MODEL 150
 and
 MODEL 150 R
 DC MICRO VOLT.AMMETER
 INSTRUCTION MANUAL.

KEITHLEY INSTRUMENTS, INC. CLEVELAND, OHIO
SECTION
INTRODUCTFON I
SPECIFICATIONS II
OPERATION III
A. Operating Controls
B. Preliminary Set-up
C. General Precautions

1. Source Resistance
2. Shielding
3. Thermal FMF
4. Input Noise
5. Checking the Zero Point
D. Measuring Voltage
6. Direct Moasurement
7. Small Variations
8. Differential Voltages
E. Measuring Current
9. Direct Measurement
10. Small Variations
F. Other Applications
11. Null Indicator
12. Megohmmeter
CIRCUIT DESCRIPTION IV
A. Input Circuit
B. AC Amplifier
C. DC Amplifier
D. Zero Supprension
E. Othor Controls
F. Power Supply
MAINIENANCE V
General Notes
Trouble Shooting
Voltago-Resistance DiagramCircuit Schematic DiagramReplaceable Parts List

The Model 150 Micro Volt-Ammeter is a stable, versatile instrument for moasuring extremely low level DC signals. It functions as a voltmeter from one microvolt to one volt full scale, and as an ammeter from one milliampere to one hundred micro-microanperes full scale. It also opcrates as a DC amplifier with gains up to ten million for driving recorders.

The very low notse level of the Model 150, together with its lone term stability make it ideal for many measurements roquiring oxtreme power sensitivity.

Typical applications include moasuring the output from strain gaces, thermopiles, thermocouples, bolometers, phototubes, ionization chamburs, scintillation countors, and barrier layer colls. Othor applications are found in cell studies, measurement of electrochemical potentials, electrolytic corrosion studies, molecular weight analysis and Hall offect studies.

In addition to its use as a direct indicator of minute potentials and currents, the Modol 150 may also be usod as a null detector in Wheatstone or Mueller bridges, or with an extornal vol.tage source ab a meg-mogohmmeter.

An important feature of the instrument is zero suppression up to 100 times full scale, in place of the usual more limited meter zero. This permits measurements of small signals in the presence of large thormal EMF's or other masking DC signals.

VOLIMETEIR SFECIFICATIONG

RANGES: 13 overlapping ranges in $1 x$ and $3 x$ steps from 1 - microvolt to 1 volt full scale on a zero-center meter.

ZERO STABILITY: After a one hour warm-up within +0.1 microvolt $\pm 2 \times 10^{-5} \mathrm{R}$ microvolts per day, where R is the source resistance in ohms.

NOISE: Vith the inout shorted, less than 0.03 microvolt peak to peak (0.006 microvolt RMS). At various source impedences the noise is given $\mathrm{ky} \mathrm{E}=6.5 \times 10^{-4}$ ($\mathrm{R}+$ 2000) $\frac{1}{2}$ microvolts peak-to-peak since the ohmic input resistance is added to R, the source resistance.

ACCURACY: 2% of full scale on all ranges.
INPUT AND SOURCE RESISTANCE: As tabulated below unless resistora shunting the input are requested, in which case the input resistance is look on the microvolt ranges and 1 megohm on the millivolt ranges. The maximum source resibtance specifications on the 1 and 3 microvolt ianges hold with or without shunting input resistance.

RANGE:

Input Resistance Greater than

1 megohm
3 mogohms
10 megohms
30 megohms
90 megohms

Maximum Source Resistance
1 microvolt
3 microvolts
10 microvolts
30 microvolts
100 microvolts
and above

RPSPONSE SPEDD: (10 to 90% of full scalc.). With maximum specified source resistance, less than one second on all ranges excopt the 1 microvolt range whore it is two seconds. With source resistances less than 10% of maximum source resistance, response is within 0.5 second on all ranges, except the 1 microvolt range where it is within 1 second.

VOLTAGR ZFRO SUPPRFSS: Rancos, Oft, plin or minus 10,100 , 1000 and 10,000 microvolta; and 0.1, 1.0, $10.0,100.0$ millitvolts corrospondine to tho MICROVOLTS and MILLIVOLIS positions on tho function switch. Tho accuracy of the aupreasion ranees is upproximately 20% and the stability i.s such that 100 times full scale may be suppressed.

