1) Zita drlí́ model 650 DYNAMIC MUTUAL CONDUCIANCE TUBE \& TBANSISTOR TESTER

SERVICE INFORMATION

B\&K MODEL 650 DYNA-OUIK
 TUBE TESTER
 OFFICIAL SERVICE INSTRUCTIONS

Section "A"Circuit Description

The B思K Model 650 is a dynamic mutual conductance tube tester, built in two chassis. The first chassis consists of the main panel which contains all of the necessary voitages required to test the tubes and all 33 test sockets.
All voltages required for the auxiliary socket panel appear on the 20 contact conneetor located on the bridge panel chassis. The terminals of this 20 contact connector aïe numbered in the following manner.
With the main panel sitting upside down and the meter closest to you ,the lower-hand contact would be marked \# 1 and would read - \# 1thru 10 readings from bottom to top. The left row of contacts start with \# 11 in the
lower left-hand corner and read from bottom to top, \# 11 to \# 20 , These numbers correspond to the numbers on the schematic diagram enclosed with this service information .
The schematic diagram lists all of the necessary voltages to troubleshoot this instrument. All voltages measured are opened circuit voltages, measured with 115 V AC on the primary, and all measurements bave been made with a $20,000 \mathrm{ohm}$ per volt VTVM or equivalent to chassis ground.
With test switch in test \# 1 position .unless oyberwise noted.
The tube tester is basically a balanced bridge circuit, consisting of the winding of transformer Tul between brown and red-green, and the winding
between red-yellow and red, and resistors $R-5$ and $R-6$, matched 150 ohm resistors, and the two halves of the isolating diode, type 83.
The indicating meter is connected with a shunting potentiometer which is the sensitivity control across the two 150 ohm resistors.
The plate of the tube under test connects to terminal \# 10or \# 11 in test 1 and 2 respectively which is the cathode of the 83 in the test position. If screen voltage is required, that is obtained from pin $\# 9$ which is a seleniam rectifer power supply. This voltage is approximately 140 volts.

In the test position, the cathode is common ground and the heater voltages are supplied between terminals 3 and 4, and are selected by the heater selector switch. The DC bias €or the tube under test is obtained from terminals $5,6,7$ or $\mathbf{8}$, depending upon the bias classification of the tube.
Injected in series with the DC bias is a small signal yoltage mhichts in phase with the upper winding or the brown-red-green winding to provide us with the signal necessary to make the measurement in dynamie matual conductance.

B\&K MODEL650
 SERVICE INSTRUCTIONS

CONTINUED FROM PAGE 1

A little closer examination of the bias network and signal voltage network is required. The negative voltage is obtained through selenium rectifier M. 2 which is, in turn, connected to the blue wite secondary of the power transformer .
The output of the selenium rectifier goes through a bleeder resistor network, consisting of R-12 ,R-4 ,R-21, R-22, R-23 .
$\mathbf{R}-23$ in turn returns to the output point of a voltage sensitive bridge consisting of two \# 55 bulbs and two $\mathbf{1 6}$ ohm resistors.

This bridge in turn goes to R-3, a voltage dropping potentiometer which is in series with a winding of the 6AT6 heater transformer.
The voltage obtained through this bridge circuit from the transformer is in series with the $D C$ voltage on the bias string.
It is this signal voltage which appears on the bias string to excite the grid and provide us with the basis of measurement.

B\& \mathbb{K} MODEL 650

SERVICE INSTRUCTIONS

The purpose of the voltage sensitive bridge is to porvide us with the automatic line voltage compensation feature that our instrument has . It operates in the following manner.

The voltage sensitive bridge has an inverse current characteristic. When the line voltage drops the resistance of the bridge circuit decreases causing an increase in signal voltage. If we did not employ this voltage sensitivebridgeand we had an increase in line voltage, this would result in an increase in plate voltage to the tube under test, an increase in heater voltage and an increase in signal voltage.
This would cause the test meter on the instrument to read higher than it normally should.
However, because of the voltage sensitive bridge and the manner in which it is operated, for an increase in line voltage, the voltage sensitive bridge bucks this increase by causing a decrease in the silnal voltage applied to the tube under test.
This decrease of signal voltage offsets the increase of all other tube voltages and causes the insturment meter to read approximately the same as it did if the tube were tested at 115 volts.
This regulation wilt be maintained between linits of 105-125 volts of line voltage, and will cause the insturment to be no more than about 5% off in its reading €or this wide variation of line voltage.

The design of the socket palels is based on the idea that large numbers of tubes having the same basing and similar operating conditions conld be lumped and tested in one socket.
For example, socket ${ }^{\boldsymbol{\pi}} 9$ which tests tubes of the 7 pin miniature RF-[F variety, all operate normally in approximately the same region of grid bias.
This is about 2.5 volts. This same approach was used in grouping tubes for ait other sockets on the panel.

