OPERATION MANUAL

SPECTRUM ANALYZER

MS610A

ANRITSU EIECTRIC CD.. ITD.

OPERATION MANUAL

SPECTRUM ANALYZER

MS610A

ANRITSU EIECTRIC CD.. ITD.

CERTIFICATION

Anritsu Electric Co., Ltd. certifies that this instrument has been thoroughly tested and inspected, and found to meet published specifications prior to shipping.
Anritsu further certifies that its calibration measurements are based on the Japanese Electrotechnical Laboratory and Radio Research Laboratory standards.

WARRANTY

All Anritsu proaucts are warranted against defects in material and workmanship. The warranty is effective for one year from the date of delivery. In the event of improper use, abuse, or damage due to natural catastrophe, the warranty will become void. Anritsu will repair or replace products which prove to be defective during the warranty period, provided they are returned to Anritsu.
No other warranty is expressed or implied.
All requests for repairs and replacement parts should be directed to Anritsu or its representative in your area.

Copyright (c) 1984 by Anritsu Electric Co., Ltd. Printed in Japan. All rights reserved. No part of this manual may be reproduced in any form without written permission of Anritsu Electric Co., Ltd.

TABLE OF CONTENTS

Page
SECTION 1 GENERAL 1-1
SECTION 2 COMPOSITION AND SPECIPICATIONS $2-1$
2.1 Composition $2-1$
2.2 Specifications 2-1
2.3 Peripheral Devices and Accessories 2-5
2.3.1 MH680A Tracking Generator 2-5
2.3 .2 MH648A Preamplifier $2-6$
2.3.3 Antenna 2-7
2.3.4 Packet IIe Personal Technical Computer $2-7$
2.3 .5 Accessories $2-8$
SECTION 3 PRINCIPLES OF OPERATION 3-1
3.1 Introduction 3-1
3.2 Frequency Conversion Circuit 3-1
3.3 IF Circuit 3-2
3.4 Detection and Video Circuits 3-3
3.5 Sawtooth Generator and Local Oscillator Control Circuit 3-3
3.6 Controller 3-4
SECTION 4 PREPARATIONS 4-1
4.: Safety Measures 4-1
4.2 Power-ON 4-2
TABLE OF CONTENTS (Cont.)
Page
4.3 Gain Calibration 4-3
4.4 Frequency Display zero Calibration 4-4
4.5 TRACE ROTATION and V. POSITION Adjustment 4-4
SECTION 5 OPERATION $5-1$
5.1 Description of Front and Rear Panels 5-1
5.2 Description of Controls $5-5$
5.2.1 FREQUENCY 5-5
(1) COARSE - FINE dial $5-5$
(2) START FREQ and CENTER FREQ $5-6$
(3) FREQ ZERO ADJ $5-6$
5.2 .2 MODE $5-7$
(1) DATA 5-7
(2) REFERENCE LEVEL 5-7
(3) MARKER LEVEL $5-8$
(4) FREQ SPAN 5-9
(5) INPUT ATTEN 5-9
(6) RBW 5-10
(7) SWEEP TIME 5-11
5.2 .3 COUPLED TO SPAN 5-12
5.2.4 COUPLED TO REF $5-14$
5.2.5 VIDEO FILTER 5-15
. $5-16$
SCALE 5.2 .6 $5-17$
5.2 .7 TRIG

TABLE OF CONTENTS (COnt.)

Page
5.2 .8 DISPLAY UNCAL 5-18
5.2 .9 GAIN ADJ 5-18
5.2.10 INTENSITY 5-19
5.2 .11 GP-IB 5-19
5.2 .12 REFERENCE LEVEL (rear panel) 5-20
SECTION 6 MEASUREMENT 6-1
6.1 Typical Measurement 6-1
(1) General measurement method 6-1
(2) Improvement of frequency measurement accuracy 6-2
6.2 Modulated Wave Measurement 6-2
(1) Measurement Procedure 6-2
(2) AM wave measurement 6-3
(3) Measurement of $A M$ wave when modulation frequency is low 6-4
(4) FM wave measurement 6-5
(5) PAM wave measurement 6-6
6.3 Spurious measurement 6-7
(1) Harmonic distortion measurement 6-7
(2) Inter modulation product measurement 6-9
(3) Random spurious signal measurement 6-9
(4) Spectrum purity measurement 6-9

TABLE OF CONTENTS (Cont.)

Page
6.4 Field Strength Measurement 6-10
(I) Measurement in dBu units 6-10
(2) Direct reading measurement of field strength using the specified antenna $6-10$
(3) Antenna coefficient display 6-11
SECTION 7 DAILY MAINTENANCE AND STORAGE 7-1
7.1 Daily Maintenance $7-1$
7.2 Storage 7-1
7.2.1 Storage Precautions 7-1
7.2 .2 Recommended Storage Conditions 7-2
APPENDIX BIOCK DIAGRAM A-1

GENERAL

The MS610A Spectrum Analyzer has a wide frequency range of 10 kHz to 2 GHz , and covers a broad range from the video band to the UHF/VHF band.

It is used mainly for spurious response measurement of radio equipment, etc., assembly line adjustment, distortion measurement of various performance elements and circuits (for example, in amplifiers), and broadcast signal panoramic reception and EMI (Electro Magnetic Interference) measurements, etc.

The MS610A has multiple functions for these uses: a coupling function, measured level digital display function for efficient measurement, a GP-IB function, which allows simple automation of measurement, and an EMI measurement function with QP (Quasi Peak) detector. The last two are available as options.

A tracking generator (MH680A) is available as a peripheral device for transmission measurement.

SECTION 2

COMPOSITION AND SPECIFICATIONS
2.1 Composition

Table 2-1 Composition

Item	No.	Name	Q'ty
Instrument	1	MS610A Spectrum Analyzer	1.
Accessories Supplied	2	```Coaxial Cable S-5DWP\cdot5D2W\cdotS-5DWP 1 m```	1
	3	Coaxial Cable $\mathrm{BNC}-\mathrm{P} \cdot \mathrm{RG}-55 / \mathrm{U} \cdot \mathrm{N}-\mathrm{P} \quad \mathrm{l} \mathrm{m}$	1
	4	Power Cord	1
	5	Fuse AC *** A	2
	6	Operation Manual	1

2.2 Specifications

Table 2-2 Specifications

Frequency

Frequency Range	10 kHz to 2 GHz
Display and Accuracy 4-digit LED, resolution 1 MHz, CENTER/START switchability, accuracy of $\pm 10 \mathrm{MHz}$ Frequency span Span *lZero and 0.1 MHz to $1 \mathrm{GHz}, 1,2,5$ sequence	
	Full Span 0 to 2 GHz (with marker) Accuracy $\pm 5 \%$

*1. Span wiath is shown on a ten-section scale on the screen.

Table 2-2 Specifications (Cont.)

