731B DC Reference Standard

Instruction Manual

P/N 405050 October 1974

Ĩ

Table of Contents

1 INTRODUCTION AND SPECIFICATIONS 1-1 1-1. 1-1. INTRODUCTION 1-2 2 OPERATING INSTRUCTIONS 2-1 2-1. INTRODUCTION 2-1 2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INST ALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1 3-7. Charging Giovit 3-2	SECTION		TITLE	PAGE
1-7. SPECIFICATIONS 1-2 2 OPERATING INSTRUCTIONS 2-1 2-1. INTRODUCTION 2-1 2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1	1	INTRODU	JCTION AND SPECIFICATIONS	1-1
1-7. SPECIFICATIONS 1-2 2 OPERATING INSTRUCTIONS 2-1 2-1. INTRODUCTION 2-1 2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		1-1.	INTRODUCTION	1-1
2-1. INTRODUCTION 2-1 2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1				1-2
2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1	2	OPERATI	NG INSTRUCTIONS	2-1
2-3. SHIPPING INFORMATION 2-1 2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-2. 3-1 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-1.	INTRODUCTION	2-1
2-6. INPUT POWER 2-1 2-9. RACK INSTALLATION 2-2 2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-3.		2-1
2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-6.		2-1
2-11. OPERATING FEATURES 2-2 2-13. OPERATING NOTES 2-2 2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-9.	RACK INSTALLATION	2-2
2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-11.		2-2
2-15. Guarded Operation 2-2 2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-13.	OPERATING NOTES	2-2
2-18. Battery Operation 2-4 2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-15.		2-2
2-20. OPERATION 2-4 2-21. Turn-On Procedure 2-4 2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-18.		2-4
2-23. Standard Cell Transfer 2-4 2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-20.		2-4
2-25. Reference Voltage Modes 2-5 3 THEORY OF OPERATION 3-1 3-1. INTRODUCTION 3-1 3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1 3-5. BLOCK DIAGRAM ANALYSIS 3-1 3-6. General 3-1		2-21.		2-4
3 THEORY OF OPERATION		2-23.	Standard Cell Transfer	2-4
3-1. INTRODUCTION		2-25.	Reference Voltage Modes	2-5
3-3. OVERALL FUNCTIONAL DESCRIPTION	3	THEORY	OF OPERATION	3-1
3-3. OVERALL FUNCTIONAL DESCRIPTION		3-1	INTRODUCTION	3-1
3-5. BLOCK DIAGRAM ANALYSIS				
3-6. General				
3m0. VHAIPHPVARCHI		3-8.	Charging Circuit	3-2
3-11. Reference Supply			T T	
3-14. Output Divider				

TABLE OF CONTENTS (Continued)

SECTION		TITLE	PAGE
4	MAINTE	NANCE	4-1
	4-1.	INTRODUCTION	4-1
	4-3.	SERVICE INFORMATION	4-1
	4-6.	GENERAL MAINTENANCE	4-2
	4- 7.	Access Information	4-2
	4-9.	Cleaning	4-2
	4-11.	Fuse Replacement	4-2
	4-13.	Service Tools	4-2
	4-15.	PERFORMANCE TEST	4-2
	4-17.	Line Regulation	4- 2
	4-18.	Output Noise, DC to 1 Hz	4-2
	4-19.	Output Noise, 1 Hz to 1 MHz	4-4
	4-20.	Common Mode Rejection	4-4
	4-21.	Isolation	4-5
	4-22.	Transfer Accuracy	4-5
	4-23.	CALIBRATION	4-6
	4-25.	TROUBLESHOOTING	4-7
5	LIST OF	REPLACEABLE PARTS	5-1
		TABLE OF CONTENTS	
	5-1.	INTRODUCTION	5-1
	5-4.	HOW TO OBTAIN PARTS	5-2
	5-7.	USE CODE EFFECTIVITY LIST	5-2
			5-2
6	OPTIONS	AND ACCESSORIES	6-1
	6-1.	INTRODUCTION	6-1
	6-3.	RACK MOUNTING KITS	6-1
7	GENERA	L INFORMATION	7-1
8	SCHEMA'	TIC DIAGRAMS	8-1

List of Illustrations

FIGURE	TITLE	PAGE
1-1	Outline Drawing	1-3
2-1	731B Controls, Indicators, and Connectors	2-2
2-2	Guard Connections	2-4
2-3	Standardizing the 731B	2-5
3-1	731B Simplified Block Diagram	3-1
3-2	Reference Amplifier	3-2
4-1	Adjustment Locations	4-3
4-2	Equipment Connections for Line Regulation, DC to 1 Hz Output Noise, and Transfer Accuracy Tests	4-4
4-3	Equipment Connections for 1 Hz to 1 MHz Output Noise Test	4-4
4-4	Equipment Connections for Common Mode Rejection Test	4-5
4-5	Equipment Connections for Divider Adjustment	4-6
4-6	Equipment Connections for Absolute Voltage Adjustments	4-7
5-1	731B Final Assembly	5-4
5-2	Reference Regulator PCB Assembly	5-7
5-3	Power Supply and Adjustment PCB Assembly	5-10
6-1	Rack Mounting Configurations	6-1
6-2	Rack Ear Installation	6-2
6-3	Dual, Triple, and Quad Mounting	6-3
1-8	731B DC Reference Standard (731B-1011)	8-3

List of Tables

TABLE	TITLE	PAGI
2-1	731B Controls, Indicators and Connectors	2-3
4-1	Required Test Equipment	4-1
4-2	731B Calibration	4-6
7-1.	List of Abbreviations & Symbols	7-1
7-2.	Federal Supply Codes for Manufacturers	7-3
7-3.	Fluke Technical Centers	7-10
7-4.	Sales Representatives	7-11
7-5.	Sales Representatives - International	7-13

Section 1

Introduction & Specifications

1-1. INTRODUCTION

- 1-2. The Model 731B DC Reference Standard is an ultrastable dc power supply which, when standardized, is capable of providing a variety of precision output voltages with standard cell accuracy. The 731B will furnish basic dc voltage outputs of 10V, 1V, ΔE (000 to 999 μV), 1.018 + ΔE , and 1.019 + ΔE .
- 1-3. The desired voltage mode is selected using a front panel function switch and the value of ΔE is adjustable using a 10-turn linear potentiometer. The front panel ΔE control includes a 3 digit turn counter to indicate the selected value of ΔE , i.e., 000 to 999 μV . The counter is equipped with a locking lever to prevent accidental changing of a selected ΔE setting.
- 1-4. A front panel guard connection is provided for use in reducing errors caused by common mode voltages. The guarded internal circuitry is isolated from the chassis and earth ground.

- 1-5. Power to operate the 731B can be derived from either an internal battery pack for field or portable use, or from the ac power line for bench use. A front panel meter indicates the relative charge level of the internal battery pack during portable use. The AC line requirements are 115/230V ac, 50 to 400 Hz.
- 1-6. The 731B is supplied with non-marring feet for bench or field use. It may also be conveniently mounted in a standard 19" equipment rack using one of the rack mounting accessory kits shown in Table 1-1.

Table 1-1. ACCESSORY RACK MOUNTING KITS

MODEL NUMBER	MOUNTING CONFIGURATION
M03-201-601	One 731B, Offset mounting
M03-202-603	Two 731B's, Side-by-side
M03-206-604	Three 731B's, Side-by-side
M03-205-605	Four 731B's, Side-by-side

1-7. SPECIFICATIONS

Output Voltage

Range Output 10.0 10.0V dc 1.0 1.0V dc

1.018 +ΔE 1.018 to 1.018999V dc 1.019 +ΔE 1.019 to 1.019999V dc Δ E 0 to 999 μ V dc with

 $1 \mu V$ resolution

Output Accuracy:

Absolute accuracy at 23°C ±1°C

after 30 minute warm-up

Range		Period		
	30 days	90 Days	1 Year	
10V	±10 PPM	±15 PPM	±30 PPM	
1∨	<u>±</u> 10 PPM	<u>+</u> 15 PPM	±30 PPM	
1.018+ ·ΔE	<u>+</u> 10 PPM	<u>+</u> 15 PPM	<u>+</u> 30 PPM	١
Δε Ι			+2 uV	

Transfer Accuracy:

4 Hr

Between standard cells on 1.018V + 2 ppm ΔE or 1.019V + ΔE ranges:

Between standard cell and 1V 3 ppm

output:

Between 10V output and standard 5 ppm cell or 1V output:

Temperature Coefficient:

Less than 1 PPM/C°, 10°C to 45°C Less than 2 PPM/C°, 0°C to 10°C and 45°C to 55°C

Output Current:

10 Volt Range:

The 10 volt range is used in applications where some degree of loading is placed on the Reference Transfer Standard such as a Kelvin Varley Divider or other resistance networks.

Loading Effect on the 10V Range:

Load R.	Output Change (PPM)
100 ΜΩ	0
10 M Ω	0.005 ≈ 0
1 M Ω	.05
0.1 MΩ	.5
10 ΚΩ	5

1V, 1.018V, 1.019V Ranges:

The Reference Transfer Standard is designed to perform as a standard cell and therefore is intended to operate into a high impedance on the 1V, 1.018V and 1.019V ranges drawing minute currents. This impedance is usually infinity as in potentiometric circuits, or, in other applications should be at least 100 Megohms to prevent source loading.

Source Resistance:

10V Range $< 0.07\Omega$

1V, 1.018V, 1.019V,

 Δ E Ranges: $<1 \text{ k}\Omega$

Output Protection:

The output may be shorted indefinitely without damage to instrument.

Line Regulation:

Less than 1 PPM for $\pm 10\%$ line variation.

Ripple & Noise:

Less than 1 PPM P-P dc to 1 Hz Less than 20 μ V RMS 1 Hz to 1 MHz Except <70 μ V RMS @ 10V output

Common Mode Rejection:

120 db at DC 100 db at 60 Hz 85 db at 400 Hz

Isolation:

Output may be floated up to 500 VDC between chassis ground and guard.

Calibration Adjustment:

Separate internal adjustments for the 5 output voltages. Front panel adjustment common to all voltages including the 10.000V output. Basic reference adjustments accessible from the front panel.

Temperature/Humidity:

+0°C to +55°C operating. -40°C to +60°C non-operating. Up to 70% RH for temperatures ≤35°C

Shock & Vibration:

Meets requirements of MIL-T-21200L

Terminals:

Four five-way binding posts for positive, negative, ground and guard. Positive and negative are solid copper with gold flash.

Battery Operation:

Rechargeable nickel-cadmium batteries provide at least 30 hours of continuous operation.

Input Power:

115V or 230V \pm 10V ac, 50 to 400 Hz single phase or internal battery operation. 6 watts maximum, 120 Ma maximum

Size:

 $3\%^{\prime\prime}$ high x $4\%^{\prime\prime}$ wide x 12" deep. (8.8 x 10.7 x 30.4 (8.8 x 10.7 x 30.4 cm)

Weight:

5 lbs (2.26 kg)

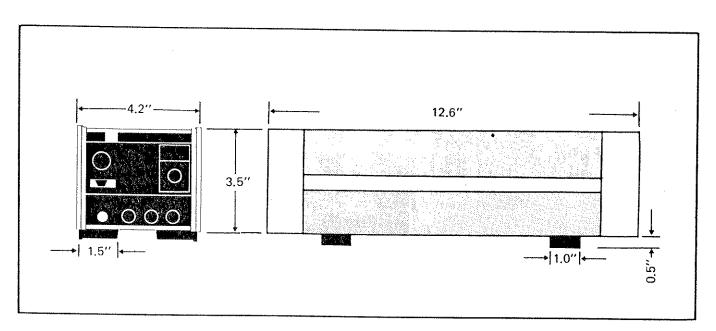


Figure 1-1. 731B OUTLINE DRAWING

Section 2

Operating Instructions

2-1. INTRODUCTION

2-2. This section of the manual contains information regarding installation and operation of the Model 731B DC Reference Standard. It is recommended that the contents of this section be read and understood before any attempt is made to operate the 731B. Should any difficulties arise during operation, please contact your nearest John Fluke Sales Representative or the John Fluke Mfg. Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043; telephone (206) 774-2211. A list of Sales Representatives is located in Section 7 of this manual.

2-3. SHIPPING INFORMATION

2-4. The 731B is packaged and shipped in a foam—

packed container. Upon receipt of the instrument, a thorough inspection should be made to reveal any possible shipping damage. Special instructions for inspection and claims are included in the shipping carton.

2-5. If reshipment of the equipment is necessary, the original container should be used. If the original container is not available, a new container can be obtained from the John Fluke Mfg. Co., Inc. Please reference the equipment model number when requesting a new shipping container.

2-6. INPUT POWER

2-7. The 731B can be operated from a 115 or 230V ac, 50 to 400 Hz power line. Before connecting the instrument to the power line, check and, if necessary, set the instrument to operate at the local line voltage as follows:

- a. Remove the top cover from the 731B and locate the input power selection switch on the inside of the 731B.
- b. Set the slide switch to the desired operating voltage, 115(white dot) or 230 (red dot).
- c. Install the proper fuse (i.e., AGC ½A for 115V ac and AGC ¼A for 230V ac) in the rear panel fuse holder.
- 2-8. The rear panel input power connector is a three prong, U-ground connector which permits the instrument to be connected, via the power cord, to the appropriate line power. The offset prong on this connector is connected to the 731B chassis and power supply, and should be connected, via the power cord, to a high quality earth ground.