AMMETER SFECIFICATIONS

RANGES: 15 overlapping ranges in $1 x$ and $3 x$ steps frou 10^{-10} to 10^{-3} ampere full scale on a zero center meter.

STABIIITY: After one hour warm-up, within plus or minus $2 x$ 10-11 ampere per day.

NOISE: Less than $2 \times 10-12$ ampere peak to peak.
ACCURACY: Plus or minus 3% of full scalo on all rangos.
VOLTAGE DROP: 100 microvolts on the millimicroampere ranges, I millivolt on the microampere ranges.

INPUT RESISTANCE: Equal to 1×10^{-4} divided by current range on microamperes. (Input resistance on the 10-3 range is one ohm, rising to one megohm on the 10^{-10} ampere range).

RESFONSE SPEED: "One second except on the 10^{-10} range where it is two seconds.

CURRENT ZERO SUPPRESS: A maximum of 100 times full scale zero suppression on any range. Accuracy and stability are tho same as for voltage zerc suppress.

GENERAL SFECIFICATIONS

RECORDER OUTPUT: Plus or minus 10 volts at five milliamperes for full-scale deflection on any range.

OUTPUT IMPEDANCE: Leas than 10 ohms below 1 cps .
60 CPS REJECTION: Greater than 50:1.
INPUT ISOLATTON: Negative terminal may be grounded or floating up to plus or minus 400 volts with respect to the case. A link is provided for grounding the negativo terminal to the case.

POWER REQUIREMENTS: $117 / 230$ volts, 50 watts, 60 cps only. 50 cps models on special order.

A. OPMRATHIGG CONTROI.S

The controls of the Model 150 are simple and conveniently placed. Their functions are as follows:

ON-OFF switch is located to the right of the panel meter.

FUNCTION switch selects the function which is to be uscd; millivolts, microvolts, microamperes o: millimicroamperes.

RANGE switch selects the full scale multiplier of the function selected by the FUNCHION switch. Note that the 0.3 and 0.1 positions are to be used in current moasurement only.

ZERO SUPPRESS controls consist of the ZERO RANGS switch which selects the course range of supprossing voltage in discreet steps and the ZERO SEP potentiometer which gives continuously variable fine control including settings through zero.
B. PRELIMINARY SET-UP

Connect the instrument to the power Iine. Unless otherviso marked the unit may be used on 117 volt, 60 cps line. To convert to 220 -volt operation, refer to the MAINTENANCE soction. A three-wire line cord is furnished, which grounds the cabinet. If a three-wire recoptacle is not available, use the two-pin adapter furnished, and ground the third lead to an external ground.

Set controls as follows:
Function: Millivolts
Range: 1000
Zero Suppress: OFF
Input: Short the input loads together.

1. Source Resistance - In SECTION II - SPECIFICATIONS under INPUL AID SOUTCE RESISTANCE, the naximum source rosistance for use with each voltape ronce is spociffied. Reasonable oneration is possjble with source resistances up to ten times groater than those suecified, however the measurement will suifer from a consicerable docrease in speed of response, and moasuring accuracy. If the instrumont is left completely open-circuited, the meter will zenorally drift off acale on any voltage range. On current ranges this dues not happen becauso of the input shunting resistors.
2. Shiclding - Since tho instrument operates with a modulato: frequency of 120 cps , its is not genorally sensitive to 60 cos pickup unloss it is largo onouch to overload the amplifier. Tho pickup incy be a source of difficulty when using the amplifier with high imperiances on the more sensitive voltage ranges and on the tho or three most sensitive current ranges. In these cases it is desirable to shiold the leads and the source as completely as possible. In soins cases a simple low-pass filter at the input to eliminate frecuercies of about l cps and above will be helpriul. No use is made of an input filter in this instrument since eny input serios irpedance due to the filter will increase the input noise and the thermal drift. When operating above ground, the case of the instrument must be crounded.
3. Thermal EMF - Extrome procautions have been taken in the input circuit to minimize thermal EMF's so that the residual FMF is less than 0.6 microvolt. The material used in the imput circuit is pure copper. Any other metal will generate a thermocouple potential. Load solder is particularly troublesome. Whero thormal TMF's aro a problem, soldering should be done with tho cadmium-tin solder sunplied with the instrument.
4. Input No1se: The noiso at the input is a function of input resistance and is approximately given by