Resolution	Resolution Bandwidth	1 kHz to 1 MHz (3CB) 1,3 sequence (For option 02, $9 \mathrm{kHz}, 120 \mathrm{kHz}: 6 \mathrm{~dB}$ bandwidth)
	Selectivity	15:1 or Less; $60 \mathrm{~dB} / 3 \mathrm{~dB}$ Bandwidth Ratio (For 9 kHz , $120 \mathrm{kHz}, 60 \mathrm{~dB} / 6 \mathrm{~dB}$ bandwiath ratio)
Stability	Stability	```lo0kHzz or less/5 minutes, one hour, after power-on, for fixed frequency settings```
	Residual FM	$5 \mathrm{kHzp-p}$ or less; sweep time 0.1 second or less
	Noise Sidebands	$70 d B$ or more Resolution Bandwidth: 1 kHz Video Filter: 100 Hz 30 kHz away from signal
Amplitude		
Measurement and CRT Display Range	LOG $\frac{10 \mathrm{~dB} / \mathrm{di}}{2 \mathrm{~dB} / \mathrm{div}}$	-115 to +20 dBm CRT Display Range 72 dB
		-65 to +20 dBm CRT Display Range 16 ab
	LTN	-66 to +20dBm CRT Display Range 0 to 1
Log Scale Linearity		$\pm 1.5 \mathrm{~dB} / 72 \mathrm{~dB} \quad \pm 1 \mathrm{~dB} / 16 \mathrm{~dB}$
Frequency Response	$\pm 1.5 \mathrm{~dB}(100 \mathrm{kHz}$ to 1.5 GHz$) \quad+2 \mathrm{~dB}(1.5 \mathrm{GHz}$ to 2 GHz$)$ When setting an input attenuator to 10 dB or more.	
Reference Level *2	10dB/div	-50 dBm to +20 dBm in 1 dB steps
	2dB/div	-50dBm to +20 dBm in 0.5 dB steps
	LIN	-60 dBm to +20 dBm in 0.5 dB steps
	Accuracy	$\pm 1.5 \mathrm{ds}$ or less

[^0]
Table 2-2 Specifications (Cont.)

Dynamic Range	Average Noise Level	```-115dBm or less Resolution Bandwidth: IkHz Video Filter: 100Hz Frequency: lMHz or more```
	Second and Third Harmonic Distortion Factors	```70dB or less for - 30dBm input level Input attenuator: OdB Frequency: 100kHz or more```
	Residual Spurious Response	```-l00dBm or less for 50\Omega Input Termination Input attenuator: OdB Frequency: l00kHz or more```
Video Filter		$100 \mathrm{~Hz}, 10 \mathrm{kHz}, 0 \mathrm{FF}$
Resolution Bandwidth Gain Variation		$\pm 1 \mathrm{~dB}$
Marker Level	Display	4-digit LeD. The Max. level in the brightened portion at the center of the screen is displayed.
	Resolution	$\begin{aligned} & 0.1 d \mathrm{~B} \\ & \text { Scale: } 10 \mathrm{~dB} / \mathrm{DIV} \text { and } 2 \mathrm{~dB} / \mathrm{DIV} \end{aligned}$
Level Unit Switching		$\mathrm{dBm}, \mathrm{dB} \mu, \mathrm{dB} \mu / \mathrm{m}$
Zoupled Function	COUPLED TO SPAD Resolution ba set automatic COUPLED TO REF Input Attenua by ganging wi (Mixer level:	dwidth and sweep time are optimized and $11 y$ by ganging with the FREQ SPAN. is optimized and set automatically the REF LEVEL value. 30 dBm or less)
Input	Terminal	502, VSWR 1.5 or less, Type N-connector (when input attenuator is set to $10 d B$ or more)
	Input Attenuator	0 to 50 dB , in 10 dB steps; 5 steps

Table 2-2 Specifications (Cont.)

Sweep	Time 10 ms to $10 \mathrm{~s} 1,2,5$ sequence; 10 steps
	Trigger FREE RUN, LINE, VIDEO, SINGLE
Calibrator Output	$50 \mathrm{MHz} \pm 150 \mathrm{kHz},-30 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$, BNC Connector
CRT	```Graticule Division: 8 DIV x 10 DIV, 6-inch screen (diagonal measurement), P39 phosphor (medium persistence)```
External Control (for Option 01)	Compatible with IEEE STANDARD 488-1978, IEC625-1 Interface functions: SHl, AH1, TG, L4, SRO, RL1, PPO, PCl, DTO, CO. All functions except the power switch, CRT brightness, frequency adjustment, gain adjustment volume, and frequency setting dial, can be controlled.
Detector-Time Constant (For Option 02)	Charge-time lms ± 20 \% constant
	```Discharge-time l60ms }\pm20\mathrm{ % constant (for 9kHz resolution bandwidth) 550ms }\pm20 (for 120kHz resolution bandwidth)```


Display section   Time Constant   (For Option 02)	$100 \mathrm{~ms} \pm 30 \%$
Power	$* * \mathrm{Vac} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 75 \mathrm{VA}$
Dimensions   and weight	$177 \mathrm{H}, 284 \mathrm{~W}, 351 \mathrm{Dmm}, 13.5 \mathrm{~kg}$

Rated operating $\quad 0$ to $50^{\circ} \mathrm{C}$ Temperature Range

Options 01: GP-TB
02: QP (Quasi Peak) Detector

# 2.3 Peripheral Devices and Accessories <br> For using the MS610A more effectively, peripheral devices, application parts, and accessories are available. These are all sold separately. <br> 2.3.1 MH680A Tracking Generator (100 kHz to 2 GHz ) 



The MH680A Tracking Generator is a wideband sweep signal source for use with the MS610A Spectrum Analyzer. It allows direct reading measurement of the transmission characteristics of wideband amplifiers, filters, and circuit networks.

Frequency Range	100 kHz to 2 GHz
Output Level Range	-10 dBm to 0 dBm
	(Continuously variable)
Output Frequency Response	$\pm 0.5 \mathrm{~dB}$ (at 0 dBm point)
Output Terminal	$50 \Omega$, Type N connector

The above specifications are tentative.


The MS648A improves the sensitivity of the MS610A Spectrum Analyzer by a maximum of 24 dB .

Frequency Range 0.1 to 1200 MHz

Gain	$30+1 \mathrm{~dB}(0.5$ to 800 MHz$)$
	$30+1.5 /-6 \mathrm{~dB}(0.1$ to 1200 MHz$)$
Noise Figure	6 dB or less $(0.5$ to 800 MHz$)$
	8 dB or less $(0.1 \mathrm{to} 1200 \mathrm{MHz})$
Input Attenuator	$0,10,20,30 \mathrm{~dB}$
Power	

### 2.3.3 Antenna

When the following antennas are used, the measured field strength can be read directly on the digital display.

(Dimensions are in millimeters unless otherwise indicated.)

### 2.3.4 Packet IIe Personal Technical Computer

The Packet Ile is a personal computer for high speed control and scientific applications. With an MC68000 highperformance 16 -bit microprocessor, it uses ANSI extended BASIC-based FDOS. Since commands which facilitate measurement and control by using a GP-IB are provided, the MS6I0A can be easily automated and remotely controlled by installing the GP-IB option; perfect for adjustment and inspection labor-saving.


### 2.3.5 Accessories

(1) CRT filter

This filter can be easily attached and detached. If specific lines are drawn directly on the filter, quality judgement, etc. is easy.


Name	Part Code	Remarks
CRT filter (Smoked)	B 0075	Color (Smoked)

(2) Carrying bag

A carrying bag, which is convenient in field and other outdoor measurements, and in maintenance service, etc., at the site, is available.


Name	Part Code	Remarks
Carrying bag	B 0076	Front Protection Cover   Included

## (3) Carrying case

These carrying cases are convenient when transporting the instrument by car, airplane, etc.


Name	Part Code	Remarks
Carrying case with   casters	B 0077	Front and rear protec-   tion covers included
Carrying case without   casters	B 0078	Front and rear protec-   tion covers included

Dimensions: 290H, 650w, 4100 mm
(Excluding casters, handle, etc.)