2-9. RACK INSTALLATION

2-10. The 731B is designed for bench-top use or for installation in a standard 19-inch equipment rack, using one

of the optional accessory rack mounting kits. Information regarding rack installation procedures is given in Section 6 of this manual.

2-11. OPERATING FEATURES

2-12. The 731B controls, indicators and connectors are shown in Figure 2-1, and described in Table 2-1.

2-13. OPERATING NOTES

2-14. The following paragraphs describe various conditions which should be considered before operating the 731B.

2-15. Guarded Operation

- 2-16, The 731B is equipped with a guard that isolates its internal circuitry from the chassis and earth ground. A GUARD terminal is provided on the fornt panel, and when used, greatly reduces errors caused by common mode voltages. In general, guarded operation will be necessary under the following conditions:
- a. When a potential exists between equipment power line grounds.
- b. When long connecting leads are used to contact a high impedance load.

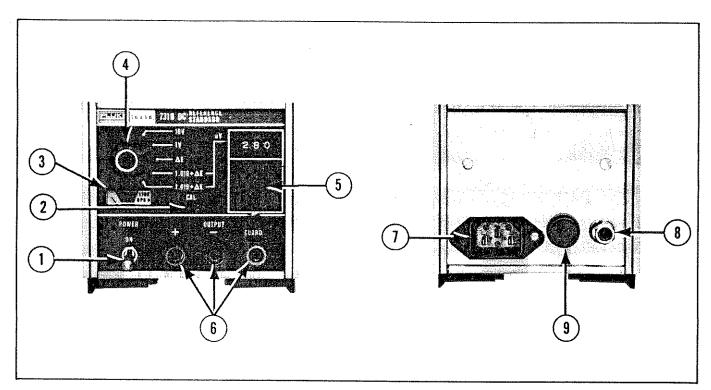


Figure 2-1. 731B CONTROLS, INDICATORS AND CONNECTORS

Table 2-1. 731B CONTROLS, INDICATORS AND CONNECTORS

r	<u> </u>	
REF. NO.	NAME	FUNCTION
Quant	POWER Switch	Switches the instrument on and off. When in the ON position, the Battery Charge Meter indicates line operation or battery charge level. Switch position can only be changed while activator is pulled out.
2	CAL Potentiometer	Provides the adjustment necessary to standardize the 731B (all modes) to an external standard cell.
3	Battery Charge Meter	Indicates power - on (LINE OPR) when the instrument is being operated from the power line. During battery operation, the meter indicates the relative charge level of the internal battery pack.
4	Mode Switch	Selects the operating mode used to supply voltage to the + and - OUTPUT terminals:
		 10V Provides a fixed 10V dc output. 1V Provides a fixed 1V dc output. ΔΕ Provides an adjustable+000 to +999 μVdc output in 1 μV steps. 1.018 +ΔΕ Provides an adjustable +1.018000 to +1.018999 Vdc output. This mode is used to standardize to 731B to a standard cell whose voltage falls within the adjustable range. 1.019 + ΔΕ Provides an adjustable +1.019000 to +1.019999V dc output. This mode is used to standardize the 731B to a standard cell whose voltage falls within the adjustable range.
5	ΔE vernier Control	A vernier control which provides the manual ΔE adjustment. The control is equipped with a three decade digital readout to permit exact settings from 000 to 999 μV dc.
6	OUTPUT Terminals	Provides front panel connection to the 731B output and guard circuits. + and — Voltage output terminals GUARD Provides connection to the internal guard circuit and is used to reduce the effects of common mode voltages.
7	Input Power Connector	Provides the means of connecting the instrument through the power cord to line power.
8	Ground Terminal	Provides a convenient ground point during battery operation.
9	Fuse	Protects the ac input section of the power supply.

- c. When operating the instrument in the presence of high level radiated noise, e. g., stay fields at the power line frequency.
- 2-17. One of the most common cases requiring guarding is that of differences in power line grounds. When the 731B is connected to another instrument, with both instruments grounded through their respective power cords, a potential difference may exist between the power line grounds of these two instruments. This potential difference can cause circulating ground currents which could cause errors in the output voltage. To prevent these errors from occurring, the 731B GUARD terminal should be connected to the load in such a manner as to provide a separate path for circulating ground currents. For proper connection, connect GUARD terminal directly to grounded side of load, at the load. Figure 2-2 illustrates correct GUARD terminal connection and the rerouted ground currents.

2-18. Battery Operation

2-19. The rechargeable nickel-cadmium battery provides at least 30 hours of continuous operation before recharging is required. Batteries are automatically trickle charged whenever the instrument is operating from the ac line. Recharging of completely discharged batteries requires approximately 12 hours.

NOTE

A ground terminal on the rear of the 731B provides a convenient method of grounding the instrument during battery operation.

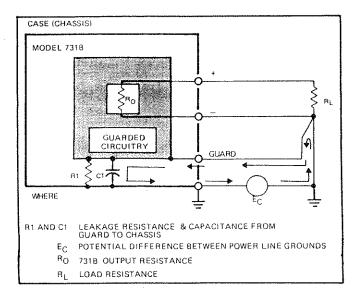


Figure 2-2. GUARD CONNECTION

2-20. OPERATION

2-21. Turn-On Procedure

- 2-22. Use of the following procedure is suggested for initial turn-on of the 731B:
- a. Connect the instrument to ac line power (See paragraph 2-6). This step is not necessary if battery operation is desired.
- b. Set the POWER switch to the ON position.

NOTE

The POWER switch actuator must be pulled out before the switch position can be changed.

c. Ensure that the instrument is energized by observing the indication shown on the battery charge meter. For line operation, the meter should indicate BAT OK. If the meter indication falls below BAT OK, the battery pack should be recharged.

2-23. Standard Cell Transfer

- 2-24. When standardized to an external standard cell, the selected 731B output will be within 2 ppm of the standard cell voltage. Stability is better than 10 ppm per month. Use the following procedure to standardize the 731B.
- a. Energize the 731B and allow a 30-minute warm-up period.
- Obtain a certified standard cell and note its voltage.
- c. Set the mode switch to $(1.018 + \Delta E)$ or $(1.019 + \Delta E)$ whichever includes the equivalent of the standard cell voltage.
- d. Connect the standard cell and a null detector (Fluke 845AB or equivalent) to the 731B as shown in Figure 2-3.
- e. Adjust the ΔE control so that the mode switch setting pluse the ΔE setting is equal to the standard cell voltage.
- f. Adjust the front panel CAL potentiometer for an optimum null.

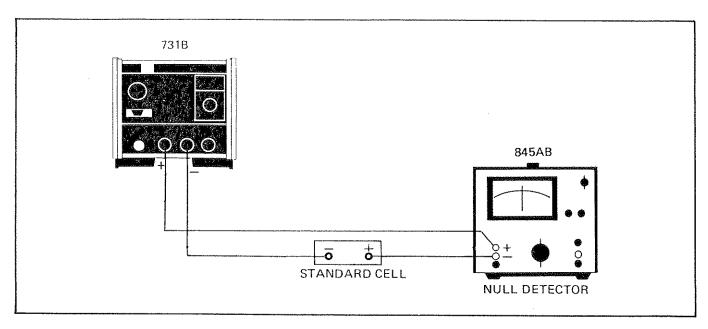


Figure 2-3. STANDARDIZING THE 731B.

g. Disconnect the standard cell and the null detector form the 731B OUTPUT terminals.

2-25. Reference Voltage Modes

2-26. A standardized 731B can be used to provide either

a ΔE , a 1 volt or a 10 volt output with standard cell transfer accuracies of 2 ppm, 3 ppm or 5 ppm, respectively. For example, standardizing the 731B to a standard cell having an absolute accuracy of 3 ppm would provide a 10 volt reference output which is accurate to 8 ppm (3 ppm standard cell accuracy + 5 ppm 731B transfer accuracy) or 0.0008%.

Section 3

Theory of Operation

3-1. INTRODUCTION

3-2. This section of the manual contains an overall functional description followed by a detailed block diagram analysis of the Model 731B DC Reference Standard. Simplified block diagrams and circuit diagrams are included as necessary, to supplement the text.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. The 731B, is an ultra-stable dc power supply which, when standardized, is capable of providing either a standard 1 volt, 10 volt or 000 to 999 microvolt output. The desired output voltage is selected by the Mode switch, and in the ΔE mode the output is adjustable using the ΔE vernier control. The resistor networks in the Output Divider scale a

fixed precision de voltage from the Reference Supply to provide the output voltage selected by the Mode switch setting. Operating voltage for the Reference Supply is derived from the Charging Circuit. Either ac line power or the battery pack can be used to provide the unregulated operating voltage to the Reference Supply. When using the ac line, the charging circuits also charge the battery pack.

3-5. BLOCK DIAGRAM ANALYSIS

3-6. General

3-7. A block diagram analysis of the functional circuits of the 731B is given in the following paragraphs. The circuits described correspond to the functional blocks defined in Figure 3-1. Detailed schematics are included in Section 8 of this manual.

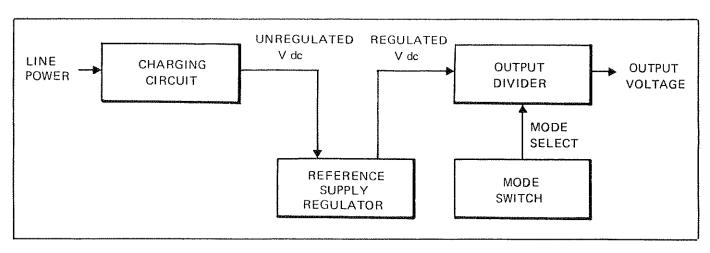


Figure 3-1. 731B SIMPLIFIED BLOCK DIAGRAM.

3-8. Charging Circuit

- 3-9. The Charging Circuit is included on the A3 Power Supply PCB and consists of a full wave rectifier CR12, series pass transistor Q3 and the associated components. The function of the charging circuit is two-fold, and depends on whether the 731B is being operated from the ac power line or the battery pack. In the line power configuration, the output of transformer A4T1 is rectified by CR12 before being used to supply the raw input voltage to the series-pass regulator Q3. Since the rectified output of CR12 exceeds the battery pack voltage, a trickle charge is delivered to the batteries, through CR5 and R30. When the 731B is disconnected from the ac power line, it is operated from the internal Ni-cad battery pack. In this configuration, the series regulator is by-passed and the battery output is delivered directly to the output of the charging circuit via diode CR8.
- 3-10. The meter circuit is calibrated to indicate the relative battery charge level during battery operation, and full scale during line operation. Resistors R31 and R32 are used to set the meter indication during battery operation. For line operation diode CR7 and R34 provide the extra drive necessary for a full scale indication.

3-11. Reference Supply

3-12. The Reference Supply (included on the Reference Regulator PCB) consists of a compensated zener reference amplifier U2, operational amplifier U1, transistors Q1 and Q2, and their associated circuitry. The function of the Reference Supply is to regulate the output voltage supplied by the charging circuit, and to provide a precisely regulated $\pm 10 \rm V$ dc output signal. Reference amplifier U2 functions as the primary element in the Reference Supply and is shown in Figure 3-2. It contains a silicon NPN transistor connected in series with a zener diode and both are mounted on a common substrate which is enclosed in a single envelope. The reference voltage, V ref, is the sum of the zener voltage, $V_{\rm Z}$, and the transistor's base-to-emitter voltage $V_{\rm D}$. Temperature variations affecting $V_{\rm Z}$ are compensated for by corresponding changes in $V_{\rm De}$.

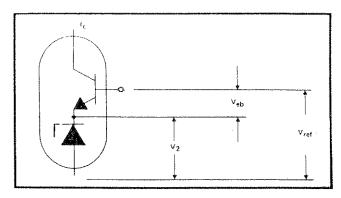


Figure 3-2. REFERENCE AMPLIFIER

3-13. In operation, the Reference Supply acts as a simple series pass regulator, with Q1 acting as the series pass element. Regulation is accomplished by the action of U2 which compares its internal reference voltage with the output voltage and adjusts the base drive of Q1, via amplifier U1, until both voltages are equal. Short circuit protection is provided by current sensing resistor R28 and transistor Q2. Potentiometer R11 is the front panel CAL adjust used to standardize the reference supply. The output of the supply, when standardized, is exactly +10V dc.

3-14. Output Divider

3-15. The 731A output voltage is selected by means of the front panel mode switch and a series of resistive dividers attached to the Reference Supply output. In the 10V mode the Reference Supply output is connected directly to the OUTPUT terminals. In all other modes the +10V reference voltage is reduced by a voltage divider before being made available at the OUTPUT terminals. Separate calibration potentiometers are provided for each of the selectable modes. The 1V output is adjusted by R19 and the 1.018 and 1.019 V outputs are adjusted by R17 and R15, respectively. The ΔE output is calibrated by R24, and is adjustable from 000 to 999 μ V using the front panel Δ E vernier control (A1R1). In the 1.018 $+\Delta E$ and 1.019 $+\Delta E$ modes the ΔE divider is operated in conjunction with the 1.018 and 1.019 dividers. In the ΔE mode, the ΔE divider operates independently.