$$
E=1.29 \times 10^{-10}(\mathrm{R}+2000) \frac{1}{2}
$$

whero E is the $R M S$ noise, and R is the source resistance. It is assumed that the bandwidth of the irstrument $1 s$ about 1 cps and the temperature is $80^{\circ} \mathrm{F}$. If noiso is observed, calculate the theoretical noise and compare results. Also bear in mind that only wire-wound resistors approach the ideal resistor. However, if Evaroha or manganin resistors are used, a considerable thermal 玉MF of the resistor material against copper will bo obsorved.
5. Checking the Zero Point - At low levels, spurious EMF's may bo generated simply by contact betwoen the input leads and the terminel.s under test. If possible, always leave tho instrument connected and adjust the zero after establiching a zero rorerence in the apparctus undor test. For example, in bridce measurements, disconnect tho bridge exciting voltage; or with a phototube, shield the tube irom licht.

D. MFASURING VOHTACR

1. Diroct Voltace Moamuromonta - Place the FUNC'ION switch at MILIIVOLIS or MICiOVOLIS as nocessary for tho moasuroment to bo taken. Thon turn tho RANGE switch to more sensitive ranges until. the metor gives a usable doflection.
2. Moasuring Voltage Variations - Set tho FUNCTION switch and RAIGS switch to obtain the best deflection ar the meter. Use the ZERO SUPPIRSS controls as doscribed in B to increase the sensitivity of tho metor. Then small changes in a relativoly large stendy sienal may be displayed with a large scale deflection.
3. Measuring Difforential Voltingos - Then measusenents are to bo made in a circuit where the LOW connoction $1 s$ ebove cround potontial, remove the DISCONNECT LINK from one of its posts. Ihis disconnects the instrumont circuit ground from chassis ground. DO NOT attempt to make such measurements where the low side of the circuit being measured is more than 400 volta abcve external ground potential.

If a recorder is being used with the instrument in this arrangenent, the recorder ground must not bo connected to the output ground of the ingtrument since the low side of the output would no longor be erounded.
F. MEASURING CURRENT

Direct Current Reading - Turn the FUNCIION SWITCH to MICROAIPS or MILLIMICROAMPS, and the RANGR SWITCH to 1000. Connect the instrument to the current source and sot the RANGF SWITCH to the range which gives the best deflection of the moter.

Measuring Current Variations - Proceed as above for airect current readings, and then use the ZERO SUPPRESS and ZERO SET as described under B.
F. OTHER APPLICATIONS

1. Null Indicator - The Model 150 makes an extremely sensitive null indicator which may be used in a Wheatstone or Mueller Bridge.

In a Wheatstone Bridge, the Model 150 is connected between the two resistor arms. With the FUNCRION SWITCH on MICROAMPS, and the RANGE SWITCH on 1000, the bridgo can be adjusted to give a zero reading on the meter. The instrument can then be set on more sensitive ranges for finor adjustrente of the bridge.*
2. Megohmeter - The Model 150 may be used to measure resistancos, utilizing an external voltage source and measuring the current which flows in the unknown.
*If the bridge is arranged so that one terminal of tho dotector is grounded, the Model 150 may be used as describod in E.l. If the detector must be used floating, remove the DISCONNECT LINK at the rear and observe the same precautions as in D.3.

Tho Model 150 is bacically a narrow-bend chopner amplifier employine nogativo foodback to stabilize tho gain and increaso the input impodance.

A. Input Circuit

Zoro Stability: The effect of thermal EMF's goneretod. in the input circuitry is reduced to nearly the vanishing point by the use of only copper or silver materials in the input circuit. All solder joints are made with a low thermal cadmium-tin solder. the chopper and chopper transformer employ copper leads. All switching in the input circuit is accomplished with a solid silver swi.tch. Criticel resist,ors in the input circuit are wound of copper wire. The input connector has solid copper spring-loaded contacts.

