A
Resistor	56.201/8W 1.0\%	-hp- 0757-0395
Adapter	BNC female-to-dual banana plug	-hp-1250-2277
Calculator	HP-16 Control Capability	-hp- 9825A with 98034A Interface, General I/O ROM, Extended I/O ROM
Resistor	4709 2W 5\%	-hp- 0698-3634

c. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{cliv}$, horizontal to $.05 \mathrm{gs} / \mathrm{cliv}$.
d. The oscilloscope should display one cycle per divi-sion, approximately five divisions peak-to-peak.
e. Change 3325 A frequency to 1 MHz .
f. Change oscilloscope horizontal control to . $1 \mathrm{p} . \mathrm{s} / \mathrm{div}$.
g. The oscilloscope should display one sine wave hav-ing no visible irregularities.

High Voltage Output (Option 002)

h. Set the oscilloscope vertical control to $5 \mathrm{~V} / \mathrm{div}$.
i. Set the oscilloscope input switch to 1 Mf 2 dc coupl-ed position (or disconnect external 50 -ohm load).
j. Press 3325A High Voltage Output key (lower right corner of front panel).
k. Change 3325A amplitude to 40 V p-p. The oscilloscope should display one sine wave approximately eight divisions peak-to-peak having no visible irregularities.
I. Press the High Voltage Output key again to turn the option off.

4-14. Square Wave Verification.

4-15. This procedure checks the square wave outpu t for frequency, rise time, and abberrations.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740A, sec the input switch to the 50 -ohm Position. If your oscilloscope does not have a 50 -ohm input, use a $50-$ ohm load (-hp- Model 11048C 50-ohm Feed-thru Termination) at the input.
b. Set the 3325A as follows:

High Voltage Output (Option 002) Off
Function Square
Frequency 1 MHz
Amplitude 10 V p-p
c. Set the oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to $.2 \mu \mathrm{~s} / \mathrm{div}$. The oscilloscope should display t wo square waves, approximately five divisions peak-topeak.
d. Switch the oscilloscope vertical control to $1 \mathrm{~V} /$ div. so that the abberrations (overshoot and ringing) can be measured. Aberration excursion should be less than 500 m V ($1 / 4$ div.).
e. Repeat Step d at 2 kHz and $.1 \mathrm{~ms} /$ div.
f. Adjust the oscilloscope vertical and horizontal controls so that the square wave rise time between the 10% and 90% points can be measured. Rise time should be less than 20 nanoseconds.

4-16. Triangle and Ramp Verification.
4-17. This procedure Checks the triangle and ramp output Signals for frequency, shape, and ramp retrace time.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. I f the oscilloscope is an -hp- Model 1740A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 -ohm loac (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325A as follows:

High Voltage Output (Option 002) Off Function Triangle
Frequency 10 kHz
Amplitude 10 V p-p
c. Set the oscilloscope vertical control to $2 \mathrm{~V} /$ div, horizontal to $.1 \mathrm{~ms} /$ div. The oscilloscope should display one triangle wave per division, approximately live divisions peak-to-peak.
d. Change the 3325A function to positive slope ramp. The display should be one ramp per division, approxi-mately five divisions peak-to-peak.
e. Change 3325A function to negative slope ramp. The display should be one ramp per division, approx-i mately five divisions peak-to-peak.
f. Change the oscilloscope horizontal and vertical controls so that the ramp retrace time from the 90% to 10% points can be measured. Retrace time should be less than 3 us.
g. Change 3325A function to positive slope ramp and repeat Step f.
h. Change 3325A function to triangle.
i. Set oscilloscope vertical control to $2 \mathrm{~V} / \mathrm{div}$, horizontal to 10 us/div. The oscilloscope should display one triangle wave with no visible irregularities in either slope.

4.18. Amplitude Flatness Check.

4-19. This procedure provides a visual check of the sine wave amplitude flatness.

Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A signal output to the oscilloscope vertical input. If the oscilloscope is an -hp-Model 1740 A , set the Input switch to the $50-\mathrm{ohm}$ Position. If your oscilloscope does not have a 50 -ohm input, use a 50-ohm load (-hp- Model 11048C 50-ohm Feed-thru Termination) at the input.
b. Set the 3325A as follows:

> High Voltage Output (Option 002) Off
> Function Sine
> Frequency 2 kHz
> Amplitude 10 V p-p
> Sweep Start Freq 0 Hz
> Sweep Stop Freq 20 MHz
> Sweep Marker Freq 5 MH
> Sweep Time 01 sec
c. Connect the 3325A X-Drive output to the oscilloscopes channel B input. Connect the 3325A signal output to the oscilloscope's channel A input.

- d. Set the oscilloscope as follows:

Display A vs B
Channel A Sensitivity 1V/div
(uncal - adjust for full vertical deflection)
Channel B Sensitivity 0 5V/div
(uncal - adjust for full horizontal sweep)
Settings may vary frdm one oscilloscope to another. Note that whichever scope is used, it should be operated in a "X-Y" mode, with the 3325A X-Drive output driving die horizontal (X) sweep and the signal output driv-i ng the scope's vertical (Y) channel.

e. Press the 3325A START CONT key.

f. The oscilloscope display should show a sweep that is essentially f1at, dropping no more than 3.5%. Any D.C. variations should be ignored, taking the peak-to-peak rea ding for flatness comparison.

4-20. Sync Output Check.

4-21. This test verifies the sync output signal levels.
Equipment Required: Oscilloscope (-hp- Model 1740A)
a. Connect the 3325A sync output to the oscilloscope vertical input. If the oscilloscope is an -hp- Model 1740 A, set the input switch to the 50 -ohm position. If your oscilloscope does not have a 50 -ohm input, use a 50 ohm load (-hp- Model 11048C 50-ohm Feedthru Termination) at the input.
b. Set the 3325A function to sine, frequency to 20 MHz.
c. Adjust the oscilloscope controls to measure the high and low voltage levels of the sine square wave. high level should be greater than +1.2 V and the low level should be less than $\mathbf{+ 0 . 2} \mathrm{V}$.

4-22. Frequency Accurecy.

4-23. This test compares the accuracy of the 3325A out-put signal to the specification in Table 1-1: $\pm 5 \mathrm{x}$ 10^{4} of selected frequency.

Equipment Required: Electronic Counter (-hpModel 5328A, calibrated within three months or with an accurate 10 MHz external reference input)
a. Connect the 3325A signal output to the electronic counter channel A input with a 500 load. Allow 3325A and counter to warm up for 20 minutes.
b. Set the 3325A output as follows:

Function S ine
Frequency 20 MHz
Amplitude 099 V P-P
DC Offset 0 V
c. Set the counter to count the frequency of the A input with 0.1 Hz resolution, and adjust for stable triggering. Electronic counter should indicate 20 $000 \mathbf{0 0 0 . 0 H z} \pm 100 \mathrm{~Hz}$.
d. Change 3325A function to square wave. Frequen-cy automatically changes to 10 MHz . Electronic counter should indicate $10000000.0 \mathrm{~Hz} \pm 50 \mathrm{~Hz}$.
e. Change 3325A function to triangle. Frequency automatically changes to 10 kHz . Move the counter input to
the sync output of the 3325A. Set the counter to average 1000 periods. Electronic counter should indicate 100 f 00 $0.00 \mathrm{~ns} \pm 0.5 \mathrm{~ns}$.
f. Change 3325A function to positive slope ramp.

Electronic counter should indicate $100,000 \mathrm{~ns} \pm .5 \mathrm{~ns}$.