Section 4

Maintenance

4-1. INTRODUCTION

4-2. This section of the manual contains maintenance information for the Model 731B DC Reference Standard. This includes service information, general maintenance, performance test, calibration and troubleshooting information. The performance test is recommended as a preventative maintenance tool, and should be executed every 90 days to verify proper instrument operation within the specifications given in Section 1. A calibration interval of 90 days is recomended to ensure that the instrument remains within these specifications. Table 4-1 lists the equipment required for the performance test and calibration.

4-3. SERVICE INFORMATION

- 4-4. Each instrument that is manufactured by the John Fluke Mfg. Co., Inc. is warranted for a period of one year upon delivery to the original purchaser. The WARRANTY is given on the back of the title page located in the front of the manual.
- 4-5. Factory authorized calibration and service for each Fluke product is available at various world-wide locations. A complete list of these service centers is included with the

Table 4-1. REQUIRED TEST EQUIPMENT

EQUIPMENT NOMENCLATURE	RECOMMENDED EQUIPMENT
Null Detector	Fluke Model 845AB
DC Differential Voltmeter	Fluke Model 895A
True RMS Differ- ential Voltmeter	Fluke Model 931B
DC Voltage Source	Fluke Model 341A DVM Calibrator
Standard Cell	Guildline Instru- ments Model 9152/P4
X1000 Amplifier	
Voltage Divider	Fluke Model 720A Kelvin-Varley Voltage Divider
Low-Thermal Switch	Leeds & Northrup Type 3702 Tapping Key
Autotransformer	General Radio W5MT3A or W10MT3A

WARRANTY. Shipping information is given in the operating instructions section of this manual. If requested, an estimate will be provided to the customer before work is begun on instruments that are beyond the warranty period.

4-6. GENERAL MAINTENANCE

4-7. Access Information

- 4-8. Use the following procedure to gain access to the interior of the instrument (See Figure 4-1):
- a. Remove the top dust cover.
- b. Remove the guard cover.
- c. Remove the bottom dust cover.

4-9. Cleaning

- 4-10. Clean the instrument periodically to remove dust, grease and other contamination. Use the following procedure:
- a. Clean the surface of all PCB's using clean dry air at low pressure (≤ 120 psi). If grease is encountered, spray with Freon T.F. Degreaser and remove grime with clean dry air at low pressure.
- b. Clean the front panel with a soft cloth dampened with a mild solution of detergent and water.

CAUTION!

Do not use aromatic hydrocarbons or chlorinated solvents on the front panel of the 731B.

4-11. Fuse Replacement

- 4-12. The power fuse F1 is located on the rear panel of the Model 731B. If replacement is necessary, use the following rated fuses:
- a. 115 Volt operation AGC ½ Ampere
- b. 230 Volt Operation AGC ¼ Ampere

4-13. Service Tools

4-14. No special tools are required to maintain or repair the 731B.

4-15. PERFORMANCE TEST

4-16. The performance test is designed to verify the overall operation of the 731B. This test can be used as an acceptance check and/or periodic maintenance check. Table 4-1 lists the equipment required to perform this test. If the unit fails any part of the performance test, corrective action is indicated. Tests should be conducted at an ambient temperature of $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and a relative humidity of less than 70%. Allow a 30 minute warm-up period prior to conducting the performance test.

4-17. Line Regulation

- a. Connect equipment as shown in Figure 4-2.
- b. Adjust the autotransformer for an output voltage of 115V ac.
- c. Zero the 845 AB on the 1 microvolt range, then set it to the 10 microvolt range.
- d. With the test switch open, adjust 731B output to equal the standard cell voltage.
- e. Close the switch and adjust 731B output for null on the 845AB.
- f. Vary autotransformer output from 115 to 105V ac and from 115 to 125V ac. The 845AB indication should not change more than ±1 microvolt.
- g. Set the variac output to 115V ac.

4-18. Output Noise, DC to 1 Hz.

- a. Connect equipment as shown in Figure 4-2.
- b. Zero the 845AB on the 1 microvolt range, then set it to the 10 microvolt range.
- c. Adjust 731B output for null on 845AB.
- d. Observe the random voltage excursions indicated on the 845AB over a 10 second period. Excursions should be less than 1 microvolt peak to peak.

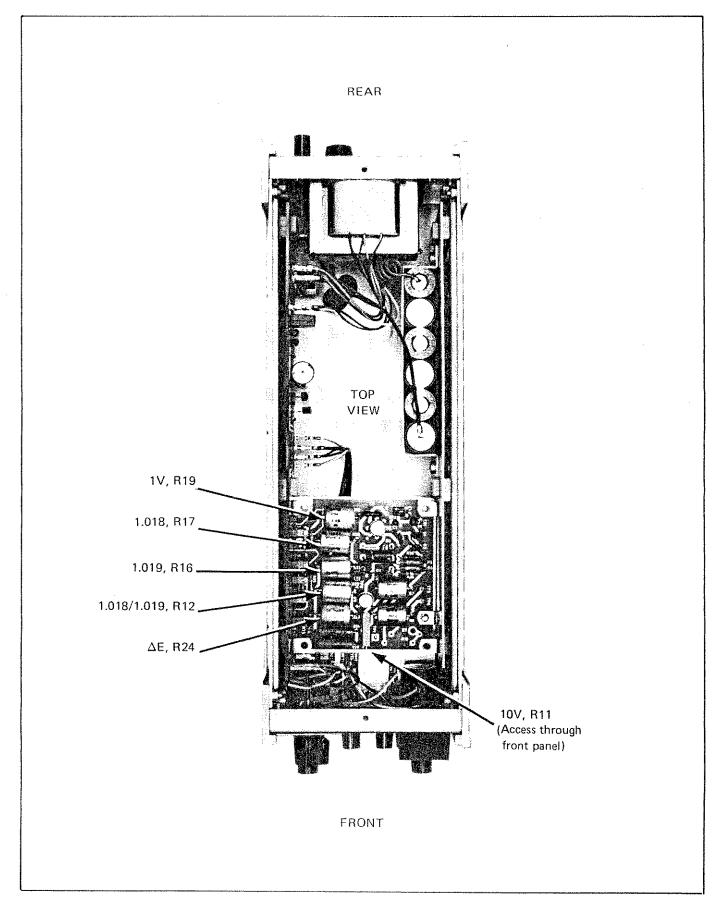


Figure 4-1. ADJUSTMENT LOCATIONS.

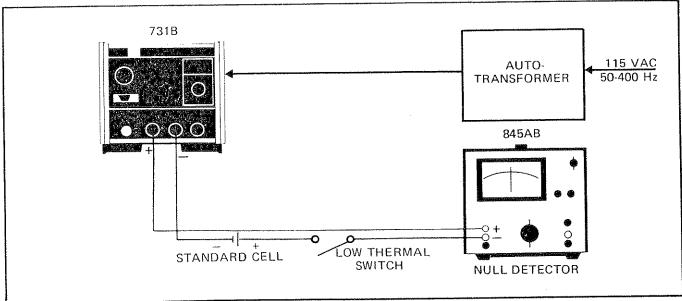


Figure 4-2. EQUIPMENT CONNECTIONS FOR LINE REGULATION, DC TO 1Hz OUTPUT NOISE, AND TRANSFER ACCURACY TESTS.

4-19. Output Noise, 1 Hz to 1 MHz

- a. Connect equipment as shown in Figure 4-3.
- b. Set 931B range to 100 millivolts, mode switch to TVM X1.
- c. Set 731B output to 1.018000 volts. The 931B should indicate less than 20 millivolts rms, which represents 20 microvolts output from the 731B.

4-20. Common-Mode Rejection

- a. Connect equipment as shown in Figure 4-4.
- b. Set 341A for zero volts output.
- c. Set 731B output to 1.018000 volts.
- d. Set 895A range to 1 volt, null sensitivity to 100 microvolts, and readout dials for null indication.
- e. Set 341A output to 100 volts. The 895A meter indication should be zero ± 100 microvolts.

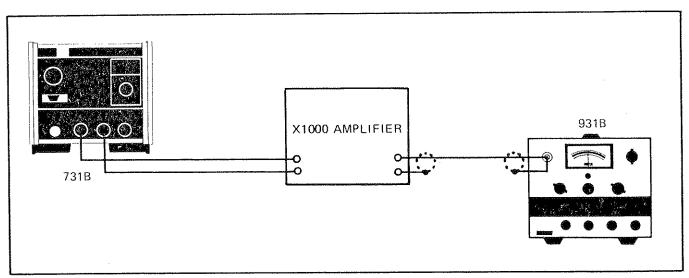


Figure 4-3. EQUIPMENT CONNECTIONS FOR 1 HZ TO 1 MHZ OUTPUT NOISE TEST.

Figure 4-4. EQUIPMENT CONNECTIONS FOR COMMON-MODE REJECTION TEST.

4-21. Isolation

- a. Turn off the 731B and disconnect it from the power line.
- b. Connect the negative output terminal of the 341A to the guard terminal of the 731B and the positive output terminal of the 341A to case (ground) of the 731B.
- c. Set 341A output to 500 volts. The 341A meter should indicate no discernable current flow.
- Repeat steps (b) and (c) for the positive output terminal of the 731B.
- e. Repeat steps (b) and (c) for the negative output terminal of the 731B.

4-22. Transfer Accuracy

- a. Connect equipment as shown in Figure 4-2.
- b. Zero 845AB on the 1 microvolt range, then set it to the 10 microvolt, range.
- c. With the switch open, adjust 731B output to equal standard cell voltage.
- d. Close the switch and adjust 731B output for null on the 845AB.
- e. Lock the ΔE control on the 731B.
- f. Open the test switch, remove all test leads from the setup, and allow the 731B to operate for 20 minutes.
- g. Reconnect equipment and check 731B output for null against standard cell. The 845AB should indicate less than ±2 microvolts deviation from null (zero).

113

Table 4-2. 731B CALIBRATION

		731B CONT SETTING		720A	845 AB	341A	CALIBRATION
STEP	STEP CONNECTIONS	FUNCTION	Δε	DIAL SETTINGS	RANGE	OUTPUT (VDC)	INSTRUCTIONS
1	Figure 4-5	10∨	Any	1.0000000	10 uV	11	Adjust 341A output for zero (<u>+</u> 10 uV) on the 845AB
2		1V		.1000000	1 uV	As set in step (1).	Adjust the "1V Cal" control (R19) for zero (<u>+</u> 1 uV) on the 845AB.
3		1V		1.0000000	1 uV	1.1	Adjust 341A output for zero (<u>+</u> 1 uV) on the 845AB
4		1.018 + ΔE	000	1.0180000	1 uV	As set in step (3)	Adjust the "1.018 Cal" control (R17) for zero (<u>+</u> 1 uV) on the 845AB.
5		1.019 + ΔE		1.0190000	1 uV	As set in step (3).	Adjust the "1.019 Cal" control (R15) for zero (<u>+</u> 1 uV) on the 845AB.
6		1.019 + ΔE	999	1.0199999	1 uV	As set in step (3).	Adjust the "1.018/1.019 + Δ E Cal" control (R12) for zero (\pm 1 uV) on the 845AB.
7		ΔΕ	a control of the cont	.000999	1 uV	As set in step (3).	Adjust " Δ E Cal" control (R24) for zero (\pm 1 uV) on the 845AB.
8	Figure 4-6	Set to standard cell voltage.	A CANADA		1 uV		Adjust front panel "CAL" control (R11) for zero (±1 uV) on the 845 AB.

4-23. CALIBRATION

4-24. The calibration procedure for the 731B is given in Table 4-2. A description of equipment required for calibra-

tion is given in Table 4-1. Calibration should be performed with ambient temperature at $+23^{\circ}C \pm 1^{\circ}C$ and relative humidity less than 70%. Adjustment locations are shown in Figure 4-1.

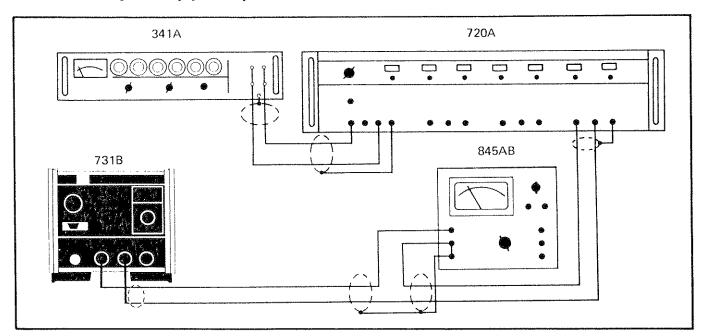


Figure 4-5. EQUIPMENT CONNECTIONS FOR DIVIDER ADJUSTMENT

4-25. TROUBLESHOOTING

- 4-26. Before attempting to troubleshoot the 731B, it should be verified that the trouble is actually in the instrument and is not caused by faulty external equipment or connections. Then the performance test should be executed to localize the problem.
- 4-27. Check output voltages at each position of the func-
- tion switch. The 10V output must be correct or all voltages will be incorrect. If the 10V output is correct but one or more other outputs are incorrect, check calibration of the divider associated with the faulty output and check for proper resistance values in the divider.
- 4-28. The voltage at the collector of Q1 should be approximately 17V dc for line operation and 14V dc for battery operation. If these voltages are correct but the 10V output is incorrect, either U1 or U2 in the Reference Supply is defective.

