Models 172, 173
 Instruction Manual

Contains Operating and Servicing/Calibration Information for Models 172, 173, 1722, and 1728

$$
\text { the }+5 T t
$$

INSTRUCTION MANUAL

Digital Multimeter
Models 172, 173
[Contains Operating and servicing/Catioration Intormation For Models 172, 173, 1722, and 1728.]
INSTRUCTION MANUAL
Digital Multimeter
Models 172, 173
© COPYRIGHT 1976, KEITHLEY INSTRUMENTS, INC.
THIRD PRINTING, OCT. 1977, CLEVELAND, OHIO U.S.A. DOCUMENT NO. 28262, REVISION CODE CC

CONTENTS

Section

Page
CONTENTS
ii
illustrations.
SPECIFICATIONS

1. GENERAL INFORMATION.

1-1. INTRODUCTION
1-2. FEATURES
1-3. WARRANTY INFORMATION
1-4. ChANGE NOTICE.
1-5. OPTIONAL MODEL 1728 RECHARGEABLE BATTERY PACK.
1-6. OPTIONAL MODEL 1722 DIGITAL INTERFACE
. INITIAL PREPARATION.
2-2. INSPECTION
2-3. PREPARATION FOR USE.
3. OPERATING INSTRUCTIONS

3-1. GENERAL.
3-2. HOW TO SELECT POWER.
3-3. HOW TO SELECT FUNCTION
3-4. HOW TO SELECT RANGE.
3-5. HOW TO MEASURE VOLTAGE3-6. HOW TO MEASURE CURRENT (MODEL 172 ONLY)3-4
3-7. HOW TO MEASURE CURRENT (MODEL 173 ONLY)3-5
3-8. HOW TO MEASURE RESISTANCE3-6
3-9. FURTHER MEASUREMENT CONSIDERATIONS 3-8
3-10. HOW TO USE MODEL 172/173 OFF-GROUND. 3-11
3-11. HOW TO USE OPTIONAL PROBES AND SHUNTS. 3-12
3-12. HOW TO USE THE MODEL 1722 DIGITAL INTERFACE. 3-13
4. ACCESSORIES 4-1
4-1. GENERAL. 4-1
4-2. POWER OPTIONS 4-1
4-3. ISOLATED DIGITAL OUTPUT. 4-1
4-4. RACK MOUNTING.4-1
4-5. PROBE AND SHUNTS 4-4
4-6. CABLES AND CONNECTORS 4-54-5
5. THEORY OF OPERATION 5-1
5-1. GENERAL.5-1
5-2. INPUT SIGNAL CONDITIONING.5-2
5-3. POWER SUPPLY, SCHEMATIC NO. 28067D 5-9
5-4. DISPLAY BOARD PC-403 SCHEMATIC NO. 27478 D 5-10
5-5. CURRENT BOARD, SCHEMATIC NO. 27478D. 5-12
5-6. MODEL 1728 RECHARGEABLE BATTERY PACK 5-13
5-7. ANALOG-TO-DIGITAL CONVERTER. 5-13
5-8. MODEL 1722 DIGITAL INTERFACE 5-22
5-9. DETAILED 4-WIRE OHMS OPERATION 5-26

CONTENTS (continued)

FIGURE 1. Dimensional Data.

INSTRUCTION MANUAL
 Digital Multimeter
 Models 172, 173

Calibsaled al $25^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}$

AS AN AUTO/MANUAL RANGING DC VOLTMETER
TEMPERATURE

NORMAL MODE REJECTION RATIO: Greater than 80 dB over 1 digit a! 50
NORMAL MODE REJECTION RATIO: Greater than 80 d 8 over 1 digit a! 50
$\& 60 \mathrm{~Hz}, 70 \mathrm{dE} 50 \mathrm{~Hz}$ to 10 kHz
COMMON MODE REJECTION RATIO (ik?? unbalence): Geater thar. 120 AE al oc and 50 Hz to 10 kHz
ANALOG SETTLING TIME (On-range): less than 0.3 second to within 0.01%
of linal reaaing

AS AN AUTO/MANUAL RANGING AC VOL.TMETER					
RANGE	READING MAXIMUM	accuracy. (1 y*Br. $\left.20^{\circ}-30^{\prime} \mathrm{C}\right)$ $\pm(\%$ of $\mathrm{rdg}+\mathrm{digits}$)	FREOUENCY RANGE	TEMPERATURE COEFFICIENT $\left(0^{\circ}-20^{\circ} \mathrm{C}\right.$ and $\left.30-55^{\circ} \mathrm{C}\right)$ $=\left({ }^{\circ} \mathrm{of}\right.$ of rdg+digits $) /{ }^{\circ} \mathrm{C}$	
300 mV	299.99	$0.20 \%+6 d^{\circ}$	50 Hz to 20 RHz	. 015% + 0.5 c	
3 V	2.9999	$0.20{ }^{\circ}+6 \mathrm{~d}$	50 Hz 10 202 kHz	. 015% + 0.50	MAXIMUM ALLOWABLE INPUY: 1000 V rms stne or dc. $10 \mathrm{~V} \cdot \mathrm{~Hz}$ maximum
30 V	29.999	0.20\% + 6d	50 Hz to 20 kHz	. 015% + 0.50	ANALOG SETTLING TIME (on-range): less than 0.5 second to within 005°.
300 1000	299.99 1000.0	0.20\% + 6d	50 Hz to 20 kHz	. 015% + 0.56	of final reading
Average	ponding c	oratecin ims of	50 Hz to 10kHz	. 02% + $0.5 d$	INPUT IMPEDANCE: 2 megohms shunted by less than 50 picotarads
-Above -Fortea	0\% relative nosbelow 1	midty and 10 kHz . add of range add 015 mv	$1 \% \text { of rag }$		COMMON MODE REJECTION RATIO (tk!? Unbalance. Lo driven): Greater than 100 dB at dc and 50 to 60 Hz , decreasing to 70 dB at 10 kHz

AS AN AUTO/MANUAL RANGING OHMMETER

RANGE	READING MAXIMUN	ACCURACY (1 year, $20^{\circ} \cdot 30^{\circ} \mathrm{C}$) \pm (\% ol rdg + digits) HI - mode Lo		MAXIMUM VOLTAGE ACROSS UNKNOWN ON RANGE* HI mode - LO		allowable 4-T LEAD RESISTANCE
320 !	299 ¢	-0350-	0.035\% + 10	\checkmark	03 l	1 !
3k!!	$2.90{ }^{\circ}$	0035\% + 1d	$0035{ }^{\circ} \mathrm{c}$ + 1d	3 V	031	$16!$
30k !	2995	$0.035^{\circ} \mathrm{c}+10$	$0036 c_{6}+10$	3 V	03 V	$100:$
30tik!	295	$0.035 \%+10$	$0046^{\circ} \mathrm{c}+10$	3 V	C.3V	10c:
3M !	2995	$005 \%+10$	$0.15 \%+10$	3 V	03 V	10¢?
300 M !	2995	$018 \%+1 d$	$08 \%+10$	3 V	03 V	100!
300M !	29995	1.5% + 10	-	3 V		$100!$

ANALOG SETTLING TIME (on-range): Hi ohms beiow 10M? less than 04 second to within 0.01% of final reading. 10 M ! to 100 M :! and Lo ohms less than 1.7 seconds to within 0.01% of final reading
CONFIGURATION: 4-termina or 2-terminal, switch selected.
MAXIMUM ALLOWABLE INPUT: 360 V peak. 250 V rms or ac.
AC AND DC AMMETER
AS AN AUTO/MANUAL RANGING AC AND DC AMMETER
(MODEL
(MODEL 172 ONLY)

RANGE	MAXIMUM READING	DC ACCURACY $\begin{gathered} \left(1 \text { year, } 20-30^{\circ} \mathrm{C}\right) \\ =(\$ \text { of rag digits }) \end{gathered}$	$\begin{gathered} \text { AC ACCURACY } \\ \left(1 \mathrm{year}, 20^{\circ}-30^{\circ} \mathrm{C}\right) \\ 50 \mathrm{~Hz}-5 \mathrm{~Hz} \\ \pm(\% \text { ol rog + digits }) \\ \hline \end{gathered}$	INPUT RESISTANCE	$\begin{aligned} & \text { FUSE } \\ & \text { PROTEC. } \\ & \text { TION } \end{aligned}$
300 mA .	299.99	0.25% + 2 d	$0.5 \%+18 \mathrm{~d}$	1.39	2 A
$2 A^{\text {a }}$	2.0000	0.25\% + 2 d	0.5% + 18 d	$13!$	2 A

RANGE	MAXIMLIM READING	DC accuracy $\begin{gathered} \left(1 \text { year, } 20^{\circ}-30 \mathrm{C}\right) \\ \pm \\ (\% \text { ol } 10 \text { dg }+ \text { digits }) \end{gathered}$		INPUY RESIST. ANCE	FUSE PROTEC. TION
$300_{\mu} \mathrm{A}$	29999	$01 \%+2 \mathrm{C}$	03%-18	1k!	3A
3 mA	29995	0.10 - 20	03\% - 18=	100 ?	34
30 mA	29.999	01% + 2d	03\% + 18	10 !	3 A
300 mA	29999	01\% + 20	$03{ }^{\circ}+162$	13 !	34
3 A .	2.9999	$01{ }^{\circ} \mathrm{C}+2 \mathrm{c}$	035-185	04 :	3 A

-Self-heating eflects of currents greater man t ampere can double oo of reaoing accuracy
TEMPERATURE COEFFICIENT $10^{\circ} .20^{\circ} \mathrm{C}$ and $30^{\circ}-55^{\circ} \mathrm{C}$) OC . TEMPERATURE COEFFICIENT $\left(0^{\circ}-20^{\circ} \mathrm{C}\right.$ and $\left.30^{\circ} .55^{\circ} \mathrm{C}\right)$; DC: $=10005^{\circ} \% 0^{\prime}$ reading +0.2 digits $) /{ }^{\circ} \mathrm{C} A C=(0.03 \%$ of reading +1 digit $) /{ }^{\circ} \mathrm{C}$.
ANALOG SETTLING TIME (on-range): DC; less than 03 second to within 0.01% of tinat reading. $A C$: less than 0.5 second 10 within 0.05% ! tinat reading.

GENERAL

ZERO STABILITY: Autozeroed to within eccuracy specifications, $0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$ DISPLAY: $4^{1 / 2}$ digits, appropriate decimal position, function and polarity indication. Three readings per second.
CONVERSION PERIOD: 320 milliseconds.
ISOLATION: Input LO to power line ground, greater than 1000 megohms shunted by approximately 300 picofarads. Maximum safe input between LO and power line ground, 1400 volts peak.
POLARITY: Automatic.
RANGING: Automatic or manual. Upranges at 30000, downranges at 02599.
OVERLOAD INDICATION: Blinks above $\pm 1200 \mathrm{~V}$ dc, 1000 V ac. Blanks last four digits above 29999 counts on all other ranges.
ACCESSOAIES AVAILABLE:
*Model 1728 Rechargeable Eatiery Pack.
*Model 1722 Digital Interface.
Model 1727 Mating Output Connector Set

* Model 1723 IEEE Standard Bus Interiace.
*NOTE: Models 1722, 1723, and 1728 can only be installed and used one at a time.

SELF-CHECK: Rear-panet tip jacks give self-check of functional operation on 30 -volt ac and dc ranges, $30 \mathrm{k} \Omega$ ranges and 3 mA ac and dc ranges. WARMUP: 1 hour to rated accuracy.
ENVIRONMENT (without batteries instalted):
Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
0% to 80% relative humidity up $1035^{\circ} \mathrm{C}$
Storage: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
POWER: 105-125 or $210-250$ volts (switch selected), 50-60Hz; 20V.A 90-110 volts available. Optional rechargeable 6 -hour battery pack.
CONNECTORS: Input: Banana jacks. Self-check: Tip jacks.
DIMENSIONS, WEIGHT: 85 mm high $\times 235 \mathrm{~mm}$ wide $\times 275 \mathrm{~mm}$ deep ($31 / 2 \mathrm{in}$. $\times 91 / 4$ in. $\times 10 \frac{1}{4}$ in.). Net weight, exclusive of batteries, $2,3 \mathrm{~kg}$ (5 lbs.).
ACCESSORIES AVAILABLE: (Continued)
Model 1010 Single Rack Mounting Kit
Model 1017 Dual Rack Mounting Kit
Model 1600 High Vollage Probe
Model 1725 Maintenance Kit.
Model 1681 Clip-on Test Lead Sel
Model 1682 RF Probe
Model 1683 Universal Test Lead KIt

FIGURE 2. Tilt Bail Positions.

1-1. INTRODUCTION. The Models 172 and 173 Digital Multimeters are wide-range, generalpurpose measuring instruments, capable of measuring ac/dc voltage, ac/dc current, and resistance.

1-2. FEATURES

a. Automatic Ranging and Polarity
b. Manual Range Selection and Range Hold
c. HI and LO Ohms Capability
d. Line Operation
e. Optional Battery Operation, Model 1728.
f. Floating Capability to $\pm 1400 \mathrm{~V}$ peak
g. Optional Isolated Digital Interface, Model 1722.

1-3. WARRANTY INFORMATION. The warranty is stated on the inside front cover of the manual. If there is a need for service, contact your Keithley representative or authorized repair facility as given in our catalog.

1-4. CHANGE NOTICE. Improvements or changes to the instrument not incorporated into the manual will be explained on a change notice sheet attached to the inside back cover of the manual.

1-5. OPTIONAL MODEL 1728 RECHARGEABLE BATTERY PACK. The Model 1728 is an accessory battery pack which enables either line or battery operation. The Model 1728 has builtin recharging circuitry. The Model 1728 is field-installed on the Model $172 / 173$ chasis.

1-6. OPTIONAL MODEL 1722 DIGITAL INTERFACE. The model 1722 is a field-installable digital output option. It provides isolated open-collector $B C D$ outputs and control lines.

IMPORTANT

The $\$$ symbol can be found in various places in this Instruction Manual. Carefully read the associated CAUTION statements with regard to proper use and handing of the instrument. Damage to the instrument may occur if these precautions are ignored.

The symbol can be found in various places in this Instruction Manual. This symbol indicates those areas on the instrument which are potential shock hazards. Carefully read the associated $W A R N I N G$ statements with regard to proper use and handing of the instrument. Serious personal injury may result if these precautions are ignored.

Figure 3. Model 173 Front Panel

FIGURE 4. Bottom View Showing Line Cord

172, 173 CONDENSED OPERATING INSTRUCTIONS						
TO	FUNCTION SELECTION		RANGE (SEE BELOW)	ACCURACY	INPUT IMPEDANCE	MAX. ALLOW INPUT
OC Voits	$\begin{gathered} \text { OC.IN } \\ \text { V/A.OUT } \end{gathered}$		$\begin{array}{r} \pm 299.99 \mathrm{my} \\ \mathrm{rO} \pm 1200 . \mathrm{V} \end{array}$	$\begin{aligned} & \pm 0.01 \% \\ & \pm 10161 \% \end{aligned}$	$\begin{aligned} & 10^{\circ} \text { SBELOW 3V } \\ & 10^{\prime} \text { rabove 3V } \end{aligned}$	$\begin{gathered} 600 \mathrm{VCONT} \\ 1200 \mathrm{PEAK} .3 \mathrm{SEC} \end{gathered}$
DC CURRENT	DC.IN V/A.IN	$\frac{1}{2}$	$\begin{gathered} \pm 299.99 \mathrm{~mA} \\ 10 \pm 2.0000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \pm 0.25 \% \\ & \pm 20.61 \mathrm{~s} \end{aligned}$	130	$\begin{gathered} \text { 2A } \\ \text { (REAR PANEL FUSE) } \end{gathered}$
		1 7 3	$\begin{gathered} \pm 299.99 \mu \mathrm{~A} \\ 10 \pm 2.9999 \mathrm{~A} \end{gathered}$	$\begin{gathered} \pm 0.18 \\ \pm 20161 \mathrm{~s} \end{gathered}$	IkT0 045	$\begin{gathered} 3 A \\ \text { IREARPANEL } \end{gathered}$
AC VOLTS $5 \mathrm{OH}_{2}-20 \mathrm{kHz}$	$\underset{V / A \cdot O U T}{A C \cdot I N}$		$\begin{gathered} 299.99 \mathrm{mV} \\ \text { T0 } 1000.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 0.15 \% \\ & \pm 60161 / \mathrm{s} \\ & 10300 \mathrm{y} \end{aligned}$	$\begin{gathered} 2 \mathrm{MR} \Omega \\ 850 \mathrm{pf} \end{gathered}$	1000V RMS (DISPLAY BLINKS)
AC CURRENT 50 Hz - 5 kHz		3	$\begin{gathered} 299.99 \mathrm{~mA} \\ 102.0000 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \pm 18 \text { DIGITS } \end{gathered}$	1.38	$\begin{gathered} 2 A \\ \text { (REAR PanEl FUSE) } \end{gathered}$
		3	$\begin{array}{r} 299.99 \mu \mathrm{~A} \\ 102.8999 \mathrm{~A} \\ \hline \end{array}$		1k 70.0 .46	(REAR PANEL FUSE)
Ohms 20R 4 WIRE *	$\underset{\operatorname{HI/LO\cdot IN}}{\Omega \cdot 1 \mathrm{~N}}$		$\begin{gathered} \text { 299.999! } \\ \text { T0 } 29.989 \mathrm{MS}! \end{gathered}$	$\begin{aligned} & \pm 0.03 \% \pm 10^{*} \\ & T 030 \mathrm{k} 52 \end{aligned}$	300 mV Max IW RANGE \#	250Vams
	$\begin{gathered} \Omega \cdot \mathrm{N} \\ \mathrm{HI} / 10.0 \mathrm{UT} \end{gathered}$		$\begin{array}{r} 2.9999 \mathrm{kS} \\ t 0298.99 \mathrm{M} \Omega \end{array}$	$\begin{aligned} & \pm 0.03 \% \pm 10^{x} \\ & \text { T0 300k? } \end{aligned}$	$\begin{aligned} & \text { 3V MAX. } \\ & \text { IN RANGE } \end{aligned}$	250 V RMS
OVERRANGE: FIRST DIGIT 3. REMAINING DIGITS BLANK = MAXIMUM OPEN CIRCUHT VOLTAGE IS 5 VOLTS. * SEE INSTRUCTION MANUAL FOR OTHER REGIONS. * IN 4 WIRE OHMS. INPUT HI MUST BE CONNECTED ON Ω					Ω IN OVERRIDES V/A. DC OR AC IN OVERRIDES HI/LO AND 2 WIRE/4 WIRE. SOURCE HIGH SIOE \& LO ON LO.	
RANGE SELECTION		USE OF 1722 DIGITAL INTERFACE ALLOWS REMOTE RANGING.				
AUTO	OUT	FULL AUTORANGING ALL FUNCTIONS DEFEATS UP AND DN.				
MAN	IN	ALLOWS MANUAL RANGING BY USTNGUP \& ONPUSHBUTIONS.				
DN MO	MOMENTARY	EACH PUSH CAUSES ONE DOWNRANGE.				
UP MO		EACH PUSH CAUSES ONE UPRANGE.				
POWER	(SEE INSTRUCTION MANUAL FOR 1728 BAT. PACK INSTALLATION)					
INE	IN-OPERATES INSTRUMENT FROM AC LINE. TRICKLE CHARGES 1728 OUT-CHARGES DISCHARGED 1728 IN 16 HOURS					
BAT.	IN-OPERATES INSTRUMENT FOR 6 HOURS FROM 1728 BAT. PACK. IF INSTALLED. FRONT PANEL LO BAT LIGHT COMES ON IF BATTERY OPE RATION WOULD CAUSE FAULTY READINGS					
SELF TEST (REAR PANEL)						
OC	CONNECTING INPUT HITO DC TERMINAL WILL CAUSE INSTRUMENT TO READ APPROX. 5 V IN DC VOLTS AND 1 mA IN DC AMPS.					
AC	CONNECTING INPUT HI TD AC TERMINAL WILL CAUSE INSTRUMENT TO READ APPROX, 6 V IN AC VOLTS AND 1.2 mA IN AC AMPS.					
Ω	CONNECTING INPUT HITO Ω TERMINAL WILL CAUSE INSTRUMENT TO READ APPROX. 1Ok IN 2 TERMINAL OHMS.					
TO OPEN INSTRUMENT: CAUTION-DISCONNECT LINE CORD. LOOSEN (4) SCREWS (THIS SIDE]. HOLD INSTRUMENT TOGETHER AND TURN OVER. TIIT TOP COVER BACK AND UP. DISCONNECT (2) CONNECTORS (CURRENT FUSE LINE AND SELF CHECK).						

SECTION 2. INITIAL PREPARATION

2-1. GENERAL. This section provides information needed for incoming inspection and preparation for use.

2-2. INSPECTION. The Model $172 / 173$ was carefully inspected both mechanically and electrically before shipment. Upon receiving the instrument, check for any obvious damages which may have occurred during transit. Report any damages to the shipping agent. To verify the electrical specifications, follow the procedures given in Section 6.

2-3. PREPARATION FOR USE. The Model $172 / 173$ is shipped ready-to-use. The instrument can be powered from line voltage or from rechargeable nickel-cadmium batteries (when the optional Model 1728 Rechargeable Battery Pack is installed).
a. Line Power. The Model $172 / 173$ has an attached three-wire line cord which mates with third-wire grounded receptacles (NEMA 5-15P). The permanently installed line cord is stored by wrapping the cord around the base of the instrument as shown in Figure 4.

CAUTION

This instrument has an internal line power selector switch that must be set to 234 V position for operation above 125 volts $\mathrm{rms}, 50-60 \mathrm{~Hz}$.

1. How to Set the Internal Line Voltage Switch (5601). The Model $172 / 173$ has a two position slide switch located on the main circuit board. To set the switch for operation above 125 volts the switch setting must be changed. The top cover must be removed to gain access to the circuit board as described in MAINTENANCE section.

WARNING

Disconnect the line cord before removing the top cover of the instrument. Line voltage is present at various points on the circuit board and represents a SHOCK HAZARD.

NOTE
Other line voltage ranges are available when wiring modifications are made to transformer T601 as shown on schematic 280670.

TABLE 2-1.
Summary of Standard and Optional Line Voltages
$\left.\left.\begin{array}{|c|c|}\hline \text { Standard } & \text { Optional } \\ \hline \frac{105 \text { to } 125 \mathrm{~V} \text { rms }}{210 \text { to } 250 \mathrm{~V} \mathrm{rms}} & 90-105 \mathrm{~V} \text { rms } \\ \hline 195-210 \mathrm{~V} \text { rms }\end{array}\right\} \begin{array}{l}\text { Transformer wiring } \\ \text { must be modified }\end{array}\right]$

FIGURE 5. Rear Panel Showing Current Fuse and Check Points

STRUCTION MANUAL

. gltal Multimeter
Models 172, 173
2. Line Fuse Requirement. The Model $172 / 173$ use a single line fuse to protect the line-operated power supply. The fuse is a 3 AB or 3 AG , slow-blow type. Replace with $1 / 4$ ampere for 117 volts operation or $1 / 8$ ampere for 234 volts.

IMPORTANT
Replace fuse with correct rating otherwise damage to the instrument could result.
3. How to Replace the Line Fuse. The fuse is installed on the main circuit board as shown in Figure 36 (page 6-10). The top cover must be removed to gain access to the circuit board as described in Section 6. Use Keithley FU-17 for 117 V ; FU-20 for 234 V . WARNING
Disconnect the line cord before removing the top cover of the instrument. Line voltage is present at various points on the circuit board and represent a SHOCK hazARD.

CAUTION

\triangleThe fuse installed on the rear panel of the Model $172 / 173$ is used only for current range protection. This fuse is not a line voltage protection fuse.
b. Battery Power. To operate the Model 172/173 from batteries, the Model 1728 Rechargeable Battery Pack must be installed. The Model 1728 can be either field or factory-installed (at the time the Model $172 / 173$ is purchased).

note

The Model 1728 Rechargeable Battery Pack can be installed by the user within the Model $172 / 173$ at any time. However, if the Model 1722 Digital Output is already installed, the Model 1728 cannot be used simultaneously.

1. How to Install the Model 1728 Rechargeable Battery Pack. The batteries furnished with the Model 1728 are already installed in the battery pack. The battery pack includes 7 rechargeable "'C" cells (1.2V, 2 AMP Hr) and two 19.2 volt packs (sixteen 1.2 V cells per pack). See Figure 6.
a) Check the fuses on the Battery Pack. Three fuses are used. All are 1 ampere, $3 A B$ or 3 AG , Slo-Blo types, Keithley Part No. FU-10.
b) Check for proper installation of batteries in the Battery Pack. If replacement battery cells are to be installed, be certain to observe the proper polarity of the individual cells as shown in Figure 6.
c) To install the Battery Pack, turn the instrument over so that the bottom cover faces up. Loosen four slotted screws on the bottom cover as shown in Figure 4. The screws are captive, that is they cannot be removed completely. Turn over the instrument with the top cover facing up, taking care to hold the top and bottom covers together. Carefully remove the top cover to gain access to the printed circuit board. There are 2 connections between the top cover and the main circuit board which must be temporarily removed in order to free the top cover. Check to see that the four insulating spacers are in position on the circuit board as shown in Figure 7. Plug the two 5-wire connectors (J401, J402) into the mating receptacles (P602, P606) taking care to orient the connectors as shown. Place the Model 1728 in position on the spacers with the pack oriented as shown in Figure 7. Replace the connectors from the top cover to the circuit board. Replace the top cover. Turn over the instrument with the bottom cover facing up and tighten down the four slotted-head screws.

FIGURE 6. Model 1728 Rechargeable Battery Pack.

WARNING

?
Disconnect the line cord on the instrument before the Battery Pack is installed. Line voltage is present at various places on the circuit board and is a SHOCK HAZARD.

FIGURE 7. Installation of Battery Pack.

TABLE 2-2.
Summary of Batteries Used in the Model 1728

Description	Quantity	Voltage	Keithley Part No.
$\begin{aligned} & 1.2 \mathrm{~V} \text { "C' cell } \\ & (2 \mathrm{AMP}-H R) \end{aligned}$	7	8.4 V	$B A-30$
$\begin{aligned} & +19.2 \mathrm{~V} \text { pack } \\ & (16-1.2 \mathrm{~V} \text { cells }) \end{aligned}$	1	$+19.2 \mathrm{~V}$	$B A-31$
$\begin{aligned} & -19.2 \mathrm{~V} \text { pack } \\ & (16-1.2 \mathrm{~V} \text { cells }) \end{aligned}$	1	-19.2V	BA-31

CAUTION

The Model 1728 is shipped from the factory in an uncharged condition. Therefore the pack should be installed in the Model $172 / 173$ and charged prior to use.
2. How to Check Batteries.
a) The Model $172 / 173$ has a built-in LO BAT indicator to permit easy determination of battery condition. The Model $172 / 173$ also has an individual test point on the bot tom panel usually needed only for troubleshooting purposes (See figure 4.).
b) The LO BAT indicator will be lighted when the Battery Pack goes below normal operating voltage. When the indicator turns on the Model $172 / 173$ should be switched to LINE or OFF to permit recharging of the Pack.
c) The test point may be checked at any time using the Model $172 / 173$ or other measuring instrument. The voltages are summarized in Table 2-3.

IMPORTANT

The instrument must be operated in BAT mode in order to obtain a valid battery condition at test point "A". This will ensure that the batteries are supplying power to the instrument. If the voltage is measured when the Model $172 / 173$ is operated in the LINE mode a different reading may be observed since the batteries are being charged.

TABLE 2-3.
Summary of Battery Voltage Levels (BAT mode)

Test Point	Acceptable Battery Levels	Recharge if Below	Battery Tested	
${ }^{\prime \prime} A^{\prime \prime}$	Range	Normal	19 V	BT402

3. How to Charge the Batteries. The Model 1728 provides built-in recharging circuitry. The Model $172 / 173$ must be connected to line voltage. Recharging occurs at the most rapid rate when the Model $172 / 173$ is set to OFF. Typically, the recharge time is 2.5 hours per hour of discharge.

CAUTION

Overcharging the batteries will raise the internal temperature of the battery pack and may shorten the life of the batteries.

SECTION 3. OPERATING INSTRUCTIONS

3-1. GENERAL. This section provides information needed to operate the Model $172 / 173$ for measurement of voltage, current and resistance.

3-2. HOW TO SELECT POWER. The Model $172 / 173$ may be powered from line voltage or rechargeable nickel-cadmium batteries (when the Model 1728 is installed). The Model $172 /$ 173 has a built-in line-voltage power supply and power cord.

NOTE

The accessory Model 1728 Rechargeable Battery Pack may be ordered at the time of purchase of the Model $172 / 173$ or may be purchased and field-installed at a later time if so desired. The Model 1728 features plug-in wiring and, as a result, no modifications need to be made to the Model $172 / 173$ chassis.
a. How to Operate from Line Power. The Model $172 / 173$ can be powered from line voltage over four ranges from a minimum of 90 V rms to a maximum of 250 V rms. Table 3-1 summarizes the line voltages permitted.

1. Set the internal line voltage switch to either 117 V or 234 V .
2. Plug the line cord into source of line power.
3. Depress LINE pushbutton.

NOTE
Power on will be indicated by a lighted display with one or more digits and measurement unit showing.

TABLE 3-1.
How to Set Line Voltage

Range Desired	Switch S601	Transformer Modification*
$90-105 \mathrm{~V}$	117 V	Yes $\%$
$105-125 \mathrm{~V}$	117 V	No
$195-210 \mathrm{~V}$	234 V	Yes $\%$
$210-250 \mathrm{~V}$	234 V	No

\therefore For these ranges the leads must be rewired
b. How to Operate from Battery Power.