4-24. Output Level and Attenuator Check.
4-25. This procedure checks the output level and the at-tenuator by using the "dc only" function.
Equipment Required:
DC Digital Voltmeter (-hp- Model 3455A)
50-ohm Feedthru Termination (-hp- Model 11048C)
a. Connect the 3325A signal output through a 50ohm feedthru termination to a dc digital voltmeter input.
b. If the instrument has High Voltage Output Option 002, make sure the High Voltage Output is Off (High Vol tage indicator light in the center of the "SIGNAL" key in the lower right corner of the front panel if Off).
c. Press whichever function key is presently active, indicated by a lighted indicator in the center of the key. This removes the ac output. The indicator in the center of the DC OFFSET key should light.
d. Set the 3325A dc offset to -5 V , then press the AMPTD CAL key.
e. The dc digital voltmeter reading should be -4.980 V to -5.020V.
f. Change 3325A dc offset to (+)5 V. Digital voltmeter reading should be +4.980 V to +5.020 V .
g. Change 3325A dc offset to the following voltages. The voltmeter readings should be within the tolerances shown.

\[

\]

High Voltage Output Option O02 DC Offset
h. Remove the 50 -ohm feedthru termination and connect the 3325A output directly to the digital voltm eter input.
i. Press the "SIGNAL" key in the lower right corner of the 3325A front panel to select High Voltage Output (Option 002). Lighted indicator in the center of this key indicates High Voltage Output is on.
j. Set 3325 A dc offset to 20 V . Digital voltmeter reading should be +19.775 V to +20.225 V .
k. Set 3325A dc offset to - 20 V. Digital voltmeter reading should be -19.775 V to -20.225 V .

4-26. Harmonic Distortion Test.

4-27. This procedure tests the harmon c distortion of the 3325 A sine wave output against the following specifications from Table 1-1.

Harmonie Distortion (rela ve to fundamental)

\quadFundamental Frequency	No Harmonic Greater Than
0.1 Hz to 50 kHz	-65 dB
50 kHz to 200 kHz	-60 dB
200 kHz to 2 MHz	-40 dB
2 MHzz to 15 MHz	-30 dB
15 MHz to 20 MHz	-25 dB

Equipment Required:
High Frequency Spectrum Analyzer (-hp- Model 141T/ 8552B/85538/8566A/8568A)
Low Frequency Spectrum Analyzer (-hp- Model 3580A/ 3585A)
50-ohm Feedthru Termination (-hp- Model 11048C)
Resistor 4700 2W $5^{0} 7$ a (-hp- 0698-3634)
Resistor 56.22 1/8W 1 Wo (-hp- 0757-0395)
a. Set the 3325 A output as follows:

High Voltage Output (Option 002) Off	
Functio	Sine
Frequency	20 MHz
mplitud	999 mVp

b. Connect the 3325 A signal output to the high frequency spectrum analyzer's 50 ohm input.
c. Set the spectrum analyzer controls to display the fundamental and at least four harmonics. Verify that all harmonics are 25 dB below the fundamental.
d. Set the 3325A to the following frequencies and verify that all harmonics are below the specified levels, relative to the fundamental.

15 MHz	-30 dB
2 MHz	-40 dB
200 kHz	-60 dB

e. Disconnect the 3325A from the high frequency spec-trum analyzer and connect it to the low frequency spec-trum analyzer's 50 ohm input.
f. Set the 3325 A frequency to 50 kHz and the a pli-tude to 9 . 99 mVp -p.
g. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. (lt may be necessary to decrease the analyzer's video bandwidth to separate the harmonics from the noise floor.) Verify that all harmonics are at least 65 dB below the fundamental.

Figure 4-1. Harmonie Distortion Verification (High Voltage Output/.

It Set the 3325A to the following frequencies and verify that all harmonics are 65 dB below the fundamental. 10 kHz

IkHz
100 Hz

High Voltage Output (Option 2)

i. Connect the 3325A signal output to the low fre-quency spectrum analyzer's 500 input. (See Figure 4-1.)
j. Press the "high voltage output" key an the 3325A. Set the amplitude to $40 \mathrm{Vp}-\mathrm{p}$ and the frequency to 100 Hz .
k. Set the spectrum analyzer controls to display the fundamental and at least three harmonics. Verify that all harmonics are 65 dB below the fundamental.