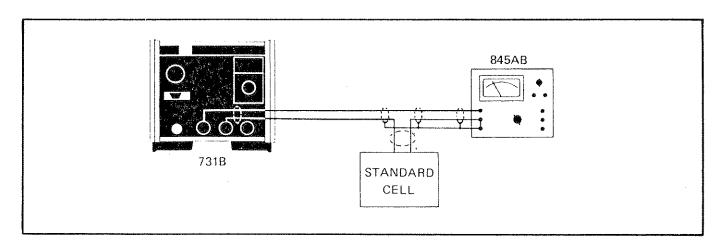


Figure 4-6. EQUIPMENT CONNECTIONS FOR ABSOLUTE VOLTAGE ADJUSTMENT

Section 5

Lists of Replaceable Parts

TABLE OF CONTENTS

ASSEMBLY NAME	PART NO.	Page
Final Assembly, Model 731B		5 - 3
Reference Regulator PCB Assembly	390195	5 - 6
Power Supply and Adjustment PCB Assembly	390187	5 - 9

5-1. INTRODUCTION

- 5-2. This section contains an illustrated parts breakdown of the instrument. Components are listed alpha-numerically by assembly. Electrical components are listed by reference designation and mechanical components are listed by item number. Each listed part is shown in an accompanying illustration.
- 5-3. Parts lists include the following information:
- a. Reference Designation or Item Number.
- b. Description of each part.
- c. Fluke Stock Number.
- d. Federal Supply Code for Manufacturers. (See Appendix A for Code-to-Name list.)
- e. Manufacturer's part Number or Type.
- f. Total Quantity per assembly or component.
- g. Recommended Quantity: This entry indicates the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one of each assembly in the instrument be stocked. In the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument mode, the REC QTY column lists the recommended quantity of the item in that particular assembly.
- h. Use Code is provided to identify certain parts that have been added, deleted or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectivity, paragraph 5-7.

5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instruction, if necessary.

- 5-6. To ensure prompt and efficient handling of your order, include the following information:
- a. Quantity
- b. FLUKE Stock Number
- c. Description
- d. Reference Designation or Item Number
- e. Printed Circuit Board Part Number
- f. Instrument model and serial number.

5-7. USE CODE EFFECTIVITY LIST

USE CODE SERIAL N

SERIAL NUMBER EFFECTIVITY

FINAL ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	USE CDE
	FINAL ASSEMBLY, Model 731B Figure 5-1						
A 2	Reference, Regulator Assembly	390195	89536	390195	¥1		
A3	Power Supply & Adjustment Assembly	390187	89536	390187	1		
BTI	Battery pack	306134	89536	306134	mung		
Fl	Fuse, ½ amp, fast acting	153858	71400	Type AGC	1		
JI	Binding post, red	380147	32767	820 - 55	1		
J2	Binding post, black	380154	32767	820 - 65	1		
J3	Binding post, blue	275578	32767	820 - 45	1		
M1	Meter, 0 - 1 mA	266494	32539	Type TS10	1		
R1	Res, var, ww, 5k ±5%, 2W	295626	80294	3509S9-502	1		
S1	Switch, rotary	284414	89536	284414	1		
S2	Switch, toggle	402537	83979	MSTL206N	1		
T1	Xfmr	390872	89536	390872	1		
XFI	Fuseholder	100107	71400	НКР	1		
J4	Binding post, grounding	155911	58474	GP30NC	1		
	Corner	295972	89536	295972	4		
2	Cover, reference regulator	390351	89536	390351	1		
3	Decal, front	357970	89536	357970	1		
4	Dial, counting	295642	13511	1381	1		
5	Guard, right side	390344	89536	390344	1		
6	Knob	341453	89536	341453	1		
7	Panel, front	296814	89536	296814	1		
8	Panel, rear	390377	89536	390377	1		
9	Receptacle, conn.	267542	00779	367542	16		

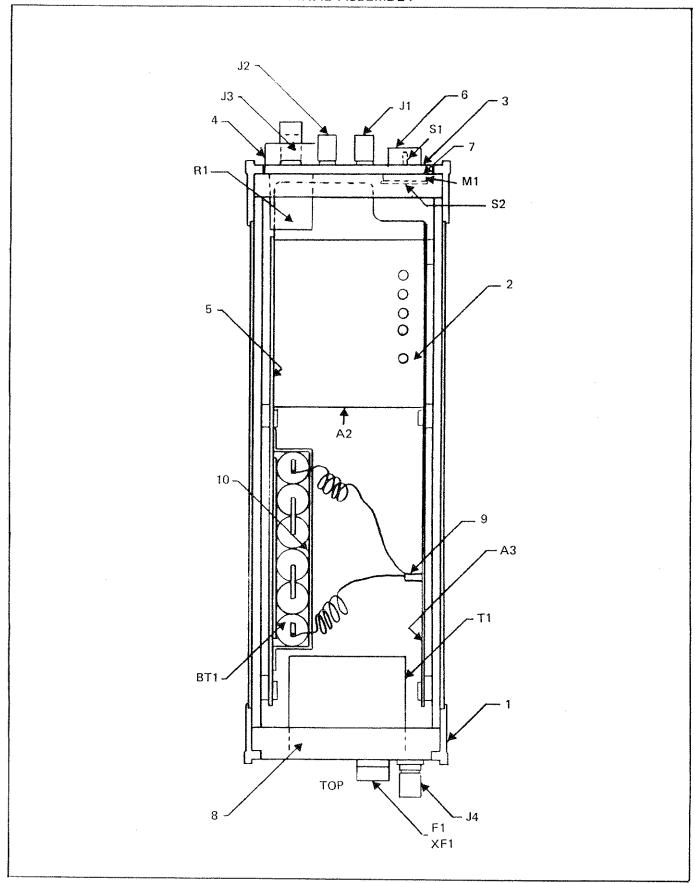


Figure 5-1 731B FINAL ASSEMBLY

FINAL ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT QTY	REC QTY	USE CDE
10	Strap, battery	296822	89536	296822	1		
	Chassis, side	390385	89536	390385	2		
	Cover, bottom	301572	89536	301572	1		
	Cover, top	390385	89536	390385	2		
	Foot	292870	89536	292870	1		
	Retainer, meter	307322	89536	307322	1		
	•						
					:		

REFERENCE-REGULATOR PCB ASSEMBLY

REFERENCE-REGULATOR PCB ASSEMBLY								
REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY		
	REFERENCE-REGULATOR PCB ASSEMBLY (731B-4011) Figure 5 - 2	390195	89536	390195	REF			
C1	Cap, ta, 1 uF <u>+</u> 20%, 35V	161919	56289	196D105X0035	1			
C2	Cap, mica, 100 pF ±5%, 100V	148494	14655	CD15FD101J03	1			
C3	Cap, cer, 0.01 uF ±20%, 100V	149153	56289	C023 B101 F103 M	1			
C4 C4	Cap, mylar, 0.01 uF ±10%, 250V	161992	73445	C280AEA100K	1			
CR1	Diode, zener, 5.6V	277236	07910	1N752A	1			
CR2	Diode, FET, current regulator	348482	17856	E505	1			
Q1,Q2	Xstr, Si, PNP	218396	04713	2N3904	2			
R1	Res, comp, 100 ±5%, ¼W	147926	01121	CB1015	1			
R2	Res, ww, 4.22k ±5%, ½W	311761	89536	311761	1			
R3	Res, ww, 10k ±0.05%, ½W	195776	89536	195776	i			
R4	Res, ww, 1.27k ±1%, ½W	341628	89536	341628	1			
R5, R6, U2	Ref Amplifier set	346270	89536	346270	t want			
R7, R8	Ref Amplifier Divider set	346304	89536	346304	1			
R11	Res, var, 100 ±20%, ½W	267823	71450	190PC101B	1			
R13	Res, ww, 412k ±5%, ½W	311753	89536	311753	1			
R14	Res, met film, $845k \pm 1\%$, $1/8W$	221671	91637	MFF1-88453F	1			
R16	Res, met film, 31.6k $\pm 1\%$, 1/8W	312660	91637	MFFI-83162F	1			
R18, R26	Res, met film, $4.5M \pm 1\%$, $\frac{1}{2}W$	346981	91637	MFF1-24504F	2			
R20 thru R23	Res, divider set	391417	89536	391417	1			
R25	Res, met film, 845 $\pm 1\%$, 1/8W	320408	91637	MFF1-88450F	1			

REFERENCE - REGULATOR PCB ASSEMBLY

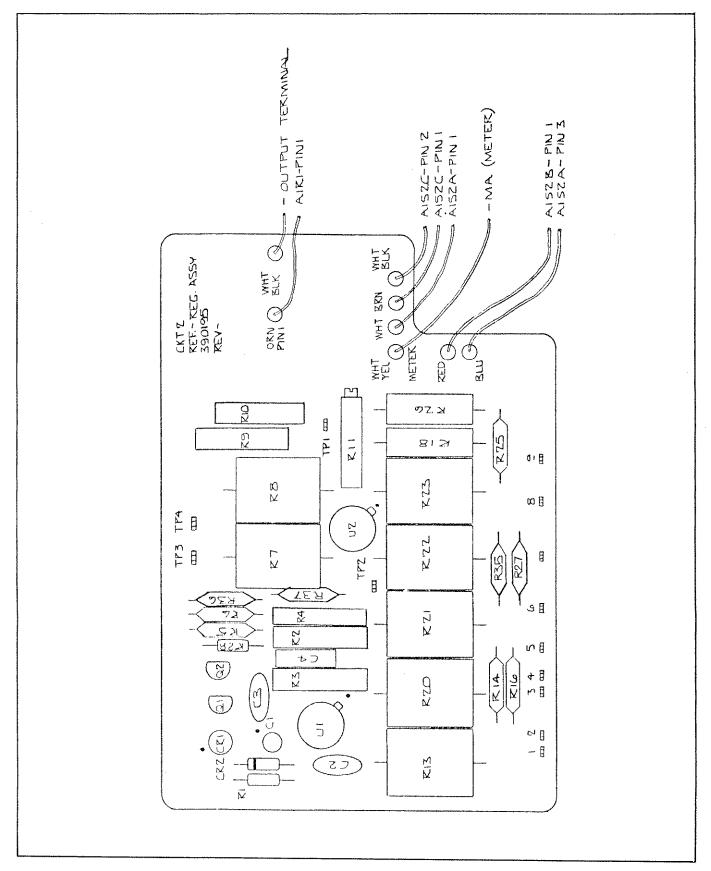


Figure 5-2. REFERENCE - REGULATOR PCB ASSEMBLY.