1. Install the Model 1728 Rechargeable Battery Pack. (See Section 2, page 2-3.)
2. Depress BAT pushbutton.
3. If LO BAT indicator is lighted, the battery pack must be charged a minimum of 16 hours to provide fully charged operation of the Model 172/173.
NOTE

To charge the Model 1728 , release both LINE and BAT pushbuttons and connect the line cord to line power. If it is desired to use the Model $172 / 173$ immediately, depress LINE. The Model $172 / 173$ will be useable for measurements although the battery charging rate is decreased considerably.
4. If the LO BAT indicator is not lighted in BAT mode, the model $172 / 173$ may be used for measurements.

NOTE
The Model 1728 is shipped from the factory in uncharged condition. Therefore the Model 1728 should be installed and charged prior to use. After the Model 1728 has been charged for at least 16 hours, the Model $172 / 173$ can be powered continuously for at least 6 hours.

TABLE 3-2.
Summary of Operation in LINE and BAT Modes

	Condition of Instrument		
Button Depressed	Line Power Connected 1728 not installed	Line Power Connected 1728 installed	Line Power Not Connected 1728 installed
LINE	ON	ON Battery trickle charged.	OFF
BAT	OFF	ON Battery slowly discharged.	ON
NEITHER LINE NOR BAT	OFF	OFF Battery charged at maximum rate.	OFF

3-3. HOW TO SELECT FUNCTION. Function is selected by means of four pushbuttons $A C, D C$, V / A, and Ω
d. $D C$. This pushbutton must be used with V / A to select either $D C$ voltage or $D C$ current fuictions.

$$
\begin{array}{lll}
\text { 1. } D C \text { Voltage. Depress } D C & \text { Release } V / A \\
\text { 2. } D C \text { Current. Depress } D C & \text { Depress } V / A
\end{array}
$$

b. $A C$. This pushbutton must be used with V / A to select either $A C$ voltage or $A C$ current fuctions.

1. $A C$ Voltage. Depress $A C$ Release V / A
2. $A C$ Current. Depress $A C$ Depress V / A
c. V / A. This pushbutton selects either voltage V or current A. When V / A is depressed, along with $D C$ or $A C$, a shunt resistor is connected across the HI and $L 0$ terminals to provide current sensing.
d. Ω. Depress Ω to measure resistance.

NOTE
$D C, A C$, and Ω pushbuttons are interlocked so that only one pushbutton is depressed at a time. However, it is possible to have all pushbuttons out which disconnects the input $H 1$ and LO terminals and no measurement can be made. (The Ω indicator will be lighted in this instance.)

FIGURE 8. Front Panel Pushbutton Selection.

3-4. HOW TO SELECT RANGE. The Model $172 / 173$ provides automatic or manual ranging. The AUTO/MAN pushbutton determines the ranging mode, where AUTO = fully automatic ranging.
a. AUTO. When released, the Model $172 / 173$ automatically selects the appropriate range in accord with the following rules.

1. When the display exceeds 29999 the Model $172 / 173$ upranges (that is, it changes to less sensitivity and the decimal point moves appropriately).
2. When the display reaches 02599 the Model $172 / 173$ downranges (that is it changes to greater sensitivity and the decimal point moves appropriately).
b. MAN. When depressed the range is placed in hold. The user can cause the Model $172 / 173$ to uprange or downrange by using the UP RANGE and DN RANGE pushbuttons.
3. When DN RANGE is momentarily depressed the Model $172 / 173$ will downrange one decade of sensitivity. Each time the pushbutton is depressed and released, one downrange will occur until most sensitive range is obtained.
4. When UP RANGE is momentarily depressed the Model $172 / 173$ will uprange one decade of sensitivity. Each time the pushbutton is depressed and released, one uprange will occur until least sensitive range is obtained.

3-5. HOW TO MEASURE VOLTAGE. The Model $172 / 173$ measures $a c$ and dc voltage in five ranges: $0.3 \mathrm{~V}, 3 \mathrm{~V}, 30 \mathrm{~V}, 300 \mathrm{~V}$ and $1200 \mathrm{~V} D \mathrm{DC}$ (1000 VAC).
caution
Maximum input voltage depends on the range selected. Table 3-3 gives the maximum allowable continous input for each range on $A C$ and $D C$. Do not exceed these voltaqes or damage to the instrument will occur.

TABLE 3-3.
Maximum Allowable Continuous Input

Range	AC Voltage (ACV)	DC Voltage (DCV)
0.3 V	1000 V rms	1200 V peak:
3 V	1000 V rms	1200 V peak:
30 V	1000 V rms	1200 V peak
300 V	1000 V rms	1200 V peak
1000 V	1000 V rms	1200 V peak

a. DC Voltage. The Model $172 / 173$ detects de voltages from $\pm 10 \mathrm{microvolts/digit} \mathrm{to}$ ± 1200 volts (1200.0 display). The maximum display is 29999 . When the display exceeds 29999, a 3 remains lighted, but all other digits are blanked. The display blinks above 1199.9 volts on the highest range.

1. Set to $D C$ Volts.
2. Set to AUTO.
3. Connect the Signal to be measured between HI and Lo terminals. (The terminals are designed to accept banana style plugs. Such as Keithley part no. BG-5 or accessory test leads such as Model 1681 Clip-On Test Leads.)
4. Observe the displayed digits, polarity sign, decimal point location, and measurement unit (mV or V). If no polarity sign is indicated, a positive polarity is implied.
b. AC Voltage. The Model $172 / 173$ detects ac voltages from 10 microvolts rms to 1000 volts (1000.0 display). The maximum display is 29999 . When the display exceeds 29999 , a 3 remains lighted, but all other digits are blanked. The display blinks above 999.9 volts on the highest range.
5. Set to $A C$ Volts. (The $A C$ indicator should be lighted.)
6. Set to AUTO.
7. Connect the signals to be measured between HI and LO terminals. (The terminals are designed to accept banana style plugs, such as keithley part no. BG-5 or accessory test leads such as Model $1681 \mathrm{Clip-On}$ Test Leads.)
8. Observe the displayed digits, decimal point location, and measurement unit (mV or V).

3-6. HOW TO MEASURE CURRENT. (MODEL 172 ONLY). The MOdel 172 measures ac and de current in two ranges: 0.3 A , and 2 A . The current is limited by the current fuse even though the DMM is capable of displaying 2.9999A.

The Model 172 is protected by a 2 ampere fuse on all ranges. If the fuse is blown, a replacement Keithley Part No. FU-13 should be installed in the rear panel fuse holder. (See Figure 5.)
a. $D C$ Current. The Model 172 detects dc currents from ± 10 microamperes/digit to ± 2 amperes. When the input exceeds 2 amperes, the current fuse will blow. When using the MAN mode it is possible to select $30 \mathrm{~A}, 300 \mathrm{~A} \& 3000 \mathrm{~A}$ Ranges, but 2 A Max is still the limit.

1. Set to DC Amperes.
2. Set to AuTO.
3. Connect the signal to be measured at the HI terminal.
4. Observe the displayed digits, polarity sign, decimal point location, and measurement unit ($\mu \mathrm{A}, \mathrm{mA}$, or A). If no polarity sign is indicated, a positive polarity is implied.
b. AC Current. The Model 173 DMM detects ac currents from 10 nanoamperes rms/digit to 3 amperes rms. The maximum display is 29999. When the display exceeds 29999, a 3 remains lighted, but all other digits are blanked.
5. Set to $A C$ Amperes. (The $A C$ indicator should be lighted.)
6. Set to Auto.
7. Connect the signal to be measured at the HI terminal.
8. Observe the displayed digits, decimal point location, and measurement unit (AC $\mu A, A C$ ma, or $A C A$).

FIGURE 9. Typical Model 172 Current Display (DCmA).

3-7. HOW TO MEASURE CURRENT. (MODEL 173 ONLY.) The Model 173 measures ac and dc current in five ranges: $0.3 \mathrm{~mA}, 3 \mathrm{~mA}, 30 \mathrm{~mA}, 0.3 \mathrm{~A}$, and 3 A .

CAUTION
The Model 173 DMM is protected by a 3 ampere fuse on all ranges. If the fuse is blown, a replacement Keithley Part No. FU-2 should be installed in the rear panel fuse holder. (See Figure 5.)
a. DC Current. The Model 173 DMM detects de currents from ± 10 nanoamperes to ± 3 amperes. The maximum display is 29999. When the display exceeds 29999, a 3 remains lighted, but all other digits are blanked.

1. Set to DC Amperes.
2. Set to Auto.
3. Connect the signal to be measured at the HI terminal.
4. Observe the displayed digits, polarity sign, decimal point location, and measurement unit (A, mA, or A). If no polarity sign is indicated, a positive polarity is implied.
b. AC Current. The Model 173 DMM detects ac currents from 10 nanoamperes rms/digit :o 3 amperes rms. The maximum display is 29999 . When the display exceeds 29999 , a 3 -emains lighted, but all other digits are blanked.
5. Set to $A C$ Amperes. (The $A C$ indicator should be lighted.)
6. Set to AUTO.
7. Connect the signal to be measured at the Hl terminal.
8. Observe the displayed digits, decimal point location, and measurement unit ($A C$, A, AC ma, or AC A).

3-8. HOW TO MEASURE RESISTANCE. The Model $172 / 173$ measures resistance frow 10 milliohms/digit to 300 megohms. The maximum display is 29999. When the display exceeds 29999, a 3 remains lighted, but all other digits are blanked.
a. HI Ohms Measurement. When the HI/LO pushbutton is released (set to HI), the voltage developed across the resistance under test at full range is 3 volts. The Model $172 /$ 173 measures to 300 megohms in HI mode. For the 2 wire method the lower set of terminals is not used.

1. Set to HI Ohms.
2. Set to 2 WIRE.

NOTE
When the Model $172 / 173$ is sct to 2 WIRE, the lower set of HI and LO input torminals are not connected. When set to 4 WIRE, the higher set of $H I$ and $L O$ input terminals are used as "voltage sensing" terminals. See section 3-9 for more detailed information.
3. Set to AuTO.
4. Connect the resistance under test between the upper set of HI and LO terminals.
5. Observe the displayed digits, decimal point location, and measurement unit (Ω, K 52 , or $M \Omega$).
b. LO Ohms Measurement. When the HI/LO pushbutton is released (set to LO), the voltage developed across the resistance under test at full range is 300 millivolts . The Model $172 / 173$ measures to 30 megohms in LO mode. For the 2 wire method the lower set of terminals is not used.

1. Set to LO Ohms.
2. Set to 2 WIRE.
3. Set to Auto.
4. Connect the resistance under test between the upper set of HI and LO terminals.
5. Observe the displayed digits, decimal point location, and measurement unit (.., $K(i$, or $M \Omega)$.

This illustration is typical of a 2-terminal ohmmeter design.

When measuring resistance less than 1000 ohms it may be necessary to use the 4 -wire mode to eliminate the measuring error of the test leads. For example a pair of loft leads made from 18 AWG copper wire has 0.14 ohms resistance.

FIGURE 11. Typical 2 WIRE Resistance Measurement.

3-9. FURTHER MEASUREMENT CONSIDERATIONS.

a. $D C$ Voltage Measurements.

1. Overloads. When the display exceeds $\pm 1200.0 \mathrm{~V}$ DC all digits blink to indicate an overload condition.
2. Input Resistance. The input resistance is $1,000 \mathrm{M} \Omega$ on the 0.3 V and 3 V ranges; $10 \mathrm{M} \Omega$ on the $30 \mathrm{~V}, 300 \mathrm{~V}$, and 3000 V ranges. The effects of circuit loading should be considered when evaluating total accuracy of measurement. (See Accuracy.)
3. Accuracy. The Model $172 / 173$ accuracy is specified in terms of $\%$ of reading and a \% of range. For a full range reading of 299.99 mV DC the accuracy of measurement would be $\pm(0.03 \mathrm{mV}+0.01 \mathrm{mV}$) or $\pm 0.04 \mathrm{mV}$. Measurements from relatively high source resistances could cause an additional reading error. The amount of error due to loading can be determined by the following relationship:

$$
\begin{aligned}
\% \text { error } & =100 \times \text { Rs } \div(\text { Rs }+ \text { RI }) \\
\text { where Rs } & =\text { source resistance in ohms } \\
\text { RI } & =\text { input resistance of Model } 172 / 173 \text { in ohms }
\end{aligned}
$$

4. Self-Check Feature. The Model $172 / 173$ has a rear panel Voltage test point for functional check of the Model $172 / 173$ in DC Volts. To use this feature, connect. the input HI terminal to the rear panel white terminal. Verify a display of approximately 5 volts dc. To check dc current, depress V/A and verify a display of 1 mA . b. AC Voltage Measurements
5. Overloads. When the display exceeds $1000.0 \mathrm{~V} A C$ (rns) all digits blink to indicate an overload condition.
6. Input Impedance. The input impedance is 2 megohms shunted by less than 50 picofarads. The effects of circuit loading should be considered when evaluating the total accuracy of measurement. (See Accuracy.)
7. AC-to-DC Conversion. The Model 172/173 operates as an avage-reading voltmeter, calibrated in terms of the root-mean-square (rms) of a sine wave. The calibration is exact for sinusoidal waveforms in the specified frequency range.
8. Frequency Response. The frequency range given in the specifications is the minimum and maximum frequencies which accuracy is valid.
9. Accuracy. The Model $172 / 173$ accuracy is specified in terms of a \% of reading and a \% of range. Measurements from relatively high source impedance could cause an additional reading error. The amount of error due to loading can be determined by the following relationship:

$$
\begin{aligned}
\% \text { error } & =100 \times \frac{Z s}{Z s+Z i n} \\
\text { where } Z_{s} & =\text { source impedance } \\
Z i n & =\text { effective input impedance of Model } 172 / 173
\end{aligned}
$$

6. Self-Check Feature. The Model $172 / 172$ has a rear panel Voltage test point for functional check of the Model $172 / 173$ in AC Volts. To use this feature, connect the HI terminal to the rear panel red terminal. Connect the line cord to line voltage. Verify a display of approximately 6 volts ac. To check ac current, depress V/A and verify a display of approximately 1.2 mA .

c. Current Measurements.

1. Overloads. Fuses are as follows: Model 172: 2A Model 173: 3A
2. Shunt Resistance. The Model 173 develops approximately 300 millivolts across the input terminals at full range. The 172 has 1.3Ω on all ranges.
For example, on the 300 milli -ampere range the shunt resistor is 1.3 ohm, which results in a voltage drop of $0.3 \times 1.3=390$ millivolts at full range.
3. Accuracy. The Model $172 / 173$ accuracy is specified in terms of a $\%$ of reading and a \% of range. An additional reading error should be considered if the source resistance is not greater than 1000 times the shunt resistor. The amount of error can be determined by the following relationship:

$$
\begin{aligned}
\% \text { error } & =\frac{100 \times \text { Rin }}{\text { Rs }+ \text { Rin }} \\
\text { where Rin } & =\text { shunt resistance of the Model } 172 / 173 \\
\text { Rs } & =\text { source resistance. }
\end{aligned}
$$

d. Resistance Measurements.

1. Maximum Allowable Voltage Input. The maximum input should not exceed 250 V rms sine wave or $\pm 250 \mathrm{~V}$ dc.
2. Polarity of Ohms. The Model $172 / 173$ provides a positive voltage at the HI terminal.
3. Maximum Open-Circuit Voltage. When the HI and LO terminals are open in either HI or LO ohms, the maximum voltage developed between HI and LO is +5 volts.

This illustration is typical of a 4-terminal measuring technique using a separate Voltmeter and Current Source. The Model 172/173 combines these features.

When using the $4-$ WIRE method, connect one pair of "current" leads to Ω SOURCE input. Connect a second pair of "voltage" leads to HI and LO. Then set to 4 WIRE.

Care should be taken to connect "current" leads and "voltage" leads properly. The LO terminall and Ω Source low must always connect to the same side of the unknown resistance.

FIGURE 12. Typical 4 WIRE Resistance Measurement.
4. Four-terminal Measurenents. The 4 -WIRE mode connects the lower set of Ω SOURCE terminals to the DMM ohmmeter source. As shown in Figure 12 the lower terminals are the current carrying terminals while the upper terminals are the voltage sensing terminals. This arrangement eliminates the error due to voltage drop across the cur-rent-carrying leads.
5. Semiconductor Diode and Transistor Testing. The Model $172 / 173$ can be used to test diodes and transistors to determine the relative condition of the device. For semiconductor diodes, the voltage applied must be sufficient to cause conduction in the forward direction. The "HI OHMS" mode provides a voltage up to 3 volts at a current upto 1 milliampere. Since the HI terminal is positive with respect to Lo terminal, connections should be made as shown in Figure 13 to cause forward conduction of diodes. Since the maximum current is available on the 3 K : range, depress AUTO/MAN (Set to MAN) and manually range to the $3 \mathrm{k} \Omega$ range (down-range).
6. Self-Check Feature. The Model $172 / 173$ has a rear panel ohms test point for functional check of the Model $172 / 173$ in OHMS. To use this feature, place the DMM in OHMS and 2 WIRE mode. Connect the HI terminal to the blue terminal. Verify a display of approximately 10 kilohms .

FIGURE 13. Semiconductor Diode and Transistor Testing.

3-10. HOW TO USE MODEL 172/173 OFF-GROUND. The "LO" terminal can be operated off ground at potentials of up to $\pm 1400 \mathrm{~V}$. Isolation from the "LO" terminal to power line ground is specified at $1000 \mathrm{~m} \Omega$, or $10^{9} \mathrm{~s}$ (shunted by 300 pF). Typically, the isolation resistance from LO to GND is two decades greater than $10^{9} \Omega\left(10^{11} \Omega\right)$. Because of this excellent isolation, operating the Model $172 / 173$ off ground results in very little loading (from 10 to GND) of a floating source. At lo00V above ground, the Model 1721 173 will require, typically, only $10 n A$ from the source. The excellent isolation also accounts for the high common-mode rejection ratio of the Model 172/173. Even with the "H1" terminal driven and a source resistance of $1 \mathrm{k} \Omega$, 1000 VDC (from HI to GND) will produce typically only $10 \mu V O C$ error. This error voltage is determined directly from the ratio of the source resistance to the "isolation" resistance (See Figure 14).

$$
1=\frac{1000 \mathrm{~V}}{10^{11} \Omega}=10^{-8} \mathrm{~A} \quad V_{\text {across }} 1 \mathrm{k}=1 \times 1 \mathrm{k} \Omega=10^{-8} \times 10^{3}=10 \mathrm{VDC}
$$

The "isolation" capacitance from LO to GND is important when AC common-mode signals are present. In the Model 172/173 this capacitance is specified at 300 pF . At a frequency of $60 \mathrm{~Hz}, 300$ picofarads has a reactance of approximately $10 \mathrm{M} \Omega$. With the HI terminal driven and a source impedance of $1 \mathrm{k} \Omega$, a $1000 \mathrm{~V} \mathrm{p}-\mathrm{p}, 60 \mathrm{~Hz}$, common-mode signal will produce a voltage of only 100 mV p-p across the input terminals. This 100 mV p-p signal will be further rejected by the input filter and A-D converter so that the total rejection at the digital display is at least 120 dB (HI driven, lka source impedance). For $D C$ voltage measurements, rejection is much greater than specified when the Model $172 / 173$ LO terminal is driven, rather than the HI terminal. Where there is a need for even greater isolation from lo to power line ground, or where there is a need to float at potentials greater than 1400 volts above power line ground the Model 1728 Battery Pack should be used.

FIGURE 14. Use of Multimeter off Ground.

3-11. HOW TO USE OPTIONAL PPOBFS AND SHUNTS.
a. Model 1600 High Voltage Probe. Set the Model $172 / 173$ to $D C$ volts and 30 volt range. The input resistance on the 30 volt range is 10 megohms so that no shunt resistor is needed. The Model 1682 has a $1000: 1$ division ratio. For maximum safety review the instructions furnished with the Model 1600 probe above 30 kV , switch to the 300 V range.

CAUTION
The alligator clip (ground) must be connected to the source low so that high voltage is not applied between low and ground. Severe damage to the instrument will occur if the alligator clip is not connected.
b. Model 1682 RF Probe. Set the Model $172 / 173$ to $D C$ volts and 30 volt range. The Model 1682 has a IVdc output corresponding to 1 V rms input over the range 100 kHz to 100 MHz .

IMPORTANT

For use on the 3 volt range the banana plug adapter (with 10 megohm resistor) should be used since the Model $172 / 173$ input resistance is >1000 megohms on the 3 volt and 0.3 volt ranges.
c. Model 1685 Clamp-On AC Current Probe. Set the Model $172 / 173$ to $A C$ volts and 0.3 volt range. The Model 1685 provides a 0.1 volt rms output corresponding to a 1 ampere rms input. Review the instructions furnished with the Model 1685 to achieve best possible accuracy.
d. Model 1651 Current Shunt. Set the Model $172 / 173$ to $A C$ or $D C$ volts (as appropriate) and 0.3 volt range. Connect the voltage leads to the Model $172 / 173$ input terminals. Connect separate leads (not furnished) between the source and the Model 1651 hex-head bolts. The Model 1651 shunt resistance is 0.001 ohm which produces a sensitivity of 1 millivolt per ampere.

3-12. HOW TO USE THE MODEL 1722 digital interface.
a. General. THE Model 1722 provides binary coded decimal outputs (8421) and range control lines. Outputs are open-collector positive true unless otherwise specified. This accessory is available either "factory installed" or "field-installable". The Model 1722 consists of a two-layer circuit with card-edge and mating output connectors.
b. Installation.

1. Disconnect the Model $172 / 173$ line cord from line voltage.
2. Turn the instrument over so that the bottom cover faces up.
3. Loosen four slotted screws on the bottom cover as shown in Figure 4. The screws are captive, that is, they cannot be removed completely.
4. Turn over the instrument with the top cover facing up, taking care to hold the top and bottom covers together.
5. Carefully remove the top cover to gain access to the printed circuit board. There are 2 connections between the top cover and the main circuit board which must be temporarily removed in order to free the top cover (see figure 40.)
6. Remove the Model 1728 Rechargeable Battery Pack. (if installed). Carefully disconnect connectors from the mother board.

NOTE

The Models 1722 and 1728 cannot be installed on the Model $172 / 173$ chassis at the same time.
7. Check to see that the four insulating spacers are in position on the circuit board as shown in Figure 16.
8. Place the Model 1722 on the spacers as shown in Figure 16.
9. Lift up the Model 1722 slightly to gain access to the Model $172 / 173$ mother board, and plug in connectors J1003, J1002, and J1001 (in order given).
10. Connect ground return wire from the Model 1722 to the extra lug on transformer Tl01.
11. Replace the connections to the top cover.
12. Reinstall the top cover.
13. Turn the instrument over and tighten the four screws.
c. Connector Terminations. The Model 1722 uses two card-edge connectors Plo06 (40pin) and Pllol (26-pin). Ribbon cable style of mating connectors may be used with these cardedge connectors as shown in Table 3-5.

TABLE 3-5.
Summary of Mating Connectors

	Manufacturer	Crimped Ribbon-Cable Style
P1101	$3 M$	$3462-0000$
P1006	$3 M$	$3464-0000$

FIGURE 15. Model 1722 Digital Output Interface.

FIGURE 16. Installation of Model 1722.

TABLE 3-6.
Summary of Digital Output at P1006

Pin No.	Signal	Pin No.	Signal
1	CASE GND	21	$10^{4}-2$
2	COMMON	22	$10^{3}-1$
3	COMMON	23	$10^{4}-1$
4	COMMON	24	$10^{3}-1$
5	COMMON	-25	$10^{2}-8$
6	PRINTER HOLD	26	101-8
7	AUTOMODE	27	$10^{2}-4$
8	VEXT	28	$10^{1}-4$
9	R8	29	$10^{2}-1$
10	VOLTS	-30	$10^{1}-2$
11	R4	31	$10^{2}-1$
12	AMPS	32	101-1
13	R2	33	$10^{0}-8$
14	AC	34	FLAG
-15	RI	35	100-4
-16	OHMS	36	FLAG
17	$10^{4}-8$	37	$10^{0}-2$
. 18	$10^{3}-8$	38	OVERFLOW
19	$10^{4}-4$	39	100-1
20	$10^{3}-4$	40	POLARITY

TABLE 3-7.
Summary of Remote Commands at Pllol

Pin No.	Command	Pin No.	Cormand
1	CASE GND:	14	RANGE STROBE
2	COMMON	15	
3	COMMON	16	POLARITY STROBE
4	AUTORANGED STROBE	17	R8
5	TRIGGER MODE	18	10^{4} STROBE
6	AUTOMODE STROBE	19	TRIGGER
7	HOLD	20	103 STROBE
8	OVERFLOW STROBE	21	FLAG RESET
9	LOAD RANGE	22	$10^{2} \overline{\text { STROBE }}$
10	FLAG/ $\overline{\text { FLAG }}$ STROBE	23	TR\|GGER MODE DISABLE
11	RI	24	10 STROBE
12	FUNCTION STROBE	25	AUTORANGED
13	R2	26	10° STROBE

FIGURE 17. Connector Pin Identification for Pl006 and Pllol.

FIGURE 18. Card-Edge Connectors (Model 1727 Cable Set).
d. How to Select Vext Using Internal Jumper. The Model 1722 may be wired for use with internal or external voltage references and internal pull-up resistors. (See Figure 16.)

1. Jumper A. When this jumper is installed, the pull-up resistors are connected to the external reference Vext (pin 8, Pl006).
2. Jumper B. When this jumper is installed, the pull-up resistors are connected to the internal reference (+5 V).
3. Jumper C. When this jumper is installed, Vext is connected to internal +5 V reference. The pull-up resistors are not connected in this instance. The +5 volt reference is rated at 40 mA maximum.

FIGURE 19. Location of Jumpers and Pull-Ups on Model 1722.

TABLE 3-8.
Digital Output Lines Grouped By Function

DIGITAL OUTPUTS:
Logic: BCD (8421) Open-collector positive true unless otherwise specified.
Data: 4 full digits, 1 partial digit ($0,1,2,3$) and exponential range code.
Function: 4-bit code (Ω, AC VOLTS, AMPS)
Polarity: HIGH $\equiv+$.
Overflow: LOW $\equiv>29999$.
Autorange: LOW \equiv range change.
Automode: HIGH \equiv autorange mode.
FLAG (FLAG): HIGH (logic " $0^{\prime \prime} \equiv$ no output change occuring.
Logic Levels: HIGH ミopen collector to output LO. LOW ミ closure to output LO. Output device (2 N 5134) greater than 20 V breakdown, $<0.5 \mathrm{~V}$ at 5 mA sink (3 TTL loads). Internal
pull-up resistors may be installed on these open collector outputs. 4.7 K minimum value is recommended when using internal 5 volt power supply.
OUTPUT TIMING: Data is updated typically every 320 msec (non-trigger mode). Update time is typically 1.2 msec . Data will appear at an output only if its respective strobe is active. The FLAG will go low (Logic "O") typically 2 msec before update and go high typically $100 \mu \mathrm{sec}$ after update. Data can be expected to be unchanging so long as the flag is high. If FLAG RESET is activated, the FLAG will reset (go to Logic " 0 ") until the end of the next data update.
REMOTE CONTROLS:
Strobe: Strobe lines permit word serializing in 4-bit increments or multiples thereof. HIGH inhibits controlled output lines from conduction, LOW enables conduction. Range In: 4-bit exponential code.
Load Range: Low enables remote ranging as set by Range code.
Hold: LOW inhibits display update, output update and aurorange (A / D continues conversions).
Printer Hold: Same as hold but grouped with outputs for convenience in interfacing printer.
Trigger Mode: LOW enables TRIGGER control.
Trigger Mode Disable: LOW disables TRIGGER.
Trigger: LOW to HIGH transition initiates a new A / D conversion.
Flag Reset: LOW sets fLAG (flag) to LOW (HIGH).
Control Logic Levels \& Source Requirements: HIGH \equiv either an open circuit or a voltage between +2.4 V and 5 V referred to output LO. LOW \equiv closure to output LO within 0.8 V while sinking +1.6 miliamperes (1 TTL load). When TRIGGER MODE, HOLD and $\overline{L O A D}$ RANGE code bits are all HIGH (inactive) the $172 / 173$ is under front panel control. These REMOTE CONTROL inputs have priority and will override any front panel setting once activated.
ISOLATION: All digital outputs and remote controls are isolated from 172/173 analog input by $10^{9} \Omega$ and 500 pF , $1200 \mathrm{VDC}, 1000 \mathrm{~V}$ rms AC maximum. All digital outputs and remote controls are isolated from chassis ground by 106Ω and $0.01 \mu \mathrm{~F} ; 250 \mathrm{~V}$ rms maximum.
e. Detailed Explanation of Model 1722.

TRIGGER MODE AND TRIGGER: (See schematic 28248E)

HOLD:

LOAD RANGE:

REMOTE CONTROLS:

TRIGGER MODE DISABLE:
(See Schematic 28249D)

When TRIGGER MODE is active (Low), output data and display will not be updated. TRIGGER MODE enables TRIGGER. Conversion starts within 1.6 milliseconds after TRIGGER. Integration starts 120 miliiseconds after start of conversion.

If either HOLD or PRINTER HOLD is low the output data and the display will not be updated and the FLAG will stay at HIGH (unless reset by FLAG RESET).