1. Set the 3325A to the following frequencies and verify tiv e to the fundamental.
$10 \mathrm{kHz}-65 \mathrm{~dB}$
200k Hz -60dB

I $\mathrm{MHz}-40 \mathrm{~dB}$
m . Press the high voltage output key to deactivate the high voltage output.

4-28. Close•In Spurious Signal Test.

4-29. This procedure tests the sine wave output for spurious signals which may be generated by the 3325A frequency synthesis circuits. The spurious signals must be more than 70 dB lower than the fundamental signal.

```
Equipment Required: Spectrum Analyzer (-hp3585A/ 8566A/8568A)
```

a. Set the 3325A as follows:

High Voltage Output (Option 002) Off Function Sine

Frequency 20.001 MHz
Amplitude -2.99 dBm
DC Offset 0 V
b. Connect the 3325A Signal output to the spectrum. analyzer's 50 ohm input.
c. Set the spectrum analyzer controls for a center frequency of 20.001 MHz , a resolution bandwidth of 30 Hz , a $100 \mathrm{~Hz} /$ div frequency span, with the fundamental referenced to the top of the display graticule.
d. Set the spectrum analyzer center frequency to 20. $002,20.003$, and 20.004 MHz , verifying in each case that all spurious signals are more than 70 dB below the f undamental.

4-30. HP-113 Interface Test.

4-31. The following calculator program tests the operation of the 3325A HP-IB interface circuits. The pro-gra m is written for an -hp- Model 9825A calculator but may be adapted for other controllers.

Equipment Required:
-hp- Model 9825A Calculator equipped with:
98034A HP-IB Interface (Set to select code 7)
Any combination of ROM's that includes a General I/O ROM and an Extended I/O ROM
a. Connect the calculator interface cable to the 3325A rear panel HP-IB connector. It is recommended that no other equipment be connected to this HP-IB during this test.
b. Enter the program into the calculator.
c. Press RUN. Tests 4 through 7 in this program require the operator to press CONTINUE if the test passec , or 1 CONTINUE if the test fails. 1 f the Test 4 question (SRQ LIGHT ON?, $1=\quad$ NO) does not appear in the calculator display within 30 seconds alter start of the program (RUN), the 3325A and calculator are not interfacing properly. The calculator may display an er-ro r indication that will identify the problem. If not, the 3325A HP-IB circuits are probably not operating cor-rec tly.

3: $\operatorname{Pr} \sim \mathrm{HP}-\mathrm{T} 8 \mathrm{TEST}^{\wedge}$

oat~717^, H
6: if $\sim 1 \sim 13 ; 717+A$

7: clr A
8: rem 7
9:

15:
16: 'TEST 2,3 SETUP":
C|ourtho3325AtoTun-onStato
Sei HF'|BRornntnEnab|o(Se|oot Code 7)
-Sei F, eqtol234.50789O Hz, Anop^dto5OnnV
Store 3u,tinqnio Register 3
C|eartho3325/\

24

2~: wrt H, "IFR_!ntonngutoFnxluonoy

$25:$ \qquad ConoparotuFroquonoy 3 turnd

27 :
|nte, rogateAnop|itvde
29: red FlH
H\# $1+\mathrm{r} 3$ RoadAnop|hudu

31 :

```
32: " T E ~ T
23:wr~H,^ST~KH SP10KH SM1 TI1@SE 1 F SSSS'LünSvvo*p1—lokHz.Eneb|oSROP0aok
34: ~li 7;1~1 7_Cloa, Interface, Interface tnLonu|
3~~ beer~en~ " ~R0 LI~HT 0N?;1~NO"~r4 _ Did3325A/nhjvK:SR0?
37: "TEST 5:
38: C;
39: rem 7 Set RomotoEnab|e
40: red H~S ___Roadf,onothe3325A
41: beep;ent "TRLK L~~HT O~~n/1-U8~ /r5__Did3325Areapvnd*o Talk Cun"roand7
43: TEST6":
Write totho3325A, Interface toLoca|
~5: b~ep;ent `~TSTEH LI~HT ON?,1~~\beta"~r~
```