REFERENCE-REGULATOR PCB ASSEMBLY

·	REFERENCE-REGULATOR PCB ASSEMBLY								
REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT QTY	REC QTY	USE CDE		
R27	Res, met film, 4.53k ±1%, 1/8W	376921	91637	MFF1-84531F	1				
R28	Res, comp, 62 ±5%, ¼W	261842	01121	CB6205	1				
R35	Res, met film, 681k ±1%, 1/8W	387043	01637	MFF1-86813F					
R36, R37	Res, met film, $10 \pm 1\%$, $1/8W$	268789	91637	MFF1-8100F	2				
U1	IC, Operational Amplifier	284760	12040	LM308	1				
	Connector, amp pins	267500	00779	86144-2	21	:			
						Water Walter			
-									
-									
				order management of the control of t					
						į			

POWER SUPPLY AND ADJUSTMENT PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	USE CDE
	POWER SUPPLY AND ADJUSTMENT PCB ASSEMBLY (731B - 4012) Figure 5- 3	390187	89536	390187	REF		
C5	Cap, elect, 150 uF +50/-10%, 63V	170274	25403	ET151 X063 A01	1		
CR5 thru CR9	Diode, Si hi-speed switch	203323	07910	TD8253	5		
CR10	Diode, FET, current regulator	348482	17856	E505	1		
CR11	Diode, zener, 18V	327973	07910	1N967B	1		
CR12	Rectifier, bridge	296509	51605	FB100	1		
Q3	Xstr, Si, NPN	218396	04713	2N3904	1		·
R12	Res, var, cermet, 1k ±20%, ½W	267856	71450	190PC102B	1		
R15, R17	Res, var, cermet, 10k <u>+</u> 20%, ½W	267880	71450	190PC103B	2		
R19	Res, var, cermet, 200k ±20%, ½W	381 509	80031	ET34P204	1		
R24	Res, var, cermet, 100 ±20%, ½W	267823	71450	190PC101B	1		
R30	Res, comp, 510 ±5%, ½W	108951	01181	EB5115	1		
R31	Res, met film, 4.22k ±1%, 1/8W	168245	91637	MFF1-84221F	1		
R32	Res, met film 16.9k ±1%, 1/8W	267146	91637	MFF1-81692F	1		
R33	Res, comp, 180 ±5%, ½W	108944	01121	CB1815	1		
R34	Res, comp, 8.2k ±5%, ¼W	160796	01121	CB8225	1	<u>!</u>	
S2	Switch, slide, DPDT	234278	82389	XW1649	1		
	Socket, Amp	267617	00779	85863-5	9		
	Pins, Amp	267500	00779	86144-2	24		
						Marie Manadamana de Carterio de servicio de la carte d	

POWER SUPPLY AND ADJUSTMENT PCB ASSEMBLY

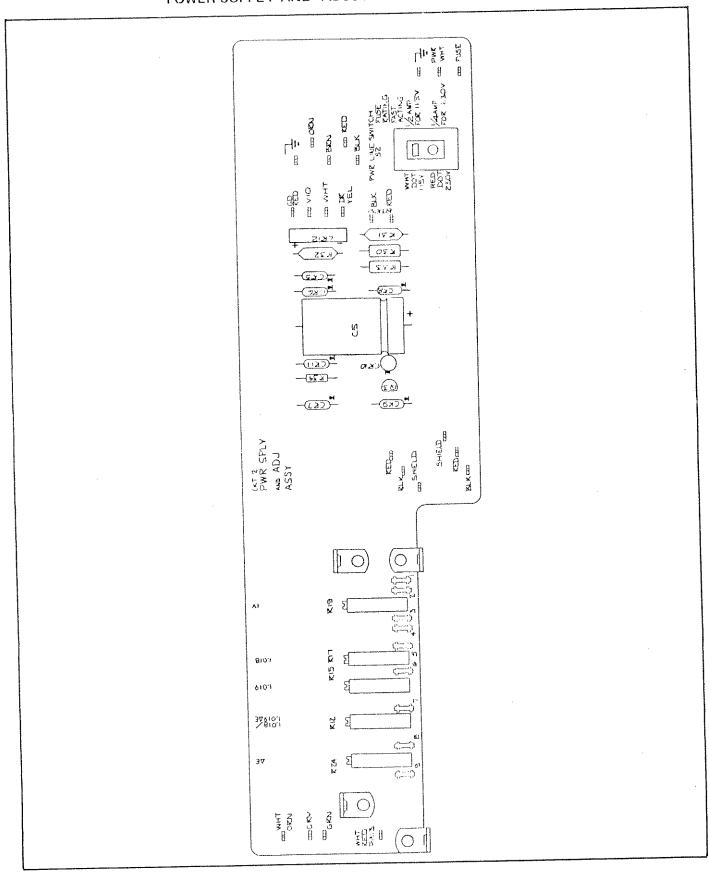


Figure 5-3. POWER SUPPLY AND ADJUSTMENT PCB ASSEMBLY.

Section 6

Option & Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the options and accessories available for use with the 731B. Each option and/or accessory, if any, is described under separate major headings. The descriptions include the applicable operating instructions, maintenance instructions, and field installation procedures.

6-3. RACK MOUNTING KITS

6-4. Rack mounting kits for the 731B are available in four difference configurations. Each of the configurations as shown in Figure 6-1, is designed for installation in a standard 19-inch equipment rack. The kits contain all of the hardware necessary for installation and each can be assembled to offset the 731B ('s) to either the left or right side of the equipment rack.

Figure 6-1. RACK MOUNTING CONFIGURATIONS.

- 6-5. Installation instructions for the 731B rack mounting kits are given in the following procedure. Use the same procedure for all configurations of the 731B rack mounting kits.
- a. Remove the four molded plastic feet and the bail from the bottom of the instrument (s).
- b. Peel off name plate decals from the corner of the instrument (s). See Figure 6-2.
- c. Refer to the kit shown in Figure 6-1 and select the instruments to which each of the rack ears will be attached.
- d. Remove the screws which match the rack ear patterns from the appropriate front corners of the selected instruments.
- e. Attach the rack ears using the pan head screws supplied with the kit.

- f. If the single-unit rack mounting kit (M03-201-601) is being installed, the unit can be mounted in the instrument rack at this point. Otherwise, proceed with steps g through k.
- g. Remove top and bottom covers from all 731B's.
- h. Remove the top and bottom corner screws from the front and rear of the instruments. Do not remove these screws on the rack ear side of the instruments.
- i. Assemble the instruments on a flat surface in the order in which they are to be installed.
- j. Insert the dual-rack-mounting fasteners through the front and rear corner nut locations which were vacated in step h. See Figure 6-3.
- k. Reinstall the top and bottom covers on all of the instruments.

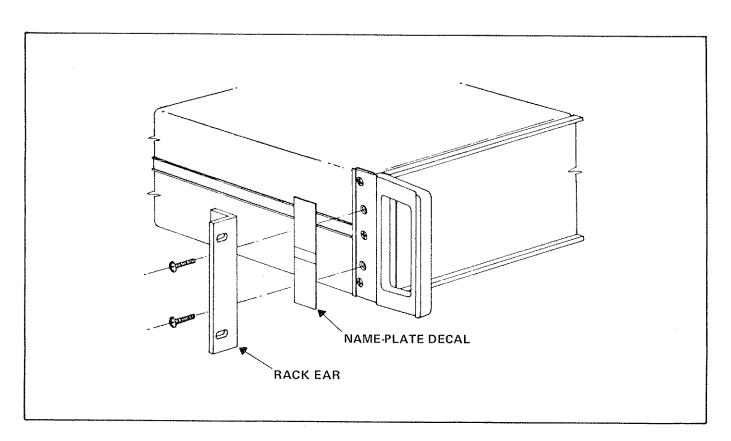


Figure 6-2. RACK EAR INSTALLATION.

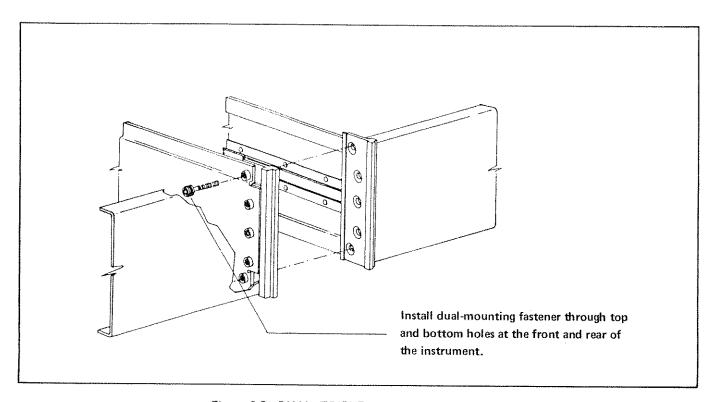


Figure 6-3. DUAL, TRIPLE, AND QUAD MOUNTING

Section 7 General Information

7-1. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

7-1

List of Abbreviations and Symbols

A or amp	ampere	hf	high frequency	(+) or pos	positive
ac	alternating current	Hz	hertz	pot	potentiometer
af	audio frequency	IC	integrated circuit	р-р	peak-to-peak
a/d	analog-to-digital	if	intermediate frequency	ppm	parts per million
assy	assembly	in	inch(es)	PROM	programmablle read-only
AWG	american wire gauge	inti	internal	. , , , , , , , ,	memory
В	bei	1/0	input/output	psi	• •
bcd	binary coded decimal	k	kilo (10°)	RAM	pound-force per square inc
°C	Celsius	kHz	kilohertz	rf	random-access memory radio frequency
сар	capacitor	kΩ	kilohm(s)	rms	, ,
ccw	counterclockwise	kV	kilovolt(s)	ROM	root mean square
cer	ceramic	Hf	low frequency	s or sec	read-only memory
cermet	ceramic to metal(seal)	LED	light-emitting diode	scope	second (time)
ckt	circuit	LSB	least significant bit	SH	oscilloscope
cm	centimeter	LSD	least significant digit	Si	shield
cmrr	common mode rejection ratio	M	mega (10°)		silicon
comp	composition	m	milli (10°')	serno	serial number
cont	continue	mA	milliampere(s)	sr Ta	shift register
ert	cathode-ray tube	max	maximum		tantaium
w	clockwise	mf	metal film	tb	terminal board
/a	digital-to-analog	MHz	megahertz	tc	temperature coefficient or
lac	digital-to-analog converter	min	minimum		temperature compensating
IB	decibel	mm	millimeter	tcxo	temperature compensated
lc	direct current	ms	millisecond		crystal oscillator
mm	digital multimeter	MSB		tp .	test point
lvm	digital voltmeter	MSD	most significant bit	\mathbf{u} or μ	micro (10 ⁻⁶)
lect	electrolytic	MTBF	most significant digit	uhf	ultra high frequency
xt	external		mean time between failures	us or μ s	microsecond(s) (10 -6)
:	farad	MTTR	mean time to repair	uul	unit under test
F	Fahrenheit	mV	millivolt(s)	٧	volt
ET	Field-effect transistor	mv	multivibrator	٧	voltage
······································	flip-flop	MΩ	megohm(s)	var	variable
req	frequency	n	nano (10°°)	vco	voltage controlled oscillator
SN	federal stock number	na	not applicable	vhf	very high frequency
		NC	normally closed	vil	very low frequency
· }	gram	(~) or neg	negative	W	watt(s)
d	giga (10°)	NO	normally open	ww	wire wound
ie	guard	ns	nanosecond	xfmr	transformer
ie iHz	germanium	opni ampi	operational amplifier	xstr	transistor
	gigahertz	р	pico (10 ⁻¹²)	xtal	crystal
mv nd	guaranteed minimum value	para	paragraph		crystal oscillator
	ground	pcb	printed circuit board	Ω	ohm(s)
1	henry	рF	picofarad	μ	micro (10 ⁻⁶)
ıd	heavy duty	pn	part number	-	

D9816

Westermann Wilhelm Augusta-Anlage Mannheim-Nackarau Germany

Marcon Electronics Corp Kearny, New Jersey

Nytronics Comp. Group Inc. Darrlingon, South Carolina

Welwyn International Inc. Westlake, Ohio

Aerovox Corp. New Bedford, Massachusetts

Film Capacitors Inc. Passaic, New Jersey

00779 AMP, Inc.

Harrisburg, Pennsylvania

Allen Bradley Co. Milwaukee, Wisconsin

TRW Electronics & Defense Sector Lawndale, California

Texas Instruments Inc. Semiconductor Group Dallas, Texas

01537

Motorola Communications & Electronics Inc. Franklin Park, Illinois

RCL Electronics/Shallcross Inc. Electro Components Div. Manchester, New Hampshire

Sprague Electric Co. (Now 56289)

Varian Associates Inc. Pulse Engineering Div. Convoy, Connecticut

Spectrol Electronics Corp. City of Industry, California

Amperex Electronic Corp. Ferrox Cube Div. Saugenties, New York

General Instrument Corp. Government Systems Div.

Westwood, Massachusetts

Sonar Radio Corp. Hollywood, Florida 02533

Leigh Instruments Ltd. Frequency Control Div. Don Mills, Ontario, Canada

02606 Fenwal Labs

Division of Travenal Labs Morton Grove, Illinois

Bunker Ramo-Eltra Corp. Amphenol NA Div. Broadview, Illinois

RCA-Solid State Div. Somerville, New Jersey

Arco Electronics Inc. Chatsworth, California

General Electric Co.

Semiconductor Products & Batteries Aubum, New York

Genisco Technology Corp. Eltronics Div. Rancho Dominquez, Calif.

Gilbert Engineering Co.Inc Incon Sub of Transitron Electronic Corp. Glendale, Arizona

KDI Electronics Inc. Pyrofilm Div. Whippany, New Jersey

Clairex Corp.

Clairex Electronics Div. Mount Vemon, New York

03980

Muirhead Inc. Mountainside, New Jersey

Cooper Industries, Inc. Arrow Hart Div. Hartford, Connecticut

Essex International Inc. Wire & Cable Div. Anaheim, California

Midland-Ross Corp. Midtex Div. N. Mankato, Minnesota

AVX Corp. AVX Ceramics Div. Myrtle Beach, S. Carolina

Telonic Berkley Inc. Laguna Beach, California 04713

Motorola Inc. Semiconductor Group Phoenix, Arizona

05236

Jonathan Mfg. Co. Fullerton, California

05245 Corcom Inc. Libertyville, Illinois

05276 **IIT Pomona** Electronics Div. Pomona, California

05277

Westinghouse Elec. Corp. Semiconductor Div. Youngwood, Pennsylvania

Union Carbide Corp. Materials Systems Div. Cleveland, Ohio

05571

Sprague Electric Co. (Now 56289)

Viking Connectors Inc. Sub of Criton Corp. Chatsworth, Calif.