When LOAD RANGE is low the $172 / 173$ will go to the range as set by the RANGE $1 N$ code (Table $3-10$) at the beginning of the next conversion. As long as LOAD RANGE is held low each instrument will remain on its programed range overriding front panel UPRANGE, DOWNRANGE and AUTORANGE. RANGE IN codes programmed outside the limits of table 3-10 will result in the nearest valid range to that programmed. LOAD RANGE will always cause a DMM range change. However, the display and output data will be held (not updated) during TRIGGER MODE or HOLD. Referring to timing schematic 28249D, it is possible to just miss a REMOTE CONTROL update prior to data output. This can be misleading, especially in the case of HOLD. A HOLO just missed (unknown to the user), just before data begins to change, could result in erroneous data. To check if this occurred, it is suggested that the FLAG be examined no sooner than $10 \mu \mathrm{sec}$ after activation of the HOLD bit. If flag is low wait until it goes to HIGH before expecting the HOLD bit to have been accepted. Other REMOTE CONTROL bits such as TRIGGER MODE and TRIGGER, LOAD RANGE and the RANGE IN code can be kept active for longer than an output data update time, i.e. $>3.2 \mathrm{msec}$ to insure proper REMOTE CONTROL acceptance.

When in TRIGGER MODE and triggering into an autoranging condition, normal operation will give an output for each range encountered during the autorange. However, if this is undesirable the AUTORANGED output bit can be tied to TRIGGER MODE DISABLE and FLAG RESET. This will prevent the FLAG from being set and ignore further triggering until the final range is reached.

Internal jumpers (user installed) select internal or external voltage reference for user-installed pullup resistors for all open-collector outputs, or applies internal +5 V to V_{ex} (maximum external current load on internal +5 V is 40 mA). Minimum pull-up resistor recommended is 4.7 K .

LINE GROUND:
One pin on each output connector.

GROUNDS:
4 pins for digital outputs, 2 pins for remote control.

CONNECTORS:
One 40 -pin card edge and one 26 -pin card edge.

ENVIRONMENT:
Installed in a $172 / 173$: Operating $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, humidity 80% @ $35^{\circ} \mathrm{C}$.
Storage: -25° to $+65^{\circ} \mathrm{C}$
f. Modifications to Model 172/173 Specifications. When operating a 172/173 with a 1722 in TRIGGER MODE, only the accuracy specifications for the top two ohms ranges change as follows:

HI $\Omega 300 M \Omega$ Range: From 1% of reading to 1.5% of reading. HI $\Omega 30 M \Omega$ Range: From 0.15% of reading to 0.2% of reading.
LO \&. 30 M Range: From 0.5% of reading to 1% of reading.
$L 0 \Omega 3 M$ Range: From 0.1% of reading to 0.15% of reading.
Also when operating in TRIGGER MODE, repeatability of readings may be up to:
0.5% on $300 \mathrm{M} \Omega \mathrm{Hi} \Omega$ and $30 \mathrm{M} \Omega$ Lo Ω ranges, and 0.05% on $30 \mathrm{M} \Omega \mathrm{Hi} \Omega$ and $3 \mathrm{M} \Omega$ Lo Ω ranges.

Accuracy of all other ohms ranges and all other functions is not affected by the Model 1722 when operating in TRIGGER MODE.

TABLE 3-10
MODEL 1722 RANGE \& FUNCTION CODING FOR MODEL 172

FUNCTION	OUTPUT FUNCTION CODE (1)	RANGE	OUTPUT RANGE CODE (I)	(EXP)	InPUT RANGE CODE (1) (3)	
	$\checkmark A A C \Omega$		$\mathrm{R}_{8} \mathrm{R}_{4} \mathrm{R}_{2} \mathrm{R}_{1}$		$\mathrm{R}_{8} \mathrm{R}_{4} \mathrm{R}_{2} \mathrm{R}_{1}$	
DC VOLTS	1000	$\begin{array}{r} 300 \mathrm{mV} \\ 3.0 \mathrm{~V} \\ 30 \\ 300 \\ 1200 \\ \hline \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	AUTORANGE
AC VOLTS	1010	$\begin{array}{rc} 300 \mathrm{mV} \\ 3 & \mathrm{~V} \\ 30 & \mathrm{~V} \\ 300 & \mathrm{~V} \\ 1000 & \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \hline \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	autorange
DC AMPS	$1000^{(2)}$	$\begin{array}{r} 300 \mathrm{~mA} \\ 2 \quad \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}$	AUTORANGE
AC AMPS	$1010^{(2)}$	$\begin{array}{r} 300 \mathrm{~mA} \\ 2 \quad \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \hline \end{array}$	AUTORANGE
LOW ת	0001	$\begin{array}{r} 300 \Omega \\ 3 \mathrm{k} \Omega \\ 30 \mathrm{k} \Omega \\ 300 \mathrm{k} \Omega \\ 3 \mathrm{M} \Omega \\ 30 \mathrm{M} \Omega \\ \hline \end{array}$	$\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array}$	AUTORANGE
HIS	0010	$\begin{array}{rl} 3 \mathrm{k} \Omega \\ 30 & \mathrm{k} \Omega \\ 300 \mathrm{k} \Omega \\ 3 & M \Omega \\ 30 & M \Omega \\ 300 & M \Omega \end{array}$	$\begin{array}{llll} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{array}$	AUTORANGE

(1) Coding in this table is defined to be HIGH (POSITIVE) TRUE. "I" = HIGH and "O" = LOW. Refer to output and remote control logic levels for definitions of HIGH ε LOW.
(2) Function code for Model 172 current is volts.
(3) Note that except for AUTORANGE CODE, INPUT ε RANGE CODE is the compliment of the OUTPUT RANGE CODE, i.e. the INPUT RANGE CODE is the LOW TRUE BCD code of (EXP).

TABLE 3-11
MODEL 1722 RANGE \& FUNCTION CODING FOR MODEL 173 (Same as Table 3-10 except as follows)

FUNCTION	OUTPUT FUNCTION CODE (1)	RANGE	OUTPUT RANGE CODE (1)	(EXP)	$\begin{aligned} & \text { INPUT } \\ & \text { RANGE } \\ & \text { CODE (1) (3) } \end{aligned}$
	$\checkmark A A C \Omega$		$\mathrm{R}_{8} \mathrm{R}_{4} \mathrm{R}_{2} \mathrm{R}_{1}$		$\mathrm{R}_{8} \mathrm{R}_{4} \mathrm{R}_{2} \mathrm{R}_{1}$
DC AMPS	0100	$\begin{array}{r} 300 \mathrm{\mu A} \\ 3 \mathrm{~mA} \\ 30 \mathrm{~mA} \\ 300 \mathrm{~mA} \\ 3 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{llll} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 & \text { AUTORANGE } \\ 1 & 0 & 1 & 0 & \\ 1 & 0 & 0 & 1 & \\ 1 & 0 & 0 & 0 & \\ 0 & 1 & 1 & 1 & \\ 0 & 1 & 1 & 0 & \\ \hline \end{array}$
AC AMPS	0110	$\begin{array}{r} 300 \mathrm{\mu A} \\ 3 \mathrm{~mA} \\ 30 \mathrm{~mA} \\ 300 \mathrm{~mA} \\ 3 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}$	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{lllll} 1 & 1 & 1 & 1 & \text { AUTORANGE } \\ 1 & 0 & 1 & 0 & \\ 1 & 0 & 0 & 1 & \\ 1 & 0 & 0 & 0 & \\ 0 & 1 & 1 & 1 & \\ 0 & 1 & 1 & 0 & \end{array}$

3-13. COMMENTS RELATIVE TO THE MODEL $172 / 173$ SPECIFICATIONS. Above 1 ampere there is a decrease in accuracy. This decrease in accuracy is due toself heating and the temperature coefficient of the resistors that are used in these currents. This degradation in accuracy will not exceed those values that are listed in the specification sheet. However, prolonged operation at the high currents (for instance, 2 amperes on the Model 172, or 3 amperes on the Model 173) may give temporary zero shifts because of the thermals which are generated due to the self heating of the devices. AC voltage specifications are listed down to 1% of range. Below 1% of range an additional 10 digits is added to the accuracy. This does not occur immediately at the 1% level, but gradually as the level is decreased, because the zero of the ac/dc converter is not very well defined. It has to overcome the threshhold level of various semiconductor devices (a MOS FET and diode). As a result there will typically be a 10 digit offset at zero even with the input shorted on the 300 millivolt range and on the 30 volt range. The 30 volt range offset will be somewhat smaller because the noise will be somewhat less. For best accuracy use the Model $172 / 173$ on whatever range gives the largest reading. Autoranging will accomplish this automatically.

3-14. MODEL 1728 OPERATING TIPS. Although the manufacturers of the nickel cadmium batteries used in the 1728 claim that their cells can be charged at a $\mathrm{c} / 10$ rate indefinitely, once a cell is fully charged, the energy fed to the cell is converted to heat, which increases the temperature of the cell. If cells are overcharged at $\mathrm{C} / 10$ rate for extended periods of time (weeks), this may cause cell degradation. Keithley recommends that the 1728 not be overcharged for extended periods to maximize useful battery life. Trickle charging should have no effect on useful battery life. Nickel Cadmium batteries also exhibit a memory effect. If the 1728 is only used to operate the instrument for relatively short periods of time (l or 2 hours) the 1728 may not be able to provide the full operating time of 6 hours.

Do not operate the Multimeter in BAT mode after the LO BAT indicator is lighted. The discharge characteristic of Nickel Cadmium batteries is such that it maintains a fairly constant 1.2 V through most of its discharge cycle. At the end of the discharge curve the cell voltage drops fairly rapidly to zero volts. After a given cell in the battery pack drops to zero it is reverse charged by the rest of the cells in series with it. Although the cells used in the 1728 are guaranteed by the manufacturer to withstand reverse charge for 10% of their discharge time, it is not a good practice to continually reverse charge cells, as more rapid cell degradation may occur.

The cells used in the 1728 should give a minimum of 250 discharge/charge cycles and typically 500 discharge/charge cycles. Thus, based on daily useage (5 day week, one per day) the battery pack should give a minimum of one year operation and typically two years. Longer life'should be expected for less frequent useage.

TABLE 3-12
Summary of Fuses and Miscellaneous Replaceable Parts

ITEM	WHERE USED	KEITHLEY PART NO.
Fuse, $3 \mathrm{AB} / 3 \mathrm{AG}, 1 / 4 \mathrm{~A}$, slo-810	117 V Line Volts	FU-17
[Fuse, $3 \mathrm{AB} / 3 \mathrm{AG}, 1 / 8 \mathrm{~A}$, Slo-blo	234 V Line Volts	FU-20
Fuse, $3 \mathrm{AB} / 3 \mathrm{AG}, 1 \mathrm{~A}$, Slo-blo	Model 1728	fu-10
Fuse, $3 \mathrm{AB} / 3 \mathrm{AG}, 2 \mathrm{~A}$ Quick	Model 172 Amperes	FU-13
Fuse, 3 AB/3 AG, 3 A Quick	Model 173 Amperes	FU-2
Top Cover (less metalcal)	-	27979C
Bottom Cover (less metalcal)	-	25727E
landle (less insert)	-	257290
. . Insert	-	26090A
zubber Foot	-	FE-10

4-1. GENERAL. This section describes the various accessories and options available for use with the Model $172 / 173$ Digital Multimeter.

4-2. POWER OPTIONS. The Model $172 / 173$ can be powered by line voltage (105-125V standard) or rechargeable Battery Pack (Model 1728). Other line voltage ranges are available as described in Section 2. The Model 1728 is available factory-installed or fieldinstallable.

4-3. ISOLATED DIGITAL OUTPUT. The Model 1722 Digital Output Interface is available factory-installed or field-installable. Complete specifications are given in Section 3 (paragraph 3-12.)

IMPORTANT

The Model 1722 and 1728 cannot be installed and used at the same time since both options occupy the same location on the Model $172 / 173$ chassis.

4-4. RACK MOUNTING. THE Model $172 / 173$ can be rack mounted in a full rack (l9 inch width) in either a single or dual mounting configuration.

MODEL 1010 SINGLE RACK MOUNTING KIT

Description:

The Model 1010 is a single rack mounting kit with overall dimensions 5-1/4 in. (133 $\mathrm{mm})$ high and $19 \mathrm{in} .(483 \mathrm{~mm})$ wide. The hardware included in this kit includes a 19 inch wide panel and other miscellaneous hardware.

Parts List:

t tem No.	Description	Qty Req'd	Keithley Part No.	Illustration
1	Front Panel	1	265950	
2	Support Plate (Shelf)	1	265990	
3	Bracket, Left Side	1	26600B	
4	Bracket, Right Side	1	266018	
5	Slotted Screw, \#6-32 $\times 2-1 / 4 \mathrm{in}$.	2	--	(ta, 0
6	Flat Washer, \#6	2	--	(3)
7	Phillips Screw, \#8-32 $\times 1 / 2 \mathrm{in}$.	10	--	Mffill

Assembly Instructions:

1. Using two Phillips Screws (ltem 7) at tach Support Plate (lem 2) to front Panel (Item 1).
2. Using four Phillips Screws (Item 7), attach left and right side Brackets (Items 3 and 4) to Front Panel (Iter 1).
3. Using four Phillips Screws (Item 7), secure left and right side Brackets to Support Plate (Item 2).
4. Assembly of rack hardware is complete except for mounting of instrument.
5. Rotate "handle" of Instrument so that handle is toward rear of instrument. (Handie can be removed completely if desired by separating top and bot tom covers.)
6. Remove two slotted Screws ($1-1 / 4 \mathrm{in}$. long) used to hold top and bottom covers together near front feet.
7. Position Instrument so that holes in bottom of Instrument align with two front holes on Support Plate.
8. Using two Slotted Screws (Item 5) and two Flat Washers (Item 6), secure Instrument to Support Plate.

FIGURE 20. Model 1010 Single Rack Mounting Kit.

Description:
The Model 1017 is a single/dual mounting kit with overall dimensions 5-1/4 in. (133 mm) high and $19 \mathrm{in} .(483 \mathrm{~mm})$ wide. The hardware included in this kit includes a 19 inch wide panel, and other miscellaneous hardware.

Application:
The Model 1017 adapts two Keithley Style ' K ' instruments for Standard $5-1 / 4 \mathrm{in}$. (133 $\mathrm{mm}) \times 19 \mathrm{in} .(483 \mathrm{~mm})$ rack mount ing with 11 in. $(280 \mathrm{~mm})$ depth behind the front panel.

Parts List:

$\begin{aligned} & 1 \text { tem } \\ & \text { No. } \\ & \hline \end{aligned}$	Description	$\begin{aligned} & \text { Qty } \\ & \text { Reg'd } \end{aligned}$	Keithley Part No.	Illustration
1	Front Pane!	1	280920	
2	Support Plate (Shelf)	1	$28094 C$	
3	Bracket, Left Side	1	28096B	
4	Bracket, Right Side	1	280978	
5	Slotted Screw, $66-32 \times 2-1 / 4 \mathrm{in}$.	4	--	0
6	Flat Wasner, \%6	4	--	(9)
7	Phillips Screw, $48-32 \times 1 / 2 \mathrm{in}$.	4	--	- \%
	Blank Cover Plate	1	28098B	
8	Hole Plug	2	HP-20	B
9	Kep Nut, \# 8	5	--	(4)

Assembly Instructions: (See Figure 21, page 4-4.)

1. Using four Phillips screws (Item 7) attach left and right hand side Plates (items 3 and 4) to the Support Plate (1tem 2).
2. Using three Kep Nuts (Item 9) attach the Support Plate (1tem 2) to Front Panel (1tem).
3. Fasten the Side Plates to the Front Panel using two additional Kep Nuts (Item 9).
4. Assembly of rack hardware is complete except for mounting of the Instrument(s).
5. The plastic tilt bail/handle on each instrument must be removed before mounting.

The top and bottom covers of the instrument must be disassembled in order to remove the handle. Loosen four screws on the bottom cover of the instrument, lift off the top cover, and remove handle. Replace the top cover and tighten the four screws on the bottom cover.
6. Remove two Slotted Screws ($1-1 / 4 \mathrm{in}$. long) used to hold top and bottom covers together near the front feet on each instrument. These screws are captive and a needlenose pliers should be used to pull the screw out after it is loosened with a screwdriver.
7. Position the Instrument so that holes in the bottom of the Instrument align with the two front holes in the Support Plate.
8. Using two Slotted screws (1tem 5) and two Flat Washers (Item 6) secure the Instrument to the Support Plate.

FIGURE 21. Model 1017 Dual Rack Mounting Kit.

4-5. PROBE AND SHUNTS. The following probes and shunts extend the capabilities of the Model 172/173.

MODEL 1600 HIGH VOLTAGE PROBE
Description: The Model 1600 is a divider probe for measurement of high voltage up to 40 kilovolts dc. The probe is optimized for use with a de voltmeter having 10 megohms input resistance.

MODEL 1682 RF PROBE
Description: The Model 1682 is an RF probe for measurement up to 100 MHz . The Model 1682 is optimized for use with a dc voltmeter having 10 Megohms input resistance.

MODEL 1685 CLAMP-ON AC CURRENT PROBE
Description: The Model 1685 is a clamp-on current probe for measurement of ac current up to 200 amperes. The Model 1685 is used with an $A C$ voltmeter and provides an output of 0.1 volt rms per ampere.

MODEL 1651 CURRENT SHUNT
Description: The Model 1651 is a 0.001 ohm shunt for use with an $A C$ or $D C$ voltmeter having at least 100 microvolts resolution. The shunt is rated at up to 50 amperes.

4-6. CABLES AND CONNECTORS. The following cables and connection Kits enable effective use of the Model 172/173.

MODEL 1683 UNIVERSAL TEST LEAD KIT
Description: The Model 1683 is a set of flexible test leads, 40 in . (1m) in length, with interchangeable screw-on adapters.

MODEL 1681 CLIP-ON TEST LEAD KIT
Description: The Model 1681 is a set of test leads, $48 \mathrm{in} .(1,2 \mathrm{~m}$) in length, terminated by a banana plug and spring-action clip-on probe.

MODEL 1727 DIGITAL OUTPUT CABLE SET
Description: The Model 1727 is a cable set consisting of 26 - and 40-conductor ribbon cable terminated by mating card-edge connectors to the model 1722. The Model 1727-3 is 3 feet long (1 m), and the Model $1727-10$ is ten feet long ($3,1 \mathrm{~m}$).

MODEL 7004 SHIELDED CABLE
Description: The Model 7004 cable is a shielded cable, 42 inches ($1,1 \mathrm{~m}$) long and is terminated by 2 tinned leads plus shield. Two banana plug adapters are furnished for use with Models 172/173.
Application: The Model 7004 cable is useful when making low-level voltage connections to the Model $702 / 7029$ Low-Voltage Scanner, both analog INPUT and OUTPUT. The shield may be connected to the GUARD terminal.

4-7. MISCELLANEOUS.

MODEL 1725 MAINTENANCE KIT
Description: The Model 1725 contains a specially punched calibration cover for accessability to adjustment controls on the Model 172/173 chassis.

Description: The Model $702 / 7029$ is a ten-channel low-voltage scanner. The $702 / 7029$ can be used for manual, scan, or remote scanning operation.

CHANNELS: 10 channels per scanner maintrame smultiple scanner maintrames may be connected for up to 100 chan. nels).

CONTROL MODES (FRONT PANEL SELECTABLE):

All-Off: No Channel selected.
Manual: Channel selected by front panel switch.
Scan Channels sequentralty selected at a rate determined by front panel control. Initial channel may be preset.
Remote: Channel randomly selected using 4 -line BCD code. or sequentially selected at remote clock rate

SCAN RATE: Varfable from nominally 0.1 to 10 seconds per channel by front panel control. Scan rate using remote clock is limited only by relay closure time.
DISPLAY: Single digit front panel LED display identifies channet selected.
DIGITAL INPUT AND DIGITAL OUTPUT: TTL interface lines provide for remote channel selection, clock, and control of All-Off mode. Output data includes present channel address. maintrame identification, clock, and relay ready. The (digital) Common may be floated up to ± 30 volts peak with respect to (chassis) Ground.
ENVIRONMENT: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C} .0 \%$ to 80% relative humidity up to $35^{\circ} \mathrm{C}$
POWER: $90-125$ or $200-250$ volts (switch selected), $50-60 \mathrm{~Hz} .15$ watts

CONNECTORS:

Digital Input. Digital Output (rear): 26 -pin 3M Part No. 3429. 1002.

Common, Ground (rear): Binding posts
Scanner Plug-in Card (rear). Internal connector mates with plug-in card edge.
Analog Inputs, Output, and Guard (rear): Clamp-type narrier strips for use with ± 14 to 22 AWG wire.
Scanner Maintrame Card edge mates with Scanner Main. frame internal connecior

SIGNAL INPUYS: 10 channels per card
SWITCHING CONFIGURATION: Guarded. 2-pole, breax belore make.
RELAY ClOSURE TIME: Less than 5 miliseconds
EXPECTED LIFE: 10^{*} closures per channel
SIGNAL LEVEL: 10 volts peak. 10 milliamperes peak win a re. sistive load for expected lite Absolute maximum peak in. stantaneous ratings 200 volts 100 miliamperes. of 2 voll amperes with a resistive taad
THEAMAL OFFSET (LABORATORY ENVIRONMENT): LESS than 3 microvolts from input to output when copper wires are used
SIGNAL PATH RESISTANCE: Initially less than 0.5 onm per pole: less than 2 ohms at end of life
ISOLATION: Guarded interchannel resistance is nominally $10: 2$ ohms at room temperature. and guaranteed greater than $10: 0$ ohms at environmental extremes Unguarded capacitance is less than 10 picolarads between any two signal terminals
GUARDING: Guard surrounds all analog signal paths Each 10. channel scanner plug-tn card in multi-scannet sysiems may have a separate guard voltage
MAXIMUM LEVELS: 200 volts peak Detween sigria! fne parso. from signal lines to guard or Mantrame (digiali Common 100 volts peak between guard and Mainflame dogital; Com. mon
DIMENSIONS, WEIGHT: Style M $3-1,2$ in hall-rack overall bench size 4 in . high $\times 8-3 / 4$ in wide $\times 15-1 / 4$ in deep $1100 \times$ $220 \times 385 \mathrm{~mm}$). Net weight 8 pounds (3.5 kg :
ACCESSORIES SUPPLIED: Model 7021-2 System Interconnect Cable

ACCESSORIES AVAILABLE:

Model 7021-2 System Interconnect Cable: 2 loot $10.6 \mathrm{~m})$ cable interconnects scanners for multiplescanner operation ($n-1$ used for interconnecting n scanners). 40 toot (12 m) maximur, fecommended total system cable length (extra)

MODEL 750 PRINTER WITH MODEL 7501-1722 PRINTER INTERFACE

Description: The Model 750 is an 18 -column printer which is plug-to-plug compatible with the Model 172/173.

COLUMNS: 18 (see Drum Diagram)
OECIMAL POINT: 13 decimal points: 9 are floating and print to right of number (columns 6 through 10, 12 through 15).
FAONT PANEL CONTAOLS: Power, Run; Manual Print; Paper Feed; Print interval.
PRINT RATE: Print interval control provides intervals from 1 sec./line to 10 sec /hine, continuously adjustable. In the External position, up to $21 / 2$ print commands $/ \mathrm{sec}$. are accepted.
DATA INPUT: Parallel BCD (8421) high true (low true with removal of fumper). Floating decimal points are low true only. Compatible Logic: TTL, DTL or open collector; inputs are 2 TTL loads (floating decimal points, 1 TTL load).
CONTROL INPUTS: External Print; Red Print; Motor Off; Remote Standby; Continuous Print: Inhibit.
Compatible Logic: TTL. DTL or open collector; inputs are 2 TTL toads (External Print and Continuous Print, 3 TTL foads) Inputs are low true, except External Print requires low-to-high transition.
CONTROL OUTPUT: Printer-in-Cycle (PIC); End-ot-Print Data Hold; Manual Print; Print Twice

Output Logic: TTL. can drive 8 TTL loads (PIC. 4 TTL loads) Outputs are high true; except End-ot-Print is 3 ms pulse. Printer-in-Cycle and Data Hold are low true.
INPUT/OUTPUT (I/O) CONNECTIONS: Two 50-pin recessed card-edge connectors; I/O A for data inpul. columns 1 through 10; 1/O B for accessories and/or additional data. columns 11 through 18 (see Drum Diagram)
ISOLATION: Input Lo to chassis ground greater than 10 ohms Lo may be floated up to 350 volts peak with respect to chassis ground.
PAPER: $2^{1 / 4}$ in fan-fold or roll.
RIBBON: Black/red. $1 / 2$ in wide.
ENVIRONMENT: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 0 \%$ to 80% relative humidity at up to $35^{\circ} \mathrm{C}$
POWER: 90-110, 105-125. 200-240 volts (switch selected). 50-60 $\mathrm{Hz}, 30$ watts (40 watts with accessories)
DIMENSIONS, WEIGHT: Style 0,7 in hall-rack, overall bench size $71 / 2$ in high $\times 8 \frac{1 / 2}{}$ in wide $\times 15^{1 / 4}$ in deep $(190 \times 220 \times 390$ mm). Net Weight, 16 pounds (7 kg)
ACCESSORIES FURNISHED: One ribbon (installed) one pack fanfold paper.

SECTION 5. THEORY OF OPERATION

5-1. GENERAL. This section contains circuit description information for the Model 172/173. The description is broken down into the following major categories.
a. Input Signal Conditioning.
b. Power Supply
c. Display Board
d. Durrent Board
e. Battery Pack (Model 1728).
f. A/D Converter
g. Digital Interface (Model I722).

FIGURE 22. Overall Block Diagram of Model 172/173.

5-2. INPUT SIGNAL CONDITIONING. (Schematic 27903E). This circuit consists of input switching, overload protection, ohms converter, ac/dc converter, and filter.
a. Switching. The interlocked pushbutton switches set the DMM to the appropriate function. Table 5-1 summarizes the switching scheme.

TABLE 5-1.
Summary of Pushbutton Switching

TABLE 5-1 (Continued)
Summary of Pushbutton Switching

TABLE 5~2.
Gain Chart For $A C / D C$ Voltage

RANGE	ATTENUATION	A/D GAIN	RL	H
300 mV	$\div 1$	$\times 10$	+8 V	-12 V
3 V	$\div 1$	XI	+8 V	-12 V
30 V	$\div 100$	$\times 10$	0 V	-12 V
300 V	$\div 100$	xI	0 V	-12 V
1000 V	$\div 1000$	XI	0 V	-8 V

b. $D C$ Volts Input Circuit.

1. DC Volts input circuitry is used to attenuate the input if necessary and filter ust unwanted $A C$ signals. A combination of attenuation and A / D converter gains allows five ranges of $D C$ Volts. See Table 5-2 on page 5-3.
2. There is no attenuation on the 300 m V and 3 V ranges. Relay K 901 (Figure 23) is shown in this position. The attenuator is bypassed which allows the input resistance of qreater than 109 ohms.
3. Above 3 volts, relay K 901 switches in the attenuator. There are two attentuation levels, $\div 100$ with $F E T$ switch $Q 901$ off and $\div 1000$ with Q901 on. C901 assures AC attenuation of at least $\div 1000$ so that normal mode rejection is maintained. RL line controls k90l and
line controls 0901 (See table 5-2).
4. Overload protection is assured by the clamp circuit, R929, and C907. If a large Oltage is applied on the $300 \mathrm{~m} V$ or 3 V ranges, the clamp limits the voltage to $\pm 5 \mathrm{~V}$ fter R929. R929 absorbs the input voltage. As the relay switches in the attenuator, (907 keeps the relay voltage from becoming large enough to cause arcing or plazma effects. The clamp is essentially an open circuit between ± 5 Volts.
. Filtering Circuit.
5. The DC filter is used in front of the A / D Converter on all functions. It is a 3Ole active filter with 3 db frequency of 5 Hz and a settling time of less than 300 ms o within 0.01%. It requires an input resistance of $200 \mathrm{~K} \Omega, 49.9 \mathrm{~K}$. of which is R 918. The other $150 \mathrm{k}:$ comes from various sources in the following manner:
```
In DC Volts, 300 m V and 3 V range: R929,
    30 V and 300 V range: R919 + R908 + R911+R910
In AC Volts, all ranges: R801
In \Omega , all ranges: R928
```


FIGURE 23. DC Volts Input Circuit.

This 200K? is also maintained so that the effect of A / D input current is autozeroed out (See A / D discussion, section 5-7). The $D C$ filter contributes no DC offsets to the signal path. They are blocked by C905 \& C904. R922, R917, C902 \& 4901 complete the filter circuit. R92lis acurrent limiting resistor and $C 903$ frequency compensates U901.
d. AC Attenuator.

1. $A C$ voltages are first attenuated if necessary, converted from $A C$ to $D C$, then filtered and passed on to the A / D converter.
2. The $A C$ attenuator (Figure 24) is really a frequency compensated summing amplifier with maximum gain of unity. Its other gains are $\div 100$ and $\div 1000$ which are switched by relay K801 and FET Q804 respectively. RL line controls K801 and H line controls Q804 (see table 5-2).
3. C908 blocks $D C$ signals up to $\pm 1000 \mathrm{~V}$, so that $A C$ signals may be looked at in the pressure of $D C$ voltages. The attenuator is referenced to -6 Volts to keep the $D C$ bias voltage on C808 and C809 (figure 25) near zero.
4. The gain of the attenuator is $\frac{-Z f}{Z} \mathrm{IN}^{\prime}=\frac{-R f(1+j \omega R i C i)}{R i(1+j \omega R f C f)}$. By making the RC time constant of $Z f$ equal to the $R C$ time constant of $Z I N$, the gain of the attenuator is constant with frequency, and equal to $\frac{-R f}{R \dot{L}}$. This is true in the midband region. Low frequency is limited by RC time constant of C908 and RIN (R818) and high frequency by U803. Nominal values of resistance and capacitance are shown in Figure 24.
5. Amplifier 4803 is powered from +3 V and -15 V . When overloaded the average voltage at the output is -6 Volts which keeps DC voltage off of C808 and C809. This minimizes settling time when autoranging.

e. $A C$ Converter.