```
 SECTION 3
PRINCIPLES OF OPERATION
```


### 3.1 Introduction

The MS610A is a superheterodyne type scanning spectrum analyzer. The block diagram is shown in Fig. 3-1.


GP-IB
Fig. 3-1 MS610A Block Diagram

The input signal is converted to an IF signal by the frequency conversion circuit mixer. This IF signal is detected and is applied to the vertical deflection plate of the CRT. The sweep signal is generated by a sawtooth wave generator and is applied to the horizontal deflection plate of the CRT. This sweep signal simultaneously sweeps the local oscillator, and frequency sweep corresponding to the horizontal axis of the CRT is performed. Each section is controlled by a controller using a microcomputer.

### 3.2 Frequency Conversion Circuit

The MS6IOA is a triple superheterodyne system. The input signal is converted to a 3.5 MHz IF signal after triple frequency conversion as shown in Fig. 3-2. That is, after the input signal is beat-up to 2.5214 GHz to prevent image response, it is converted to 21.4 MHz , then converted to 3.5 MHz .


Fig. 3-2 MS610A Frequency Conversion Circuit

### 3.3 IF Circuit

The composition of the IF circuit is shown in Fig. 3-3.


Fig. 3-3 MS610A IF Circuit

After the 3.5 MHz IF signal is passed through a 2 dB step 0 to 10 dB variable gain amplifier, and a 10 dB step 0 to 30 dB variable gain amplifier, it is sent through the LC filter and crystal filter.

The crystal filter determines the 1 kHz to 3 kHz bandwidth and the LC filter determines the 10 kHz to 1 MHz bandwidth. The signals from these filters are amplified by the LOG and LINEAR amplifiers which determine the vertical axis scale.

### 3.4 Detection and Video Circuits

The 3.5 MHz signal from the IF circuit is detected by the detection circuit and amplified to 0 to 4 V by the video circuit.


Fig. 3-4 MS610A Detection and Video Circuits
3.5 Sawtooth Generator and Local Oscillator Control Circuit

The sweep time is determined by the SWEEP TIME switch; the sawtooth wave signal sweeps the lst local oscillator through the $F R E Q$ SPAN switch, which controls the FREQ SPAN. The SWEEP TIME switch and FREQ SPAN switch are controlled by the controller. The sawtooth wave signal also sweeps the CRT horizontal axis.

A YTO tuned coil is used in the 5 MHz to 2 GHz wide band sweep and a YTO FM coil is used in the 100 kHz to 2 MHz narrow band sweep.


[^1]3.6 Controller

The MS610A uses a CPU controller. Each circuit is controlled via an interface circuit for panel key inputs. GP-IB control is also performed.


Fig. 3-6 MS610A Controller

## SECTION 4

PREPARATIONS

### 4.1 Safety Measures

(1) Power supply

The MS610A operates on $50 \mathrm{~Hz} / 60 \mathrm{~Hz} \mathrm{AC}$ voltage of $\pm 10 \%$ of the value shown on the rear panel.

## WARNING

To avoid electric shock, when using a 2 -pin power outlet, always ground the rear panel $\frac{1}{=}$ terminal or the power cord ground terminal.
(2) Installation site environment conditions

The MS610A normally operates at an ambient temperature of 0 to $50^{\circ} \mathrm{C}$. However, do not use it in locations where:
a. vibrations are severe.
b. it is humid and dusty.
c. there is exposure to direct sunlight.
d. there is exposure to active gases.

## CAUTION

When the MS610A is used at room temperature after being used for long periods at a low temperature, (such as $0^{\circ} \mathrm{C}$ ), it may be shorted by water droplets due to condensation. When water droplets are suspected of having collected, dry the instrument thoroughly before turning on the power switch.
(3) Maximum input level

$$
\begin{aligned}
{[+20 \mathrm{dBm}]: } & \text { Do not input a level higher than this } \\
& \text { since it will damage the internal } \\
& \text { circuits. }
\end{aligned}
$$

### 4.2 Power-on

After checking that the AC voltage of the power supply used is within the specified value, insert the rear panel power cord into the power plug. When the power switch is set to $O N$, the LED on the display lights.

Display and setting are shown below.
Frequency Display Frequency Dial Setting
START FREQ
OFF
CENTER FREQ OFF
REFERENCE LEVEL display 0 dBm
FREQ SPAN F (FULL)
INPUT ATTEN 30 dB
RBW
0.3 MHz

SWEEP T
0.1 S

COURLED TO REF ON
COUPLED TO SPAN ON
VIDEO FILTER OFE
SCALE $10 \mathrm{~dB} / D I V$
TRIG FREE RUN
GP-IB
OFE

Check these settings.
After a while, slowly turn the INTENSITY knob clockwise and adjust the brightness at which the screen marker point display and measured waveform display are easy to see.

### 4.3 Gain Calibration

To measure absolute level, calibrate the gain before making any measurements.
(I) Settings

CENTER FREQ ON
COUPLED TO REF ON
COUPLED TO SPAN ON
REFERENCE LEVEL -30 dBm
EREQ SPAN 5 MHz
VIDEO FILTER OFF
SCALE $2 \mathrm{~dB} / \mathrm{DIV}$
TRIG
FREE RUN
(2) Connect the rear panel [CAL OUTPUT] connector to the front panel [RF INPUT] connector with the cable supplied. Set the CENTER FREQUENCY to 50 MHz with the frequency setting COARSE dial and adjust with the frequency setting FINE dial to get a fundamental calibration signal wave at the center of the screen.

Next, turn the GAIN ADJ knob and set the top of the 50 MHz spectrum to the LOG reference line the top scale Iine of the screen). This completes gain calibration.
4.4 Frequency Display ZERO Calibration
Set the measurement parameters as follows:
(1) Setting
CENTER FREQ ..... ON
COUPLED TO REF ..... ON
COUPLED TO SPAN ..... ON
REFERENCE LEVEL ..... $+10 \mathrm{dBm}$
FREQ SPAN ..... 5 MHz
VIDEO FILTER ..... OFF
SCALE ..... $10 \mathrm{~dB} / \mathrm{DIV}$TRIGFREE RUN
(2) Frequency Display Zexo CalibrationSet the frequency setting FINE dial to five turnsfrom the beginning. Then, turn the frequency settingCOARSE dial and display the zero frequency spectrum atthe center of the screen.While in this state, turn the FREQ ZERO ADJsemifixed variable resistor with a screwdriver and setit. so that the frequency display changes from 1 to 0 .This completes frequency display zero calibration.
4.5(1) Setting
REFERENCE IEVEL ..... 0 dBm
INPUT ATTEN ..... 20 CB
FREQ SPAN ..... 0 MHz
SCALE ..... IITNEAR
(2) Adjustment