EG & G Wakefield Engineering Wakefield, Massachusetts

05972 Loctite Corp.

Newington, Connecticut

06001

General Electric Co. Electric Capacitor Product Section Columbia, S. Carolina

Fairchild Weston Systems Inc. Data Systems Div. Sarasota, Florida

06192

La Deau Mfg. Co. Glendale, California

06229

Electrovert Inc. Eimsford, New York

Panduit Corp. Tinley Park, Illinois

06473

Bunker Ramo Corp. Amphenol NA Div. SAMS Operation Chatsworth, California

06555

Beede Electrical Instrument Penacook, New Hampshire

06665

Precision Monolithics Sub of Bourns Inc. Santa Clara, California

06666

General Devices Co. Inc. Indianapolis, Indiana

06739

Electron Corp. Littleton, Colorado

06743 Gould Inc. Foil Div. Eastlake, Ohio

06751

Components Inc. Semcor Div. Phoenix, Arizona

Robinson Nugent Inc. New Albany, Indiana

Richco Plastic Co. Chicago, Illinois

06961

Vernitron Corp. Piezo Electric Div. Bedford, Ohio

በፍወደሰ

Varian Associates Inc. Eimac Div. San Carlos, California

07047

Ross Milton Co., The Southampton, Penna.

07138

Westinghouse Electric Corp. Industrial & Government Tube Div. Horseheads, New York

07233

Benchmark Technology Inc. City of Industry, Calif.

Biddle Instruments Blue Bell, Penna.

07256

Silicon Transistor Corp. Sub of BBF Inc. Chelmsford, Massachusetts

07261

Avnet Corp. Culver City, California

Fairchild Camera & Instrument Semiconductor Div. Mountain View, California

Bircher Co. Inc., The Rochester, New York

07557 Campion Co. Inc. Philadelphia, Penna.

07597 Burndy Corp. Tape/Cable Div. Rochester, New York

07716 TRW Inc. (Can use 11502) IRC Fixed Resistors/ Burlington Burlington, Iowa

07792 Lerma Engineering Corp. Northampton, Massachusetts

07810 Bock Corp. Madison, Wisconsin

07933 Raytheon Co. Semiconductor Div. Mountain View, Calif.

08235 Industro Transistor Corp. Long Island City, New York

08261 Spectra-Strip An Eltra Co. Garden Grove, Calif.

08530 Reliance Mica Corp. Brooklyn, New York

08718 ITT Cannon Electric Phoenix Div. Phoenix, Arizona

08806 General Electric Co. Minature Lamp Products Cleveland, Ohio

08863 Nylomatic Fallsington, Penna.

08988 Skottie Electronics Inc. Archbald, Pennsylvania

09021 Airco Inc. Airco Electronics Bradford, Penna.

09023 Cornell-Dublier Electronics Fuquay-Varina, N. Carolina

09214 General Electric Co. Semiconductor Products Dept. Aubum, New York

09353 C and K Components Inc. Newton, Massachusetts 09423 Scientific Components Inc. Santa Barbara, California

09579 CTS of Canada, Ltd Streetsville, Ontario

09922 Burndy Corp. Norwalk, Connecticut

09969 Dale Electronics Inc. Yankton, South Dakota

09975 Burroughs Corp. Electronics Components Detroit, Michigan

10059 Barker Engineering Corp. Kenilworth, New Jersey

10389 Illinois Tool Works Inc. Licon Div. Chicago, Illinois

10582 CTS of Asheville Skyland, N. Carolina

11236 CTS Corp. Berne Div. Berne, Indiana

11237 CTS Corp of California Paso Robles Div. Paso Robles, California

11295 ECM Motor Co. Schaumburg, Illinois

11358
Columbia Broadcasting System
CBS Electronic Div.
Newburyport, Massachusetts

11403 Vacuum Can Co.Best Coffee Maker Div.

11502 TRW Inc. TRW Resistive Products Div. Boone, North Carolina

Chicago, Illinois

11503 Keystone Columbia Inc. Freemont, Indiana

11532 Teledyne Relays Teledyne Industries Inc. Hawthome, California 11711 General Instrument Corp. Rectifier Div. Hicksville, New York

11726 Qualidyne Corp. Santa Clara, California

12014 Chicago Rivet & Machine Co. Naperville, Illinois

12040 National Semiconductor Corp. Danbury, Connecticut

12060 Diodes Inc. Northridge, California

12136
PHC Industries Inc.
Formerly Philadelphia Handle Co.
Camden, New Jersey

12300 AMF Canada Ltd. Potter-Brumfield Guelph, Ontario, Canada

12323 Practical Automation Inc. Shelton, Connecticut

12327 Freeway Corp, Cleveland, Ohio

12443 Budd Co.,The Plastics Products Div. Phoenixville, Pennsylvania

Hitachi Metals Inemational Ltd. Hitachi Magna-Lock Div. Big Rapids, Missouri

12615 US Terminals Inc. Cincinnati, Ohio

12617 Hamlin Inc. Lake Mills, Wisconsin

12697 Clarostat Mfg. Co. Inc. Dover, New Hampshire

12749 James Electronic Inc. Chicago, Illinois

12856 MicroMetals Inc. Anaheim, California

12881 Metex Corp. Edison, New Jersey

12895 Cleveland Electric Motor Co. Cleveland, Ohio 12954 Microsemi Corp. Components Group Scottsdale, Arizona

12969 Unitrode Corp. Lexington, Massachusetts

13050 Potter Co. Wesson, Mississippi

13103 Thermalloy Co., Inc. Dallas, Texas

13327 Solitron Devices Inc. Tappan, New York

13511 Bunker-Ramo Corp. Amphenol Cadre Div. Los Gatos, California

13606 Sprague Electric Co. (Use 56289)

13689 SPS Technologies Inc. Hatfield, Pennsylvania

13919 Burr-Brown Research Corp. Tucson, Arizona

14099 Semtech Corp. Newbury Park, California

14140
McGray-Edison Co.
Commercial Development Div.
Manchester, New Hampshire

14193 Cal-R-Inc. Santa Monica, California

14298 American Components Inc. an Insilco Co. RPC Div.

Conshohocken, Pennsylvania

14298 ACIC Inc. Sub of Insilco Corp. Research Triangle Park, NC

14329 Wells Electronics Inc. South Bend, Indiana

Watkins-Johnson Co. Palo Alto, California

14552 Microsemi Corp. Santa Ana, California

14655 Comell-Dublier Electronics Div. of Federal Pacific Electric Co. Govt Cont Dept. Newark, New Jersey

14704 Crydom Controls (Division of Int Rectifier) El Segundo, Califomia

14752 Electro Cube Inc. San Gabriel, California

14936 General Instrument Corp. Discrete Semi Conductor Div. Hicksville, New York

14949 Trompeter Electronics Chatsworth, California

15412 Amtron Midlothian, Illinois

15542 Scientific Components Corp. Mini-Circuits Laboratory Div. Brooklyn, New York

15636 Elec-Trol Inc. Saugus, California

15782 Bausch & Lomb Inc. Graphics & Control Div. Austin, Texas

15801
Fenwal Eletronics Inc.
Div. of Kidde Inc.
Framingham, Massachusetts

15818
Teledyne Inc. Co.
Teledyne Semiconductor Div.
Mountain View, California

15849 Useco Inc. (Now 88245)

15898 International Business Machines Corp. Essex Junction, Vermont

16245 Conap Inc. Olean, New York

16258 Space-Lok Inc. Burbank, California

16352 Codi Corp. Linden, New Jersey

16469 MCL Inc. LaGrange, Illinois

16473 Cambridge Scientific Industries Div. of Chemed Corp. Cambridge, Maryland 16733 Cablewave Systems Inc. North Haven, Connecticut

16742 Paramount Plastics Fabricators Inc. Downey, California

16758 General Motors Corp. Delco Electronics Div. Kokomo, Indiana

Circuit Structures Lab Burbank, California

Electronic Molding Corp. Woonsocket, Rhode Island

17338 High Pressure Eng. Co. Inc. Oklahoma City, Oklahoma

17545 Atlantic Semiconductors Inc. Asbury Park, New Jersey

17745 Angstrohm Precision, Inc. Hagerstown, Maryland

17856 Siliconix Inc. Santa Clara, California

18178 E G & Gvactee Inc. St. Louis, Missouri

18324 Signetics Corp. Sacramento, California

18520 Sharp Electronics Corp. Paramus, New Jersey

18542 Wabash Inc. Wabash Relay & Electronics Div. Wabash, Indiana

18565 Chomerics Inc. Woburn, Massachusetts

18612 Vishay Intertechnology Inc. Vishay Resistor Products Group Malvem, Pennsylvania

18632 Norton-Chemplast Santa Monica, Califomia

18677 Scanbe Mfg. Co. Div. of Zero Corp. El Monte, California

18736 Voltronics Corp. East Hanover, New Jersey 18927 GTE Products Corp. Precision Material Products Business Parts Div. Titusville, Pennsylvania

19315 Bendix Corp., The Navigation & Control Group Terboro, New Jersey

19451 Perine Machinery & Supply Co.. Kent, Washington

19613
Minnesota Mining & Mfg. Co.
Textool Products Dept.
Electronic Product Div.
Irving, Texas

19647 Caddock Electronics Inc. Riverside, California

19701
Mepco/Centralab Inc.
A N. American Philips Co.
Mineral Wells, Texas

20584 Enochs Mfg. Inc. Indianapolis, Indiana

20891 Cosar Corp. Dallas, Texas

21317
Electronics Applications Co.
El Monte, California

21604 Buckeye Stamping Co. Columbus, Ohio

21845 Solitron Devices Inc. Semiconductor Group Rivera Beach, Florida

22526
DuPont, EI DeNemours & Co. Inc.
DuPont Connector Systems
Advanced Products Div.
New Cumberland, Pennsylvania

22767 FFF Semiconductors Palo Alto, California

22784 Palmer Inc. Cleveland, Ohio

Product Comp. Corp. Mount Vernon, New York

Tracor Applied Sciences Inc. Rockville, Maryland

23880 Stanford Applied Engineering Santa Clara, California 23936 William J. Purdy Co. Pamotor Div. Burlingame, California

24347 Penn Engineering Co. S. El Monte, California

24355 Analog Devices Inc. Norwood, Massachusetts

24444 General Semiconductor Industries, Inc. Tempe, Arizona

24655 Genrad Inc. Concord, Massachusetts

24759Lenox-Fugle Electronics Inc. South Plainfield, New Jersey

24796 AMF Inc. Potter & Brumfield Div. San Juan Capistrano, Calif.

24931 Specialty Connector Co. Greenwood, Indiana

25088 Siemen Corp. Isilen, New Jersey

25099 Cascade Gasket Kent, Washington

25403
Amperex Electronic Corp.
Semiconductor & Micro-Circuit Div.
Slatersville, Rhode Island

Slatersville, Rhode Island
25706
Dabum Electronic & Cable Corp.

Norwood, New Jersey

26629
Frequency Sources Inc.
Sources Div.
Chelmsford, Massachuseus

26806 American Zettler Inc. Irvine, California

27014 National Semiconductor Corp. Santa Clara, California

27167 Coming Glass Works Coming Electronics Wilmington, North Carolina

27264 Molex Inc. Lisle, Illinois

27440 Industrial Screw Products Los Angeles, California

Associated Spring Barnes Group Inc.

Syracuse, New York

27956

Relcom (Now 14482)

Positronic Industries Springfield, Missouri

28213

Minnesota Mining & Mfg. Co. Consumer Products Div.

3M Center

Saint Paul, Minnesota

Serv-O-Link Euless, Texas

28478

Deltrol Corporation

Deltrol Controls Div. Milwaukee, Wisconsin

28480

Hewlett Packard Co. Corporate HQ Palo Alto, California

28484

Emerson Electric Co. Gearmaster Div. McHenry, Illinois

Heyco Molded Products Kenilworth, New Jersey

Monsanto Co. Santa Clara, California

Stackpole Components Co. Raleigh, North Carolina

Omega Engineering Inc. Stamford, Connnecticut

Jolo Industries Inc. Garden Grove, California

Symbox Corp. Painesville, Ohio

AB Enterprise Inc. Ahoskie, North Carolina

Aavid Engineering Inc. Laconia, New Hampshire

30315

Itron Corp. San Diego, California

Illinois Tool Works Inc. Chicago, Illinois

30800

General Instrument Corp. Capacitor Div. Hicksville New York

31019

Solid State Scientific Inc. Willow Grove, Pennsylvania

31091

Alpha Industries Inc. Microelectronics Div. Hatfield, Pennsylvania

Metro Supply Company Sacramento, California

Army Safeguard Logistics Command

Huntsville, Alabama

Cannon Electric Woodbury, Tennessee

31827 Budwig

Ramona, California

31918

ITT-Schadow

Eden Prairie, Minnesota

32293 Intersil

Cupertino, California

32539 Mura Corp.

Westbury, Long Island, N.Y.

Bivar

Santa Ana, California

32767

Griffith Plastics Corp. Burlingame, California

Advanced Mechanical Components Northridge, California

Murata Erie North America Inc. Carlisle Operations

Carlisle, Pennsylvania

32997 Bourns Inc. Trimpot Div. Riverside, California

Colorado Cr/stal Corp. Loveland, Cetorado

33173

General Electric Co. Owensboro, Kentucky

33246

Epoxy Technology Inc. Billerica, Massachusetts 33297

NEC Electronics USA Inc. Electronic Arrays Inc. Div. Mountain View, California

Nonek Inc.