With the auxiliary socket panel turned upside dowa and the terminal strip located on the furtherest away, these terminal strips are numbered from \# 1 thru \# 20 .
These numbers correspond to the inter-chassis connecting plug number which were previously described with reference to the bridge panel.

$B \& R$ MODEL 650

CALIBRATION PROCEDURE

The calibration of the Model 650 insturment is quite simple and can be accomplished as explained on the accompanying procedure steps.

1. SIGNAL

The first step is to take an AC vacuum tube voltmeter, and with exactly 115 volts of AC line voltage, adjust the AC signal at terminal \& 6 ов the bridge panel to read exactly $\mathbf{1 . 4 5}$ volts R.M.S.
This adjustment is accomplished by adjusting the signal control located directly beneath socket $\# 60$.
This control can be reached with a screwdriver through the keyway of this socket.

2. BIAS

With a $\mathbf{2 0 . 0 0 0}$ ohm per volt DC voltmeter, connect from pin \# 6 to ground ,
adjust the bias control which is $\mathbf{R - 4}$ to get a reading of 2,5 volts.
With a voltage of 2.5 volts at pin \# 6 , pin 77 should read 3.5 volts and pin \# 3 should read approximately 20 volts.
These voltages are predetermined by the values of the bias resistors whitch are 5\% .
政 the event that the other two voltages do not fall in, you can anticipate one of the resistors in the bias string as having a change in value.
R-4 is a small control located next to the signal pot.

3. BALANCE

The next procedure is to test the instermunt for balance, and this is accomplished by connecting a 2000 ohm , 10 watt wire wound resistor from terminal \# 10 of the inter-chassis plug to ground, and set the sensitivity control to 100 .
If the instrument is out of balance, the meter will be deflected either upward or downwards, depending upon the direction of the unbalance. All instruments in for service must be checked in this manner.
If the instrument is out of balance, you will find located underneath the máin panel another small sensitivity control rivited to the bracket directly under the front panel sensitivity control.
Adjustment of this control will eneble you to restore the needle to its zero reading.

B度K MODEL 650
 CALIBRATION PROCEDURE

CONTINUED FROM PAGE 4
4. ADUUSTMENT OP GAS SENSTTIITY GRID EMISSION.

Since the grid emission test effectively measures extremely high resistances the sensitivity of this test will very with temperature and humidity.
Loss of senstivity will occur under low temperature, low humidity conditions while an increase it sensitivity will occur under high hartidity and temperature.
Absolute maximun sensitivity can be obtained by periodically adjusting the gas sensitivity control with no tube in the socket, so that the meter reading just falls to zero.
By checking this adjustment periodically, this threshold point can be maintained.
For nominal sensitivity of approximately $\mathbf{2 0} \mathbf{~ m e g}$ ohm, adjust as follows :
Connect a 20 megohm resistor between pin 1 of socket \# 9 and ground. With test switch in shorts and "gas" position, adjust P-43 for a reading of 2000 on the test meter.
P43 control can be reached with a screwdriver through the keyway of socket \# 47 .

For more sensitive gas test, adjust for higher reading.
For less sensitive gas test, adjust for lowed reading.

5. THE FIN\& STEP IN THE CALIBRATION

Is to re-adjust the signal control R-3, se that calibrated tubes read correctly.

B\&K MODEL 650

VOLTAGE CHART

All readings taken with a 1% V.O.M. with chassis as reference point. With a 115 volt AC input and test switch in test 1 position .

Terminal \#

$1=0$.
$2=$ N.C.
3 =Heater.
4 =Heater.
$5=0$ volts a 1.45 volts AC can be measured ouly with an AC meter.
$6=-2.5$ volts DC-.
7 = $\mathbf{- 8 . 3}$ volts V.T.V.M. or V.O.M. with high capacity blocking capacitor

> _-_ in series.
$8=-20$ volts .
$9=140$ volts DC .
$10=205$ volts DC.
$11=205$ volts DC, Pos. 2 only.
$12=35$ volts AC.
$13=35$ volts AC, Pos. 2 only.
$14=35$ volts AC, Pos. 2 only.
$15=35$ volts AC, Pos. 3 only.
$16=200$ volts A C.
$17=$ N.C.
$18=0$.
19= AC Line.
$20=$ AC Line.

B\&K MODEL 650

SERVICE BULLETIN

Additional information that you should check your B\&K 650 for is as follows :

Number 1

Changing the \# 49 pilot lite to a \# 44 bulb has been done in production at serial \# 5163.
Units below this serial \# should be checked for this change.
The reason for the change is to prevent a possible burn out of the \# 49 pilot lite used as a fuse.
If the \# 49 bulb is used change it to $\# 44$ bulb .
If a direct short is encountered, this fuse bulb will glow very brightly.
This fuse will also glow very brightly if a tube is pluged into the wrong socket. In some cases the old fuse (\# 49) burnt out when the plate cap lead accidentally touched the front panel while the tester was in the GM position. This will no longer oceur with the \# 44 bulb change.