1. The $A C$ converter is a transconductance amplifier. The simplified circuit shows the basic operation. The AC input voltage (Ein) is converted to a current (lin) because of the summing amplifier configuration. This current flows through the FET when negative and through the diode when positive. Thus Eout is a half wave rectified signal if the polarity is negative. Eout is the input current flowing through Rout. The + terminal of the converter amplifier is referenced to a negative voltage to allow voltage swing across the FET (Q801).
2. The ac converter consists of dual FET Q803, operational amplifier U801 and MOSFET Q801, diode CR801, and transistor Q802, semiconductor elements. The input resistance is R812 and R807, and the output resistance is R802 in series with R803 adjustment pot. FET Q801 is located in the feedback loop of the converter amplifier and the gate of this FET is driven from the output of the amplifier for one polarity.
3. For the other polarity the feedback path for 4801 and input FETs Q803 (a,b) is through diode CR801 and transistor Q802. When the 'ignal is positive at the input side of R812, current flows into the summing junction of the amplifier which is the gate (Pin 3) of Q803 and this current causes the output of Q801 to go negative. This turns on the base emitter junction of Q802 and pulls current through diode CR801 so that the connection path is through R812, R807, CR801 and Q802 emitter to collector to -15 volt supply. The reason that $Q 802$ is a transistor and not a diode is to equalize the output load on amplifier 4801 in each of its two polarities, and avoid any parasitic oscillation which might occur in 4801 because of unequal output current loading.

FIGURE 24. Simplified $A C$ Attenuator Circuit.

FIGURE 25. AC Converter Circuit.

Digital Multimeter
 Models 172, 173

4. When the input voltage is negative to the input side of 8812 the current will flow out R807 and R812 and thus the output of Q801 will go positive, thus forward biasing the gate of Q801. This turns on Q801 pulling current through resistors R 802 and R 803 from signal ground. Thus Q801 only conducts for negative input signals and the output current is a half cycle sine wave of negative polarity. This output current flows thru c803 and R802 which filters the $D C$ voltage. This filtering action allows the necessary 3 V $D C$ with only 6 volts available from Q801. Without $C 803$, more than 9 V swing would be needed. The transfer gain of the AC converter is unity. One volt AC RMS sine in causes 1 Volt DC out.
5. Q803 is a dual FET used as source followers with source resistors R805 and R806. The 10 mV adjustment feeds a small correction current to the summing junction to adjust for leakage current errors. The 1 Volt 1 KHz adjust calibrates the system gain on the 300 mV and 3 V ranges. Additional output filtering is provided by the DC filter (Section 5 C) whose input is R801 $\& \mathrm{C} 801$ in this case.
6. The only blocking capacitors needed are C808 and C809 on the input of the $A C$ converter. They keep voltage offsets of U803 (AC attenuator) and Q803 and U801 from reaching the output.
7. The AC System common is the -6 Volt reference. It is composed of voltage follower U802 and input divider R811 and R810. C807 is used to provide a low impedance AC path between 6 V and signal 10 to minimize $A C$ noise pickup.

f. Ohms Circuit.

1. The ohms circuit is a current generator. A summing amplifier configuration is used. The current is generated by applying a reference voltage to the input resistor of the summing amplifier and connecting the unknown resistor in the feedback loop of 4702 to force the current through the unknown resistor. Refer to Figure 34a. Either the 3.3444 V or the .33444 V reference is connected to buffer amplifier u701 thru, switching FETs Q702 or Q703. The output of the buffer drives one of three resistors (3.3444 K , $334.44 \mathrm{~K}, 33.444 \mathrm{M} \Omega$) to give six decade values of current from 10 nanoamperes to $1 \mathrm{milli}-$ ampere, and thus six ohms ranges. Each resistor consists of an adjustment potentiometer, a fixed resistor and the on resistance of a FET (no FET for 33.444Mi).
2. High ohms puts the A / D converter on the 3 Volt range, allowing 6 resistance ranges which can turn on semiconductor junctions for on scale readings.
3. Low ohms puts the A / D converter on the $300 \mathrm{~m} V$ range, allowing 6 resistance ranges which do not turn on semiconductor junctions for on scale readings. See Table 5-3.
4. There are time and temperature drifts associated with amplifiers U701 and U702. These effects are compensated for by the A / D converter. The reference used to calibrate the A/D converter in Ω function is the output of U701. Therefore, any drift in U701 is compensated for every conversion cycle. The negative input of U 702 is what "auto" zero' one is calibrated to every conversion cycle. Therefore, the stability of the ohms current is a function of only the stability of the Ω resistor. The lead drop in the high terminal of the ohms source amplifier is compensated for by connecting it to "auto-zero" 2 when in the ohms mode. "Auto-zero" 2 is the zero for the input signal. In 2-wire ohms the leads connect at the front panel binding post. Therefore a 4 -terminal ohms system exists up to the front panel terminals. See Section 5-9.
5. The ohms switching FETs (Q703, Q702) are driven by transistor Q701 and the C-line, Q710 is driven from the $A-1 i n e$ and $Q 707$ is driven from the $B-1 i n e$. These lines are also used and decodes to operate the Model 173 autoranging current. Amplifier $U 702$ is a FET input amplifier. This amplifier is overload protected by $Q 709$ base emitter junction connected to the signal ground, and Q708 base emitter junction connected through Q706 clamp transistor. Thus the input swing is clamped. Very large voltage excursions on the output side of $U 702$ are allowed. This is done by Q704, Q705, and CR703. Under normal operating conditions Q704 is operated in the saturated mode. However, under overload conditions, Q704 becomes a current source with its collector to emitter breakdown handling large voltage excursions when signals are positive with respect to the ohms source high. However, if signals are negative with respect to the ohms source high, CR703 reverse biases, cutting off that portion of the circuit. All of these high voltages will cause current to flow through R703 (120K Ω) which is connected to the +15 volt supply. The maximum limitation of 250 volts rms is a function of the power rating of R703 (a half watt resistor), and Q704's 400 volt breakdown.

TABLE 5-3.
OHMS RANGES

RANGE		RANGER	$\begin{gathered} R E F \\ V_{1} \end{gathered}$	$\begin{gathered} \text { OHMS } \\ \text { CURRENT } \end{gathered}$	Range lines			
HIS	LOS				A	B		C
3 K	300:	3.3444 K	3.3444 V	1 mA	+8	-12		+8V
30K	3 K	3.3444K	. 33444 V	100 ${ }^{\text {A }}$	+8 V	-12		$-12 \mathrm{~V}$
300K	30K	334.44K	3.3444 V	10 HA	$-12 \mathrm{~V}$	+8		+8V
3M	300 K	334.44 K	. 33444 V	$1 \mu \mathrm{~A}$	-12 V	+8		$-12 \mathrm{~V}$
30M	3M	33.444 M	3.3444 V	100 nA	$-12 v$	-12		+8 V
300 M	30 M	33.444 M	. 33444 V	10 nA	-12 V	-12		$-12 \mathrm{~V}$

g. Range Selection.

Ranging is accomplished by RSA \& RSB lines going to LSI circuit Ul03. They are controlled by the front panel switches AUTO/MAN, DN \& UP, according to Table 5-4. RSA \& RSB are edge sensitive, causing range changes when their levels are changed. This causes one uprange or one downrange per button push.

TABLE 5-4.
Range Selection

Range Switches				Range Lines	
AUTO/MAN	DN	UP	RSA	RSB	ACtion
OUT	X	X	OV	+8 V	AUTORANGE
IN	OUT	OUT	OV	OV	HOLDRANGE
IN	IN	OUT	+8 V	0 V	DOWNRANGE
IN	OUT	IN	+8 V	+8 V	UPRANGE
$X \equiv$ DON'T CARE					

h. Function Switching.

TABLE 5-5.
Function Selection

FUNCTION	FUNCTION SWITCHES					FUNCTION LINES		
	DC	AC	V / A	Ω	HI/LO	S:	$A C / D C$	VI
DCV	IN	OUT	OUT	OUT	X	$+8 \mathrm{~V}$	$+8 \mathrm{~V}$	$+8 \mathrm{~V}$
DCI	IN	OUT	IN	OUT	X	$+8 \mathrm{~V}$	+8V	$+8 v(172)$
DCI	IN	OUT	1 N	OUT	χ	$+8 \mathrm{~V}$	+8V	OV (173)
ACV	OUT	IN	OUT	OUT	x	$+8 \mathrm{~V}$	OV	$+8 \mathrm{~V}$
$A C 1$	OUT	IN	IN	OUT	X	$+8 \mathrm{~V}$	OV	+8V (172)
H1ת	OUT	OUT	X	IN	OUT	OV	OV	+ +8 V
L0?	OUT	OUT	X	1 N	IN	OV	$+8 \mathrm{~V}$	$+8 \mathrm{~V}$
$X \equiv$ DON'T CARE								

Function selection is accomplished by connecting function lines Ω, $A C / D C, \varepsilon$ VI according to Table 5-5. The function lines are level sensitive.

5-3. POWER SUPPLY, SCHEMATIC 28656E. This schematic contains the voltage regulators, line transformer, line voltage switching and power switching for the Models 172/173. There are three separate regulators used in the Model 172/173. One is a ± 15 volt regulator, VR603, which has three percent accuracy, typically 0.1% regulation, and delivers ± 15 volts at approximately a 65 milliampere level to most of the circuitry on the $172 /$ 173. There is also an 8 volt regulator, VR601, which is used as the positive supply to the LSI chip, (U103 on A/D converter schematic 27904F). There is also a +5 volt regulator, VR602. This regulator is used to drive the display, the digital logic circuitry in the A / D converter, and all the relays. VR603 is a ± 15 volt dual tracking regulator. It is an integrated circuit with complete regulated circuitry and reference elements built into the unit. It is either driven by T601 transformer, or from ± 19.2 volt batteries in the Model 1728 Battery pack. Connected to the transformer is a full wave rectifier, CR602, then two filter capacitors, C607 and C611, supply + and - 30 volts unregulated to VR603. These voltages are higher than VR603 needs because they are used to recharge the battery pack. If the instrument is off but the line cord is powered, unregulated voltages are generated.

If a Model 1728 battery pack is installed in the Model $172 / 173$ the batteries of the Model 1728 will be charged through the unregulated voltages. When instrument is line powered, resistors, R 604 , R610, and R605, feed the charge inputs on the battery pack. These resistors drop the charging current down to the trickle charge level.

When the instrument is in the line operated mode, the +30 volts unregulated is connected to R601, which goes to the + input of VR603. The -30 volts unregulated, passes through R602 and goes to the - input on VR603. These resistors are used to absorb some of the excess power, which is not necessary to be dissipated in the regulator.

The 8 volt regulator, VR601, gets its unregulated input from the unregulated $V+$ input on VR603. This input goes through a dropping resistor, R606, to further reduce the voltage lown to an acceptable level for VR601. The input for VR602 (5 V regulator) is derived irom transformer secondary 7 and 8, full wave rectifier CR601 and R603. This voltage also changes the 8.4 V batteries. In BAT mode, the ± 19.2 volt batteries and the +8.4 volt ,atteries connect to the input terminals of VR603 and VR602. VR601, the 8 volt regulator,
s fed through the 270 ohm resistor. The line switch applies ac voltage from the transformer to the Model 1722 for its regulated 5 volt supply. Thus, when the 172 or 173 are turned off the 1722 turns off.

Transformer $T 601$ has two internal shields, one secondary shield tied to pin 10 , and one nrimary shield tied to power ground. This shielding provides line isolation. When the fual primary of $T 601$ are tied in parallel by switch 5601 , the Model $172 / 173$ is connected for 117 volt operation. Switch 5601 also puts these primaries in series, for 230 volt operation, as indicated on the schematic. Provision for 100 volt line is interchanging zonnections 5 and 6 and connections 2 and 3 on the primaries. This is a physical wire =hange that must be made on the printed circuit board, and is a factory option.

There are two connectors for the Model 1728 battery pack, P602 and P606. The self-check cerminals are on the rear panel. There is an "ac" self-check, "dc" self-check, and an "ohms" self-check. Connect from the appropriate self-check terminal to the input high terminal to exercise the instrument. The self-check is not accurate, the voltages and zurrents are only approximate. A battery test point on the bottom of the instrument allows checking of the +19.2 volt battery in the Model 1728 . Normally the low battery light will indicate when the batteries have become low and need recharging. However, it could be sed to troubleshoot for a defective cell.
5-4. DISPLAY BOARD, SCHEMATIC 27404D.
a. This schematic shows the display digits, the LED function indicators, all display drivers and timing mux generator. The entire display, including minus sign and function indicators are fully multiplexed. This is accomplished with six time slots (timing mux). The mux times are generated by shift register U301 whose inputs come from the LSI chip (Ul03, Schematic 27904F). These time slots are referred to as $t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$.
The common anodes of each digit and the common anodes of the function indicators are triven from the appropriate mux line, see fiqure 26 . These mux times are also used in sperating digital interfaces (See Section 5-8, 1722). The mux times occur in the sequence t_{0} thru t_{5}, t_{0} and t_{1} are 383 microseconds each, and t_{2} thru t_{5} are 191 microseconds each. One complete mux cycle is 1.53 milliseconds .
b. The data mux lines, a, b, c, d, e, f, g, and dp drive the cathodes of the display segments and the function indicators. See Table 5-6. The data mux lines are generated in the LSI chip (Ul03, Schematic 27904F).
c. The 10,000 digit only indicates 1,2 , or 3 in overrange. If the 10,000 digit is zero, it is blanked by the data mux lines. It is necessary to operate the function indicator and minus sign twice as long as the digits. Since "AC" and "-" are activated furing tl, the 10,000 digit time, $t l$ is as long as to. To keep the 10,000 digit the same brightness as the other digits, a, b, c, d, e and f data mux lines for this digit are on for half of tl time.
d. The anode driver transistors are saturating switches (Q301 thru Q306). The segment driver transistors are emitter followers (Q307 thru Q314). R302A thru R302H are current limiting resistors. Segment current is approximately 30 milliamperes peak. R303 ε 6301 decouple current spikes from the 5 volt power supply. C302 decouples U301 from power supply. CR301 and R304 prevent parasitic oscillation of segment driver transistors.

TABLE 5-6.
Display Data MUX Lines.

8 LINES	DRIVES DISPLAY SEGMENT OF INDICATOR LIGHT DURING					
	t_{5}	t_{4}	${ }^{\text {t }} 3$	t_{2}	t,	${ }^{1} 0$
a	a	a	a	a	a for last h_{2} of t_{1}, off other half	mV indicator-173 mV/mA indicator- 172
b	b	b	b	b	b for last $\frac{1}{2}$ of t_{1}, off other half.	V indicator-173 V/A indicator-172
c	c	c	c	c	c Same as above.	$\mu \mathrm{A}$ indicator-173 not used-172
d	d	d	d	d	d Same as above.	mA indicator-173 not used-172
e	e	e	e	e	e Same as above.	$\begin{array}{r} \text { A indicator- } 173 \\ \text { not used- } 172 \end{array}$
f	f	f	f	f	AC indicator all of t_{1}	Ω indicator
9	9	9	9	9	9 for last $\frac{2}{2}$ of t, off other half	k : indicator
dp	dp	dp	dp	dp	"-" indicator All of t_{1}	Mal indicator

FIGURE 26. Digital Display Multiplex Scheme.

5-5. CURRENT BOARD. Schematic 274780 contains all of the current circuitry which is ' intained in the Model 173 and also in the 172. The current circuitry for the Model 172, : own at the bottom of the schematic consists of a 2 ampere fuse and a one ohm resistor. It is switched in front of the ac voltmeter or dc voltmeter for ac or dc amps. It allows ano milliamperes on the 300 millivolt range, and up to 2 amperes on the 3 volt range. , limit of 2 amperes limits the power in the 1 ohm resistor. The input impedance is approximately 1.3 ohms on both the 300 milliampere and the 2 ampere range. Above 1 ampere the self-heating effect and $T C$ of the resistor causes the reading error to icrease.
iur Model 173 the voltmeter is held on the 300 millivolt range and resistors are switched by means of relays $\mathrm{K} 501,502,503,504$, or 505 . K501 connects the input on the 300 , croampere range, K 502 on the 3 milliamp range, K 503 on 30 milliamps , K 504 on $300 \mathrm{milli-}$ ips, and K 505 on the 3 ampere rance. The current resistors are connected in series. R502 is connected to the high of the voltmeter (high sense). R510 goes to signal low (low inse). The measurement is thus done four terminal. The 3 ampere range is adjusted with tentiometer R512, the 300 milliampere range by R 509 , and the 30 milliampere range with R506. Input protection is provided by diode bridge CR501, which limits the voltage to ? diode drops in either positive or negative polarity. Unity gain amplifier U50l guards le center connection of these diodes. This assures good performance on the $300 \mathrm{micro-}$ ampere range which nas 10 nanoampere sensitivity. A 3 amp medium acting fuse limits the maximum current. The fuse is rear panel accessible. The relay drive tranistors are driven by 4502 . Spike suppression diodes across the relay coils prevent amage to the transistor drivers. Range lines from the LSI chip, lines A, B, and C autorange the ohms function, and the Model 173 current function. They are decoded in - D to decimal decoder U502. See Table 5-7. There is a possibility of a small period of ime during ranging where all relays may be open. This will not present an open circuit to the source because the diode bridge will conduct. Diodes CR507, 508,509 block the - ignal lines, A, B, and C from reverse biasing the inputs of $U 502$ when at -12 V . Resistors j15, 516, 517, 513G, 513H and 513F are input dividers to drop +8 volts to 5 volts to protect U502. Resistors R513D,C, A, B and E limit base current to the transistor drivers. Resistors for the top three current ranges are adjusted in shunt rather than in series. Ithough adjustment ranges are equal plus and minus from the nominal value, the adjust…ents are nonlinear. Resistors R511, R508, and R505 limit the range of the adjustment in one direction. The pots plus these resistors limit the adjustment range in the sposite direction. 4501 has a maximum input current of 7 nanoamperes (less than 1 digit , the $300 \mu \mathrm{~A}$ current range).

TABLE 5-7.
173 Current Ranging

RANGE	RANGE	RELAY	RANGE LINE LEVELS		
ACA \& DCA	RESISTANCE	OPERATED	A		c
$300 \mu \mathrm{~A}$	$1 \mathrm{~K} \Omega$	K501	$+8 \mathrm{~V}$	-12V	+8V
3 mA	100Ω	K502	+8V	-12V	$-12 \mathrm{~V}$
3 A	10Ω	K503	-12V	+8v	$+8 \mathrm{~V}$
300 mA	18	K504	-12V	+8v	-12V
3 A	0.18	K505	$-12 \mathrm{~V}$	$-12 \mathrm{~V}$	+8V

5-6. MODEL 1728 RECHARGEABLE BATTERY PACK. The Mode 1728 provides ± 19.2 volts and +8.4 volts from nickel-cadimum batteries. BT401 and BT402 are 19.2 volt, . 45 AH nickel cadmimum packs which are fused by $1 \mathrm{~A}, 3 \mathrm{AG}$ Slo-Blo fuses. BT403 is an 8.4 V pack composed of seven 1.2 volt " C " cells and is also fused by a $1 A, 3 A G$, Slo-Blo fuse. The Model 1728 has a built-in recharging circuit which operated from $\pm 29.5 \mathrm{~V}$ unregulated supplied by the DMM line-power supply.
a. BT401 Charging. BT401 is charged via a constant current from Q401. Diodes CR401 and CR402 and resistor R402 place a diode drop across R401. The resulting current is the maximum charging current. Diode CR403 prevents the battery from supplying current through Q401. The maximum charging current occurs only when the DMM is set to OFF. A trickle charge is maintained when the DMM is line operated. The reduced current is obtained by inserting a limiting resistor in series with the charging circuit (not shown on Schematic 26758C). In full charge, the batteries are charged at a C/10 rate (45 mA for BT401 ε BT402, \& 200 mA for BT403). When trickle charged, the charge rate varies according to line voltage ε battery condition from a minimum of $C / 100$ rate to a maximum of $C / 20$ rate. Thus, trickle charge may never fully charge the batteries, but is intended to put sufficient charge into them for short intermittent use.
b. BT402 \& BT403 Charging. BT402 \& BT403 are charged via a constant current from Q402 or Q401 respectively. These circuits operate similarly to the above circuit, except that they are powered by.unregulated $\pm 29.5 \mathrm{~V}$.

5-7. ANALOG-TO-DIGITAL CONVERTER. (Schematic 28656E).
a. Introduction.

1. The A / D converter, as its name implies, performs the function of generating a digital representation of an analog voltage applied to its input. The basic functional blocks involved in this process are shown in Figure 27 . This A / D converter has several distinct modes of operation, broadly grouped as "signal-measurement mode" and "error-correction mode". The signal flow in the signal-measurement mode is shown in heavy lines in Figure 27. It can be seen that the transformation from voltage input to display output occurs in two major blocks. The first block (V/F Converter) generates a digital pulse train whose frequency is proportional to the input voltage. The second block (digital chip) contains circuitry which counts the incoming pulses for a fixed time period, producing a total count which is proportional to the average of the input voltage over that time period.
2. The digital chip (a custom MOS LSI circuit) which performs the pulse counting function also performs a number of other functions necessary for the analog-todigital converter, and for other portions of the DMM. Details of the operation of this digital subsystem will not be given in the following discussion. However, various of its outputs which are necessary for the operation of the remainder of the A / D converter will be referred to when necessary.
3. The first step of the A / D conversion process, the Voltage-to-frequency conversion, is performed using a principal known as charge balancing. The resulting output pulse train has the property that its average frequency over a given time period is proportional to the average of the input voltage over the same time period. Thus, the charge balance technique has the property that the digital output is a representation of the trueintegral of the analog input over any specified sampling time. The circuitry which performs the V / F function is explained in detail in Section b.
4. The charge-balance circuitry described in Section b, although highly linear, has certain intrinsic scale factor and zero offset errors. In the complete A / D converter these errors are corrected for by the use of additional circuitry. This. so-called Auto-Zero and Auto-Calibrate circuitry is described in Section c. Section d contains a description of overall A/D converter system operation, combining the circuit functions described in sections b and c into a complete A/D conversion cycle.

FIGURE 27. Basic Functional Blocks of A/D Converter.
b. Voltage-to-Frequency Converter.

1. The greatly simplified circuit shown in Figure 28 illustrates the basic principles of the charge-balance V / F converter. Its operating waveforms are shown in Figure 29. Assume the integrating capacitor voltage, V_{i}, to be initally negative. As the input signal current I_{x} is integrated by the capacitor, V_{i} rises and eventually becomes more positive than the threshhold of the comparator (time t_{1} in Figure 29.). The comparator output voltage V_{c}, which is a logical variable, then rises to a logic 'one'. At the next positive-going edge of the clock ClD (time t_{2} in Figure 29), this 'one' is latched by the flip flop and appears as the latched output $Q R$. A quarter of a clock period after that event, (at t_{3}), the out-of-phase clock, Cl , goes high and enables the output of the AND gate,thereby turning on the current switch. For the next half clock period, from t_{3} to t_{5}, the reference current I_{r} is forced to flow out of the integrating capacitor, dischafging it and bringing v_{i}^{r} to a negative value. Sometime $\left(t_{4}\right)$ during this reference current pulse, v_{i} crosses the comparator threshhold in a negative direction and V goes to a logical 'zero'. At the next positive-going edge of clock CID, (t_{6}), the comparator voltage V, is still a zero and therefore the flip flop output also becomes a zero. The reference current consequently is not turned on during that clock period, and in fact stays off until the next time the integrator voltage once again rises above the comparator threshhold.

FIGURE 28. Basic Charge-Balance Converter.
2. For relatively large values of the input, the time required for the integrating capacitor to be recharged above the comparator threshhold is relatively small, and the charging-discharging cycle described will occur at a high frequency. For lower values of input current, the recharging time of the integrator will be correspondingly longer and the events described will occur at a lower rate. Thus the repetition rate of reference current pulses (and digital output pulses) is a function of the input curre.it.
3. Notice that the amount of charge removed from the integrating capacitor during. each discharge cycle is equal to the product of the reference current, 1 , and onehalf the clock period. Through appropriate circuit design these two parameters can be made very stable, with the result that, whether the frequency of the discharge cycle is high or low, each increment of charge removed (i.e., each reference current pulse) is precisely the same size. Since the total charge removed from the capacitor in any given time period is equal to the total charge that flowed in during the same time period (within a resolution of one discharge increment) the uniformity of size of the reference current pulse guarantees that the total number of such pulses is precisely proportional to the time-integral of the input current.

FIGURE 29. Operating Waveforms of A / D Converter.

Digital Multimeter
Models 172, 173

4. Figure 30 is a simplified schematic diagram of the circuitry actually employed to perform the V / F conversion. In addition to some added details of the circuitry already discussed, figure 30 shows three major circuit elements not previously mentioned.
a) The input buffer amplifier, U2O2, serves two functions. First it provides a high impedance input to the A / D converter. Second, it provides a selectable voltage gain of 10 , giving the A / D converter in effect two voltage ranges, selected by the line labeled G10 (an output from the LSI chip).
b) The transconductance amplifier, consisting of op amp UlOl and its associated MOS FET (Q104) and resistors, converts the voltage which appears at the output of buffer amplifier $U 202$ into a proportional current, I_{x}, which is used to charge the integrating capacitor.
c) The reference diode and the resistor connected from it to the summing junction of op amp UlOl provide a fixed current component of I_{x}, in addition to the variable component $l_{\text {, (which is proportional to the input voltage). This fixed offset }}$ current, labeled I, allows the overall A/D converter to handle both positive and negative input vol dages. With this arrangement, the output pulse frequency is one half of its maximum possible value when the input voltage to the entire converter is zero. This transposition is accounted for in the digital subsystem (LS) chip) by subtracting a fixed number from the accumulated count before displaying it.
d) The remaining circuitry in Figure 30 is functionally equivalent (with some added details) to the basic charge-balance loop shown in Figure 28. The digital output signals $Q R$ and CLK are used by the digital subsystem, in effect, to reconstitute the pulse train discussed in connection with Figure 28.
c. Auto-Zero and Auto-Calibrate Circuitry.
5. The charge balance system shown in Figure 30. is inherently highly linear, but both its zero and full-scale calibration (scale factor) are susceptible to drift with time and temperature, due to a variety of effects. Through the use of a pair of related circuit functions, referred to as Auto-Zero and Auto-Calibrate, these intrinsic errors can be cancelled, resulting in a system whose scale factor is essentially as stable as the voltage of a reference zener diode and whose zero stability is limited principally by thermo-electric offsets. The techniques used to achieve this performance are described in this section.
6. It can be shown that all zero-error sources in the charge balance system (such as offset voltage drift of amplifiers $U 202$ and UlOl, input current drift of amplifier Ul01, etc.) can be represented as a total effective error current at the summing junction of amplifier Ul 101. In a similar way, all gain errors are equivalent to an error current at the emitter of the reference current output transistor, Q102B. It is thus possible to correct for all such errors by introducing an appropriate correction current at each of these two locations in the circuit. The function of the Auto-Cal and Auto-Zero circuitry, then, is to discover the proper values of these two currents and to supply them during the measurement of the input signal.
7. The method used to "discover" the proper value of the correction signals is as follows: Consider first the Auto-Zero operation. In an error-free system, a zerovolt input would cause the charge-balance loop to deliver reference-current pulses to the integrator at exactly $1 / 2$ the clock frequency. In the Auto-Zero mode, the buffer input is supplied with zero volts, and the current switch is digitally forced to deliver reference-current pulses at precisely $1 / 2$ the clock frequency. In a real system with finite offset errors, the current being delivered to the integrat-

FIGURE 30. Simplified Schematic of V/F Converter.
or through the transconductance amplifier (l) does not exactly match this forced reference current; the difference exactly equals the correction current required to cancel the offset errors. Thus the integrator voltage, V_{i}, exhibits a charge balance sawtooth waveform like that shown in Figure 29., superimposed on a much slower ramp whose slope is proportional to this difference current. The auto-zero feedback system adjusts a correction current which flows into the summing junction of amplifier Ul0l so that the slope of the ramp is equal to zero. In this way, all zero errors are oreciselv cancelled.
4. The Auto-Calibrate system works in an analogous manner, with three differences of detail:
a) The voltage supplied to the input of buffer amplifier $U 202$ is the exact amount voltage which the charge balance system can measure.
b) The current switch is forced to a frequency equal to the clock frequency rather than one half of it.
c) The feedback correction current is delivered to the emitter of the reference current output transistor (Q102B).
5. The circuitry which performs the operations described above is shown in Figure 31, together with most of the charge balance system redrawn from figure 30 . The added circuitry is grouped in five major blocks:
a) Input Multiplexer,
b) Reference current forcing circuitry,
c) Comparator filter,
d) Auto-Zero feedback and storage circuitry,
e) Auto-Cal feedback and storage circuitry.
6. This circuitry will be described block by block with reference to the above description of its basic mode of operation.
a) The input multiplexer supplies the necessary "known" voltages to the input of the buffer amplifier at appropriate times, and connects the buffer amplifier to the signal source when that signal is to be measured. The multiplexer consists of JFET switches controlled by signals from the LSI chip. (the two adjustable capacitors shown in Figure 31. are used primarily to neutralize the JFET switching charge in order to minimize the A / D input current.)
b) The reference current forcing circuitry controls the input of the comparator latch flip flop. In the Auto-Zero mode, it forces the output of this flip flop to alternate between one and zero on successive clock periods. The resulting reference current pulse rate is equivalent to an output frequency from the charge balance system of $1 / 2$ the clock frequency. In the Auto-Calibrate mode $Q R$ is forced to a one constantly with the result that the reference current is on at every opportunity; reference-current pulse frequency thus equals the clock frequency. Two chip outputs, FON and COFF, are used to control these two operating modes: FON is one during both Auto-Zero and Auto-Calibrate, and COFF is zero during Auto-Zero and one otherwise.