Cranston, Rhode Island

Silicon General Inc. Garden Grove, California

34225

Advanced Micro Devices Sunnyvale, California

Minnesota Mining & Mfg. Co. Commercial Office Supply Div.

Saint Paul, Minnesota

34371 Harris Corp. Harris Semiconar stor Products Group

Melboume, Florida

34649

Intel Corp.

Santa Clara, California

Electromotive Inc. Kenilworth, New Jersey

Hartwell Special Products Placentia, California

Renfrew Electric Co. Ltd.

IRC Div.

Toronto, Ontario, Canada

36665

Mitel Corp.

Kanata, Ontario, Canada

Mallory Capacitor Corp. Sub of Emhart Industries Indianapolis, Indiana

Maxim Industries Middleboro, Massachusetts

Roderstein Electronics Inc. Statesville, North Carolina

National Radio Melrose, Massachusetts

Nytronics Inc.(Now 53342)

Ohmite Mfg. Co. Skokic, Illinois

49671

RCA Corp. New York, New York 49956

Raytheon Company Executive Offices Lexington, Massachusetts

Thomson Components-Mostek Corp.

Carrollton, Texas

Eagle-Picher Industries Inc.

Electronics Div.

Colorado Springs, Colorado

50157

Midwest Components Inc. Muskegon, Mississippi

50541

Hypertronics Corp. Hudson, Massachusetts

50579

Litronix Inc. Cupertino, California

Aries Electronics Inc. Frenchtown, New Jersey

51372

Verbatim Corp. Sunnyvale, California

Murata Erie, No. America Inc. (Also see 72982)

Amtron Corp. Boston, Massachusetts

Marietta, Georgia

CODI Semiconductor Inc. Kenilworth, New Jersey

Centre Engineering Inc. State College, Pennsylvania

51791 Statek Corp. Orange, California

51984

NEC America Inc. Falls Church, Virginia

Exar Integrated Systems Sunnyvale, California

52072

Circuit Assembly Corp. Irvine, California

52152

Minnesota Mining & Mfg. Saint Paul, Minnesota

52333

API Electronics

Haugpauge,Long Island,New York

52361

Communication Systems Piscataway, New Jersey

52525 Space-Lok Inc. Lerco Div. Burbank, California

Hitachi Magnetics Edmore, Missouri

52745 Timco

Los Angeles, California

Stettner-Electronics Inc. Chattanooga, Tennessee

Sprague-Goodman Electronics Inc. Garden City Park, New York

Moniterm Corp. Amatrom Div. Santa Clara, California

52840

Western Digital Corp. Costa Mesa, California

53021 Sangamo Weston Inc.

(Sec 06141)

53217

Technical Wire Products Inc. Santa Barbara, California

Opt Industries Inc. Phillipsburg, New Jersey

Glow-Lite

Pauls Valley, Oklahoma

54294

Shallcross Inc. Smithfield, North Carolina

Sullins Electronic Corp. San Marcos, California

54473

Matsushita Electric Corp. (Panasonic) Secaucus, New Jersey

54583

Garden City, New York

Piher International Corp. Arlington Heights, Illinois

DeYoung Mfg. Bellevue, Washington 54590 RCA Corp.

Electronic Components Div. Cherry Hill, New Jersey

55026

American Gage & Machine Co. Simpson Electric Co. Div. Elgin, Illinois

Plessey Capacitors Inc. (Now 60935)

LSI Computer Systems Inc. McIville, New York

Bercquist Co. Minneapolis, Minnesota

Synertek

Santa Clara, California

Michicon/America/Corp. Schaumburg, Illinois

Utek Systems Inc. Olathe, Kansas

Sprague Electric Co. North Adams, Massachusetts

56365 Square D Co. Corporate Offices Palatine, Illinois

56375

DAL Industries Inc. Wescorp Div. Mountain View, California

Shugart Associates Sub of Xerox Corp. Sunnyvale, California

Zilog Inc.

Campbell, California

Vamistor Corp. of Tennessee Seviezville, Tennessee

Magnetics Inc. Baltimore, Maryland

Endicott Coil Co. Inc. Binghamton, New York

Gates Energy Products Denver, Ohio

58014

Hitachi Magnalock Corp.

(Now 12581)

58104

Simoo Atlanta, Georgia

Superior Electric Co. Bristol, Connecticut

59124

KOA-Speer Electronics Inc. Bradford, Pennsylvania

59640 Supertex Inc. Sunnyvale, California

59660 Tusonix Inc. Tucson, Arizona

59730

Thomas and Betts Corp. Iowa City, Iowa

Semtronics Corp. Watchung, New Jersey

60395 Xicor Inc. Milpitas, California

Torin Engineered Blowers Div. of Clevepak Corp. Torrington, Connecticut

60705 Cera-Mite Corp. (formerly Sprague) Grafton, Wisconsin

60935 Westlake Capacitor Inc. Tantalum Div. Greencastle, Indiana

61804 M/A Com Inc. Burlington, Massachusetts

SAN-O Industrial Corp. Bohemia, Long Island, NY

Schurter Inc. Petaluma, Califomia

62351 Apple Rubber Lancaster, New York

62793 Lear Siegler Inc. Energy Products Div. Santa Ana, California

Ward Leonard Electric Co.Inc. Mount Vernon, New York

64154 Lamb Industries Portland, Oregon 64155

Linear Technology Milpitas, California

64834

West M G Co. San Francisco, Calif.

65092

Sangamo Weston Inc. Weston Instruments Div. Newark, New Jersey

65940

Rohm Corp & Whatney Irvine, California

65964 Evox Inc.

Bannockburn, Illinois

66150

Entron Inc.

Winslow Teltronics Div. Glendale, New York

66608

Bering Industries Fremont, California

Almetal Universal Joint Co.

Cleveland, Ohio

Atlantic India Rubber Works Inc. Chicago, Illinois

Amperite Company Union City, New Jersey

Belden Corp. Geneva, Illinois

Bimbach Co. Inc. Farmingdale, New York

Bliley Electric Co. Eric, Pennsylvania

Westinghouse Electric Corp. Bryant Div. Bridgeport, Connecticut

71400

Bussman Manufacturing Div. McGraw-Edison Co. St. Louis, Missouri

71450 CTS Corp. Elkhart, İndiana

ITT Cannon Div. of ITT Fountain Valley, California

71482

General Instrument Corp. Clare Div. Chicago, Illinois

71590

Mepco/Centralab

A North American Philips Co. Fort Dodge, Iowa

Coto Corp.

Providence, Rhode Island

General Instrument Corp. Lamp Div/Worldwide Chicago, Illinois

71785

TRW Inc.

Cinch Connector Div. Elk Grove Village, Illinois

Dow Coming Corp. Midland, Michigan

AMAX Specialty Metals Corp. Newark, New Jersey

Electro Motive Mfg. Corp. Florence, South Carolina

AMCA International Corp. Continental Screw Div. New Bedford, Massachusetts

Nytronics Inc. New York, New York

Amperex Electronic Corp. Dialight Div. Brooklyn, New York

G C Electronics Co. Div. of Hydrometals Inc. Rockford, Illinois

Dzus Fastner Co. Inc. West Islip, New York

Gulton Industries Inc. Gudeman Div. Chicago, Illinois

Murata Erie N. America Inc. Eric, Pennsylvania

Beckman Industrial corp. Helipot Div. Fullerton, California

73168 Fenwal Inc.

Ashland, Massachusetts

Hughes Aircraft Co. Electron Dynamics Div. Torrance, California

73445

Amperex Electronic Corp. Hicksville, New York

Carlings witch Inc. Hartford, Connecticut

73586

Circle F Industries Trenton, New Jersey

Federal Screw Products Inc. Chicago, Illinois

73743

Fischer Special Mfg. Co. Cold Spring, Kentucky

Microdot

Mt. Clemens, Mississippi

JFD Electronic Components Div. of Murata Eric Oceanside, New York

FL Industries Inc. San Jose, California

Guardian Electric Mfg. Co. Chicago, Illinois

Quam Nichols Co. Chicago, Illinois

74217

Radio Switch Co. Marlboro, New Jersey

Piezo Crystal Co. Div. of PPA Industries Inc. Carlisle, Pennsylvania

74542

Hoyt Elect.Instr. Works Inc. Penacook, New Hampshire

74840

Illinois Capacitor Inc. Lincolnwood, Illinois

74970

Johnson EF Co. Waseca, Minnesota

75042 TRW Inc.

IRC Fixed Resistors Philadelphia, Pennsylvania

75297 Litton Systems

Kester Solder Div. Chicago, Illinois

75376 Kurz-Kasch Inc. Dayton, Ohio

75378

CTS Knights Inc. Sandwich, Illinois

75382

Kulka Electric Corp. (Now 83330) Mount Vemon, New York

75915

Tracor Littlefuse Des Plaines, Illinois

Oak Switch Systems Inc. Crystal Lake, Illinois

TRW Assemblies & Fasteners Group

Fastener Div.

Moutainside, New Jersey

77342 AMF Inc.

Potter & Brumfield Div. Princeton, Indiana

77542

Ray-O-Vac Corp Madison, Wisconsin

77638

General Instrument Corp. Rectifier Div. Brooklyn, New York

Shakeproof Lock Washer Co. (Now 78189)

Rubbercraft Corp. of CA Ltd. Torrance, California

78189

Illinois Tool Works Inc. Shakeproof Div. Elgin, Illinois

78277

Sigma Instruments Inc. South Braintree, Mass.

78290

Struthers Dunn Inc. Pitman, New Jersey

78553

Eaton Corp. Engineered Fastener Div. Cleveland, Ohio

Stoeger Industries South Hackensack, New Jersey

Waldes Kohinoor Inc. Long Island City, New York

Western Rubber Co. Goshen, Indiana

79727

C - W Industries

Southampton, Pennsylvania

79963

Zierick Mfg. Corp. Mount Kisco, New York

80009 Tektronix

Beaverton, Oregon

80031

Mepco/Electre Inc. Morristown, New Jersey

Ford Aerospace & Communications Corp. Western Development

Laboratories Div Palo Alto, California

80145

LFE Corp.
Process Control Div. Clinton, Ohio

80183

Sprague Products (Now 56289)

80294

Boums Instruments Inc. Riverside, California

Hammerlund Mfg. Co. Inc. Paramus, New Jersey

80640

Computer Products Inc. Stevens-Arnold Div. South Boston, Mass.

81073 Grayhill Inc. La Grange, Illinois

81312

Litton Systems Inc. Winchester Electronics Div. Watertown, Connecticut

81430

Therm-O-Disc Inc. Mansfield, Ohio

International Rectifier Corp. Los Angeles, California

81590

Korry Electronics Inc. Seattle, Washington

Chicago Lock Co.

Chicago, Illinois 82227 Airpax Corp.

Cheshire, Connecticut

Cheshire Div.

Simmons Fastner Corp. Albany, New York

82305

Palmer Electronics Corp. South Gate, California

82389

Switchcraft Inc. Sub of Raytheon Co. Chicago, Illinois

82415 Airpax Corp Frederick Div. Frederick, Maryland

82872 Roanwell Corp. New York, New York

82877 Rotron Inc. Custom Div. Woodstock, New York

82879 FFT

Royal Electric Div. Pawtucket, Rhode Island

83003 Varo Inc. Garland, Texas

83014 Hartwell Corp. Placentia, California

83055 Signalite Fuse Co. (Now 71744)

83058

TRW Assemblies & Fasteners Group Fasteners Div. Cambridge, Massachusetts

83259

Parker-Hannifin Corp. O-Seal Div. Culver City, California

83298 Bendix Corp.

Electric & Fluid Power Div. Extorville, New Jersey

83315 Hubbell Corp. Mundelein, Illinois

83330 Kulka Smith Inc. A North American Philips Co. Manasquan, New Jersey

83478 Rubbercraft Corp. of America West Haven, Connecticut

83553 Associated Spring Barnes Group Gardena, California

83740 Union Carbide Corp. Battery Products Div. Danbury, Connecticut 84171 Arco Electronics Commack, New York

84411 American Shizuki TRW Capacitors Div. Ogallala, Nebraska

84613 FIC Corp. Rockville, Maryland

84682 Essex Group Inc. Peabody, Massachusetts

85367 Bearing Distributing Co. San Fransisco, California

85372 Bearing Sales Co. Los Angeles, California

85480 W. H. Brady Co. Industrial Product Milwaukee, Wisconsin

85932 Electro Film Inc. Valencia, California

86577 Precision Metal Products Co. Peabody, Massachusetts

86684 Radio Corp. of America (Now 54590)

86928 Seastrom Mfg. Co. Inc.

Glendale, California

Illuminated Products Inc. (Now 76854)