Adjust the TRACE ROTATION using a screwdriver to set the display Iine horizontally, then adjust V. POSITION to set it on the bottom horizontal scale line of the screen.

## SECTION 5

OPERATION
5.1 Description of Front and Rear Panels


Fig. 5-1 Front and Rear Panel Layout

Table 5-1 Front and Rear Panel

Block Name	Operating Point	Description
FREQUENCY \#1		This block contains the fxequency related functions.
	COARSE dial \#2	0 to 2 GHz coarse setting dial. 10 turns. Sets all frequencies.
	FINE dial \#3	Fine setting dial. 10 turns. Sets 2 MHz .
	\#4	Displays the frequency according to the COARSE dial.
	START FREQ \#5	The displayed frequency becomes the screen START position.
	CENTER FREQ \#6	The displayed frequency becomes the screen CENTER position.
	FREQ ZERO ADJ \#7	Calibrates the displayed frequency.
MODE \#8		This block contains the screen setting functions.
	DATA \#9	Sets the measurement condition of the selected key in MODE.
	REF/MARKER \#10	LED which lights when the REFERENCE LEVEI is pressed.
	\# 11	Displays the REPERENCE LEVEL or MARKER LEVEL.
	$\begin{array}{r} \text { REFERENCE LEVEL } \\ \# 12 \end{array}$	The REFERENCE IEVEI can be displayed and set.
	MARKER LEVEL \#13	Outputs a brightened marker at the center of the screen. The peak level is displayed.
	SPAN/ATMTEN H24	LED which lights when the FREQ SPAN or INPUT ATPEN key is pressed.
	\#15	Disclays the FREQ SPAN or INPUT ATTEN setting.

Table 5-1 Front and Rear Panel (Cont.)

Block Name	Operating Point	Description
$\begin{aligned} & \text { MODE } \\ & \text { (cont.) } \end{aligned}$	FREQ SPAN \#16	This FREQ SPAN can be displayed and set.
	INPUT ATTEN \#17	Input attenuator set value can be displayed and set.
	RBW/SWEEP T \#18	LED which lights when the RBW or SWEEP TIME key is pressed.
	\#19	Displays RBW or SWEEP TIME.
	RBW \#20	RBW 3 dB bandwidth of IF can be displayed and set.
	SWEEP TIME \#21	Sweep time can be displayed and set.
	COUPLED TO SPAN	RBW and SWEEP T. are automatically set to the optimum value corresponding to $F R E Q$ SPAN setting. The LED lights while this function is available.
	COUPLED TO REF	INPUT ATTEN is automatically set to the optimum value corresponding to REF level setting. The LED lights while this function is available.
	VIDEG FILTER \#24	Selects the VIDEO FILTER. The selected value is indicated by an LED.
	SCALE \#25	Sets the screen vertical scale. The set value is indicated by an LED. ( 5 dB can be set only when the QP [Quasi Peak] option is installed.)
	TRIG \#26	Selects the trigger mode. The selected mode is indicated by an LED.
	START \#27	Starts sweep when SINGLE is selected at TRIG mode.
	DISPLAY UNCAL $\frac{\mathrm{H}}{\pi} 28$	Lights when the measured value (screen display) does not satisfy the measurement specifications.
	GAIN ADJ \#29	Finely adjusts the vertical gain. (Used at level calibration.)

Table 5-1 Front and Rear panel (Cont.)

Block	me	Operating Point	Description
MODE	\#8	INTENSITY \#30	Adjusts the brightness of the screen. (The brightness of the marker does not change.)
		GP-IB \#3I	Changes the MS610A from the remote state (being controlled via the GP-IB) to the local state. The LED lights in the remote state. (Only when GP-IB option is installed.)
		RE INPUT \#32	Input terminal for signal to be measured.
		POWER \#33	Power switch.
		\#34	$A C$ input. Connects to the power cord.
		\#35	Contains the power fuse.
		\#36	Ground terminal.
		$\mathrm{GF}-\mathrm{IB}$ 픈37	Connector and address switch which are provided when the GP-IB option is installed.
		CAL OUTPUT \#38	Calibration signal output ( $50 \mathrm{Mizz}-30 \mathrm{dBm}$ ).
		REFERENCE LEVEL	Switch which changes the REFERENCE LEVEL display units.
		FIRST LOCAI. OUTPUT \#40	First local output terminal for the optional MH680A Tracking Generator.
		SECOND LOCAL OUTPUT \#41	SECOND LOCAL output terminal for the optional MH680A Tracking Generator. (The connectors \#40 and \#4l are provided with the MH680A.)
		TRACE ROTATION \#42	Adjusts the tilt of the waveform on the screen.
.		V. POSITION ${ }_{\text {\#43 }}$	Adjusts the VERTICAL POSITION of the waveform on the screen.

### 5.2 Description of Controls

5.2.1 FREQUENCY


Fig. 5-2 COARSE - FINE Dial
(1) COARSE - FINE dial
<Function>
Sets the frequency.
<Setting range>
COARSE dial 0 to 2 GHz (all frequencies) coarse adjustment dial.

All the frequencies are set with 10 turns of the dial. The frequency is displayed on the frequency display witn a $I \mathrm{MHz}$ resolution.

FINE dial Fine adjustment dial.
About 2 MHz is set with 10 turns of the dial.
(2) START FREQ and CENTER FREQ
<Function>Determines the display frequency position on thescreen.
START FREQ The displayed frequency becomesthe screen START position.
CENTER FREQ The displayed frequency becomesthe screen CENTER position.
However, at FULL SCAN, both START FREQ and CENTER FREQdo not operate.
(3) FREQ ZERO ADJ
<EUNCTION>
Used for the calibration of the display
frequency.
<Adjustment method>
In the CENTER FREQ mode, the zero beat is set tothe center of the screen and this control isadjusted to the point at which the indicatedfrequency changes from 1 MHz to 0 MHz .

### 5.2.2 MODE



Fig. 5-3 MODE Keys

## <Eunction>

The display is divided into three areas designated REF/MARKER, SPAN/ATTEN, and RBW/SWEEP.T. Each area has two setting items. When the key of one of these two items is pressed, one of the area lamps lights, along with the lamp of the key pressed. Then, the mode to which the DATA key is set is known and the display indicates the value at that time.
(1) DATA
<Eunction>
Sets the item of the pressed MODE key.
(Unrelated to MARKER LEVEL selection.)
(2) REFERENCE LEVEL
<Eunction>
Displays the REFERENCE LEVEI and the value can be changed by DATA keys sequentially. When the DATA key is pressed continuously, the set value changes continuously.)

When SCALE $10 \mathrm{~dB} / \mathrm{DIV}$ set -50.0 to $+20.0 \mathrm{dBm}, 63$
to $133 \mathrm{~dB} \mu$, variable in
1 dB steps
When SCALE 2 dB/DIV set

When LINEAR set
-50.0 to +20.0 dBm , 63
to $133 \mathrm{~dB} \mathrm{\mu}$, variable in
0.5 dB steps
-60.0 to $+20.0 \mathrm{dBm}, 53$