FIGURE 31. Simplified Schematic of Complete A/D Converter.
c) The block labeled "Comparator Filter", not previously mentioned, serves an important function in the Auto-Zero and Auto-Calibrate feedback loops. As discussed above, the component of the integrator voltage which is of interest for Auto-Zero and Auto-Cal purposes is the slow ramp arising from the effective error currents. Because this ramp has superimposed on it a relatively high frequency triangle waveform, the combination of comparator and comparator-filter functions as a switchingmode (class D) amplifier for the ramp voltage, with gain equal to the ratio of the V_{C} switch to the triangle amplitude. The comparator-filter's function is to smooth the switching output of the comparator so that only the low-frequency amplified ramp signal is passed on to the remainder of the Auto-Zero (or Acal) feedback loop.
d) The Auto-Zero feedback and storage block completes the control loop used to. generate the Auto-Zero correction current. Ignore for the moment the two storage capacitors and consider only the direct signal path via the Auto-Zero loop switch and the JFET source follower. Consider the following circuit elements: Transconductance amplifier, integrating capacitor, switching mode amplifier (comparator and comparator filter), auto-zero loop switch, source follower and the resistor between FET source and UlOl summing junction. Examination shows that these circuit elements constitute a simple low-frequency and dc feedback loop which will strive to adjust the voltage across the integrating capacitor to a value near zero. Once this condition has been achieved, then the Auto-Zero correction current 'AZ must have taken on the desired value, since the total current being fed to the integrating capacitor must now be exactly balanced by the switched reference current.

The remainder of the auto-zero system operation is quite simple. Once the stable closed loop condition has been achieved, one of the two capacitor switches is then closed and the gate voltage on the source follower (which has the value necessary to produce the correct value of $(A Z)$ is stored on that capacitor. When the loop switch finally opens at the endz of the Auto-Zero phase, the value of $\mathrm{I}_{\text {az }}$ which was established during the Auto-Zero phase thus remains in effect untif the next Auto-Zero operation.

FIGURE 32. A/D Converter System Timing.
e) The Auto-Cal feedback and storage block works in a manner identical to that of the Auto-Zero feedback and storage block, with the exception that its output current is fed to the emitter of Q102B instead of the summing junction of UlOI. Although the Auto-Zero and Auto-Cal correction operations interact to some degree, a few sequential iterations of these operations suffice to establish the correct values of the two correction currents.
d. Overall A/D System Operation.

1. In the preceeding two sections the structure and function of each major analog circuit block has been explained. This section contains a description of the manner in which these elements are combined in a complete A / D conversion. The description is based on Figure 32, an overall A/D converter timing diagram showing one complete conversion.
2. The first major division of the conversion period is into an error-correction segment (120 ms long) and a signal-measurement segment (200 ms long). During the former, the input multiplexer supplies known reference voltages to the V/F block, and (as described in Section c) the correction currents ' $A Z$ and $I_{A C A L}$ are established. During the latter, the now error-corrected V / F converter has the unknown signal voltage applied to its input, and its output pulses are counted by the digital chip. (As the next conversion period begins, the chip processes the resulting pulse-count and displays the result.)
3. The error-correction segment of the conversion cycle is further divided into three $40-\mathrm{msec}$. phases. During the first two of these phases, the buffer amplifier gain is held constant at either $1 X$ or $10 x$ (depending on DMM range and function). During the AZl phase, the input multiplexer supplies the buffer with a zero-reference voltage, and the Auto-Zero feedback loop is closed. The value of 'AZ required to correct any system zero-errors is established, and the closure of the AZCl switch (see Figure 31) causes the source-follower gate voltage which produces this current to be stored on the corresponding Auto-Zero storage capacitor.
4. During the ACAL phase, the multiplexer connects the buffer input to a full-scale reference voltage (either 3.34 or 0.334 V , depending on buffer gain), and a similar process results in a scale-factor correction voltage being stored in the Auto-Cal storage capacitor.
5. Buffer gain during the AZ2 phase is always the same as it is during the signalmeasurement phase; it may differ from its value during AZI and ACAL. Because of the (possibly) changed buffer gain, the effective system offsets may have changed so the second Auto-Zero operation is required to prepare the V/F converter for an errorcorrected signal measurement. This new value of the Auto-Zero correction voltage is stored on the capacitor controlled by the AZC2 switch (Figure 31.).

5-8. MODEL 1722 DIGITAL INTERFACE.

a. Overall Block Diagram. As shown in Figure 33, Serial data from the DMM and its associated clock lines are first isolated. Bidirectional data line SERDAT is then split. Output data DOWNDAT goes to the output register block where it is converted to parallel form and then to the output buffers. The clock lines go to the control block which decides where the data is going, out or in, and also generates the flag.

Control input data and strobes are first buffered by the input buffer block. The strobes go to the output buffer to gate the outputs. The control data inputs go to the input register and control block where they are converted from parallel to serial form and sent to the isolation block. The input register and control block also decides, based on control data input, whether there is to be an output update. Power isolation for the 1722 is provided by transformer $T 1001$ which is powered by a secondary winding of the DMM power transformer.
b. Signal Isolation. The bidirectional data line SERDAT and the two clock lines SERCLK and INCLK each drive an emitter follower made up of transistors Q1036, Q1035, and Ql037 whose loads are LED's in the opto-isolators are pulled up by resistors R1010, Rl009 and Ul018, which is driven by Q1034 similar to the three just mentioned. The output pullup on U1018 is on the DMM mainframe. Power for the DMM side of the isolation is taken directly from the DMM +5 volts through R1016 and C1018 and C1017, which provide the coupling.
c. Power Supply. Low voltage ac from the secondary of the DMM transformer is supplied via pins B and C on JlolA.

Switching for the power for Tl001 provided at $J 1003$ Pins A and B and comes via the DMM mainframe through its Power On switch. The secondary of tlool is rectified, filtered and run through an integrated circuit $+5 V r e g u l a t o r ~ T R 1001$, where it is again filtered by C1015, C1002, C1003, C1004, C1014. The core of Tl 1001 is connected to chassis ground by a green wire to a screw on the DMM mainframe or transformer. Also common mode filtering is performed by R1008 and Cl006 between output low and chassis ground.
d. Control Block. UPCLK, the isolated form of INCLK, is run to the trigger input of El017 timer. A buffered version of UPCLK is also run via diode gate CRI002 to the threshhold input of Ul017. UlOl7 is such that its output will go high when a falling edge goes into trigger. A filter made up of R1007 and Cl008 will try to charge, however, since this threshhold is clamped low through diode CR1002. It will not be able to time out in the time period of the clock pulses on INCLK until the last rising edge of INCLK, at which time it will clock out at 30 microseconds, therefore UPTIME, the output of U1017, will be length of the INCLK pulse stream plus approximately 30 microseconds, which is the time in which data will be flowing from the 172 to the DMM. The beginning conversion (See Schematic 27902E). This is done by clocking DOWNCLK with UPTIME in flip-flop Ul 1 l 5 A . The beginning of downtime also defines the time when the flag is set high, that is when data has finished being updated. Setting the flag low during data change time, or resetting the flag, is accomplished in two ways: FR or UPDATE. Downtime also gates DOWNCLK thru Ul014C \& U10140 where it is called GATECLK and goes to the output register.
e. Output Register. The output register is made up of shift registers $41008 \mathrm{~A} \varepsilon \mathrm{~B}$, $1009 A \& B, 1010 A \& B, 1011$ A \& B. It is a $32-b i t$ shift register, of which only 30 are used. Serial data enters 41008 B and is clocked through all of the shift registers by the parallel clock, GATECLK. At the end of the clocking time all 30 bits have been shifted in and are presented in parallel to the output buffer.
f. Output Drive and Buffer. Parallel data on the output registers goes to output gates 41001 thru 1007 and $U 1012$ and 1013. Here they are gated with the output strobes and drive transistors Q1001 thru 1030 to output connector R1006.
g. Input Buffers. Strobelines are buffered by $U 1101$ and $U 1102$ and go out to the output drive and buffer block. Remote control inputs are buffered by Ullo4, Ullll, Ullo5. Ullo4 is a Schmitt trigger and is put on certain control lines to prevent false triggering.

FIGURE 33. Model 1722 Block Diagram

5-9. DETAILED 4 WIRE OHMS OPERATION.
a. The circuit measures a resistor by putting a constant current through Rx and measu ing the voltage drop across Rx. This is accomplished by putting Rx in the feedback of a summing amplifier (Ω AMP) the input to this amplifier being a reference (Ω Vref) voltage t' rough an input resistor ($R \Omega$).
D. $A Z-1, A C A L, A Z-2, \varepsilon A / D$ Signal are the $4 A / D$ inputs. This A / D operation compensates for time ε temperature variation of Ω VRef and Ω Amp, as well as compensating for lead r sistance. The A / D looks at each of these inputs in time sequence in the following π iner.

1) AZ-1 looks at Ω AMP input for 40 ms and stores this zero level.
2) ACAL looks at Ω VREF for 40 ms and calibrates itself to the difference between $A Z-1$ and $A C A L$. Thus, it is calibrated to the voltage across $R \Omega$. Since $R \Omega$ is a fixed stable resistor the value of 1 is now known. Since 1 flows through $R x$ the calibration is fixed.
3) AZ-2 looks at the voltage at the top of $R x$ for 40 ms . This is defined as the zero level for signal measurement and is stored in A / D.
4) A / D Signal looks at the bottom of $R x$ for 200 m seconds. The A / D thus measures the difference between A / D signal and $A Z-2$ without polarity sign. The voltage across Rx is displayed.
c. The measurement is essentially a ratio measurement between the voltage across $R x$ and the voltage across $R \Omega$.
d. Note that the voltage at the top of $R x$ is essentially at signal $L 0$ of the instrument ($\pm \Omega A M P$ offset and lead resistance drop) and the voltage at the bottom of $R x$ is negative. Thus, the high impedance terminal is guarded and relative fast response is a hieved at high resistance values.

6-1. GENERAL. This section contains information necessary to maintain the instrument. Included are procedures for Electrical Performance Verification, Calibration, Troubleshooting, and Battery Replacement and Charging.

6-2. REQUIRED TEST EQUIPMENT. Recommended test equipment for checking and maintaining the instrument is given in Table 6-1. Alternate test equipment may be substituted if specifications equal or exceed the stated characteristics.

TABLE 6-1.
List of Test Equipment For Performance Verification.

ITEM	DESCRIPTION	SPECIFICATION	MFR	MFR MODEL
A	DC Calibrator	$\begin{aligned} & \pm 0.2 \mathrm{~V} \text { through } \pm 1000 \mathrm{Vdc} \\ & \pm 0.002 \% \text { or } 20 \mu \mathrm{~V} \end{aligned}$	fluke	343 A
B	AC Calibrator	0.2 through 20 v rms $\pm 0.022 \%+10 \mu \mathrm{~V}$	HP	745A
C	High Voltage Amplifier	$\begin{aligned} & 200 \mathrm{~V} \text { through } 1000.0 \mathrm{v} \mathrm{rms} \\ & \pm 0.04 \% \end{aligned}$	HP	746A
D	Decade Resistor	$\begin{aligned} & 2 K \Omega \text { through } 10 \mathrm{M} \Omega \\ & \pm 0.01 \% \\ & 200 \mathrm{M} \Omega \pm 0.1 \% \end{aligned}$	ESI CADDOCK	DB62 MG750
E	Current Source	$200 \mu \mathrm{~A}$ through 20 mA $\pm 0.006 \%$	FLUKE	33308
F	Ohmmeter	$10^{7} \Omega \pm 1 \% \quad 10^{9} \Omega \pm 5 \%$	KI	616

NOTE
The equipment listed here in many cases will introduce an additional uncertainty in the Performance Verification. The Absolute Accuracy should be used when evaluating the displayed reading on the DMM.

6-3. PERFORMANCE VERIFICATION. Use the following procedures to verify basic operation of the instrument. All measurements should be made at ambient temperature of $25^{\circ} \mathrm{C}$. and relative humidity less than 80%. If the instrument is out of specification at any point, perform a complete calibration as given in paragraph 6-4. For each function that is checked, an additional uncertainty due to temperature coefficient should be considered if the ambient temperature is different from $25^{\circ} \mathrm{C}$. Example: If calibrated at $30^{\circ} \mathrm{C}$, add $5^{\circ} \mathrm{C}$ of temperature coefficient specification.

NOTE

This procedure is intended to verify only the basic accuracy of the Model $172 / 173$ in voltage, current, and resistance modes. Test equipment accuracy should be . Xlo better than measurement accuracy. In many cases the equipment listed is not Xlo better than instrument accuracy because such equipment is not commercially available.
a. Battery Check. (With the Model 1728 Rechargeable Battery Pack installed.)

1. Check for proper installation of individual cells in the battery pack as shown in Figure 7
2. Depress BAT pushbutton.
3. Verify that the "LO BAT" indicator is not lighted. If lighted, recharge batteries." b. How to Charge the Batteries. (Perform this procedure only if the batteries are not sufficiently charged.)
4. Set the internal line switch 5601 to the appropriate line voltage range.
5. Connect the line cord to the appropriate line voltage.
6. Release LINE and BAT.
7. Recharge for at least 16 hours to fully charge.
c. Input Resistance Check. (DC VOLTS)
8. Depress MAN.
9. Depress BAT.
10. Select the 3 volt $D C$ range using UP RANGE or DN RANGE pushbutton.
11. Measure the input resistance between HI and LO using DMM (F).
12. Input resistance should be $>1 \times 10^{9}$ ohms. (Make sure that 173 does not read off scale).
13. Select the 30 volt DC range using UP RANGE pushbutton.
14. Measure the input resistance between HI and $L O$ using DMM (F).
15. Input resistance should be 10 megohms $\pm 2 \frac{1}{2} \%$.
*NOTE
Battery pack may be discharged to the point where the LO BAT indicator circuit will not operate. If in doubt, recharge the battery pack at least 16 hours.
d. Voltage Accuracy Check.
16. $D C$ Voltage.
a) Sei to $D C$ Volts and AUTO.
b) Connect the $D C$ Calibrator (A) to the instrument.
c) Set the DC Calibrator to the output specified in Table 6-3.
d) Verify that the instrument reading is within the limits specified.
e) Repeat steps c) and d) with negative voltages.

TABLE 6-3.
DC Voltage Performance Check

2. $A C$ Voltage.
a) Set to AC Volts.
b) Set to AUTO.
c) Connect the $A C$ Calibrator (B) to the instrument input terminals.
d) Set the $A C$ Calibrator to the output specified in Table 6-4. Set frequency to 50 Hz , then repeat at 20 KHz .
e) Connect the High Voltage Amplifier (c) to the instrument input terminals.
f) Set the High Voltage Amplifier as shown in Table 6-4.
g) Verify a displayed reading as shown in Table 6-4.

TABLE 6-4.
AC Voltage Performance Check

Range	Voltage Applied	Relative	Allowa Accuracy:	le	(at 25° Absolut	Accuracy:	
300 mV	0.20000 Vrms	0.19964	to 0.20036	Vrms	0.19959	to 0.20041	Vrms
3 V	2.0000 Vrms	1.9964	to 2.0036	Vrms	1.9960	to 2.0040	Vrms
30 V	20.000 Vrms	19.964	to 20.036	Vrms	19.960	to 20.040	Vrms
300 V	200.00 Vrms	199.64	to 200.36	Vrms	199.56	to 200.44	Vrms
1000V	1000.00 Vrms	997.4	to 1002.6	Vrms	997.0	to 1003.0	Vrms
*Does not include the uncertainty of the **Does include the uncertainty of the $D C$ DC Calibrator. Calibrator							

e. Resistance Accuracy Check.

1. High Ohms.
a) Set to \therefore (OHMS).
b) Set to HI .
c) Set to 2 WIRE.
d) Set to AuTO.
e) Connect the Decade Resistor (D) to the instrument input terminals.
f) Set the Decade Resistor to the resistance specified in Table 6-5. Verify the readings given.

TABLE 6-5.
Resistance Performance Check (HI OHMS)

Range	Resistance Setting	Allowa Relative Accuracy:	(at $25^{\circ} \mathrm{C}$) Absolute Accuracy:*:
$3 \mathrm{~K} \Omega$	$2.0000 \mathrm{~K} \Omega$	1.9993 to 2.0007 K	1.9991 to $2.0009 \mathrm{~K} \Omega$
$30 \mathrm{~K} \Omega$	$20.000 \mathrm{~K} \Omega$	19.993 to 20.007 K	19.991 to 20.009 K ת
300 K 8	200.00K 8	199.93 to 200.07 K	199.91 to 200.09K Ω
$3 \mathrm{M} \Omega$	$2.0000 \mathrm{~m} \Omega$	1.9991 to 20.009 K	1.9989 to 2.0011 M ת
$30 \mathrm{M} \Omega$	$20.000 \mathrm{~m} \Omega$	19.969 to 2.0031 K	19.967 to $20.033 \mathrm{M} \Omega$
300M 8	$200.00 \mathrm{M} \Omega$	197.99 to 202.01 K	197.79 to $202.21 \mathrm{M} \Omega$
*Does not include the uncertainty of the $\%$ Does include the uncertainty of the Resistance Source. Resistance Source.			

IMPORTANT

Measure the resistance of the leads and subtract from the resistance reading on the Model 172/173.
2. Low Ohms.
a) Set to Ω (OHMS)..
b) Set to Lo.
c) Set to 2 WIRE.
d) Set to AUTO.
e) Connect the Decade Resistor (D) to the instrument and Ω source terminals.
f) Set the Decade Resistor to the resistance specified in Table 6-6. Verify the readings given.

TABLE 6-6.
Resistance Performance Check (LO OHMS)

Range	Resistance Setting	Allowab Relative Accuracy:	(at $25^{\circ} \mathrm{C}$) Absolute Accuracy: :
300Ω	200.00	199.93 to 200.07Ω	199.91 to 200.09
$3 \mathrm{~K} \Omega$	2.0000 Ks	1.9993 to $2.0007 \mathrm{~K} \Omega$	1.9991 to $2.0009 \mathrm{k} \Omega$
$30 \mathrm{~K} \Omega$	$20.000 \mathrm{~K} \Omega$	19.993 to $20.007 \mathrm{~K} \Omega$	19.991 to $20.009 \mathrm{~K} \Omega$
$300 \mathrm{~K} \Omega$	$200.00 \mathrm{~K} \Omega$	199.91 to $200.09 \mathrm{~K} \Omega$	199.89 to $200.11 \mathrm{~K} \Omega$
$3 M \Omega$	$2.0000 \mathrm{M} \Omega$	1.9979 to 2.0021 Ms	1.9977 to 2.0023 M
30Ms	20.000Ms	19.899 to 20.101 MSz	19.897 to 20.103 Mr

IMPORTANT
Measure the resistance of the leads and subtract from the resistance reading on the Model 172/173.

f. Current Accuracy Check. (Model 173 only)

1. $D C$ Current.
a) Set to $D C$ Amperes.
b) Set to AUTO.
c) Connect Current Source (E) to the instrument input terminals.
d) Set the Current Source to the current specified in Table 6-7. Verify the readings given.

TABLE 6-7.
DC Current Performance Check (Model 173 only)

Range	Current Applied	Allowable Reading (at $25^{\circ} \mathrm{C}$) Relative Accuracy:.	
$300 \mu \mathrm{~A}$	$\pm 200.00 \mu \mathrm{~A}$	199.78 to $200.22 \mu \mathrm{~A}$	199.77 to $200.23 \mu \mathrm{~A}$
3 mA	$\pm 2.0000 \mathrm{~mA}$	1.9978 to 2.0022 mA	1.9977 to 2.0023 mA
30 mA	$\pm 20.000 \mathrm{~mA}$	19.978 to 20.022 mA	19.977 to 20.023 mA
300 mA	$\pm 200.00 \mathrm{~mA}$	0.19978 to 0.20022 A	0.1985 to 0.20142 A
3 A	$\pm 2.0000 \mathrm{~A}$	1.9958 to 2.0042 A	1.9838 to 2.0162 A

*Does not include the uncertainty of the **Does include the uncertainty of the Current Source. Current Source.
g. Current Accuracy Check (Model 172 only)

1. DC Current
a) Set to $D C$ Amperes.
b) Set to AUTO.
c) Connect Current Source (E) to the instrument input terminals.
d) Set the Current Source to 200 mA . Verify a reading of 199.48 to 200.52 mA .*
e) Set the Current Source to the 1 A . Verify a reading of 0.9973 to 1.0027 A .*
*NOTE
Readings do not account for source inaccuracy. Add 0.02% uncertainty if Current Source (E) is used.

TABLE 6-8.
Surmary of Adjustment Controls

Circuit Desig	Description	Paragraph	Schematic Shown
C203	InPUT Current ADJ	6-4 c2 (e)	27904 F
C205	OHMS Zero	$6-4$ c2 (i)	$27904 F$
C817	100 V © 20kHz ADJ	$6-4$ e7	27903E
C819	IV e 20 kHz ADJ	6-4 e7	27903E
c820	IKV @ 20 kHz ADJ	$6-4$ e 7	27903E
C821	IKV e 20 kHz ADJ	6-4 è 7	27903 E
R103	Auto Cal	$6-4 \mathrm{cl}$ (h)	27904 F
R201	Auto Zero	$6-4 \mathrm{cl} \mathrm{(i)}$	27904 F
R208	0.3 V Ref	6-4 f19	27904F
R209	$\times 10 \mathrm{Gain}$	6-4 d2 (d)	27904 F
R213	2.9 VCal	$6-4 \mathrm{~d} 2$ (d)	27904 F
R217	Buffer Zero	6-4 cl (j)	27904 F
R704.	290k』 ADJ	6-4 f 24	27903 E
R705	$10 \mathrm{M} \Omega \mathrm{ADJ}$	6-4 f 7	27903E
R707	Ω Bias	6-4 f9, 13	27903 E
R709	$2.9 \mathrm{~K} \Omega \mathrm{ADJ}$	$6-4+29$	27903 E
R803	1 V @ 1 kHz ADJ	6-4 e7	27903 E
R809	10 mV @ 1 kHz ADJ	6-4 e7	27903 E
R816	100 V @ 1 kHz ADJ	6-4 e7	27903 E
R817	1 KV @ 1 kHz ADJ	6-4 e 7	27903 E
R901	IKV DC ADJ	6-4 d2 (d)	27903E
R 904	300 mV Zero	6-4 dl (d)	27903E
R911	290 V DC ADJ	6-4 d2 (d)	27903 E
$\mathrm{R913}$	30 V Zero	$6-4$ dl (g)	27903 E
R506 (173 only)	10 mA DC ADJ	6-496	274780
R509 (173 only)	100 mA DC ADJ	6-4 910	274780
R512 (173 only)	IA DC ADJ	6-4 gl2	274780

FIGURE 35. Top and Bottom Cover Assembly.

FIGURE 36. Location of Line Fuse and Line Switch.

TABLE 6-9.
List of Test Equipment Required For Adjustment/Calibration

ITEM	DESCRIPTION	MINIMUM SPECIFICATION NEEDED	MFR	MFR MODEL
A	DC Calibrator	```+0.290005V, +2.90005V , +29.0005V, +290.005V, +1000.05V, to within 20 ppm```	Fluke	343 A
B	AC Calibrator	$10 \mathrm{mV}, \mathrm{IV}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ @ 1 kHz IV, $100 \mathrm{~V}, 1000 \mathrm{~V}$ @ 20 kHz	HP	745 A
c	High Voltage Amplifier	See B above	HP	$746 A$
D	Decade Resistor	$2 \mathrm{~K} \Omega$ through $20 \mathrm{M} \Omega \pm 0.01 \%$	ESI	RS 725
F	Oscilloscope		TEK	465
G	Current Source*	$1 \mathrm{~A}, 100 \mathrm{~mA}, 10 \mathrm{~mA} \pm 0.02 \%$	FLUKE	382 A
H	DMM	$1.0000 \mathrm{~V} \pm 0.001 \%$	KI	5900
1	Test Circuit	$\left.\begin{array}{l}\text { Resistor, } 2 M \Omega \\ \text { Capacitor, } 1 \mu F\end{array}\right]$ Paralleled	$\begin{aligned} & K 1 \\ & K 1 \end{aligned}$	$\begin{aligned} & R-253-2 M \\ & C-215-1 \mu F \end{aligned}$

*NOTE
An alternate Current Source may be assembled using a precision la resistor stabilized at constant temperature, and a Keithley Model 227 wiich has been adjusted to obtain a 1.0000 V reading across the 1Ω resistor. Use DMM (H) to accurately monitor the voltage drop.

6-4. ADJUSTMENT/CALIBRATION PROCEDURE. The following adjustments should be performed when a specification has been determined to be out of tolerance. For checking the instrument to its maximum published specifications, the Performance Verification procedure should be used. The "tolerance on reading" is adjusted to allow for time drift of critical components. Ambient temperature should be maintained at $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
a. How to Open the Instrument. Turn the instrument over so that the bot tom cover is facing up. Loosen the four slot ted screws in the bottom panel (the screws are captive and will only unscrew until the screw head is flush with the top of the holes). Turn over the instrument. Carefully lift off the top cover, and disconnect the wires going to the rear panel.

CAUTION
Disconnect the line cord from the line voltage before opening the instrument. Care should be taken to avoid contact with line voltages at various points on the pc board when the line voltage cord is connected. To discharge voltage on capacitors disconnect the line cord and depress LINE.
b. Power Supply check. The following measurements can be made using the instrument in LINE or BAT modes (if the Model 1728 is installed).

1. Set the internal Line Switch 5601 appropriately for the line voltage being used.
2. Using DMM (H) measure the voltages listed in Table 6-10.

TABLE 6-10.
Power Supply Voltage Check

Test Point	Allowable Voltage Range
+5	+4.75 V to +5.25 V
+15	+14.5 to +15.5
-15	-14.5 to -15.5

To achieve calibration to published specifications the instrument should be calibrated using the Model 1725 Calibration Cover. The instrument should be allowed to stabilize for approximately 1 hour after the Calibration Cover is put in place. It is important that the calibration sequence be followed exactly, because the adjustments are interrelated and dependent on prior calibration steps.
c. A/D Calibration.

NOTE
This procedure must precede the regular analog section calibration to ensure that the instrument will meet all rated specifications.

1. Capture Range Adjustments.
a) Set the DMM to MAN.
b) Set to 300 mV DC.
c) Place a short between input HI and LO .
d) Connect a Berg-type 2-pin housing (Keithley CS-266) with approx. 30 inch leads at TP101 and TP102 on PC-407 (See Figure 38).
e) Connect Oscilloscope (G) between the following points.
2. Oscilloscope Ext. TRIGGER to TPIOI (FON).
3. Oscilloscope VERTICAL INPUT to TPIO2 (Prefilter).
4. Oscilloscope GND to signal ground test point Jl001A (low).
f) Set the Oscilloscope controls as follows:
5. Trigger: +, DC coupled.
6. Vertical: $D C, 0.5$ V/division
7. Time Base: $20 \mathrm{~ms} /$ division
g) For the following adjustments refer to trace shown in Figure 39.
h) Adjust potentiometer R103 (AUTO CAL ACAL) for a level of $+1 \mathrm{~V} \pm 0.2 \mathrm{~V}$ during

AUTO CAL time period.

IMPORTANT

When adjusting trimmer capacitors C203, c205, c817, c819, c820 and C821 use an insulated screwdriver to avoid shorting to the metal shield. In addition the screwdriver should be rigid so that adjustments can be made with minimum backlash.

Model 173 is shown above (with Current Board Installed.) Model 172 has a 1Ω, Low Resistor (R514) mounted on the metal shield (Not shown).

FIGURE 37. Location of Calibration Adjustments.

FIGURE 38. Locations of Connectors and Test Points.

FIGURE 39. Waveform For A/D Calibration
i) Adjust potentiometer R201 (AUTO ZERO $A Z$, for a level of $+1 V \pm 0.2 \mathrm{~V}$ during AZ, period.
j) Adjust potentioneter R217 ($\operatorname{AUTO} 2 E R O A Z_{2}$) for a level of $+I V \pm 0.2 \mathrm{~V}$ during AZ_{2} Period.
k) Repeat steps h, i, and j until all levels are within $\mathrm{IV} \pm 0.2 \mathrm{~V}$ simultaneously.

1) Depress HI/LO ohms (Set to LO).
m) Release 2 WIRE/4 WIRE (Set to 2 WIRE).
n) Set range to $3 \mathrm{~K} \Omega$.
1. Adjust potentiometer $R 707$ (Ω BIAS) for a level of $+I V \pm 0.2 \mathrm{~V}$ during AUTO ZERO $A Z_{1}$ and AUTO ZERO $A Z_{2}$ periods.
2. Adjust potentiometer R208 (0.3 V Ref) for a level of $+1 \mathrm{~V} \pm 0.2 \mathrm{~V}$ during AUTO CAL (ACAL) period.
3. Repeat steps 1 and 2 until both conditions are met simultaneously.
4. Zero and Offset Current Adjustments.
a) Set the DMM to 300 mV DC range.
b) Place a short across INPUT HI and LO.
c) Record the reading on the DMM.
d) Remove the short and connect the Test Circuit (H) across input HI and LO.
e) Adjust variable capacitor $C 203$ (Input Current) to obtain the same reading as in step c) to within ± 2 digits.
f) Remove the Test Circuit and replace the short.
g) Set the DMM to 2 -WIRE and LO ohms.
h) Set range to $3 \mathrm{k} \Omega$.
i) Adjust variable capacitor C 205 (OHMS zero) for a zero reading on the DMM.
j) Set the DMM to 300 mV DC.
k) Adjust potentiometer R 904 (300 mV Zero) for a zero reading on the DMM.
1) Verify that during the 200 ms INTEGRATION period the output at TPIO2 (Prefilter) has no more than 10 transitions from positive slope to negative slope (and vice-versa).
d. $D C$ Voltage Calibration. (Depress $D C$, release V / A, depress AUTO/MAN.)
1. Zero Adjustments.
a) Connect the $D C$ Calibrator to the input terminals.
b) Set the instrument on the 300 mV range by using DOWN RANGE.