88219 GNB Inc. Industrial Battery Div. Langhorne, Pennsylvania

88245 Winchester Electronics Litton Systems-Useco Div. Van Nuys, California

88486 Triangle PWC Inc. Jewitt City, Connecticut

88690 Essex Group Inc. Wire Assembly Div. Dearborn, Michigan

89020 Amerace Corp. Buchanan Crimptool Products Div. Union, New Jersey

89265 Potter-Brumfield (Sec 77342) John Fluke Mfg, Co., Inc. Everett, Washington

89597 Fredericks Co. Huntingdon Valley, Penna.

89709 Bunker Ramo-Eltra Corp. Amphenol Div. Broadview, Illinois

89730 General Electric Lamp Div. Newark, New Jersey

90201 Mallory Capacitor Co. Sub of Emhart Industries Inc. Indianapolis, Indiana

90215 Best Stamp & Mfg. Co. Kansas City, Missouri

90303 Duracell Inc. Technical Sales & Marketing Bethel, Connecticut

91094
Essex Group Inc.
Suflex/IWP Div.
Newmarket, New Hampshire

91247 Illinois Transformer Co. Chicago, Illinois

Johanson Mfg. Co. Boonton, New Jersey

91462 Alpha Industries Inc. Logansport, Indiana

91502 Associated Machine Santa Clara, California

91506 Augat Inc. Attleboro, Massachusetts

Froeliger Machine Tool Co. Stockton, California

91637 Dale Electronics Inc. Columbus, Nebraska

91662 Elco Corp. A Gulf Western Mfg. Co. Connector Div. Huntingdon, Pennsylvania

91737 ITT Cannon/Gremar (Now 08718) 91802 Industrial Devices Inc. Edgewater, New Jersey

91833 Keystone Electronics Corp. New York, New York

91836 King's Electronics Co. Inc. Tuckahoe, New York

91929 Honeywell Inc. Micro Switch Div. Freeport, Illinois

91934 Miller Electric Co. Woonsocket, Rhode Island

91984 Maida Development Co. Hampton, Virginia

Norwalk Valve Co. S. Norwalk, Connecticut

92914 Alpha Wire Corp. Elizabeth, New Jersey

93332 Sylvania Electric Products Semiconductor Products Div. Wobum, Massachusetts

94144
Raytheon Co.
Microwave & Power Tube Div.
Quincy, Massachusetts

94222 Southeo Inc. Concordville, Pennsylvania

94988 Wagner Electric Corp. Sub of Mcgraw-Edison Co. Whippany, New Jersey

95146
Alco Electronic Products Inc.
Switch Div.
North Andover, Massachusetts

95263 Leecraft Mfg. Co. Long Island City, New York

95275 Vitramon Inc. Bridgeport, Connecticut

95303 RCA Corp. Receiving Tube Div. Cincinnati, Ohio

95348 Gordo's Corp. Bloomfield, New Jersey

Methode Mfg. Corp. Rolling Meadows, Illinois

95573

Campion Laboratories Inc. Detroit, Michigan

95712 Bendix Corp. Electrical Comp. Div. Franklin, Indiana

95987 Weckesser Co. Inc. (Now 85480)

96733 SFE Technologies San Fernando, California

96853 Guiton Industries Inc. Measurement & Controls Div. Manchester, New Hampshire

96881 Thomson Industries Inc. Port Washington, New York

97525 EECO Inc. Santa Ana, Califomia 97540

Whitehall Electronics Corp. Master Mobile Mounts Div. Fort Meyers, Florida

97913 Industrial Electronic Hardware Corp. New York, New York

97945 Pennwalt Corp. SS White Industrial Products Piscataway, New Jersey

97966 CBS Electronic Div. Danvers, Massachusetts

98094 Machlett Laboratories Inc. Santa Barbara, California

98159 Rubber-Teck Inc. Gardena, California 98278

Malco A Microdot Co. South Pasadena, California

98291 Sealectro Corp. BICC Electronics Trumbill, Connecticut

98372 Royal Industries Inc.(Now 62793)

98388 Lear Siegler Inc. Accurate Products Div. San Deigo, California

99120 Plastic Capacitors Inc. Chicago, Illinois

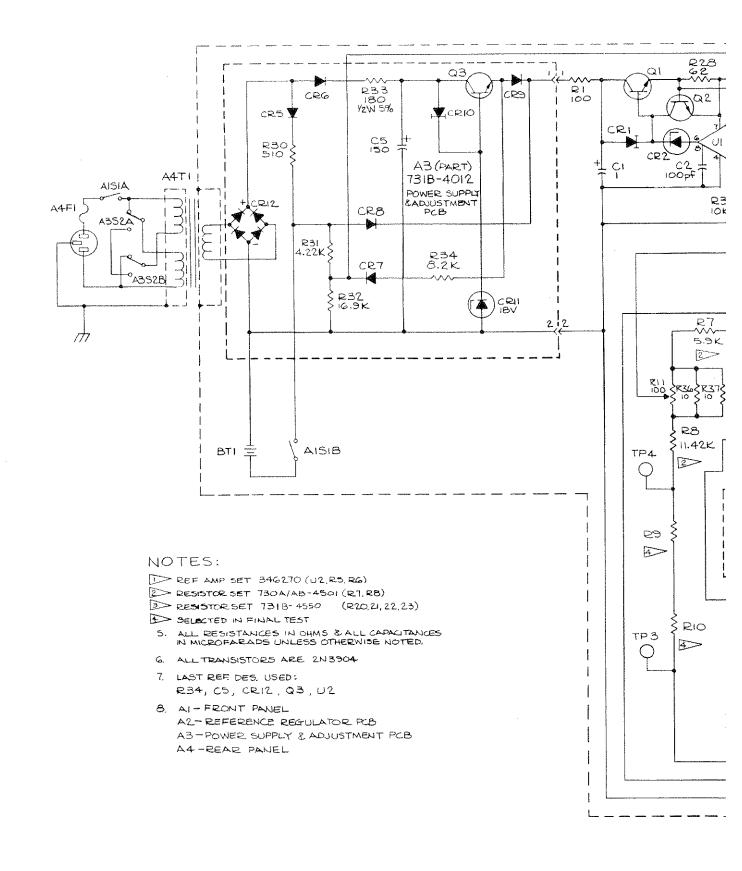
99217 Bell Industries Inc. Elect. Distributor Div. Sunnyvale, California 99378

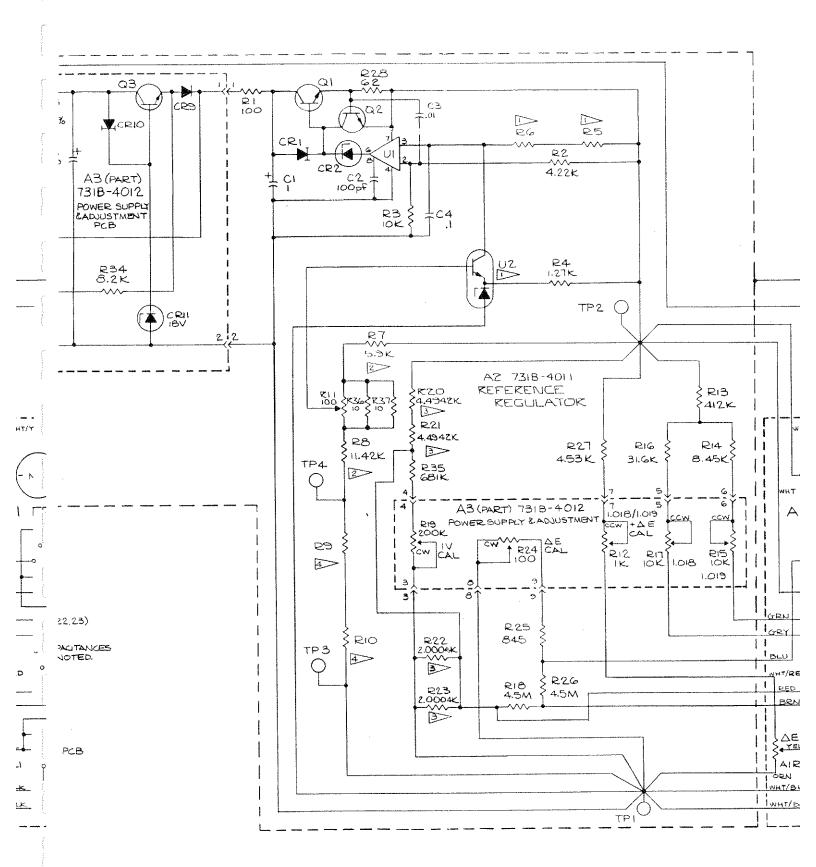
ATLEE of Delaware Inc. N. Andover, Massachusetts

99392 Mepco/Electra Inc. Roxboro Div. Roxboro, North Carolina

99515 Electron Products Inc. Div. of American Capacitors Duarte, California

99779 Bunker Ramo- Eltra Corp, Barnes Div. Lansdown, Pennsylvania


99800 American Precision Industries Delevan Div. East Aurora, New York


99942 Mepco/Centralab A North American Philips Co. Milwaukee, Wisconsin

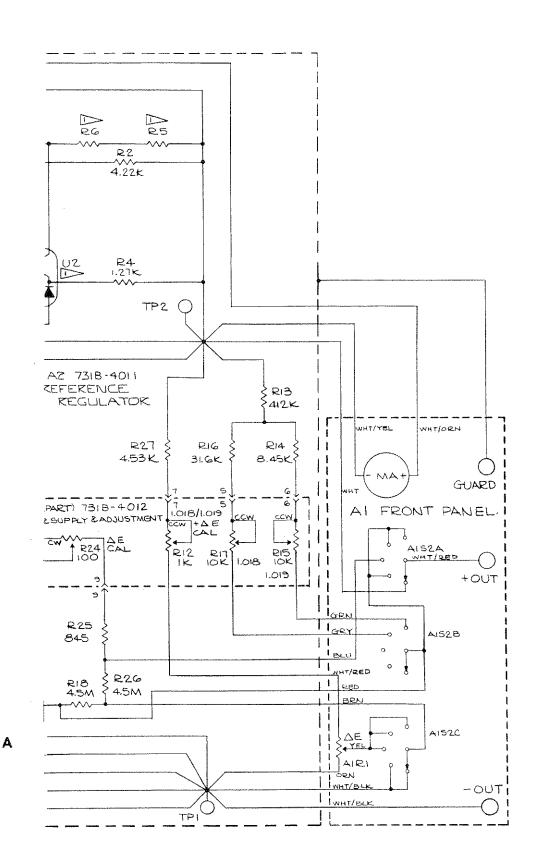

Section 8 Schematic Diagrams

TABLE OF CONTENTS

FIGURE NO.	TITLE	DRAWING	PAGE
8-1	731B DC Reference Standard	731B-1011	8-3

	REL. TO PRODUCTION		FO	Asto.
В	DWG #WAS 731A-1011	5-20-M		
Α.	ADDED RS6,837 MOVED RII	T. R.	920 SAKNO	7
AEA	CHANGE DESCRIPTION	₽À	CHX	APPR

FIGURE 8-1. 731B DC REFERENCE STANDARD (731B-1011)

	Summer or manders					
	Variation to determine			•		
	*					
	Section Commen					
	Will and district					

	The second secon					

	e e e e e e e e e e e e e e e e e e e					
	V. Comment					
	The state of the s					
	The state of the state of					

Change/Errata Information

Issue No: 5 6/79

This change/errata contains information necessary to ensure the accuracy of the following manual. Enter the corrections in the manual if either one of the following conditions exist:

- 1. The instrument's pcb revision letter is equal to or higher than that which is indicated at the beginning of the change.
- 2. No revision letter is indicated at the beginning of the change/errata.

MANUAL

Title:

MODEL 731B DC REFERENCE STANDARD

Print Date:

OCTOBER 1974

Rev and Date: ----

C/E PAGE EFFECTIVITY

Page No.

Print Date

6/79

CHANGE #1 - 8434

On page 5-9, change the description, Fluke stock no, and mfg part no of R32

From: 16.9k, 267146, MFF1-81692F To: 14k, 379057, MFF1-81402F.

On page 7-3/7-4, change the value of resistor R32 from 16.9k to 14k.

CHANGE #2 - 10856

On page 5-3, change the description, mfg fed sply code and mfg part no of item #4:

From: 295642, 13511, 1381 To: 380808, 02111, 15-1-11.

CHANGE #3 - 11193

On page 5-3, change the Fluke Stock no and mfg part no for item 1 (Corner) from 295972 to 394338.

CHANGE #4 - 11194

On page 5-5, add the following new entry: Decal, corner; 394379; 89536; 394379; 4

CHANGE #5 - 11351

On Figure 7-1, change the value of R7 from 5.9k to 6.2k.

CHANGE #6-11424

On page 1-2, Temperature Coefficient, change the 10°C temperature on both lines to 18°C.

CHANGE #7 - 12054

On page 5-3, make the following changes:

FROM: 3/Decal, Front/375970/89536/375970/1 TO: 3/Decal, Front/507384/89536/507384/1

ERRATA #1

On page 1-2, under SPECIFICATIONS, add the following information:

Protection Class #1 (Relates solely to insulation or grounding properties further defined in IEC 348.)