to $133 \mathrm{~dB} \mu$, variable in 0.5 dB steps
(dBm and dBu units can be exchanged for other by switching the rear panel REFERENCE LEVEL switch.)
(3) MARKER LEVEL
<Function>
Outputs a brightened marker at the center of the screen and displays the maximum level in the brightened portion.

## <Setting range>

Marker (brightened portion) should be set in the range below +1.9 dB of REF LEVEL on the CRT when SCALE $10 \mathrm{~dB} / \mathrm{DIV}$ and in the range from -19.9 to +0.3 dB of REF LEVEL when SCALE 2 dB/DIV. When this range is exceeded, the unit display flashes to indicate that the level display is unsuitable.
<Notes>

- Not operative in the LINEAR SCALE, FULL SPAN setting, when the REF/MARKER lamp is not lit.
- Differs from FULL SPAN MARKER function.
- MARKER brightness is fixed. If INTENSITY is too
high, the marker cannot be seen.


## <Other functions> Field strength measurement

When the rear panel rotary switch is set to $\mathrm{dB} \mu / \mathrm{m}$ (1),
(2), (3), the measurement result for the field strength, which is the Max. level on the brightest marker portion, is directly displayed in $d B \mu / m$ unit. Corresponding to each antenna coefficient, when the $\widehat{\sim}$ key is pressed while the MARKER LEVEL key is pressed, only the antenna coefficient of the display frequency is displayed. When the $\circlearrowleft$ key is pressed, the display returns to the $\mathrm{dB} \mu / \mathrm{m}$ measurement display.
(4) FREQ SPAN
<Eunction>
The FREQ SPAN width is displayed and can be sequentially set with the DATA keys.
<Setting range>
F (FULL SPAN 2 GHz ), $1 \mathrm{GHz}, 0.5 \mathrm{GHz}, 0.2 \mathrm{GHz}, 0.1 \mathrm{GHz}$ $50 \mathrm{MHz}, 20 \mathrm{MHz}, 10 \mathrm{MHz}, 0.5 \mathrm{MHz}, 0.2 \mathrm{MHz}, 0.1 \mathrm{MHz}$, 0 MHz

## <FULE SPAN MARKER>

When set to $F$ (FULL SPAN), a bright marker appears on the screen. This marker indicates the frequency (display frequency) set with the COARSE dial. When the center of the marker is set to the spectrum to be analyzed and SPAN is made narrower, that spectrum can be easily set at the center of the screen.

INPUT ATTEN
<Function>
The input attenuator set value is displayed and can be set with the DATA keys incrementally or decrementally.

## <Setting range>

$0 \mathrm{~dB}, 10 \mathrm{~dB}, 20 \mathrm{~dB}, 30 \mathrm{~dB}, 40 \mathrm{~dB}, 50 \mathrm{~dB}$
The setting conditions depend on REF LEVEL and SCALE.
Settable ranges are shown below.


Fig. 5-4 INPUT ATTEN Range

0 dBm is $113 \mathrm{~dB} \mathrm{\mu}$.
(6) RBW
<Eunction>

RBW (IF 3 dB bandwidth) is displayed and can be sequentially set with the DATA keys.
<Setting range>
$1 \mathrm{MHz}, 0.3 \mathrm{MHz}, 0.1 \mathrm{MHz}, 30 \mathrm{kHz}, 10 \mathrm{kHz}, 3 \mathrm{kHz}, 1 \mathrm{kHz}$ When $d B \mu / m$ display mode or the $Q P$ (Quasi Peak) option is set, 120 kHz and 9 kHz (both IF 6 dB bandwidth) can also be set.

### 5.2.3 COUPLED TO SPAN

## COXXED

$\square$

Fig. 5-5 COUPLED TO SPAN Key

〈Function>

The RBW and SWEEP TIME are automatically set to the optimum state corresponding to the FREQ SPAN setting. The SWEEP TTME is also set to the optimum state when the VIDEO FILTER is set.
<Setting>
When the key is pressed and the key lamp is lit, setting is obtained.

At this time, even if the RBW or SWEEP TIME DATA keys are set, pressing this key sets them to the FREQ SPAN setting. RBW and SWEEP TIME are automatically changed corresponding to FREQ SPAN by the DATA keys; then, the SPAN/ATTEN area lamp lights. This function is reset and the lamp is turned off by pressing the set key again or by pressing the RBW or SWEEP TIME key.

## (7) SWEEP TIME

## <Function>

SWEEP TIME is displayed and can be sequentially set with the DATA keys.

## <Setting range>

10 s (seconds), $5 \mathrm{~s}, 2 \mathrm{~s}, 1 \mathrm{~s}, 0.5 \mathrm{~s}, 0.2 \mathrm{~s}$, $0.1 \mathrm{~s}, 50 \mathrm{~ms}, 20 \mathrm{~ms}, 10 \mathrm{~ms}$

When the QP (Quasi Peak) option is included, $99 \mathrm{~s}, 70 \mathrm{~s}, 60 \mathrm{~s}, 50 \mathrm{~s}, 40 \mathrm{~s}, 30 \mathrm{~s}$, and 20 s can also be set.

Table 5-2 FREQ SPAN, RBW, and SWEEP TIME Relationships

FREQ		SWEEP TIME		
SPAN ( Hz )	R.B.W ( Hz )	V.F $=$ OFF	V.F $=10 \mathrm{kHz}$	V.F $=100 \mathrm{~Hz}$
F (2 G)	0.3 M	0.1 s	2 S	10 S (UNCAL)
1 G	0.1 m	0.2 S	2 S	10 S (UNCAL).
0.5 G	0.1 M	0.1 s	1 S	10 S (UNCAL)
0.2 G	0.1 M	0.15	0.5 S	10 S (UNCAL)
0.1 G	30 K	0.2 s	1 S	10 S (UNCAL)
50 M	30 K	0.15	0.5 s	10 S (UNCAL)
20 M	30 K	0.1 s	0.2 s	10 S
10 M	10 K	0.2 s	0.2 s	105 (UNCAL)
5 M	10 K	0.1 S	0.1 S	105
2 M	10 K	0.1 s	0.1 s	
1 M	3 K	0.2 s	0.2 s	5 S
0.5 M	3 K	0.1 s	0.1 S	2 S
0.2 M	3 K	0.1 s	0.1 S	15
0.1 M	1 K	0.2 S	0.2 s	25
0 M	30 K	0.1 s	0.1 S	2 S

### 5.2.4 COUPLED TO REF

\section*{| COUPLEL |
| :---: |
| TORS |
| 8 |}

0

Fig. 5-6 COUPLED TO REF Key

## <Function>

INPUT ATTEN is automatically set to the optimum corresponding to REF LEVEL setting.

## <Setting>

When the key is pressed and the lamp is lit, setting is obtained.

At this time, even if the INPUT ATTEN DATA key is set, pressing this key causes REF LEVEL setting and INPUT ATTEN is automatically changed corresponding to REF LEVEL by the DATA keys; the REF/MARKER area lamp lights.

This function is reset and the key lamp is turned off by pressing the set key again or by pressing the INPUT ATTEN key.

Table 5-3 Relationship between REF LEVEI and INPUT ATTEN

| REF LEVEL (dBm) | INPG SCALE | ITNEAR SCALE |
| :--- | :---: | :---: | :---: |
| 12 to 20 | 50 | 50 |
| 2 to 11.5 | 40 | 40 |
| -8 to 1.5 | 30 | 30 |
| -18 to -8.5 | 20 | 20 |
| -28 to -18.5 | 10 | 10 |
| -50 to -28.5 | 0 |  |
| -60 to -28.5 |  | 0 |

0 dBm is 113 dBu.

### 5.2.5 VIDEO FILTER



## <Eunction>

Smoothing of noise and improvement in quality of waveform visibility.
<Setting>
The video filter is set in OFF $\rightarrow 10 \mathrm{kHz} \rightarrow 100 \mathrm{~Hz} \rightarrow$ OFF order and the set value is indicated by the lamp when the keys are pressed.

OFF	Video filter not used.
10 kHz	10 kHz video filter used.
100 Hz	100 Hz video filter used.



Fig. 5-8 SCALE Key

## <Function>

Sets the screen vertical axis scale.