NOTE

It may be necessary to compensate for dc offset of the DC Calibrator. For example, if the dc offset is $-2 \mu V$ dc then the $D C$ Calibrator should be adjusted $+2 \mu V$ to compensate for the offset. Use a Keithley Model 155.
c) Set the DC Calibrator for an output of $+5 \mu V$ (see note above).
d) Adjust the " 300 mV ZERO" (R904) for a display which flashes between "-0" and $"+1 "$.
e) Set the instrument on the 30 V range.
f) Set the DC Calibrator for an output of +.5 mV .
g) Adjust the " 30 V ZERO" (R913) for a display which flashes between " 0 " and " +1 ".
2. Full Range Calibration.
a) Connect the $D C$ Calibrator to the input terminals.
b) Set the instrument to the range given in Table 6-11
c) Set the $D C$ Calibrator to the output given in Table 6-11
d) Adjust the control given in Table $6-11$ to achieve the display specified.

NOTE
Perform the calibration in the exact order given.
TABLE 6-11
Full Range DC Calibration

ange Setting		Applied Input		Control	Display Required**
3	v	+2.90005	V	$2.9 \mathrm{~V} \mathrm{ADJ} \mathrm{(R213)}$	+2.9000 to +2.9001 V
300	v	+290.005	v	290 V ADJ (R911)	+290.00 to +290.01 V
30	v	+29.0005	v	X 10 GAIN (R209)	+29.000 to +29.001 v
1200	v	$+1000.05$	v	1 KV ADJ (R901)	+1000.0 to +1000.1 V

*The DC Calibrator output should be adjusted to compensate for dc offset voltage. \therefore : Display should flash alternately between readings.
e. AC Voltage Calibration.

1. Depress AC.
2. Release V/A.
3. Depress AUTO/MAN.
4. Connect the $A C$ Calibrator to the input terminals.
5. Set the instrument to the range given in Table 6-12.
6. Set the $A C$ Calibrator for the voltage and frequency given in Table 6-12.
7. Adjust the Control given in Table 6-12 to achieve the display specified.

TABLE 6-12.
Full Range $A C$ Calibration

Range Setting	Applied Input	Frequency	Control	Display Required
* 300 mV	010.00 mV	KHz	$1 \mathrm{KHz} \mathrm{ADJ} \mathrm{(R809)}$	009.99 to 010.01 mV
* 3 V	1.0000 V	KHz	$1 \mathrm{KHz} \mathrm{ADJ} \mathrm{(R803)}$	0.9999 to 1.0001 V
300 V	100.00 V	KHz	$1 \mathrm{KHz} \mathrm{ADJ} \mathrm{(R816)}$	099.99 to 100.01 V
1000 V	1000.0 V	KHz	$1 \mathrm{KHz} \mathrm{ADJ} \mathrm{(R817)}$	999.9 to 1000.1 V
*: 1000 V	1000.0 V	20 KHz	$20 \mathrm{KHz} \mathrm{ADJ} \mathrm{(C820}, \mathrm{C821)}$	999.9 to 1000.1 V
$\therefore \% 3 \mathrm{~V}$	1.0000	20 KHz	$20 \mathrm{KHz} \mathrm{ADJ} \mathrm{(C819)}$	0.9999 to 1.0001 V
** 300 V	100.00 V	20 KHz	$20 \mathrm{KHz} \mathrm{ADJ} \mathrm{(C817)}$	99.99 to 100.01 V

*Repeat these adjustments until both displays are achieved.
\therefore These adjustments are interactive.
f. Ohms Calibration. (Use test leads supplied with Model 1725 Maintenance Kit)

1. Depress Ω.
2. Release HI/LO.
3. Release 2 WIRE/4 WIRE.
4. Release AUTO/MAN.
5. Set the instrument to $30 \mathrm{M} \Omega$ range.
6. Connect a shielded 10 megohm resistor to the upper set of terminals.
7. Adjust the $10 \mathrm{M} \Omega \mathrm{ADJ}$ (R705) for a reading of $10.000 \mathrm{M} \Omega$.
8. Depress HI/LO.
9. Set Ω bias (R707) for $10.000 \mathrm{M} \Omega$ (R 707).
10. Release HI/LO.
11. Set $10 \mathrm{M} \Omega \mathrm{ADJ}$ (R705) for $10.000 \mathrm{M} \Omega$.
12. Depress HI/LO.
13. Set Ω bias (R707) for $10.000 \mathrm{M} \Omega$.
14. Connect the Oscilloscope to the test points shown in Figure 38. The "green" wire should be connected between power supply low and Oscilloscope low. The "black" wire should be connected between pre-filter output and Oscilloscope vertical input. The "red" wire should be connected between FON and the Oscilloscope trigger.
15. Set the 0scilloscope to IV/div. sensitivity and a time base of $20 \mathrm{~ms} / \mathrm{cm}$.
16. Set the instrument to 3 KSi range.
17. Depress HI/LO Ohms and release 2 WIRE/4 WIRE.
18. Connect a short across INPUT HI and 10.
19. Adjust 0.3VIREF (R208) for $+1 V \pm 0.1 V$ during Auto Cal.
20. Verify that level is $+1 \mathrm{~V} \pm 0.3 \mathrm{~V}$ during Auto Zero. Repeat steps e. 2 through e. 20 until all conditions are satisfied.
21. Set the instrument to $300 \mathrm{~K} \Omega$ range. (H/ Ω)
22. Connect the Decade Resistor (D) to the upper set of terminals.
23. Set the Decade Resistor to 290.000 Ks .
24. Adjust the $290 \mathrm{~K} \Omega$ ADJ (R704) for a reading of 290.00 ± 1 diqit.
25. Set the instrument to $3 \mathrm{~K} \Omega$ range, $H I \Omega$.
26. Depress 2 WIRE/4 WIRE.
27. Connect the 4 -WIRE test cable between the input terminals and Decade Resistor.
28. Set the Decade Resistor to $2.9000 \mathrm{~K} \Omega$.
29. Adjust the $2.9 \mathrm{~K} \Omega$ ADJ (R709) for a reading of $2.9000 \mathrm{~K} \Omega \pm 1$ digit.
g. Current Calibration (Model 173 only).
30. Depress DC.
31. Depress V/A.
32. Depress AUTO/MAN.
33. Set the Model 173 to the 3 ampere range.
34. Connect the Current Source (G) to the Model 173.
35. Adjust the 1 A ADJ (R512) for a reading of 1.0000 A.
36. Set the Model 173 to the 300 mA range.
37. Connect the Current Source to the Model 173.
38. Set the Current Source for (A) for 100.00 mA .
39. Adjust 100 mA ADJ (R509) for a reading of 100.00 mA .
40. Set the Current Source for 10.00 mA .
41. Adjust 10 mA ADJ (R506) for a reading of 10.000 mA .
h. Current Calibration For Model 172. No adjustments can be made. Primary component which determines accuracy is resistor R514 (18, 0.1\%, 10W, WW).

6-5. TROUBLESHOOTING AND REPAIR. An understanding of basic analog and digital circuit fundamentals is needed to troubleshoot and repair the Model 172/173. It is strongly recommended that the user review the Theory of Operation (Section 5) and the Adjustment/ Calibration procedure (paragraph 6-4) before any attempt is made to repair the Model 172/173.
a. Troubleshooting Hints. Table 6-13 describes the Symptoms and Probable Faulty Component for a variety of possible malfunctions. It is beyond the scope of this Instruction Manual to list all possible symptoms. Therefore, the Keithley represenative in your area should be contacted in the event repair is needed. For In-Warranty repairs within the continental U.S.A. contact the factory for shipping instructions.

TABLE 6-13
Troubleshooting Hints

SYMPTOM	PROBABLE CAUSE
No display (LINE mode)	1)Line switch set incorrectly.
2)Fuse flol is missing or open.	

b) No display.
(BAT mode)
c) No display
(All modes)
d) Display is blank. or some segment on.

Line voltage connector $J 601$ improperly connected to pc board at P601.
4) Batteries need recharging. (Check for LO BAT indication.)
2) Battery fuses blown.
3) Batteries improperly installed on battery pack.
4. Battery cables improperly installed.

1) Display cable P301 not properly connected.
2) LSI module improperly installed.
3) Power supply malfunction
4) Clock waveform is missing.

CORRECTIVE ACTION
Check connection to line power. Check LINE switch setting to conform to line voltage available. See figure 36. Check fuse. Replace with proper rating.
Check connection to pc board as shown in Figure 39.

Connect instrument to line power. Release LINE.

Check F401, F402, and F403. Check battery pack for proper polarity on all batteries. See Figure 7 .
Check battery connections at P602 and R606. as in Figure 7. Check plug P301 and mating connector J201. Make certain all pins are making proper contact (pins should not be bent). Check for proper orientation of the connector Check U103 for proper installation. Make certain all pins are making contact (pins should not be bent). Check power supply voltages as described in Section 6-4b. Check pin 4 of LSI (Ul03) for a clock waveform of approx. 334 kHz , swinging between +4 V and $\emptyset V$. If waveform is present LSI U103 is probably faulty. If waveform is not present, integrated circuits 4003 , $v 004$, transistor Q003, or ceramic resonator CROO3 may be faulty.

FIGURE 40. Plug-In Connections on PC-407

TABLE 6-13 (Con't)
Troubleshooting Hints

	TOM	PROBABLE CAUSE	
	One display bar missing on all digits.	1)	Faulty connection between P301 and J201. Cathode driver circuitry faulty. See schematic 274040
	One digit missing.	1) 2)	Faulty connection between R301 and J201. Anode driver circuitry faulty. See schematic 274040.

g) 10,000 digit missing. (except if reading is less than 10,000 counts)
h) Function indicator off.
i) Faulty reading on Ω function.
j) Faulty reading on Current function.

CORRECTIVE ACTION
Check plug P301 and mating connector J201. Make certain all pins are making contact. 'a' ${ }^{\prime \prime}$ bar: Check R302 pin 14 for signal. When 'ON', voltage should be approx. +1.8 V .
'b' bar: Check R302 pin 16
"c' bar: Check R302 pin 15
"d" bar: Check R302 pin 9
'e' bar: Check R302 pin 12
"f" bar: Check R302 pin 10
'g' bar: Check R302 pin 13
decimal point: Check R302 pin 11
Check plug P301 and mating connector J201.
If units digit missing, check collector of Q305 for signal. When "ON", voltage should be approx. 4.8 V .
If tens digit missing, check collector of Q304.
If hundreds digit missing, check collector Q303.
If thousands digit, minus sign and function indicator missing, check collector Q302.
On 10,000 digit, check collector Q301. If no signals are present problem could be transistor or integrated circuit U301.

Set to 2 WIRE.

Connect HI input to the same side of unknown as the $+\Omega$ SOURCE lead.
Replace fuse on rear panel.
b. How to Repair Circuits and/or Components Which Have a "Conformal Coat". The Model $172 / 173$ circuit board has a conformal coat which protects the circuit from moisture, and ables the $172 / 173$ to function over a range of environmental conditions.
l. The circuits and/or components are covered by a Conformal Coating manufactured by Dow Corning Corporation. Dow Corning QR4-3117 Conformal Coating is a transparent, one-part silicone elastoplastic resin.
2. Parts coated with QR4-3117 coating can be repaired by either of two methods.
a) Apply a small amount of solvent (see below) and allow the coating to dissolve. After cleaning, make the repair (unsolder component, etc.). Recoat with Conformal Coating.
b) For minor repairs, a soldering iron can be used to melt through the coating to unsolder or resolder a component lead. After cleaning the soldered area, recoat with Conformal Coating.
3. Cleaning may be accomplished using a small brush or cotton swab and solvent, such as FREON-TE, TOLUENE, XYLENE OR CHLOROTHENE,

CAUTION

Use solvent on circuit tape side only. Solvent may adversely affect components.
4. Recoat with undiluted Conformal Coating using a small brush or other applicator.
5. Shelf life of the coating material is approximately 12 months. Always use fresh coating material in order to maintain the properties of the material.

WARNING

The Conformal Coating is combustible. Keep away from heat and open flame. Use with adequate ventilation. Avoid prolonged breathing of vapor. Avoid prolonged or repeated skin contact. Take necessary precautions when using cleaning solvents. See applicable manufacturers data sheets.

SECTION 7. REPLACEABLE PARTS

7-1. GENERAL. This section contains information for ordering replacement parts. The parts list is arranged in alphabetical order of their Circuit Designations.

7-2. ORDERING INFORMATION. To place an order or to obtain information concerning replacement parts, contact your Keithley representative or the factory. See the inside front cover of the catalog for addresses. When ordering, include the following information.
a. Instrument Model Number
b. Instrument Serial Number
c. Part Description
d. Circuit Designation (if applicable)
e. Keithley Part Number

7-3. SCHEMATICS.
a. Input Signal Conditioning. (28656E, Sheet 1 of 3). This schematic describes the input switching, ac/dc conversion, filtering, attenuating, and ohms source. Circuit designation series is 700,800 , and 900.
b. A/D Converter (28656E, Sheet 2 of 3). This schematic describes the analog-todigital converter and the range selection circuitry. Circuit designation series is 000 , 100 , and 200.
c. Display (274040). This schematic describes the display driver circuitry. Circuit designation series is 300.
d. Power Supply (28656E, Sheet 3 of 3). This schematic describes the line power supply. Circuit designation series is 600 . (See schematic 26758 C for the Model 1728 Rechargeable Battery Pack.)
e. Current Board (27478D). This schematic describes the current circuitry for both the Models 172 and 173. Circuit designation series is 500.
f. Model 1728 Rechargeable Battery Pack (26758C). Circuit designation series is 400.
g. Digital Interface, Bottom (27902E). This schematic describes the Model 1722 circuitry. Circuit designation series is 1000.
h. Digital Interface, Upper (28019E). This schematic describes the Model 1722 circuitry. Circuit designation series is 1100 .
i. Timing Diagrams for Model 1722. (28247E, 28248E, 282490).

TABLE 7-I
Cross-Reference of Manufacturers

MFR. CODE	NAME AND ADDRESS	FEDERAL SUPPLY CODE	MFR. CODE	NAME AND ADDRESS	FEDERAL SUPPLY CODE
A-B	Allen-Bradley Corp. Milwaukee, WI 53204	01121	CLR	Clarostat Mfg. Co., Inc. Dover, NH 03820	12697
A-D	Analog Devices Inc. Cambridge, MA 02142	24355	CTS	CTS Corporation Elkhart, IN 46514	71450
AMP	Amp Inc. Harrisburg, PA 17105	00779	DIC	Dickson Electronics Corp. Scottsdale, AZ 85252	12954
APH	Amphenol Broadview, IL 60153	02660	DTN	Dielettron (Consolidated) New York City, NY 10013	
APX	Amperex Elkgrove VIg, IL 60007	73445	ECI	Electro Cube Inc. San Gabriel, CA 91776	14752
BEC	Beckman lnst. Inc. Fullerton, CA 92634	73138	EDI	Electronic Devices Inc. Yonkers, NY 10710	
BLD	Belden Mfg. Co. Chicago, IL 60644	70903	EFJ	E F Johnson Co. Waseca, MN 56093	74970
BRG	Berg Electronics Inc. New Cumberland, PA 17070	22526	ERI	Erie Technological Prod. Erie, PA 16512	72982
BRN	Bourns, Inc. Riverside, CA 92507	80294	F-I	Fairchild Inst Corp. Mountain View,CA 94043	07263
BUS	Bussman Mfg. Div. St. Louis, MO 63017	71400	FUS	Bussman Mfg. (Fusetron) St. Louis, MO 63107	71400
C-1	Components, Inc. Biddeford, ME 04005	06751	G-E	General Electric Company Syracuse, NY 13201	03508
c-w	```Continental-Wirt Elec. Corp. Warminster, PA }1897```	79727	G-I	General Instrument Corp. Newark, NJ 07104	72699
CAD	Caddock Riverside, CA 92507	19647	GLD	Gould, Inc. St. Paul, MN 55165	52431
CAN	ITT Cannon Electric Santa Ana, CA 92702		H-P	Hewlett-Packard Palo Alto, CA 94304	50434
CLB	Centralab Division Milwaukee, WI 53201	71590	DLE	Dale Electronics inc. Columbus, NE 68601	91637

TABLE 7-1 (Cont'd)

$\begin{aligned} & \mathrm{MFR} . \\ & \mathrm{CODE} \end{aligned}$	NAME AND ADDRESS	FEDERAL SUPPLY CODE	$\begin{aligned} & M F R . \\ & C O D E \end{aligned}$	NAME AND ADDRESS	FEDERAL SUPPLY CODE
INT	Intersil Inc. Cupertino, CA 95014	32293	RCL	RCL Electronics, Inc. Manchester, NH 03102	01686
IRC	IRC Division Burlington, IA 52601	07716	SIE	Siemens Corporation Iselin, NJ 08830	25088
k-1	Keithley Instruments, Inc. Cleveland, Ohio 44139	80164	SIG	Signetics Corp. Sunnyvale, CA 94086	18324
L-F	Littlefuse, Inc. Des Plaines, IL 60016	75915	SIL	Siliconix Inc. Santa Clara, CA 95054	17856
MOL	Molex Downers Grove, IL 60515	27264	SPG	Sprague Electric Co. Visalia, CA 93278	14659
MOT	Motorola Semi Prod. Inc. Phoenix, AZ 85008	04713	T-1	Texas Instruments, Inc. Dallas, TX 75231	01295
NAT	National Semi Corp. Santa Clara, CA 95051	27014	TEP	Tepro Electric Corp. Rochester, NY 14606	02985
P\&B	Potter \& Brumfield Princeton, IN 47670		TPL	$\begin{aligned} & \text { Temple } \\ & \text { Tecate, CA } 92080 \end{aligned}$	29505
PAK	Paktron Vienna, VA 22180		TRW	TRW Capacitor Div. Ogallala, NB 69153	84411
POM	Pomona Electric Pomona, CA 91766	05276	vis	Vishay Resistor Products Malvern, PA 19355	18612
QTN	Q-Tron Santa Ana, CA 92705		VRN	Vernitron Laconia, NH 03246	13150
RAY	Raytheon Company Quincy, MA	94144	WAB	Wabash-Magnetics Wabash, IN 46992	01101
RCA	RCA Corporation Moorestown, NJ 08050	02734			

BATTERIES (BT)

'400" SERIES (Schematic 26758C)

rircuit esig.	Description	Mfr . Code	Mfr. Desig.	Keithley Part No.
BT401	Multicell, 19.2V, Nickel-Cadmium	GLD	403041	BA-31
${ }^{\text {T }} 402$	Multicell, 19.2V, Nickel-Cadmium	GLD	403041	$B A-31$
T403	Set of Seven 'C" cells, 8.4 Volts	--	--	
:	Nickel-Cadmium, "C" cell, 1.2 volts (used for BT403; seven required)	GLD	$2.05 C B$	BA-30

CAPACITORS (C)

| ircuit
 esig. DescriptionMfr.
 CodeMfr.
 Desig. | Keithley
 Part No. |
| :--- | :--- | :--- |

'000" SERIES (Schematic 28656E)

COOL	0.1 HF, 16V, CerD.	. CLB	UK16-104	C-238-. 1 M
002	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	. . CLb	UK16-104	C-238-. 1 M
003	0.1 LF, 16V, CerD.	. CLB	UK16-104	C-238-.1M
C004	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, \mathrm{CerD}$.	. CLB	UK16-104	C-238-.1M
005	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	- CLB	UK16-104	C-238-.1M
006	$33 \mathrm{pF}, 1000 \mathrm{~V}$, CerD	CLB	DD-330	C-64-33P
C007	$0.01 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	. CLB	UK16-103	$\mathrm{c}-238-.01 \mathrm{~m}$
r008	$0.01 \mathrm{\mu F}, 16 \mathrm{~V}$, CerD	CLB	UK16-103	$\mathrm{c}-238-.01 \mathrm{M}$
009	2.2 \% $\mathrm{F}, 20 \mathrm{~V}$, ETT	C-1	TD1-20-225-20	C-179-2.2M
6010	0.47 F , Sov, Cer Film	ERI	8131050651474 M	C-237-0.47M

" 100 " SERIES (Schematic 28656E)

ClOI	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	CLB	UK16-104	C-238-.1m
102	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	. CLB	UK16-104	C-238-. 1 M
. 103	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	. CLb	UK16-104	C-238-.1M
C104	0.1 FF, 16V, CerD.	CLB	UK16-104	C-238-. 1 M
105	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	CLB	UK16-104	C-238-. 1 M
106	$0.022 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MPC}$	ECI	625B1A223-J	C-201-.022M
C107	. $0022 \mu \mathrm{~F}, 200 \mathrm{~V}, \mathrm{My}, 10 \%$	E-C	625BIC222	C-221-.0022M
r 108	$0.01 \mu \mathrm{~F}, \mathrm{looV}, \mathrm{My}, 10 \%$	PAK	PT420	C-38-.01M
109	$33 \mathrm{pF}, 1000 \mathrm{~V}$, CerD	CLB	DD-330	C-64-33P
0110	0.1 FF, 16V, CerD.	CLB	UK16-104	C-238-. 1 M
r.111	$0.1 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD.	CLB	UK16-104	C-238-. 1 M
112	$0.22 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MPC}$.	ECI	625B1A224J	C-201-.22M
-113	$0.22 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MPC}$.	. ECI	625B1A224J	C-201-.22M
C114	$0.22 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MPC}$.	. ECI	625B1A224J	C-201-.22M
115	$8.2 \mathrm{pF}, 50 \mathrm{~V}, \mathrm{Cer}$. CLB	C40C8R2K	C-282-8.2P

Circuit	Mfr. Mfr. Desig. Description	Keithley Code

"200" SERIES (Schematic 28656E)

C201	$15 \mathrm{pF}, 1000 \mathrm{~V}$, CerD CLB	DD-150	C-64-15P
C202	$2.2 \mu \mathrm{~F}, 20 \mathrm{~V}$, ETT $\mathrm{C}-1$	TDI-20-225-20	C-179-2.2M
C203	.8-11 pF, looov, HI-K, Glass . . . SPG	GHCl1000	C-202-.8-11P
C204	3.3pF, 50V, Cer CLB	C40C3R3D	C-282-3.3P
C205	.8-11 pF. 1000V, HI-K, Glass . . . SPG	GHCI 1000	C-202-.8-11P
¢206	0.0022 2 F, 200V, MPC E-C	625B1C222	C-221-.0022M
C207	$100 \mathrm{pF}, 1000 \mathrm{~V}$, CerD. CLB	DD-101	C-64-100P
C208	$100 \mathrm{pF}, 1000 \mathrm{~V}$, CerD. CLB	DD-101	C-64-100p
C209	$100 \mathrm{pF}, 1000 \mathrm{~V}$, CerD. CLB	DD-101	c-64-100P
C210	1500 pF, 1000V, CerD. CLB	DD-152	C-64-1500p

' 300 ' SERIES (Schematic 27404D)

C301	$180 \mu \mathrm{~F}, 20 \%$, 6 V DIC	D180EC6M1	C-270-180M
C302	$0.01 \mu \mathrm{~F}, 16 \mathrm{~V}$, CerD. CLB	UK16-103	

'500" SERIES (Schematic 27478D)
C501 $47 \mathrm{pF}, 1000 \mathrm{~V}$, CerD CLB DD-470 C-64-47P
' 600 " SERIES (Schematic 280670)
c601
c602
c603
C604
C605
c606
C607
c608
C609
C610
C611
C612
$270 \mu \mathrm{~F}, 6 \mathrm{~V}, \mathrm{ETT}$

$$
c-1
$$

TDS-506277-20
C-194-270M
$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$.
C-1
$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$.
C-1
C-1
RIC
$2000 \mu \mathrm{~F}, 25 \mathrm{~V}$
C-1
$0.47 \mu \mathrm{~F}, 20 \mathrm{~V}$, ETT
TPL
$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$. C-I
$10 \mu \mathrm{~F}, 20 \mathrm{~V}$, ETT.
C-1
$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{CerF}$
EDI
$470 \mu \mathrm{~F}, 50 \mathrm{~V}$, EAL.
TPL
$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$, CerF.
EDI
TD2-20-106-20
TD2-20-106-20
TD2-20-106-20
JC-P-2000-25-8P
TDI-20-474-20
411-470 FF
TD2-20-106-20
TD2-20-106-20
812105061-104M
411-470uF
812105061-104M
" 700 " SERIES (Schematic 28656E)

| C701 | $100 \mathrm{pF}, 1000 \mathrm{~V}$, CerD. CLB | DD-101 | C-64-100P | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C702 | $1500 \mathrm{pF}, 500 \mathrm{~V}$, Poly. | C. CLB | CPR-1500J | C-138-1500P |

INTEGRATED CIRCUITS (U)

Circuit Desig.	Description	Mfr. Code	Mfr. Desig.	Keithley Part No.
	"1100" SERIES (Schematic	28019E)		
U1101	Hex Inverters, Open Collector Output.	TEXAS	SN74LSO5N	$1 \mathrm{C}-141$
Ul102	Hex Inverters, Open Collector Output.	TEXAS	SN74LS05N	IC-14]
Ul103	Hex Inverters, Open Collector Out put.	TEXAS	SN74LSO5N	1c-141
Ul104	Positive-NAND Gates and Inverters/ Totem-pole outputs	TEXAS	SN74LSI4N	1c-137
U1105	Hex Inverters, Open Collector Output	TEXAS	SN74LSO5N	$1 \mathrm{C}-14.1$
U1106	Dual D-Type Flip-Flop, l4-pin DiP.	RCA	CD4013AE	1c-103
U1107	Quad 2-Input NOR, 14-pin DIP.	RCA	CD4001AE	IC-108
U1108	COS/MOS 8-Stage Static Shift Register	RCA	CD4021AE	1C-130
Ull 109	Quad 2-1nput AND, 14-pin DIP	RCA	CD4081BE	$1 \mathrm{c}-138$
U1110	COS/MOS Dual 4 Input NAND Gates.	RCA	CD4012AE	IC-140
U1111	Six COS/MOS Hex Inverter	RCA	CD4069BE	IC-139

VOLTAGE REGULATORS (VR)

"200" SERIES (Schematic 28656E)
VR201 Zener, 6.2V, $1 / 4 \mathrm{~W}$ - Part of matched set 28040 B
VR202 Zener, 9V - Part of matched set 28040 E
VR203 Zener, 12V, 400 mV DIC 1N963B DZ-54
"600"' SERIES (Schematic 28656E)

"800" SERIES (Schematic 28656E)
VR801 Zener, 12V, 400mW DIC 1N963B DZ-54

MISCELLANEOUS

DESCRIPTION	KEITHLEY PART NO.
Top Cover (less metalcal)	27979 C
: : Metalcal for top cover	MC-236
Bot tom Cover (less metalcals)	25727E
. Metalcal, operating instructions	MC-239
- . Metalcal, rear panel	MC-235
Handle (less insert)	257290
- . Insert (2 req'd)	26090A
Spacer (4 req'd)	25762B
Rubber foot (4 req'd)	FE-10
Front Panel - Model 172	28029A
Front Panel - Model 173	27958A
"M" Ring (Used to hold display board)	GA-18

TABLE 7-2
COMPONENT DESIGNATIONS FOR PC-4O7 (MODEL 173)

Circuit Desig.	Location Code	Circuit Desig.	Location Code	Circuit Desig.	Location Code
COOI	G-27	C611	J-2	CR207	Y-23
C002	G-27	C612	1-14	CR208	b-23
c. 003	K-26	C 701	T-14	CR209	c-23
C004	M-26	C702	z-15	CR210	c-23
c005	M-25			CR211	d-23
c006	S-29	C80 1	P-10	CR212	d-23
C007	U-29	C802	N-8	CR213	H-33
c008	T-26	C803	Q-9	CR214	W-18
c009	U-27	C804	R-9	CR601	J-8
		C805	N-7	CR602	J-5
Cl01	G-26	c806	N-5		
C102	H-22	C807	R-8	CR701	P-14
Cl 103	F-18	C808	R-5	CR702	P-13
C104	G-18	c809	S-5	CR703	$\mathrm{s}-13$
C105	H-18	c810	P-2	CR704	Y-13
C106	K-23	C811	U-7	CR705	e-16
C107	K-22	C812	V-8	CR801	Q-5
C108	L-21	C813	$v-7$	CR802	V-5
C109	K-19	C814	T-3	CR803	a-2
C110	M-24	C815	$x-10$	CR804	b-2
C111	P-26	C816	$x-5$		
C112	Q-22	C817	y-5	CRYO1	W-9
C113	Q-22	C818	x-3	CR902	9-9
C 114	Q-20	C819	z-6	CR903	h-19
C115	T-20	C820	f-5	CR904 (NS)	m-23
		C821	f-4	CR905 (NS)	m-24
C201	Y-19			DS601	p-30
C202	a-23	c901	v-11		
C203	a-20	C902	D-19	F601	C-16
C204	a-21	C903	f-14		
C205	a-18	C904	g-14	J201	b-30
C206	a-17	C905	g-12		
C207	c-18	C906	g-7	K801	U-6
C208	d-17	C907	h-6		
C209	e-21	C908	9-3	k901	K-9
C210	f-24	C909 (NS)	k-26	P101	e-25
		C910 (NS)	h-24	P601	H-31
C601	B-28			P602	B-16
C602	B-26	CROOI	J-26	P603	K-7
C603	D-25	CR002	L-26	P604	K-4
C604	L-15	CR003	W-30	P605	
C605 C606	F-13	CR201	U-19	P606	k-31
C606	J-13	CR202	v-17		
C607	J-11	CR203	v-19	P901	k-1
C608 C609	L-10	CR204	V-18	P902	p-1
C609 C610	L-10	CR205	W-21		
C6.10	L-8	CR206	Y-17		