The input voltage is applied to the moving arm of a 120 ops mechanical chopper. The feedback voltage is connected to the primary center tan of the input transformer. Thus, the difference voltage is applied first across ono half of the primary end then, with phase reversal, to the other half. This full wave error signal is stepped up 16 to 1 by the input transformer and applied to the grid or V1, a 6084 lownoiso pentode.

B. AC Amplifier

In parallel with the plate load resiator of V1 is a relatively high Q, 120 cps resonant circuit which narrows tho bandwidth and reduces spurious signals.

V2 and V3, EF86 pentodes, further amplify the chopped error signel. which is then demodulated synchronously by germanium diodes D1 and D2.

To obtain the 120 cps demodulator driving sigmal, use is made of the ripple frequency from a bridge rectifier circuit operating from the line voltage. The ripple is connected to the primary of the demodulator driver transformer.
C. DC Amplifier

The demodulated signal is applied to the grid of V4. V4, V5, and Vo form the de amplifier and output cathode follower which add further forward gain to the system and supply output porer. Feedback around V4, V5 and V6 multiplies the effective cepacitance of demodulator filter capacitor Clil by about 1000. This yields the large equivalent capacitance necessary to smooth the demodulated error signel. Because of the reedback, spurious noise in the dc stages outside the pass band of tho whole amplifier are effectively degenerated.
D. Zero Suppression

A low-current ± 10 volt supply is derived from the main de supplies using 20 -volt zener diodes. Potentiometer R174 may be set at any voltage from -10 to +10 volts; this voltage being applied through appropriate dropping resistors to the feedback point to achieve zero suppression. The potentiomoter is the front panel control marked ZERO SEI, while switch SW3, which determines the portion fed back, is labeled ZERO RANGE.

E. Other Controls

Three controls are set at the factory and should requiro only infroquent attention by the user.

Rll 8 is an intornal control marked DC AMP BAJ. It is used to zero the DC amplifier, i.e., to set the output voltage to zero when the domodulator output is zero. This is not very critical since an unbalance will simply be fed back to the input to produce a small orror signal to correct itsolf. Rla7 is marked CAL. This is the variable portion of the meter multiplier resistance to allow for moter-to-moter sensitivity differences.

R177, marked CURRENT BALANCE, may be set at some vol.tace which will cause a current to flow through R175 to the chopper arm. This current is used to compensato for a small genorated "choppor current" which would otherwise flow in the input circuit. This "chopper current" differs from chopper to chopper but is fairly stable for long periods of time. Its effect on any current range could be removed with the ZERO SUPPRESS controls, but the Current Balanco inothod used here gives an effective zero input current for all ranges.
F. Power Supply

A standard half-wave rectifier followed by an R-C filter is used to supply unregulated $B+$ and B - to the output cathode follower.

The unregulated B - is regulated to -150 volts in $V 7, O A 2$, and is used for the negative returns for the de amplifier.

Unregulated B^{+}is fed to the plate of $\mathrm{V} 8,12 \mathrm{~B} 4 \mathrm{~A}$, the series tube in a 225 -volt electronic regulator. The output voltage from this regulator is divided by R510 and R5ll and compared to reference tubo V9, a 5651. The difference aignal is amplified by cascode amplifier Vlo, a l2AX7, and applied to the grid-catnode circuit of the series tube. This regulated 225 volts supplies $B+$ directly to the de amplifier, through a decoupling filter (R 176 , Cllo) to the second ana third ac amplifier stages, and through another decoupling filter (RI03, Cl04) to the first ac amplifier stage.

Regulated $B+a n d B-a l s o$ supply currents to the 10 volt zener diodes which are used for zero suppression. This gives two-stage regulation for these very critical voltages.

The first two ac amplifier filaments and the first dc amplifier filaments are driven by a bridage-rectified σ-volt d.c. supply. The R-C filler sections R512, C507, R5l3, C508, insure low ripple.

Except for occasional tube or chopper replacement, very little maintenance is roquired by the Models 150 and 150 R. Components are operated. well below rating and solid-stato devices are employed where possible to achieve lone, trouble-free service.