```
<Setting>
```

The scale is set in $10 \mathrm{~dB} / D I V \rightarrow 2 \mathrm{~dB} / D I V \rightarrow$ LINEAR $+10 \mathrm{~dB} / D I V$ order and the set value is indicated by the lamp when the keys are pressed.
$10 \mathrm{~dB} / D I V \quad$ Screen full scale of 80 dB in the 10 dB/DIV scale

Top line is the reference level. Screen display range of 0 to -72 dB is calibrated. ( 0 dB is top line of screen display.)
$2 \mathrm{~dB} / \mathrm{DIV}$

LINEAR

Top Line

Bottom line
(QP) $5 \mathrm{~dB} /$

Screen full scale of 16 dB in the 2 dB/DIV scale

1 to 0 display
Reference $\times 1.0$ Level

Center line ( " ) x 0.5

Can be used in the EMI measurement (QP detector) option.
Screen full scale of 40 dB in $5 \mathrm{~dB} / \mathrm{DIV}$ scale.

### 5.2.7 TRIG



Fig. 5-9 TRIG Keys
<Function>
Selects the sweep trigger mode.
The mode is set in FREE RUN $\rightarrow$ LINE $\rightarrow$ VIDEO $\rightarrow$ SINGLE
$\rightarrow$ FREE RUN order and the mode set is indicated by the lamp when the key is pressed.

When the single mode is selected, sweep is performed by pressing the START key.
<Setting>

FREE RUN	Sweep is repeated by the timing set   internally.
LINE	Sweep is synchronized to the frequency
OIDEO	Of the $A C$ Iine (power supply).      STNGLE
	signal.
	One sweep is performed by pressing the
	START key.

5.2.8 DISPLAY UNCAL
DISPMYOUNCML
Fig. 5-10 DISPLAY UNCAL Lamp
<Function>
When sweep is performed at a time shorter than theoptimum SWEEP TIME determined by the FREQ SPAN, RBW,and VIDEO FILTER, the lamp lights to indicate thatthere is an error in the measured display value.
5.2 .9 GAIN ..... ADJ
GARH ADSFig. 5-11 GAIN ADJ Knob
<Function>
Knob for adjusting the gain. This is used tocalibrate the abolute gain value.And also used when setting the displayed signal levelto the scale on the screen, etc.

MTENSITY


Fig. 5-12 INTENSITY Knob
<Eunction>
Adjusts the brightness of the image on the screen. The brightness of the marker does not change.
$5.2 .11 G P-I B$


Fig. 5-13 GP-IB Key
<Function>
Sets the remote state to the local state when the GP-IB option is installed and the GP-IB is used. In the remote state, the key lamp lights to indicate that GP-IB is being used. When set to the local state by pressing the key, the lamp goes out and the instrument. can be used by manual key operation.

### 5.2.12 REFERENCE LEVEL (rear panel)

## Fig. 5-14 REFERENCE LEVEL Switch

## <Eunction>

Changes the REFERENCE LEVEL display units.
<Setting>
aBm Displayed in dBm units.
$d B \mu$ Displayed in dBM units.
$\mathrm{dB} \mu / \mathrm{m}(1),(2),(3)$ When the MARKER LEVEL is set to ON, the max. level of the marker portion at the center of the screen is directly displayed in dBu/m. After compensation corresponding to each STANDARD ANTENNA's coefficient, the REFERENCE LEVEL is displayed in dBu units.

## SECTION 6

## MEASUREMENT

### 6.1 Typical Measurement

(1) General measurement method

The device under test ("X") and the spectrum analyzer input connector are connected with a cable as shown in Fig. 6-1.


Fig. 6-1 Connection to ("X") Device Under Test

Initially, the unknown signal is received and measured over a wide band by FULL SPAN.

Reception of the signal is confirmed by looking at the screen. When only the FULL SPAN MARKER appears on the screen, the brightness is adjusted with the INTENSITY knob so that the entire screen brightens. When the spectrum does not appear, lower the reference level with the REFERENCE LEVEL key.

After the spectrum appears on the screen, the FULL SPAN MARKER is set with the spectrum to be measured at the center. Then, FREQ SPAN is narrowed, the dials are turned, the displayed spectrum is set to the center (for CENTER FREQ) of the screen, and the frequency display value is read.

When the MARKER IEVEL key is pressed, the level appears on the display.
(2) Improvement of frequency measurement accuracy

The specified center frequency accuracy of the MS610A is $\pm 10 \mathrm{MHz}$. However, more accurate frequency measurement can be performed by using the CAL OUT signal.

The CAL OUT signal is connected to RF INPUT by cable.

The nth harmonic spectrum of 50 MHz appears on the screen. When frequency deviation between the harmonic and the unknown signal is $\Delta f$, the frequency of the unknown signal is calculated to $50 \mathrm{n} \pm \Delta$.

The frequency accuracy of the harmonics of the CAL signal is ( $n \times \pm 150 \mathrm{kHz}$ ) for the nth harmonic; FREQ SPAN accuracy is $\pm 5 \%$.
6. 2 Modulated Wave Measurement
Since the sideband spectrum of AM, PAM (Pulse amplitude modulation), $F M$, and other modulated waves is distributed above and below the carrier, the spectrum is measured by expanding the display on the screen with almost the same procedure.
(1) Measurement procedure
(a) First, the instrument is set to the FULL SPAN mode, and the unknown signal is received.
(b) The FULL SPAN MARKER is set to the spectrum to be measured with the COARSE dial.
(c) COUPLED TO SPAN is set. The FREQ SPAN is narrowed and the spectrum is expanded while setting the center of the spectrum to the center of the screen with the COARSE and FINE dials.
(d) REF LEVEL is adjusted so that the amplitude of the spectrum is on the screen.
(2) AM wave measurement

When an AM wave is displayed, as shown in Fig. $6-2$, by the measurement procedure described in (1), the carrier frequency fc, modulation frequency fm, and their levels PC, P1, and P2 (dBm or $\mathrm{dB} \mu$ ) can be measured.

The 2nd harmonic distortion of the modulation wave is given as (P1 - P2).

The modulation factor is calculated by using the equation,