TABLE 7-2 (continued)
Component Designations For PC-407

Circuit Desig.	Location Code
Q001	$\mathrm{H}-25$
Q002	$\mathrm{R}-25$
Q003	$\mathrm{V}-29$
Q101	$\mathrm{F}-19$
Q102	$\mathrm{H}-21$
Q103	$\mathrm{J}-22$
Q104	$\mathrm{J}-21$
Q105	$\mathrm{K}-24$
Q106	$\mathrm{L}-23$
Q107	$\mathrm{L}-21$
Q108	$\mathrm{M}-22$
Q109	$\mathrm{M}-21$
Q110	$\mathrm{S}-23$
Q111	$\mathrm{S}-22$
Q112	$\mathrm{S}-21$
Q113	$\mathrm{S}-20$
Q201	$\mathrm{L}-20$
Q202	$\mathrm{S}-18$
Q203	$\mathrm{S}-17$
Q204	$\mathrm{T}-18$
Q205	$\mathrm{T}-17$
Q206	$\mathrm{X}-19$
Q207	$\mathrm{X}-17$
Q208	$\mathrm{Y}-19$
Q209	$\mathrm{b}-22$
Q210	$\mathrm{b}-20$
Q211	$\mathrm{d}-21$
Q212	$\mathrm{d}-20$
Q213	$\mathrm{d}-19$
Q214	$\mathrm{f}-22$
Q215	$\mathrm{f}-21$
Q216	$\mathrm{h}-22$
Q701	$\mathrm{P}-16$
Q702	$\mathrm{P}-15$
Q703	$\mathrm{Q}-15$
Q704	$\mathrm{Q}-14$
Q705	$\mathrm{P}-12$
Q706	$\mathrm{Q}-12$
Q707	$\mathrm{X}-14$
Q708	$\mathrm{Z-14}$
Q709	$\mathrm{a}-14$
Q710	$\mathrm{b}-15$
Q	

Circuit Desig.	Location Code
Q801	P-9
Q802	N-6
Q803	P-4
Q804	Q-9
Q805	b-3
Q901	V-10
Q902	e-9
0903	f-10
R001	H-27
R002	J-27
R003	Q-27
R004	R-27
R005	S-26
R006	S-30
R007	T-30
R008	S-29
R009	U-30
RO10	V-29
R011	X-30
RO12	Y-29
RO13	T-27
R101	H-27
R102	F-25
R103	F-23
R104	F-21
R105	F-18
R106	H-20
R107	G-19
R108	H-18
R109	H-17
R110	T-23
R111	x-26
R112	x-27
R113	Z-26
R114	2-27
R201	K-17
R202	L-19
R203	L-18
R204	M-18
R205	M-18
R206	$\mathrm{N}-18$
R207	P-18
R208	P-19

Circuit Desig.	Location Code
R209	R-19
R210	Q-18
R211	U-24
R212	U-21
R213	U-23
R214	U-18
R215	W-24
R216	$v-21$
R217	$\checkmark-20$
R218	W-18
R219	$\mathrm{Y}-21$
R220	$x-18$
R221	2-23
R222	2-18
R223	b-24
R224	b-22
R225	b-18
R226	d-18
R227 (NS)	d-20
R228	e-17
R229	g-24
R230	g-22
R231	e-28
R601	B-30
R602	B-31
R603	C. 30
R604	D-31
R605	E-30
R606	0-27
R607	L-4
R608	L-4
R609	M-4
R610 (NS)	k-28
R611	p-26
R612	M-10
R613	M-9
R701	$\mathrm{N}-15$
R702	P-13
R703	R-13
R704	U-16
R705	v-16
R706	U-15
R707	U-13
R708	$v-15$
R709	W-14
R710	Y-16

TABLE 7-2 (continued)
Component Designations For PC-407

Circuit Desig.	Location Code
R801	N-10
R802	P-9
R803	S-11
R804	P-6
R805	$\mathrm{N}-4$
R806	Q-4
R807	R-4
R808	R-3
R809	R-2
R810	T-6
R811	T-6
R812	T-5
R813	x-9
R814	Y-8
R815	W-5
R816	v-4
R817	W-2
R818	b-4
R819	z-2
R820	c-2
R901	U-12
R902	T-11
R903	U-11
R904	T-9
R 905	U-10
R906	U-9
R907	NOT USED
R908	NOT USED
R909	X-12
R910	W-11
R911	Y-12
R912	z-12
R913	a-12
R 914	NOT USED
R915	b-8
R 916	c-7
$R 917$	d-12
R918	e-12
R 919	e-11
R920	e-10
R921	f-12
R922	f-11
R923	$\mathrm{g}-5$
R 924	e-18
R925	f-19
R926	f-18

Circuit Desig.	Location Code
R927 (NS)	k-17
R928 (NS)	g-15
R929 (NS)	$\mathrm{n}-16$
$R 930$	p-20
R931	p-20
5601	B-20
T601	D-7
TP101	M-23
TP102	M-24
U001	J-28
U002	N-27
U003	Q-29
U004	U-28
U005	U-26
U101	H-20
4102	P-24
U103	a-26
U201	W-23
U202	X-20
U701	S-15
U702	b-13
U901	d-14
VR001	x-29
VRIO1	F-26
VR102	G-21
VR201	L-19
VR202	N-18
VR203	z-23
VR601	B-25
VR602	F-16
VR603	L-13
VR801	Y-9
W201	P-18
W601	D-29
W602	D-29

Circuit 1 sig．		Mfr． Code	Mfr． Desig．	Keithley Part No．
	Description			Part No．

＂ 800 ＂SERIES（Schematic 28656E）

CuOI	$0.1 \mu \mathrm{~F}, 200 \mathrm{~V}$ ．．．．．．．．．．．ECI	62581C104	C－221－．1M
C802	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$. ．．．．．．．．．C－I	TD2－20－106－20	C－179－10M
103	4．7山F，20V，ETT．．．．．．．．．ITT	TAP4X7E200	C－179－4．7M
104	$150 \mathrm{pF}, 1000 \mathrm{~V}$ ，CerD．．．．．．．．CLB	DD－151	C－64－150P
C805	10 ¢F，20V，ETT．．．．．．．．．．C－I	TD2－20－106－20	C－179－10M
¢ 06	$10 \mu \mathrm{~F}, 20 \mathrm{~V}$ ，ETT．．．．．．．．．．C－1	TD2－20－106－20	C－179－10M
（ 07	$220 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{ETT}$. ．．．．．．．．SIE	D220ED10MI	C－78－220M
C808	$120 \mu \mathrm{~F}, \mathrm{IOV}$ ，ETT ．．．．．．．．．C－I	TD5－010127－20	C－180－120M
r809	$120 \mu \mathrm{~F}, \mathrm{l}$ OV，ETT ．．．．．．．．．C－1	TD5－010127－20	$\mathrm{C}-100-120 \mathrm{M}$
110	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$ ．．．．．．．．．．C－1	TD2－20－106－20	C－179－10M
Loll	$33 \mathrm{pF}, 1000 \mathrm{~V}$ ，CerD ．．．．．．．．CLB	DD－330	C－64－33P
C812	10 FF，20V，ETT．．．．．．．．．C－I	TD2－20－106－20	C－179－10M
1 113	$10 \mu \mathrm{~F}, 20 \mathrm{~V}, \mathrm{ETT}$ ．．．．．．．．．．C－I	TD2－20－106－20	C－179－10M
－ 114	2200pF，500V，Mica ．．．．．．．G－1	ROMISFD	C－278－2200P
C815	$0.01 \mathrm{hF}, 16 \mathrm{~V}$ ，CerD ．．．．．．．CLB	UK16－103	C－238－． 01 M
？ 16	145pF，500V，Mica．．．．．．．G－I	145PF，1\％	C－278－145P
17	1．9－15．7 pF，250V，Trimmer • ．．EFJ	187－0109－005	C－284－1．9－15．7P
C818	$1440 \mathrm{pF}, 500 \mathrm{~V}$ ，Mica ．．．．．．．G－1	1440 PF 1\％	C－278－1440P
r919	．25－1．5 pF，Variable ．．．．．EFJ	273－1－1	C－184－．25－1．5P
［20	．25－1．5 pF，Variable ．．．．．．EFJ	273－1－1	C－184－．25－1．5P
しช21	25－1．5 pF，Variabl	273－1－1	C－184－．25－1

＂ 900 ＂SERIES（Schematic 28656E）

301	$0.01 \mu \mathrm{~F}, 50 \mathrm{~V}, \mathrm{MPC}$ ．	ECI	625B1A103－J	C－201－．01m
C902	$0.1 \mu \mathrm{~F}, 10 \%$ ，200VDC．	TRW	1－200－10－×363UW	C－269－．IM
「903	$33 \mathrm{pF}, 1000 \mathrm{~V}, \mathrm{CerD}$	CLB	DD－330	C－64－33P
304	$0.15 \mu \mathrm{~F}, 10 \%$ ，200VDC	TRW	15－200－10－×363UW	C－269－．15M
－ 305	$0.15 \mu \mathrm{~F}, 10 \%$ ，200VDC	TRW	15－200－10－×363UW	C－269－．15M
C906	1000 DF，500V，Poly	CLB	CPR－1000	C－138－1000P
307	$0.01 \mu \mathrm{~F}, 1200 \mathrm{~V}$ ．．	STD	PYW－R－． 01	c－286－0．01m
308	． $1 \mu \mathrm{~F}, 1000 \mathrm{~V} 20 \%$	STD	M2WF－0．14F	C－285－．1M
C909	． $1 \mu \mathrm{~F}, 16 \mathrm{VDC}$	CLB	UK16－104	C－238－． 1 M
310	． $1 \mu \mathrm{~F}$ ，16VDC		UK16－104	C－238－．1M

Circuit	Mfr.	Mfr.
Desig.	Description	Codeithley

"1000" SERIES (Schematic 27902E, PC-415)

"1100" SERIES (Schematic 28019E, PC-416)

ircuit esig.	Description $\begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
'000' SERIES (Schematic 28656E)			
CROOI	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	1 N 914	RF-28
rR002	Rectifier, 75 mA , 75V. T-I	IN914	RF-28
1003	Resonator, Ceramic, 669 kHz . . . VER	TF-01-669	CR-7
"100" SERIES (Schematic 28656E)			
CR101	Rectifier, 75 mA , 75V. T-1	1 N914	RF-28
R102	Rectifier, 75 mA , 75 V T-1	IN914	RF-28
"200" SERIES (Schematic 28656E)			
CR201	Rectifier, 75 mA , 75V. T-I	1N914	RF-28
2202	Rectifier, 75 mA , 75V. ${ }^{\text {- }}$ -	IN914	RF-28
- 2203	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V} ~ T-1 ~$	IN914	RF-28
CR204	Rectifier, 75 mA , 75V. ${ }^{\text {T-1 }}$	1 N914	RF-28
2205	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-I	1 N914	RF-28
2206	Diode, Dual, Low Leakage INT	10101	DN-3
CR207	Rectifier, 75 mA , 75V. T-I	1 N914	RF-28
2208	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	IN914	RF-28
2209	Rectifier, 75 mA , 75V. T-1	IN914	RF-28
CR210	Rectifier, 75 mA , 75V. T-I	1 N 914	RF-28
-R211	Rectifier, 75 mA , 75V. T-1	1 N914	RF-28
2212	Rectifier, 75 mA , 75V. T-1	1 N914	RF-28
CR213	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	IN914	RF-28
rR214	Rectifier, 75 mA , 75V. T-1	1N914	RF-28

R401	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	IN914	RF-28
R402	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	1N914	RF-28
CR403	Rectifier, 1 A, 800V MOT	1N4006	RF-38
-R404	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V} ~ T-1 ~$	1 N914	RF-28
R 405	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. $\mathrm{T}-1$	IN914	RF-28
CR406	Rectifier, $1 \mathrm{~A}, 800 \mathrm{~V}$. M0T	1N4006	RF-38
CR407	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	IN914	RF-28
R408	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	IN914	RF-28
-R409	Rectifier, $1 \mathrm{~A}, 800 \mathrm{~V}$. MOT	1N4006	RF-38
CR410	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	1 N914	RF-28

Circuit	Mfr. Desig.	Description	Keithley Code

"500" SERIES (Schematic 274780)

"600" SERIES (Schematic 28656E)

CR601
CR602

Bridge Rectifier, looV, 2 A. . . . EDI

PDIO

RF-36
Bridge Rectifier, l00V, 2 A. . . . EDI
PDIO
RF-36
"700' SERIES (Schematic 28656E)

CR801
CR802
CR803
CR804

Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$
T-I
1N914
RF-28
' 800 "' SERIES (Schematic 28656E)
"900" SERIES (Schematic 28656E)

CR901
CR902
CR903
CR904
CR905

Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$
T-I
1N914
RF-28
Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V} \mathrm{T}-1$
Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-I
Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1
Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-I

1N914
1N914
IN914
1N914

RF-28
RF-28
RF-28
RF-28

DIODES (CR)

Circuit	Mfr.	Mfr.	Keithley
Desig.	Coscription	Desig.	Part No.

" 1000 " SERIES (Schematic 27902E, PC-415)

CR1001	Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1	1 N 914	RF-28
CR1002	Bridge Rectifier, 100V, 2A. . . . E-D	PD10	36

"1100" SERIES (Schematic 28019E)
CRIl01 Rectifier, $75 \mathrm{~mA}, 75 \mathrm{~V}$. T-1 1 N 914 RF -28

Circuit		Mfr.	Mfr.	Keithley
Desig.	Description	Code	Desig.	Part No.

" 300 " SERIES (Schematic 274040)

DS301	Pilot Light, Red, LED. H-P	B-031075-2501-1	PL-64
DS 302	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS303	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS304	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS 305	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS 306	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS307	Pilot Light, Light-Emitting Diode. H-P	HP5082-4494	PL-63
DS308	Pilot Light, Light Emitting Diode. H-P	HP5082-4494	PL-63
DS309	Pilot Light, Light Emitting Diode. H-P	HP5082-4494	PL-63
DS310	Pilot Light, Light Emitting Diode. H-P	HP5082-4494	PL-63
DS311	Digital Display, 7-segment H-P	5082-7650	DD-13
DS312	Digital Display, 7-segment H-P	5082-7650	DD-13
DS313	Digital Display, 7-segment H-P	5082-7650	DD-13
DS314	Digital Display, 7-segment H-P	5082-7650	DD-13
DS315	Digital Display, 7-segment H-P	5082-7650	DD-13
	"600" SERIES (Schematic 28656E)		
DS601	Pilot Light, Light Emitting Diode. H-P	HP 5082-4494	PL-63

CONNECTORS (J)

Circuit	Mfr.	Mfr.	Keithley
Desig.	Description	Code	Desig.

" 500 "' SERIES (Schematic 274780)

J501	5-pin Housing.	BRG	20370	CS-251
J502	8-pin Housing.	BRG	65039C	CS-310
J503	2-pin Housing. (Model 173 only)	MOL	03-06-1023	CS-326-2
--	Female Contacts (2 req'd for J503)	MOL	02-06-5103	CS-328

Circuit		
Desig.	Description	Mfr. CodeMfr. Desig.

" 900 " SERIES (Schematic 28656E)
$J 901$
$J 902$
$J 903$
$J 904$
J905
J906
Not Used
Not Used
Banana Jack, Red
Banana Jack, Black
Banana Jack, Red
Banana Jack, Black
"1000" SERIES (Schematic 27902E)

"1100" SERIES (Schematic 28019E)

RELAYS (K)

Circuit	Mfr.	Mfr.
Desig.	Mescription	Code

' 500 ' SERIES (Schematic 27478D)

K501	Relay, Reed, 0.5A, Form A. . . . WAB	1170-3-1	RL-44
K502	Relay, Reed, 0.5A, Form A. . . . WAB	1170-3-1	RL-44
K503	Relay, Reed, 0.5A, Form A. WAB	1170-3-1	RL-44
K504	Relay, Reed, 1.5A, Form A. QTN	H5AIM-S20	RL-50
K505	Relay, Reed, 3A. WAB	1170-2-1	RL-49
	"800" \& "900" SERIES (Schematic	27903E)	
$\begin{aligned} & \mathrm{K} 801 \\ & \mathrm{k} 901 \end{aligned}$	Relay, reed, form 1 A, 20 V . . . WAB Relay. P 8 B	$\begin{aligned} & 1170-5-2 \\ & \text { R10-E3738-1 } \end{aligned}$	$\begin{aligned} & R L-53 \\ & R L-51 \end{aligned}$

CONNECTORS (P)

	'100' SERIES (Schematic	28656E)	
Plol	3-pin Housing. BRG	65507-136	CS-339-3
	"300"' SERIES (Schematic	274040)	
P301	Cable Assembly K-1	--	27961 A
	" 500 " SERIES (Schematic	28656E)	
P501	Not Used	--	--
P502	Not Used	--	
P503	Connector (Model 172 only)	--	
	"600' SERIES (Schematic	28656E)	
P601	Receptacle, 5-pin. MOL	A-2391-5A	CS-288-5
P602	Receptacle, 2-pin. MOL	A-2391-2A	CS-288-2
P603	Receptacle, 4-pin. BRG	65507-136	CS-339-4
P604	Receptacle, 3-pin. BRG	65507-136	CS-339-3
P605	Receptacle, 2-pin. BRG	65507-136	CS-339-2
P606	Receptacle, 5-pin. MOL	A-2391-5A	CS-288-5
P607	Not Used	--	--
P608	Not Used	--	--
P609	Not Used	--	-
P610	Line Cord. BLD	17237	co-9

CONNECTORS (P)

Circuit esig.	Description $\begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
"900" SERIES (Schematic 28656E)			
$\begin{array}{r} 901 \\ \text { p902 } \end{array}$	Connector 8-pin BRG	65507-136	CS-339-8
P902	Connector 4-pin BRG	$65507-136$	CS-339-4
"1000" SERIES (Schematic 27902E, PC-415)			
1001	Not Used.	---	---
r1002	Not Used.	---	---
P1003	Not Used. ---	---	---
-1004	Connector, 10 pins. MOL	09-67-1104	CS-331-10
1005	Connector, 12 pins. MOL	09-67-1124	CS-331-12
P1006	Card-edge, 40 pins (part of Model 1727. . . MMM	3464-0000	C5-294-3
"1100" SERIES (Schematic 28019E)			
11101	Card-edge, 26-pin (part of Model 1727) . . . MMM	3462-0000	CS-294-1

TRANSISTORS (Q)

Circuit			
Cesig.	Description	Mfr. Code	Mfr. Desig.

2001	Transistor, Dual, Monolithic PNP. A-D
2002	NPN, Case T0-106. F-I
Q003	NPN, Case T0-106. F-I

2101	PNP Silicon, T0-92 Case MOT	2N3905	TG-53
Q102	Differential Amp. INT	17122	TG-73
Q103	NPN, Case T0-106 (*Selected TG-39). F-1	2N3565*	28234A*
2104	P-Chan MOS Fet. INT	3N163	TG-126
2105	Differential AMP. INT	17122	TG-73
Q106	Dual FET. SIL	E411	TG-118
2107	N-Chan, J-FET, Case T0-18 INT	1 TS3538	TG-88
2108	N-Chan, J-FET. INT	1 IE4392	TG-77
Q109	N-Chan, J-FET, Case T0-18 INT	ITS3538	TG-88
2110	N -Chan, J-FET, Case T0-18 INT	ITS3538	TG-88
2111	N-Chan, J-FET, Case T0-18 INT	1 TS3538	TG-88
Q112	N -Chan, J-FET, Case T0-18 InT	ITS3538	TG-88
Q113	N-Chan, J-FET, Case T0-18 InT	ITS3538	TG-88

Circuit Desig.	Description $\quad \begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
	"200" SERIES (Schematic	28656E)	
Q201	N-Chan, J-FET, Case To-92. NAT	PN4392	TG-129
Q202	N-Chan, J-FET, Case To-18. INT	1 TS3538	TG-88
Q203	N-Chan, J-FET, Case To-92. NAT	PN4393	TG-130
Q20 4	N-Chan, J-FET INT	1 TE4392	TG-77
Q205	N-Chan, J-FET, Case T0-92. . . . NAT	PN4392	TG-130
Q206	Transistor, NPN, Case T0-106. . . F-1	2N3565	TG-39
Q207	PNP, T0-92 Case MOT	2N3905	TG-53
Q208	PNP, Case to T0-92 MOT	1TS3538	TG-53
Q209	N-Chan, J-FET, Case T0-92 NAT	PN4392	TG-128
Q210	N-Chan, J-FET, Case T0-92 NAT	PN4392	TG-128
Q211	N-Chan, J-FET, Case T0-92 . . . NAT	PN4392	TG-128
Q212	Transistor, NPN, Case T0-106. . . F-I	2N3565	TG-39
Q213	Transistor, NPN, Case T0-106 . . . INT	2N3565	28234A
Q214	Transistor, NPN, Case T0-106 . . . INT	2N3565	28234A
Q215	Transistor, NPN, Case T0-106 . . . INT	2N3565	28234A \%
Q216	PNP, T0-92, Case T0-106. MOT	2N3905	TG-53

[^0]" 300 "' SERIES (Schematic 27404D)

TRANSISTORS (Q)

Circuit	Mfr. Mfr. Desig. Description	Keithley Code	Desig.

" 400 " SERIES (Schematic 26758C)

Q401	PNP, Case T0-5	. RCA	2N4032	TG-92
Q402	NPN, Case T0-39.	. MOT	2N3300S	TG-117
Q403	PNP, Case T0-5	RCA	2 N 4032	TG-92
Q404	NPN, Case T0-106	F-I	2N3565	TG-39
Q405	PNP, Case T0-92	MOT	2N5087	TG-61
	" 5000 ' SERIES	(Schemat	274780)	
Q501	Transistor Array, 14-pin DIP	. . RCA	CA3086	1c-53

" 700 " SERIES (Schematic 28656E)

2701	NPN, Case T0-106 F-1	2N3565	TG-39
2702	N-Chan, J-FET. INT	1 TE4392	TG-77
Q703	N-Chan, J-FET, Case T0-18. . . . INT	1 TS3538	TG-88
Q704	PNP Silicon, Case T0-92. MOT	MPS 404 A	TG-99
2705	NPN, Case T0-106 F-I	2N3565	TG-39
2706	Silicon, PNP T0-92Case MOT	2N5087	TG-61
Q707	N-Chan, J-FET, Case T0-18. INT	1 TS3538	TG-88
2708	NPN. Case T0-106 ($*$ Selected TG-39) F-1	2N3565**	28234 A *
2709	NPN, Case T0-106 (*Selected TG-39) F-I	2N3565*	28234A :
Q710	FET, Case T0-18 (*Selected TG-88) INT	ITS3538:	28250A :

" 800 " SERIES (Schematic 28656E)

" 900 " SERIES (Schematic 28656E)

0901	N-Chan, J-FET, Case T0-18. INT	1 IS3538	TG-88
0902	NPN, Case R-110. F-1	2N3643	TG-123
0903	PNP Silicon, T0-92 Case. MOT	2N3905	TG-53

TRANS ISTORS (Q)

Circuit Desig.	Description	Mfr. Code	Mfr. Desig.	Keithley Part No.

"1000" SERIES (Schematic 27902E, PC-415)

"l100" SERIES (Schematic 28019E)

Q1101 NPN, Case TO-106. F-1 2N5134 TG-65

ircuit Desig．	Description $\quad \begin{gathered}\text { Mfr．} \\ \text { Code }\end{gathered}$	Mfr． Desig．	Keithley Part No．
	＇000＇＇SERIES（Schematic	28656E）	
ROOI	6.04 k 5 ， $1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$ ．．．．．．IRC	CEA－T0－6．04K	R－88－6．04K
2002	Thick Film Resistor Network．．．．K－1		TF－47
2003	10 kr ，10\％，1／4W，Comp ．．．．．A－B	CB－100－10\％	R－76－10K
R004	$18 \mathrm{kr},. 10 \%$ ， $1 / 4 \mathrm{~W}$ ，Comp ．．．．．A A B	CB－100－10	R－76－18K
2005	6．8k．，10\％，1／4W，Comp ．．．．．A－B	CB－682－10	$\mathrm{R}-76-6.8 \mathrm{~K}$
． 2006	5．49ki．，1t，1／8W，MtF ．．．．．IRC	CEA－TO－5．49K	R－88－5．49K
R．007	7．68k．．，1允，1／8W，MtF ．．．．．IRC	CEA－T0－7．68K	R－88－7．68K
2008	10Ma，10\％1／4W，Comp ．．．．．A A B	CB－106－10\％	R－76－10M
3009	100si，12，1／8W，MtF ．．．．．．IRC	CEA－T0－100	R－88－100
ROIO	1．5KR，1\％，1／8W，MtF．．．．．．IRC	CEA－TO－1．5K	R－88－1．5K
2011	$4.22 \mathrm{~K} \Omega, 12,1 / 8 \mathrm{~W}, \mathrm{MtF}$ ．．．．．．IRC	CEA－T0－4．22K	R－88－4．22K
2012	1．15KR，1\％，1／8W，Mt F ．．．．．IRC	CEA－TO－1．15K	R－88－1．15K
RO13	49．9K，1\％，1／8W，MtF ．．．．．．IRC	CEA－T0－49．9K	R－88－49．9K
RO14	158，10\％，1／4W，Comp ．．．．．．A－B	CB－150－10\％	R－16－15

R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
R111
R112
R113
R114

280 ！．，1ヶ，1／8W，MtF ．．．．．．IRC
$280 \mathrm{Si}, 12,1 / 8 \mathrm{~W}, \mathrm{MtF} I R C$
$1 \mathrm{k} \Omega$ ，Potentiometer， 0.5 h ．．．．．BEC
$6.336 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} \mathrm{DLE}$
150 k 〔，1\％，1／8W，MtF．．．．．．IRC
470 si， 10% ， $1 / 4 \mathrm{~W}$ ，Comp ．．．．．．A－B
470Ω ，10先， $1 / 4 \mathrm{~W}$ ，Comp ．．．．．．A－B
$200 \mathrm{k} \Omega$ ，1\％，1／8W，MtF．．．．．．．IRC
Thick Filr Resistor Network．．．．K－I
Thick Filr Resistor Network．．．．K－l
22kri，10
43ki，5\％，1／4W，comp • ．．．．．MEP
$22 \mathrm{~K} \because, 10 \%, 1 / 4 \mathrm{~W}$ ，Comp ．．．．．A－B
22Ki！，10\％， $1 / 4 \mathrm{~W}$ ，Comp ••• A－B

CEA－TO－280
CEA－TO－280
72PMR
MFF－1／8－6．336K
CEA－TO－150K
CB－121－10
CB－121－10\％
CEA－TO－200K

－－

CB－223－10
CR－25－43K
CB－223－10\％
CB－223－10\％

＂ 200 ＂SERIES（Schematic 28656E）

R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
R211
R212

5 k Ω ， 0.5 W, Var．．．．．．．．．BEC
$374 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$ ．．．．．．．IRC
$7.50 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}$. ．．．．．．．DLE
$7.50 \mathrm{k} \Omega, 0.8 \%, 1 / 8 \mathrm{~W} D L E$
$28.0 \mathrm{k} \Omega, 0.5 \%, 1 / 8 \mathrm{~W}$. ．．．．．．DLE
Part of 28040 B
Part of 28040 B
$20 \mathrm{k} \Omega$ ，Potentiometer， 0.5 W ．．．．BEC
500Ω ，Potentiometer， 0.5 W ．．．．BEC
Thin Film Resistor Network ．．．．K－1
$23.2 \mathrm{k} \Omega$ ， $1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$ ．．．．． 1 IRC
$332 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} \mathrm{DLE}$

72PMR－5K
CEA－TO－374
MFF－1／8－7．50K
MFF－1／8－7．50K
MFF－1／8－28．0K

72PMR－20K
72PMR－500
CEA－TO－23．2K
MFF－1／8－332K

RP－97－5K
R－88－374
R－168－7．50K
R－168－7．50K
R－246－28．0K

RP－97－20K
RP－97－500
TF－56
R－88－23．2K
R－168－332K

Circuit		Mfr .	M	Keithley
Desig.	Description	Code	Desig.	Part No.