\qquad

``` Did3825Ar*spood"o Listen Command?
Ronnote|nturfano. Write to 3325A'
~3: rem 7;wr~ H;~1i 7
Cloar|n,erfauo
49: be~p;en~ ^RcM8TE LI~HT 0N:~ 1 ~ H0^~r7 —_Didthe3325ARnupondtoRenovte?
j0
5 2
TEST R~SULT~:'
                                0
```



```
\(5 \mathrm{R}:\)
59 end
*24386
```

Variables used in this Test Program:

> A Address of 3325 A (defaults to 717)
> F Frequency read from 3325 A in test \#1
> G Frequency read from 3325 A in test \#2
> H Amplitude read from 3325 A in test \#3
> I Counter used to print test results
> rt-r7 Test results $(0-$ Pass, $1=$ Fall)
> S Status read from 3325 A in test \#5

Samples of Program Printouts:

OPERATIONAL VERIFICATION RECORD

Hewlett-Packard

Tested by
Model 3325A
Synthesizer/Function Generator Date \qquad Serial No \qquad

Par. 4-10 Self Test Passed

Par. 4-12 Sine Wave Verification
Step d 20 MHz : Frequency and Amplitude Passed
Step g Signal Purity Passed
High Voitage Output (1 MHz) Passed

Par. 4-14 Square Wave Verification
Step c Frequency and Amplitude Passed
Steps d \& e Abberations Passed
Step f Rise Time Passed

Par. 4-16 Triangle and Ramp Verification
Step c Triangle Freq. and Amptd. Passed
Step d + Ramp Freq. and Amptd. Passed
Step e - Ramp Freq. and Amptd. Passed
Step f - Ramp Retrace Time Passed
Step g + Ramp Retrace Time Passed
Step i Triangle Linearity Passed

Par. 4-18 Amplitude Flatness Passed

Spec
Par. 4-20 Sync Output Check High > + 1.2 V

$$
\text { Low }<0.2 \mathrm{~V}
$$

Par. 4-22 Frequency Accuracy Spec,

Operational Verification

Par. 4-24 Output Level and
Attenuator Check (DC Offset
Only)

Entry Min.		Max.
-5V	-4.980V	-5.020V
(+15 V	+4.980V	+5.020V
(s1 1.499V	(\pm) 1.49300 V	(\pm) 1.50499 V
499.9 mV	+0.49790 V	+0.50190 V
149.9 mV	+0.14930 V	+0.15050 V
49.99 mV	+0.04979 V	+0.05019 V
14.99 mV	+0.01493 V	$+0.01505 \mathrm{~V}$
4.999 mV	+0.04979 V	+0 005019 V
1.499 mV	+0.001479 V	+0 001519 V

* All entries and limits are \pm

High Voltage Output (Option 002)

20 V	$* 19.775 \mathrm{~V}+20.225 \mathrm{~V}$
-20 V	$-19.775 \mathrm{~V}-20.225 \mathrm{~V}$

Par. 4-26 Harmonic Disto tion
All Harmonics Below:

20 MHz	-25 dB
15 MHz	-30 dB
2 MHz	-40 dB
200 kHz	-60 dB
50 kHz	-65 dB
10 kHz	-65 dB
1 kHz	-65 dB
100 Hz	-65 dB

High Voltage Output (Option 002)
$100 \mathrm{~Hz}-65 \mathrm{~dB}$
$10 \mathrm{kHz}-65 \mathrm{~dB}$
$200 \mathrm{kHz} \quad-60 \mathrm{~dB}$
$1 \mathrm{MHz}-40 \mathrm{~dB}$
Par. 4-28 Close-In Spurious Signal Test

Par. 4-30 HP-I8 Check
Passed

[^0]: 10631 A 1 meter
 1063IB 2 meters
 1063IC 4 meters

[^1]: 1, Mnemonic, EOS
 I =
 The ASCII character I and indicates interrogation desired