```
20log m/2 = PC - Pl
```

This relationship is shown in Fig. 6-3. When SCALE 10 dB/DIV is used, since the highest 70 dB level difference is read directly from the screen, a low modulation percentage (as low as $0.06 \%$ ) can be measured.

$\mathrm{F}_{\mathrm{f}_{\mathrm{c}}} \mathrm{fm}_{\mathrm{m}}-1$
Fig. 6-2 AM Wave Spectrum Display


Fig. 6-3 AM Wave Modulation Factor and Sideband dB Display Level
(3) Measurement of $A M$ wave when modulation frequency is low

When the modulation frequency is low and analysis is impossible for the $A M$ wave measurement of item (2), the FREQ SPAN setting is set to ZERO SPAN and the spectrum analyzer is operated as a fixed frequency receiver.

The following settings are made in addition to those of item (1):

SCALE
LIN
SPAN 0 (COUPLED TO SPAÑ)
When REF LEVEL is set to a suitable value and tuning is performed with the FINE dial, a waveform of the modulation signal appears on the screen. When the TRIG key is then set to VIDEO, the instrument is synchronized to the received signal and a static waveform appears on the screen as shown in Fig. 6-4.


Fig. 6-5 FM Wave Spectrum Display Example
Table 6-1 Modulation Index When Carrier Amplitude Becomes Zero

Carrier Zero order	Modulation Index
1	2.40
2	5.52
3	8.65
4	11.79
5	14.93
6	18.07
$n(n>6)$	$18.07+\pi(n-6)$

(5) PAM wave measurement

The spectrum display of a PAM wave like that shown in Fig. 6-6 is obtained by the measurement display expansion procedure of item (1). The pulse width $\tau$ of the modulation pulse is obtained from the difference frequency fr between the discontinuous points of the main lobe and side lobe of the pulse spectrum shown in Fig. 6-6(A) ( $\tau=1 / \mathrm{fr}$ ).

Furthermore, when each sideband spectrum is analyzed by expanding the spectrum, the spectrum display shown in Fig. $6-6(\mathrm{~B})$ is obtained and the carrier frequency fc and pulse repetition frequency fm are measured.

In this case, since the horizontal axis is determined by SWEEP TIME, the display becomes a time domain display from which the period $T$ (seconds) of the received signal can be directly read.

The modulation frequency fm is given by $\mathrm{fm}=$ (I/T) (Hz). The modulation factor $m$ is obtained from Emax, Emin, and Ec of Fig. 6-4 as follows:
$m=(E m a x-E c) / E c=(E c-E m i n) / E c$


Fig. 6-4 AM Wave Time Domain Display Example
(4) FM wave measurement

When displayed as shown in Fig. 6-5 by the display expansion measurement procedure of item (1), the carrier frequency fc, modulation frequency fm, and the level of each sideband spectrum can be measured.

Moreover, since FH wave zero carrier amplitude can be checked from the spectrum displayed on the screen, the FM wave modulation index can be calibrated.

The modulation index at which the carrier amplitude becomes zero is shown in Table 6-1.


Fig. 6-5 FM Wave Spectrum Display Example
Table 6-1 Modulation Index When Carrier Amplitude Becomes Zero

Carrier Zero order	Modulation Index
1	2.40
2	5.52
3	8.65
4	11.79
5	14.93
6	18.07
$n(n>6)$	$18.07+\pi(n-6)$

(5) PAM wave measurement

The spectrum display of a PAM wave like that shown in Fig. 6-6 is obtained by the measurement display expansion procedure of item (1). The pulse width $\tau$ of the modulation pulse is obtained from the difference frequency fr between the discontinuous points of the main lobe and side lobe of the pulse spectrum shown in Fig. $6-6(\mathrm{~A})(\mathrm{T}=1 / \mathrm{fr})$.

Furthermore, when each sideband spectrum is analyzed by expanding the spectrum, the spectrum display shown in Fig. $6-6(B)$ is obtained and the carrier frequency fc and pulse repetition frequency fm are measured.


Fig. 6-6 PAM Wave Spectrum Display Examples

### 6.3 Spurious measurement

Spurious signals measurement can be done with the COUPLED TO REF function, when INPUT ATTEN is suitably set and internal distortion is less than 70 dB . When not using the COUPLED TO REF function, the input signal and the spurious signals generated by the MS610A can be discriminated as follows.

The input signal displayed on the CRT does not change when INPUT ATTEN is changed. (INPUT ATTEN does not affect the value of REF LEVEL, but it automatically changes the IF gain.)

The internal spurious signals due to secondary distortion displayed on the CRT change equal to the amount of change ( dB ) of INPUP ATTEN, and the internal spurious signals due to tertiary distortion displayed on the CRT change by twice the amount of change ( dB ) of INPUT ATMEN.
(1) Harmonic distortion measurement
(a) Since the frequency is often known for this kind of measurement, the instrument is set initially as shown below; the unknown signal spectrum is displayec on the screen.

FREQ COARSE, FINE dials

START FREQ
COUPLED TO REF
SPAN (COUPLED TO SPAN)

> Tuned to the fundamental wave of the unknown signal.
> set to ON.
> Set to ON.
> Set to the FREQ SPAN so that the fundamental wave and harmonics of the unknown signal can be displayed at the same time.

> However, the sweep time should be speeded up and the span should be made as narrow as possible to allow an easy-to-see display.

Narrower RBW than the specified RBW on COUPLED TO SPAN can be set as follows:

RBW

SWEEP T
Set an optimura RBW to measure the unknown spurious signal.

Set so that DISPLAY UNCAL lamp is not lit.
(b) The fundamental wave spectrum of the unknown signal is adjusted with REFERENCE LEVEL as shown in Fig. 6-7. When the fundamental wave and harmonics cannot be displayed simultaneously, measure the fundamental wave and the harmonics separately.

Moreover, calculate the distortion of all harmonics from the level difference between the fundamental wave and harmonics.
(2) Inter modulation product measurement

In this case, the screen display shown in Fig. 6-8 is obtained by the display expansion measurement procedure (1) in "Modulated Wave Measurement" 6.2 and the level of each spectrum is measured.
(3) Random spurious signal measurement

Since there are many cases when the frequency and level of spurious signals, such as parasitic oscillation, etc., are unknown, the signal is displayed on the screen and measurement is performed as described in "General. Measurement Method" 6.1 (1).
(4) Spectrum purity measurement (sideband noise)

Sideband noise is measured by expanding the spectrum as in the measurement procedure (1) of "Modulated Wave Measurement" 6.2.


Fig. 6-7
Harmonics Spectrum Display


$$
\operatorname{l}_{2 t_{1}-f_{2}}!_{i 1}!_{2 f_{2}-11}
$$

Fig. 6-8 Inter Modulated Wave Spectrum Display

### 6.4 Field Strength Measurement



Fig. 6-9 Field Strength Measurement

In field strength measurement, the antenna (application parts) and spectrum analyzer RF INPUT are connected with the connection cable as shown in Fig. 6-9 and an incoming electromagnetic wave is received.

In field strength measurement, the conversion following is necessary. However, if a specified antenna is used, the field strength can be read directly, without compensation.

$$
E x=P X-K O
$$

Px: Measured value
Ko: Antenna coefficient
(1) Measurement in $a B \mu$ units
(a) The incoming electromagnetic wave is measured in $\mathrm{d} B \mu$ units.
(b) The field strength is determined from the equation above and from the table supplied with the antenna.
(2) Direct reading measurement of field strength using the specified antenna
(a) The REFERENCE LEVEL knob on the rear panel is set to the position matched to the using specified antenna being used indicated in Table 6-2.
(b) The incoming electromagnetic wave to be measured is set to the center of the screen with the REFERENCE LEVEL and frequency setting dials in dB $\mu$ units.
(c) The MARKER LEVEL key is set to ON.
(d) The field strength compensated for by the antenna coefficient for the marker frequency is displayed on the display. The unit is $\mathrm{dB} \mathrm{\mu} / \mathrm{m}$.
(e) To reduce measurement error, display frequency calibration is necessary. Perform display frequency calibration by using an external oscillator or internal calibration signal output.
(3) Antenna coefficient display

When A of the DATA keys is pressed when the MARKER LEVEL key is set to ON, only the antenna coefficient for the marker frequency is displayed. To return to the $d B \mu / m$ measurement display, press the $\leadsto$ key.

Table 6-2 Relationship between REFERENCE LEVEI Switch (rear panel) and Antenna

Switch Name	$\frac{2}{C B \mu / \mathrm{m}(1)}$	$\frac{3}{\mathrm{~dB} \mu / \mathrm{m}(2)}$	$\frac{4}{\mathrm{~dB} \mu / \mathrm{m}(3)}$
Antenna Name	MP 534 A	MP635A	MP636A
Type	Dipole antenna	Log-periodic antenna	Log-periodic antenna
Frequency Range	25 to 520 MHz	$\begin{aligned} & 80 \text { to } \\ & 1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 300 \text { to } \\ & 1700 \mathrm{MHz} \end{aligned}$

## SECTION 7 <br> DAILY MAINTENANCE AND STORAGE

### 7.1 Daily Maintenance

Daily maintenance of the MS610A consists mainly of cleaning and exterior inspection.

Table 7-1 Daily Maintenance

Problem	Occurrence	Procedure
Outside dirt	Previous to long-term   storage.	Wipe with a neutral   detergent, etc.
Dust	When used in a dusty   place; when dust is   noticeable.	Open the cover and blow   away the dust with   compressed air, etc.
Loosened   screws	When found.   Screwden with a   tools.	

### 7.2 Storage

### 7.2.1 Storage Precautions

Attention should be paid to the items listed below when storing the instrument for an extended period of time.
(1) Always clean the instrument thoroughly before storage.
(2) Do not store the instrument under high temperatures $\left(55^{\circ} \mathrm{C}\right.$ or more), high humidity ( $90 \%$ or more), or excessively low temperatures $\left(-25^{\circ} \mathrm{C}\right.$ or less).
(3) Do not store the instrument in direct sunlight or in a dusty place.
(4) Do not store the instrument in a place where it may be affected by condensation or corrosive geses.