Certain portions of the input circuit are wired using copper wire and special cadmium-tin solder. These special joints are painted red. If, for any reason, these joints must be unsoldered or re-solderoc, USE ONLY CADMIUM-TIN SOLDER AND A COPPER-TIPPED SOLDERING IRUN WFICH HAS NEVER BEEN USED WITH ORDTNARY LEAD-TIN SOLDER. A small spool of cadmium-tin solder is supplied with each instrument.

What may seem to be circuit fallure in the Micro Volt-Ammeter is cuite often found to be an unusual condition in the entire test set-up. Therefore; before trouble-shooting the instrument, chock to see whethor it operates corroctly with:

1. All other circuitry disconnected.
2. Input shorted (with copper leads).
3. power line voltage and frequency correct.

If the difficulty persists, the following systematic procedure may be employed to determino the fault.

TROUBLE-SHOOTING
Reforence is made to the Schematic Diagram, DN 121.88-D, and the VoltageResistance Diagram enclosed at the rear of tho manual.

To bogin trouble-shooting, short the input terminals, strap chassis ground to LO with the link provided, and switch ZERO RANCE to CFF. A Zero orfset of a few tenths of a microvolt is normal. On curront functions with the input terminals open but shielded, it should be possible to set zero current with the CURRENT EALANCE control at the rear of tho inetrument.

EXCESSIVE OUTPUT NOISE (INPUT TERMINALS SHORTED)
Short the input grid of the de amplifier, pin 7 of V4, to ground. If this stops the noise, it is being generated in the ac amplifier. Unfortunately, because of the very low sienal levels involved, noise in the ac amplifior is difficult to trace by other than the substitution method. Most logical noise sourcos are Vl. or the chopper. To replace tho choppar, unplug the cap at the top, and unscrew the three thumb-screw nuts which clanp the chopper leads. Unscrew the two choppar mounting scrows and lift out the chopper. When inserting the new chonper, make sure that the chopper leads are pressed against the coppor termirals and that the insulating washers oro between tho leads and the thumb-screw nuts. Observe color-coding on the leads.

If the noise persigts aftor ahorting the dc amplifier input, the noise is buing goncrated in the de ampliffor or power supply. A stace-bystafe search should reveal the source.

OUTPUT NOT ZWRO (INPUT TWRMLNALS SHORTED)
Be sure that ZERO RANGE is set to OFF. Short the dc amplifier inpui erid, pin"? of VIt, to ground. Use the DC AMP BAL Control to sot the output to zero. If this cannot be done, the dc amplifier or power supply are at fault. If it can be sot to zero, the trouble may be in the ac amplifier or demodulator circuit.
a. Power Supply - B^{+}should be about +225 on pin 1 of $V \delta$, and $B-$ should be -150 on pins 2,4 or 7 of $V 7$. If $V 7$ is not firing, correct the fault in the unregulated B-. If te25 is not present, check for unregulated $B+$ (about 340 volts) at the plate pin 9 of v8. If the unregulated $B+i s$ all right, check the tube pin voltages of $V 8$, V9, and V10 to locate the faulty tube or part. . .
b. AC Amplifier - Remove the output tube (V6) and clip pin 1 of the output connector to ground. Place the FUNCTION switch on MILLIVOLTS, and turn the ZERO SET and ZERO RANGE controls full clockwise. This puts a large dc error signal across the chopper and input transformer. Use an oscilloscope to check for the presence of 120 cps at the primary of the input transformer (the two outside terminals on the chopper terminal block). Absence of signal means chopper failure (or much less likely, shorted input transformer). Listen for audible chopper action and check chopper drive, if necessary.

If the 120 cps aignal is present, check stage-by-stage throughout the ac amplifier, reducing the input signal as desired by backing off the ZERO RANGE and/or ZERO SET controls, until the failure is discovered.
d. Demodulator Circuit - Check for presence of about 80 volts RMS at the secondary of the demodulator transformer (at the ends of R113 and R114).