" 200 " SERIES (Cont'd)

R213	100 k [, 5%, 0.5 W BRN	3299W-11-104-5\%	RP-114-100K
R214	Thick Film Resistor Network. . . . K-I	--	TF-51
R215	Thick Film Resistor Network. . . . K-I		TF-45
R216	909 ת, 1\%, 1/8W, MtF IRC	CEA-T0-909	R-88-909
R217	10 k .., Potentiometer, $0.5 \mathrm{~W} . . . \mathrm{}$.	72PMR	RP-97-10K
R218	Thick Film Resistor Network. . . . K-I		TF-50
R219	1.8 k :. , 1\%, 1/8W, MtF. IRC	CEA-TO-1.8K	R-88-1.8K
R220	$10 \mathrm{k} . \mathrm{C}, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC	CEA-TO-10K	R-88-10K
R221	200 ¢, 1\%, 1/8W, MtF IRC	CEA-TO-200	R-88-200
R222	$200 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . . . \mathrm{}$. . . IRC	CEA-T0-200K	R-88-200K
R223	$39 \mathrm{k} \Omega$, 10\%, 1/4W, Comp A-B	CB-393-10\%	R-76-39K
R224	Thick Film Resistor Network. . . . K-I	--	TF-48
R225	$10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC	CEA-TO-10K	R-88-10K
R226	210k $, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC	CEA-TO-210K	R-88-210K
R227	$22 \Omega, 10 \%, 1 / 4 \mathrm{~W}, \mathrm{Comp}$. A-B	CB-100-10\%	R-76-22K
R228	$22 \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. A-B	CB-100-10\%	R-76-22K
R229	$15 \mathrm{kr}, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B	CB-100-10\%	R-76-15K
R230	Thick Film Resistor Network. . . . K-1		TF-60
R231	8.2 kr., 10\%, 1/4W, Comp A-B	CB-822-10\%	R-76-8.2K

"300"' SERIES (Schematic 274040)

R301
R302
R303
R304

Thick Film Resistor Network. . . . K-I
Thick Film Resistor Network. . . . BEC
$1 \Omega, 1 \%, 1 / 2 \mathrm{~W}$.
IRC
$2.20,5 \%, 1 / 4 \mathrm{~W}$
DLE
898-3-R62
DCC-1 S
SBB-2.2S

TF-42
TF-43
R-12-1
R-248-2.2
"400" SERIES (Schematic 26758C)

R401
R402
R403
R404
R405
R406
R407
R408
R409
R410
R411
R412
R413
R414
13.78, $1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$12 \mathrm{k} \Omega, 10 \%, 1 / 2 \mathrm{~W}$, Comp A-B
$12 \mathrm{k} \Omega, 10 \%, 1 / 2 \mathrm{~W}$, Comp A-B
$13.7 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$3.3 \Omega, 10 \%, 1 / 2 \mathrm{~W}$, Comp A-B
$1.5 \mathrm{k}, 10 \%$, 1/2W, Comp. A-B
$71.5 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$100 \mathrm{k} \Omega, 10 \%$, $1 / 4 \mathrm{~W}$, Comp. A-B
$2.2 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. A-B
$76.8 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$499 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} I R C$
$100 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$110 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
499 k! , 1\%, 1/8W, MtF IRC

CEA-TO-13.75:
EB-123-10\%
EB-123-10\%
CEA-TO-13.7S
EB-3R3-10\%
EB-152-10\%
CEA-TO-71.5K
CB-104-10\%
CB-222-10\%
CEA-TO-76.8K
CEA-T0-499K
CEA-TO-100K
CEA-TO-110K
CEA-T0-499K
$R-88-13.7$
R-I-12K
R-I-12K
R-88-13.7
R-1-3.3
R-1-1.5K
R-88-71.5K
R-76-100K
R-76-2.2K
R-88-76.8K
R-88-499K
R-88-100K
R-88-110K
R-88-499K

RESISTORS (R)

Circuit	Description	Mfr. Codesig.	Mfr. Desig.

" 500 " SERIES (Schematic 28067D)

R501	Not Used			
R502	$900 \Omega, 0.05 \%, 1 / 2 \mathrm{~W}$	IRC	MAR6-900	R-236-900
R503	$90 \Omega, 0.05 \%, 1 / 8 \mathrm{~W}$.	IRC	MAR6-908.	R-236-90
R504	$9.1 \Omega, 0.5 \%, 1 / 2 \mathrm{~W}$.	TEP	TS.5S-9.1si	R-237-9.1
R505	$499 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$	IRC	CEA-T0-499	R-88-499
R506	$10 \mathrm{k} \Omega, 0.5 \mathrm{~W}, \mathrm{Var}$	BEC	72PMR-10K	RP-97-10K
R507	$0.918,0.5 \%, 5 \mathrm{~W}$	TEP	TS5-0.91	R-238-.91
R508	$40.2 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$.	IRC	CEA-TO-40.2	R-88-40.2
R509	$1 \mathrm{k} \Omega, 0.5 \mathrm{~W}, \mathrm{Var}$.	BEC	72PMR-1K	RP-97-1K
R510	$0.102 \Omega, 0.5 \%, 10 \mathrm{~W}$	TEP	TS10-0.102S:	R-239-. 102
R511	$2.7 \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp	A-B	CB-2R7-10\%	R-76-2.7
R512	$10 \Omega, 0.5 \mathrm{~W}$, Var. .	BEC	72PMR-10	RP-97-10
R513	Thick Film Resistor Network.	K-I	--	TF-44
R514	$1 \Omega, 0.1 \%$, 10W, WW	TEP	TS-10W-1s2	R-221-1
	[R502-R513 used on Model 173 only. R514 used on Model 172 only.			
R515	$30.1 \mathrm{~K} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$	IRC	CEA-30.1K-1\%	R-88-30.1K
R516	$30.1 \mathrm{~K} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$	IRC	CEA-30.1K-1\%	R-88-30.1K
R517	30.1K, 1%, 1/8W, MtF	IRC	CEA-30.1K-1\%	R-88-30.1K

" 600 " SERIES (Schematic 28656E)

R601	120Ω, 5\%, IW, Comp. A-B	GB-121-5\%	R-102-120
R602	$120 \Omega 5 \%$, 1W, comp. A-B	GB-121-5\%	R-102-120
R603	15R, 5\%, 5W, WW. OHM	4565	R-257-15
R604	$680 \Omega, 10 \%, 1 / 2 \mathrm{~W}$, Comp A-B	EB-681-10\%	R-1-680
R605	$100 \Omega, 10 \%$, IW, Comp A-B	GB-101-10\%	R-2-100
R606	270 , $10 \%, 1 / 2 \mathrm{~W}$, Comp. A-B	EB-271-10\%	R-1-270
R607	$6.65 \mathrm{k} \Omega 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC	CEA-T0-6.65K	R-88-6.65k
R608	$4.9 \mathrm{k} \Omega$, 1\%, 1/8W, MtF. IRC	CEA-T0-4.99K	R-88-4.99K
R609	$10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC	CEA-T0-10K	R-88-10K
R610	$680 \Omega, 10 \%, 1 / 2 \mathrm{~W}, \mathrm{Comp} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{A-B}$	EB-681-10\%	R-1-680
R611	$10 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B	CB-103-10\%	R-76-10K
R6I2	108. 10\%. 1/4W. Comd. A-B	CB-100-10\%	R-76-10

Circuit	Mfr.	Mfrigeription	Code
Desig.	Desig.	Keithley	

"700" SERIES (Schematic 28656E)

Abstract

R701 R702 R703 R704 R705 R706 R707 R708 R709 R710

Thick Film Resistor Network. . . . KI
Thick Film Resistor Network. . . . KI
$62 \Omega, 10 \%, 1 / 2 \mathrm{~W}$, Comp A-B
$5 \mathrm{k} \Omega, 0.5 \mathrm{~W}$, Var. BEC
$500 \mathrm{k} \Omega$, Potentiometer, 0.5 W BEC
$335.3 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}$. TRW
l ks, Potentiometer, 0.5 W BEC
$3.280 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . . . \mathrm{I}$. IRC
50 S., Potentiometer, 0.5 W. BEC
$33.2 \mathrm{M} \Omega, 0.25 \%, 2 \mathrm{~W}$
-
-
EB-620-10\%
72PMR-5K
72PMR-500K
MAR-6-T10-0.1\%
72PMR-1K
MAR6
72PMR-50
MG721

TF-61
TF-62
R-1-62
RP-97-5K
RP-97-500K
R-241-335.3K
RP-97-1K
R-240-3.280K
RP-97-50
R-242-33.2M

" 800 " SERIES (Schematic 28656E)

R801
R802
R803
R804
R805
R806
R807
R808
R809
R810
R811
R812
R813
R814
R815
R816
8817
R818
R819
R820

R901
R902
$R 903$
R904
R905
R906
R907
R908
R909
R910
$150 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . .$. IRC
$2.196 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} .$. . . IRC
50Ω, Potentiometer, 0.5 W. . . . BEC
$10 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B

$68.1 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . . . \mathrm{}$. . IRC
$500 \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$10 \mathrm{M} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. $A-B$
$100 \mathrm{k} \Omega$, Potentiometer, 0.5 W BEC
$24.3 \mathrm{k} \Omega, 0.1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} .$. . . . IRC
$15.8 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . \operatorname{.~.~.~IRC~}$
$500 \Omega, \quad 1 \%, \quad 1 / 8 \mathrm{~W}, \mathrm{MtF} . . \quad . \quad . \quad$ IRC
$3.3 \mathrm{k} \Omega, 10 \%$, $1 / 4 \mathrm{~W}, \mathrm{Comp}$. A-B
$2 M \Omega$
$19.95 \mathrm{k} \Omega]$ Part of matched set, part no:
500Ω, Potentiometer, 0.5 W. . . . BEC
100Ω, Potentiometer, 0.5W. BEC
$\left.2 M \Omega, \quad \begin{array}{l}2.15 k \Omega\end{array}\right]$ Part of matched set, part no: $R-243$
$1 \mathrm{M} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp
$A-B$
CB-105-10\%
CEA-TO-150K
MAR-6
72PMR-50
CB-103-10\%
CEA-TO-68.1K
CEA-TO-68.1K
MAR-6
CB-106-10\%
72PMR-100K
CEA-TO-24. 3
CEA-TO-15.8K
MAR-6
CB-332-10\%
R-243
72PMR-500
72PMR-100

28656E)
100Ω, Potentiometer, 0.5 W BEC
72PMR-100
CB-2R7-10\%
CEA-TO-1M
72PMR-200K
CB-2R7-10\%
CB-105-10\%

R-88-150K
R-241-2.196K
RP-97-50
R-76-10K
R-88-68. 1 K
R-88-68.1K
R-241-500
R-76-10M
RP-97-100K
R-88-24.3K
R-88-15.8K
R-241-500
R-76-3. 3 K

RP-97-500
RP-97-100
$R-76-1 M$
2.7Ω, 10\%, $1 / 4 \mathrm{~W}$, Comp A-B
$1 \mathrm{M} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$200 \mathrm{k} \Omega$, Potentiometer, 0.5 W BEC
$2.7 \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B
$1 \mathrm{M} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. A-B
NOT USED
NOT USED
$10.91 \mathrm{k} \Omega$ Part of matched set R-259
$99.75 \mathrm{~K} \Omega$ Part of matched set R-259

RP-97-100
R-76-2.7
R-88-1M
RP-97-200K
R-76-2.7
R-76-1M

RESISTORS (R)

| Circuit | Mfr. | Mfr. |
| :--- | :--- | :--- |\quad Keithley

" 900 " SERIES (Cont'd)

R911

R912

R913
R914
R915
R916
R917
R918
R919
R920
R921
R922
R923
R924
R925
R926
R927
R928
R929
R930
R931
500Ω, Potentiometer, 0.5 W BEC
1 M $\Omega, 1 \%, 1 / 8 W, M t F$. IRC
$200 \mathrm{k} \Omega$, Potentiometer. 0.5W. . . . BEC
NOT USED
9.75M Ω Part of matched set R-259
$1 \Omega, 1 \%, 1 / 2 \mathrm{~W} . .$. IRC
133ks, 1\%, 1/8W, MtF • • IRC
$49.9 \mathrm{ksi}, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC

$470 \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B
10k $\Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} . .$. IRC
$133 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} I R C$
$27 \mathrm{k} \Omega, 10 \%, 1 / 2 \mathrm{~W}, \mathrm{Comp}$. A-B
$3.3 \mathrm{k} \Omega, 10 \%$, $1 / 4 \mathrm{~W}$, Comp A-B
$3.3 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B
3.3ks, 10\%, $1 / 4 \mathrm{~W}$, Comp A-B
$1 \mathrm{k} \Omega$, $10 \%, 1 / 4 \mathrm{~W}, \mathrm{Comp} . \operatorname{D} . \mathrm{C} . \mathrm{A}-\mathrm{B}$
150k $2,1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
150k $2.1 \%, 8 \mathrm{~W},$. CAD
$3.3 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}, \mathrm{Comp}$. A-B
$3.3 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp A-B

$72 P M R-500$	$R P-97-500$
CEA-TO-1M	$R-88-1 M$

DCC-I-1\% R-12-1
CEA-TO-133K R-88-133K
CEA-TO-49.9K R-88-49.9K
CEA-T0-49.9K R-88-49.9K
CB-121-10\% $R-76-470$
CEA-TO-10K R-88-10K
CEA-TO-133K R-88-133K
EB-273-10\% R-1-27K
CB-332-10\% R-76-3.3K
CB-332-10\% R-76-3.3K
$C B-332-10 \% \quad R-76-3.3 K$
CB-102-10\% R-76-1K
CEA-TO-150K R-88-150K
MS-281, $150 \mathrm{~K} \quad R-247-150 \mathrm{~K}$
CB-332-10\%
CB-332-10\%

R-76-3.3K
$R-76-3.3 K$

"1000" SERIES (Schematic 27902E)

R1001
R1002
R1003
R1004
R1005
R1006
R1007
R1008
R1009
21010
R1011
21012
81013
R1014
81015
R1016

Resistor Network, Thick Film , . . K-1
Resistor Network, Thick Film . . . K-I
Resistor Network, Thick Film . . . K-I
Resistor Network, Thick Film . . . K-I
Resistor Network, Thick Film . . . K-l
$1 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. A-B
$32.4 \mathrm{k} \Omega$, 1\%, $1 / 8 \mathrm{~W}, \mathrm{MtF}$. IRC
$1 \mathrm{M} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. $A-B$
$3.9 \mathrm{k} \Omega$, 10\%, $1 / 4 \mathrm{~W}$, Comp. A-B
$3.9 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. $\mathrm{A}-\mathrm{B}$
$154 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} \operatorname{IRC}$
$3.9 \mathrm{k} \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. $\mathrm{A}-\mathrm{B}$
$154 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{Mtf}$. IRC
$154 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} .$. IRC
$154 \Omega, 1 \%, 1 / 8 \mathrm{~W}, \mathrm{MtF} \quad . \quad$ IRC
$10 \Omega, 10 \%, 1 / 4 \mathrm{~W}$, Comp. A-B

-	$T F-53$
-	$T F-53$
$C B-102-10 \%$	$R-76-1 K$
$C E A-T 0-32.4 K$	$R-88-32.4 K$
$C B-105-10 \%$	$R-76-1 M$
$C B-392-10 \%$	$R-76-3.9 K$
$C B-392-10 \%$	$R-76-3.9 K$
CEA-T0-154	$R-88-154$
CB-392-10\%	$R-76-3.9 K$
CEA-T0-154	$R-88-154$
CEA-TO-154	$R-88-154$
CEA-TO-154	$R-88-154$
CB-100-10\%	$R-76-10$

INSTRUCTION MANUAL
REPLACEABLE PARTS
Digital Multimeter Models 172, 173

RESISTORS (R)

Circuit Desig.	Description $\begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
"lloo" SERIES (Schematic 28019E)			
R1101	$11 \mathrm{k} \Omega$, 1\%, 250V, 1/8W IRC	CEA-TO-11K Ω	R-88-1.1K
R1102	Resistor Newwork, Thick Film. K-l	-	TF-54
R1103	Resistor Network, Thick Film. K-I	-	TF-54
R1104	Resistor Network, Thick Film. K-l	-	TF-54
R1105	Resistor Network, Thick Film. K-I	-	TF-54
R1106	$6.5 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$. IRC	CEA-TO-6.5KS	R-88-6.5K
R1107	$10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W} . .$. $1 R C$	CEA-TO-10KS	R-88-10K.
SWITCHES (S)			
Circuit Desig.	Description $\quad \begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
"600" SERIES (Schematic 28656E)			
S601	Switch, Slide, DPDT C-W	GF326-0006	SW-397
"900"' SERIES (Schematic 27903E)			
5901	(Modified SW-393) K-1	-	28004 B
TRANSFORMERS (T)			
Circuit Desig.	Description $\begin{gathered}\text { Mfr. } \\ \text { Code }\end{gathered}$	Mfr. Desig.	Keithley Part No.
"600" SERIES (Schematic 28656E)			
T601	Power Transformer K-I	-	TR-163
	"1000" SERIES (Schematic 27902E)		
T1001	Transformer K-1	-	TR-164

		INTEGRATED CIRCUI	(U)
Circuit gesig.	Description	Mfr. Code	Mfr. Desig.

$\checkmark 001$	Transistor array, 14-pin DIP	RCA	CA3086	1 C-53
U002	Flip-Flop, 14-pin DIP.	F-I	$9 L 574$	IC-144
1003	Flid-Flod, 14-pin DIP. .	F-1	$9 L S 74$	1C-144
J004	Hex Inverter, 16-pin DIP	- RCA	CD4049AE	1c-106
U005	Tining Logic, 8-pin DIP.	SIG	NE555V	\|c-7]

"100" SERIES (Schematic 28656E)

| $\mathrm{JlO1}$ | Linear Op-Amp,8-pin DIP INT | LM308PA | IC-99 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Jl02}$ | Large-Scale Integrated Circuit. . . K-1 | -- | LSI-5 |

U201 Transistor array, 14-pin DIP . . RCA CA3086: 28090A:
U202 Operational Amplifier, 8-pin, T0-5 Case. NAT LH0042CH IC-132
*Selected $10-53$
" 300 " SERIES (Schematic 27404D)
U301

> 8-Bit Parallel-Out Serial Shift
> Register, 14-pin DIP T-I SN74LSI64
> $" 400^{\prime \prime}$ SERIES (Schematic 26758C)

1C-127

U401	Operational Amplifier, 8-pin DIP	F-1	U9T7741393	$1 \mathrm{c}-42$
	"500" SERIES (Schematic 27478D)			
4501	Operational Amplifier, 8-pin DIP	INT	LM308 PA	16-99
U502	COS/MOS BCD-TO-DECIMAL decoder,			
	16-pin DIP	RCA	CD4028AE	1C-135

" 700 " SERIES (Schematic 28656E)

| U701 | Operational Amplifier, 8-pin DIP. NAT | LM308PA | IC-99 |
| :--- | :--- | :--- | :--- | :--- |
| U702 | Op-Amp, 8-pin, TO-5Case . . . NAT | LH0042CH | 1C-132 |

Circuit Description Mfr. Mfr. Keithley
Desig. Description Code Desig. Part No.
"800" SERIES (Schematic 28656E)

Operational Amplifier, 8-pin DIP Operational Amplifier, 8-pin DIP..................... Analog Amplifier, 8-pin Dip NAT NAT

LM3OIAN
LM30IAN LF 356 H

1C-24
C-24
1C-152
"900" SERIES (Schematic 28656E)
$U 901$
Linear Op-Amp, 8-pin DIP
NAT
LM308PA
1C-99
"1000" SERIES (Schematic 27902E)

41001
U1002
41003
U1004
U1005
U1006
U1007
U1008
01009
01010
U1011

U1012
U1013
U1014
U1015
41016
U1017
U1018
U1019
U1020
U1021

Quad 2-1nput AND, 14 -pin DIP.
RCA
Quad 2-Input AND, 14-pin DIP. RCA Quad 2-input AND, 14-pin DIP. RCA Quad 2-Input AND, 14-pin DIP. RCA
Quad 2-Input AND, 14-pin DIP. RCA
Quad 2-Input AND, 14-pin DIP. RCA
Quad 2-Input AND, 14-pin DIP. RCA COS/MOS Dual 4-Stage Static Shift

Register.
RCA
COS/MOS Dual 4-Stage Static Shift
Register
RCA
COS/MOS Dual 4-Stage Static Shift
Register. RCA
COS/MOS Dual 4-Stage Static Shift
Register.
RCA
Quad 2-Input AND, 14-pin DIP. RCA
Quad 2-Input AND, 14-pin DIP
RCA
Quad 2-Input NOR, 14-pin DIP. RCA
Dual D-Type Flip-Flop, 14-pin DIP RCA
COS/MOS Hex Inverter, 14-pin DIP. RCA
Timing Logic, 8-pin DIP SIG
Optically-coupled Isolator, 8-pin DIP . . . H-P
Optically-coupled Isolator, 8-pin DIP . . . H-P
Optically-coupled Isolator, 8-pin DIP . . H-P
Optically-coupled Isolator, 8-pin DIP . . . H-P

CD4081BE
CD4081BE
C04081BE
CD4081BE
CD4081BE
CD4081BE
CD4081BE

CD4015AE
CD4015AE
CD4015AE

CD4081BE
CD4081BE
CD4081BE
CD4001AE
CD4013AE
CD4069BE
NE 555 V
HP5082-4351
HP 5082-4351
HP 5082-4351
HP 5082-4351
$1 \mathrm{C}-138$
IC-138
1c-138
IC-138
1c-138
10-138
1c-138

1c-136
1c-136
1c-136
1c-136
1c-138
1c-138
1c-108
1c-103
1c-139
$1 \mathrm{C}-7 \mid$
1c-142
1C-142
1C-142
IC-142

integrated circuits（u）

| Circuit |
| :--- | :--- | :--- |
| Desig． |

＂1100＂SERIES（Schematic 28019E）

＂200＂＇SERIES（Schematic 28656E）

＂600＂SERIES（Schematic 28656E）

＂ 800 ＂SERIES（Schematic 28656E）
VR801 Zener，12V，400mW ．．．．．．．．．．．．．DIC IN963B DZ－54

JUMPERS (W)

| Circuit
 Desig. Description | Mfr.
 Code | Mfr.
 Desig. |
| :--- | :--- | :--- | | Keithley |
| :--- |
| Part No. |

"200" SERIES (Schematic 28656E)
W201
K-1
J-3
" 500 " SERIES (Schematic 28656E)
W501
K-1
J-3
" 600 " SERIES (SCHEMATIC 28656E)
W601
K-1
J-3
" 800 " SERIES (SCHEMATIC 28656E)
W801
K-1
J-3
' 900 " SERIES (Schematic 28656E)
W901 (Used only on Model 173) K-1 -- WIRE

MISCELLANEOUS

DESCRIPTION	KEITHLEY PART NO.
Top Cover (less metalcal)	27979C
: : Metalcal for top cover	MC-236
Bot tom Cover (less metalcals)	25727E
. . Metalcal, operating instructions	MC-239
- Metalcal, rear panel	MC-235
Handle (less insert)	257290
- . Insert (2 req'd)	26090A
Spacer (4 req'd)	25762B
Rubber foot (4 req'd)	FE-10
Front Panel - Model 172	28029A
Front Panel - Model 173	27958A
"م"' Ring (Used to hold display board)	GA-18

YABLE 7-2
COMPONENT DESIGNATIONS FOR PC-407 (MODEL 173)
(See Figure 43.)

Circuit Desig.	Location Code
COOI	G-27
C002	G-27
C003	K-26
C004	M-26
C005	M-25
c006	S-29
C007	U-29
C008	T-26
C009	U-27
C101	G-26
C102	H-22
C103	F-18
C104	G-18
C105	H-18
C106	K-23
C107	K-22
C108	L-21
C109	K-19
Cl10	M-24
C 111	P-26
C 112	Q-22
C113	Q-22
C 114	Q-20
C115	T-20
C201	Y-19
C202	a-23
C203	a-20
C204	a-21
C205	a-18
C206	a-17
C 207	c-18
C208	d-17
C209	e-21
C210	$\mathrm{f}-24$
C601	B-28
C602	B-26
C603	D-25
C604	L-15
C605	F-13
C606	J-13
C607	J-11
C608	L-10
C609	L-10
C6.10	L-8

Circuit Desig.	Location Code
C611	J-2
C612	1-14
C 701	T-14
C702	Z-15
C801	P-10
C802	N-8
C803	Q-9
C804	R-9
C805	$\mathrm{N}-7$
C806	$N-5$
C807	R-8
C808	R-5
c809	S-5
C810	P-2
C811	$\mathrm{U}-7$
C812	$v-8$
C813	V-7
C814	T-3
C815	$x-10$
c816	$x-5$
C817	$Y-5$
C818	X-3
c819	Z-6
C820	f-5
c821	$f-4$
ᄃ901	V-11
C902	D-19
C903	f-14
C904	g-14
C905	g-12
C906	9-7
C907	h-6
C908	g-3
c909 (NS)	k-26
c910 (NS)	h-24
CROOI	J-26
CROO2	L-26
CRO03	W-30
CR201	U-19
CR202	$v-17$
CR203	$v-19$
CR204	$V-18$
CR205	W-21
CR206	$Y-17$

Circuit Desig.	Location Code
CR207	Y-23
CR208	b-23
CR209	$c-23$
CR210	$c-23$
CR211	d-23
CR212	d-23
CR213	H-33
CR214	W-18
CR601	J-8
CR602	J-5
CR701	p-14
CR702	P-13
-CR703	S-13
CR704	Y-13
CR705	$e-16$
CR801	Q-5
CR802	V-5
CR803	a-2
CR804	b-2
CRYO1	W-9
CR902	g-9
CR903	h-19
CR904 (NS)	m-23
CR905 (NS)	m-24
DS601	$p-30$
F601	c-16
J201	$b-30$
K801	U-6
K90 1	K-9
P101	e-25
P601	H-31
P602	B-16
P603	K-7
P604	K-4
P605	g-31
P606	k-31
P901	k-1
P902	$\mathrm{p}-1$

TABLE 7-2 (continued)
Component Designations For PC-407

Circuit Desig.	Location Code
Q001	H-25
Q002	R-25
Q003	V-29
Q101	F-19
Q102	H-21
Q103	J-22
Q104	J-21
Q105	K-24
Q106	L-23
Q107	L-21
Q108	M-22
Q109	M-21
Q110	S-23
Q111	S-22
Q112	S-21
Q113	S-20
Q201	L-20
Q202	S-18
Q203	$\mathrm{S}-17$
Q204	T-18
Q205	T-17
Q206	$x-19$
Q207	$\mathrm{X}-17$
Q208	Y-19
Q209	b-22
Q210	b-20
Q211	d-21
Q212	d-20
Q213	d-19
Q214	f-22
Q215	f-21
Q216	h-22
Q701	P-16
Q702	P-15
Q703	Q-15
Q704	Q-14
Q705	$\mathrm{P}-12$
Q706	Q-12
Q707	$x-14$
Q708	Z-14
Q709	a-14
Q710	$b-15$

Circuit Desig.	Location Code
Q801	P-9
Q802	N-6
Q803	P-4
Q804	Q-9
Q805	b-3
Q901	$V-10$
Q902	e-9
Q903	f-10
R001	H-27
ROO2	J-27
R003	Q-27
R004	R-27
R005	S-26
R006	S-30
R007	T-30
R008	S-29
R009	U-30
RO10	V-29
RO11	$X-30$
RO1 2	Y-29
RO13	T-27
R101	H-27
R102	F-25
R103	F-23
R104	F-21
R105	F-18
R106	H-20
R107	G-19
R108	H-18
R109	H-17
R110	T-23
R111	$x-26$
R112	$x-27$
R113	Z-26
R114	Z-27
R201	K-17
R202	L-19
R203	L-18
R204	M-18
R205	M-18
R206	N-18
R207	P-18
R208	P-19

Circuit Desig.	Location Code
R209	R-19
R210	Q-18
R211	U-24
R212	U-21
R213	U-23
R214	U-18
R215	W-24
R216	V-21
R217	$V-20$
R218	W-18
R219	Y-21
R220	X-18
R221	Z-23
R222	Z-18
R223	b-24
R224	b-22
R225	b-18
R226	d-18
R227 (NS)	d-20
R228	e-17
R229	g-24
R230	9-22
R231	e-28
R601	B-30
R602	B-31
R603	C-30
R604	D-31
R605	E-30
R606	--27
R607	L-4
R608	L-4
R609	M-4
R610 (NS)	k-28
R611	p-26
R612	M-10
R613	M-9
R701	$\mathrm{N}-15$
R702	$p-13$
R703	R-13
R704	U-16
R705	$v-16$
R706	U-15
R707	U-13
R708	$V-15$
R709	W-14
R710	Y-16

TABLE 7-2 (continued)
Component Designations For PC-407

Circuit Desig.	Location Code
R801	N-10
R802	P-9
R803	S-11
R804	P-6
R805	N-4
$R 806$	Q-4
R807	R-4
R808	R-3
R809	R-2
R810	T-6
R811	T-6
R812	T-5
R813	x-9
R814	Y-8
R815	W-5
R816	V-4
R817	W-2
R818	b-4
R819	Z-2
R820	c-2
R901	U-12
$R 902$	T-11
R903	U-11
R904	T-9
R905	U-10
R906	U-9
R907	NOT USED
R908	NOT USED
R909	$\mathrm{x}-12$
R910	W-11
R911	Y-12
R912	z-12
R913	a-12
$R 914$	NOT USED
R 915	b-8
R916	c-7
$R 917$	d-12
R918	e-12
R919	e-11
R920	e-10
R921	f-12
R922	f-11
R923	9-5
R924	e-18
R925	f-19
R926	f-18

Circuit Desig.	Location Code
R927 (NS)	k-17
R928 (NS)	g-15
R929 (NS)	n-16
R930	p-20
R931	p-20
S601	B-20
T601	D-7
TP101	M-23
TP102	M-24
v001	J-28
U002	N-27
U003	Q-29
$\cup 004$	U-28
U005	U-26
4101	H-20
U102	P-24
U103	a-26
U201	W-23
U202	x-20
U701	S-15
U702	b-13
U901	d-14
VROOI	X-29
VR101	F-26
VR102	G-21
VR201	L-19
VR202	$\mathrm{N}-18$
VR203	Z-23
VR601	8-25
VR602	F-16
VR603	L-13
VR801	Y-9
W201	P-18
W601	D-29
W602	D-29

[^0]: *Selected TG-39