```
NOTE
```

(1) The instrument is operable on a nominal voltage of 100 to 127 Vac or 200 to 254 Vac by changing the connections of the power transformer taps.

The voltage and current rating are indicated on the rear panel.

When changing voltages, change the connections of the power supply transformer, and the voltage and current designation plate on the rear panel. Order the plates from Anritsu Electric Co., Ltd. if necessary.
(2) In this manual, supply voltage and current rating are represented by [**] Vac and [***] A.
(3) The relationships between power supply voltage and current rating are listed below.

$* * \mathrm{Vac}$	$* * * \mathrm{~A}$
100 to 127 V	1.0 A
200 to 254 V	0.5 A

### 7.2.2 Recommended Storage Conditions

In addition to the conditions listed above, the following environmental conditions are recommended when storing the instrument for an extended period of time.

$$
\begin{array}{ll}
\text { Temperature: } & 0 \text { to } 30^{\circ} \mathrm{C} \\
\text { Humidity: } & 40 \text { to } 80 \%
\end{array}
$$

The storage area should not be subject to large fluctuations in temperature and humidity during a 24 hour period.


[^0]:    *2. Reference level scale is the top Iine on the screen.

[^1]:    Fig. 3-5 MS610A Sawtooth Generator and Local Oscillator Control Circuit