The tests outlined above will not suffice to pin-point every fault which may exist. They should, however, lead to the correction of common fallures. In the event that troubles cannot be corrected by these means, or the user finds it more expedient, the unit may be returned to the factory for repair and recalibration at a nominal cost.

220 VOLT OPERATION

For 220V operation the power trancfnrmer primary connoctions must be changed. The jumpers connecting black ana black-white together, and blue and blue-white should be removed. The blue lead should be tied to black-white.

Circuit Des.	Description	Part No.
Cl01	Capacitor, mylar selected, 047 to $.33 \mathrm{mfa}, 200 \mathrm{VDCW}$	
Cl. 0 ?	Capacitor, tubular, olectrolytic, $5 \mathrm{mfd}, 15 \mathrm{VDCW}$	C12-5
C103	Capacitor, metalized paper $0.1 \mathrm{mfd}, 200$ VDCW	C18-. 1
C104	Capacitor, tubular, electrolytic, $20 \mathrm{mfd}, 450$ VDCW	C8-20L
Clo'j	Capacitor, mylar dielectric, . 1 mPd , 400 VDCW	C30-. 1
Cl06	Capacitor, mylar dielectric for 50 cycle model $.0082 \mathrm{mfd}, 1 \%, 100$ VDCW	C45-.0082
Cl07	Same as Cl02	
Cl0	Capacitor, ceramic disc, . $01 \mathrm{mfd}, 600$ VDCW	C22-. 01
C109	Samo as Cl03	
Cllo	Seme as ClO4	
Clll	Same as Cl02	
Cll2	Same as Cl05	
C113	Capacttor, mylar dielectric, . $333 \mathrm{mfa}, 200 \mathrm{VDCW}$	C29-. 333
C114	Capacitor, ceramic disc, . $001 \mathrm{mid}, 600$ VDCW	c22-. 001
C115	Capacitor, ceramic disc, . 0017 mf , 600 VDCW	C22-:0047
C116	Same as Cll	
C117	Capacitor, padding $780-2110 \mathrm{mmf}$	C51-700-2110
C1.18	Capacitor, metalized paper, $1.0 \mathrm{mfd}, 200 \mathrm{VDCW}$	C18-1.0
C501	Capacitor, tubular, electrolytic, $20 \mathrm{mfd}, 600 \mathrm{VDCW}$	C35.-20
C502	Sume as C104	
C503	Same as C501	
C504	Same as Cl08	
C50\%	Same as Cl04	
C506	Capacitor, mylar dielectric, $4.0 \mathrm{mfd}, 600 \mathrm{VDCW}$	C50-4.0
C507	Capacitor, tubular, electrolytic, $1000 \mathrm{mfd}, 12 \mathrm{VDCW}$	C11-1000
C508	Same as C507	
0509	Same as C105	
CHI	Chcke, 200 HY., $120 \mathrm{cps} \mathrm{Hi} Q$	CHI
CSI	Connector, input, special	
CS2	Connector, output, Amphenol 80 PC 2 F	CS 32
CUl	Chopper, frequency, doubling, special 60 cycle	$\begin{aligned} & \mathrm{Cv2} \\ & \mathrm{Cv} 3 \end{aligned}$
D1	Diode, Selenium, International Rect. Corp. 501	RF 15
D2.	Same as Dl	
D3	Diode, Zener, Hoffman Semiconductor ZAl0	D2-2A10
D4	Same as D3	
F1	Fuse, $1 \frac{1}{2} \mathrm{~A}, 3 \mathrm{AG}$ (110V), Fuse, $1 \mathrm{~A}, 3 \mathrm{AG}$ (220V)	FU8-FU7
M	Meter, Panel, 200 micro amp zero center	ME-1.4
R101	Resistor, composition, 33K, 10%, $\frac{1}{2} \mathrm{~N}$	R1-33K
R102	Resistor, S.S. White, low noise $2 \mathrm{M}, 1 \%$, 1 W	R44-2M
$R 103$	Resistor, cormposition, 47K, 10\%, $\frac{2}{2} \mathrm{~W}$	R1-47K
$\mathrm{R104}$	Resistor, composition, 1 meg, 10%, $\frac{2}{2} \mathrm{~W}$	R1-1M
R105	Resistor, composition, 3.3 meg , 1\%, $\frac{1}{2} \mathrm{~W}$	R1-3.3M
R106	Resistor, deposited carbon, 1 meg, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-1M
R10'	Resistor, composition, $22 \mathrm{~K}, 20 \%, \frac{1}{2} \mathrm{~W}$	Rl-22K
R108	Resistor, composition, $3.3 \mathrm{meg}, 10 \%, \frac{1}{2} \mathrm{~W}$	R1-3.3M
R109	Same as R1.04	
R110	Same as R107	
R111	Same as R106	

Circuit Des.	Description	Part No.
81.20	Resistor, doposited carbon, 200K, if, $\frac{1}{3} \mathrm{~W}$	K12-200K
R113	Resistor, (ieposited carbon, look, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-100K
R114	Same as R113	
R11.5	Resistor, deposited carbon, $1.2 \mathrm{meg} .1 \%, \frac{1}{2} \mathrm{~W}$	R12-3.214
K110	Resistor, depositod carbon, 470K, l\%, $\frac{1}{2} \mathrm{~W}$	R12-470K
R117	Resistor, deposj.ted carbon, 333k, 1%, $\frac{1}{2} \mathrm{~W}$	R12-333K
R118	Potentiometer 500K ohms	RP5.2
1219	Resistor, deposited carbon, 680K, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-0́80í
R120	Sane as RlOj	
R121	Resistor, deposited carbon, 2.2 meg. $1 \%, \frac{1}{2} \mathrm{~W}$	R12-2.2M
R122	Resistor, deposited carbon, 6OK, $1{ }_{0}^{\prime \prime}, \frac{1}{2} \mathrm{~W}$	R12-60K
R123	Same as Rll3	
R124	Same as Rlob	
1225	Same as R106	
R126	Resistor, wlrewound 30K, 10\%, 10W	R5-30K
R127	Potentiometer, J.OK ohms	RP9-10K
R12.8	Resistor, deposited carbon, $96 \mathrm{~K}, 1 \%, \frac{1}{3} \mathrm{~W}$	R12-96K
R129	Resistor, composition, 22K, 10\%, 2 W	R3-22K
R134	Resistor, special, copper wirewound 10 ohms, low	R18-18-10
K135	Kesistor, special, copper wirewound loK ohms, 10	R18-18-10K
R136	Resistor, depositod carbon, special, l. $114,1 \%, \frac{1}{2} W$	R38-1.11K
R137	Resistor, deposited carbon, special, 100K, 1\%, $\frac{1}{2} \mathrm{~W}$	R38-100K
R138	Resistor, special, copper wirewound, 10K ohms, 5%	R18-19.10K
R140	Resistor, deposited carbon, $10 \mathrm{~K}, 1 \%$, $\frac{1}{2} \mathrm{~W}$	R12-10\%
R141	Rosistor, deposited carbon, 3.33K, 1%, $\frac{1}{2} \mathrm{~W}$	R12-3.33K
R142	Resistor, deposited carbon, 1K, 1\%, $\frac{1}{2} W$	R12-1K
R143	Resistor; deposited carbon, 333 ohms, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-333
R1244	Resistor, deposited carbon, 100 ohms, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-100
R145	Resistor, deposited carbon, 33.3 ohms, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-33.3
R146	Resistor, deposited carbon, 10 ohms, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-10
R147	Resistor, deposited carbon, 3.33 ohms, $1 \%, \frac{1}{2} \mathrm{~W}$	R12-3.33
12148	hesistor, doposited carbon, 1.0 ohms, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-1.0
R149	Same as Rlob	
R150	Same as R117	
R.15.	Same as R113	
$R 152$	Resistor, deposited carbon, 33.3K, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-33.3K
R153	Resistor, deposited carbon, 500 ohms, 1\%, 这W	R12-500
2154	Same as Rl53	
R155	Resistor, deposited carbon, $10 \mathrm{meg}, 1 \%, 1 W$	R13-10M
K156	Same as R105 .	
R157	Same as RIO6	
R158	Same as R1l7	
R159	Resistor, deposited carbon, 99K, 1%, $\frac{1}{2} \mathrm{~W}$	R12-99K
12160	Resistor, deposited carbon, 32.3K, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-32.3K
R161	Resistor, deposited carbon, 9K, $10, \frac{1}{2} \mathrm{~W}$	R12-9K
R162	Resistor, composition, 100K, 10\%, $\frac{1}{2} \mathrm{~W}$	RI-100K
R163	Resistor, composition, 390K, 10%, $\frac{1}{2} \mathrm{~W}$	R1-390k
R164	Same as R162	
R165	Resistor, composition, $47 \mathrm{~K}, 10 \%, \frac{1}{2} \mathrm{~W}$	R1-47K
8166	Resistor, composition, 15K, 10\%, $\frac{1}{2} W$	R1-15K
R167	Resistor, composition, 4.7K, 10\%, $\frac{1}{2} \mathrm{~W}$	R1-4.7K
R168	Resistor, composition, $1.5 \mathrm{~K}, 20 \%, \frac{1}{2} \mathrm{~W}$	R1-1.5K
R 169	Resistor, composition, 4700 ohms, $10 \%, \frac{1}{2} \mathrm{~W}$	R1-4700
R170	Resistor, depositod carbon, $1 \mathrm{~K}, 1 \%, \frac{1}{2} \mathrm{~W}$	R12-1K

Circuit Dos.	Description	Part No.
R1\% 1	Samo an R106	
H172	Same as Rll3	
R173	Samo an R16i	
R174	Potentiometer, 10 turn, 10K	RP4-10K
R175	Resistor, deposited carbon, $100 \mathrm{meg}, 1 \%$, 2 W	R14-100M
1177	Sano as R127	
R178	Resistor, deposited carbon, 75K, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-75k
R 179	Same as R178 -	
R180	Same as Rl26	
R 181	Resistor wirewound, special, customer request only	R18-21-100\%
R182	Resistor, deposited carbon, 1 meg, ly, $\frac{2}{2}$ W customer request	R12-1M
R501	Resistor, composition, 100 ohms, 10,0 , 2 W	R3-100
R502	Samo as R501	
R503	Resistor, wircwound, 5K, 10\%, 10W	RS-5K
8504	Same as R503	
R505	Resistor, composition, 22K, 10%, 2W	R3-22k
R506	Resistor, composition, 10 meg. 10%, $\frac{1}{2} \mathrm{~W}$	R1-1.0M
R507	Resistor, deposited carbon, 220K ohms, $2 \% \frac{1}{2} W$	R12-220K
8508	Same as R101	
R509	Same as R101	
R510	Same as R106	
R511	Resistor, deposited carbon, 600K, 1\%, $\frac{1}{2} \mathrm{~W}$	R12-600\%
R512	Resistor, wirewound, 6 ohms, 10%, 5W	R4-6
R513	Resistor, wirewound, 5 ohms, 10\%, 5 W	R4-5
RFI thru RiFlo	Rectifier, selenium, 130v, 65 ma	RF8
RFil	Rectifier, bridge, 26 volt, 600 ma	RF7
SW1	Function switch, 4 pole, 4 position	SW56
SW2	Rango switch, 9 position	SW54
SW3	Zero suppress, zero range 5 position	SW58
SW4	Power switch, D.P.D.T.	SW14
TRI	Power transformer Central KI-129	TR27
TR2	Demodulator transformer Central KI-128	TR26
TR3	Input transformer, James $C 1835$ special	TR28
	Pilot lamps (2) 6.3v. 0.15 anps G.E. type 47	PL4
V1	Vacuum tube, type 6084	EV6084
V2	Vacuum tube, type EF86	EV-EF86
V3	Same as V2	
V4	Vacuum tube, type 12AX7	EV-12AX7
V5	Vacuum tube, type 12AT7	EV-12AT7
v6	Vacuurn tube, type 6cm6	EV-6CM6
V7	Vacuum tube, type OA2	EV-OA2
V8	Vacuum tube, type 12B1A	EV-12B4A
V9	Vacuum tube, type 5651	EV-5651
vio	Same as V4	EV-5651

(

r