Number 2

Add $\mathbf{k}-35$ resistor this has been done in production at approximately serial \# 4700 and up. Check to see if this change has bin made.
R-35 is a $\mathbf{1 2 0 0}$ ohm $\mathbf{1 / 2}$ watt $\mathbf{1 0 \%}$ carbon resistor in series with high voltage terminal \#16 on main panel.
This is to prevent off scale deflection of the meter when checking high voltage rectifiers.
If the unit being serviced dose not have this resistor it should be added at this time.

Number 3
$\overline{\text { Change } \mathbf{R}}-\mathbf{2 0}$ resistor this has been done in production at approximately serial \# $\mathbf{4 7 0 0}$ and above. Old $\mathbf{R}-20$ is a $\mathbf{8 2}$ ohm 1 watt resistor.
The new R-20 must be a $\mathbf{1 2 0}$ ohm 1 watt 5% resistor .
This is to prevent off scale deflection of the meter when testing low voltage rectifiers.

Number 4

Change R-18 resistor this has been done in production at approximately serial \# 5000 and above. Old $\mathbf{R} \mathbf{- 1 8}$ is a 270 K ohm 1 watt resistor.
The new R-18 must be a $\mathbf{4 7 0 K}$ ohm $\mathbf{1}$ watt $\mathbf{5 \%}$ resistor.
This change increases the sensitivity of the shorts check.

Number 5

Change $\mathbf{R}-10$ and \mathbf{R}-11 resistor this has been done in production at approcemately serial \# 6000 and above. Old $\mathbf{R}-10$ is a 100 K 1 patt resistor the new $\mathbf{R - 1 0}$ must be a 120 K ohm 1 watt 5% resistor. Old R-11 is a 22K ohm $1 / 2$ watt resistor, The new $\mathbf{R}-11$ must be a $\mathbf{2 7 K}$ ohm $1 / 2$ watt 5% resistor. This increases stability of the grid emission check.
$\frac{\text { FUNCTION SWITC. }}{M-5}$
sant

TEST-3: $\begin{gathered}1,-2.1-5,5,7-3.11-9,31-32 \\ 33-34,35-37\end{gathered}$
OF: -ON LIFE TEST
orf erforan ona

3svac pos. 3
зsvac pos. 20
asvac pos. 2
$35 v a c$
205vacpos:2
zosvoc
-20V
$-8.3 \mathrm{y}$
$-2.5 \mathrm{v}$
ovol:s

Page 8

Srhomatic of Midal 650 Test Panel

```
=
```


B \& K Model 650 Tube fester Circuit Parts List

DESCRIPTION	PART No
R28 10K 1/2W 10\% Resistor.	...RC-103-A-10
R29 10K $1 / 2 \mathrm{~W} 10 \%$ Resistor.	, RC-103-A-10
R30 10K $1 / 2 \mathrm{~W} 10 \%$ Resistor.	RC-103-A-10
R31 10K $1 / 2$ W 10\% Resistor.	RC-103-A-10
R32 330012 2W 10\% Resistor.	RC-332-C-10
R33 220012 2W 10\% Resistor.	RC-222-C-10
R34 220012 2W 10\% Resistor.	RC-222-C-10
R35 120012 1W 10\% Resistor	RC-122-B-10
R36 10 Meg . $1 / 2 \mathrm{~W} 10 \%$ Resistor	RC-106-A-10
67 Pin Miniature Tube Sockets (Test)	G7PF
219 Pin Noval Tube Sockets (Test)	G9PF
6 . Octal Tube Sockets (Test)	G8P
2 Pin Jacks	J-3
120 Contact Connector Socket (Female)	J-2
17 pin Miniature Tube.Pin Straightener	H-46
9 Pin Noval Tube Pin Straightener.	H-47

B \& K MODEL 650 TUBE TESTER TEST PANEL No. 2 PARTS LIST

C8	$470 M M F D 500 V$ Disc Ceramic Capacito	70-500-20
C9	470 MMFD 500 V Disc Ceramic Capacitor.	CC- $870-500-20$
R35	$220 \mathrm{~K} 1 / 2 \mathrm{~W} 5 \%$ Resistor	RC-224-A-10
R36	220K $1 / 2 \mathrm{~W}$ 5\% Pesistor.	RC-224-A-10
R37	1.8K IW 10% Resistor	RC-182-B-10
M13	3 Transistor Gain Switch	S-9
10	7 Pin Miniature Tube Sockets (Test)	G-7PF
12	9 Pin Noval Tube Sockets (Test)	G-9Pr
2	Loctal Tube Sockets (Test).	G-8L
1a	Octal Tube Sockets (Test).	G-8P
2	Transistor Sockets (Test)	..GT-3
1	Line Cord and Plug.	.w-5
3	Black Pin Jacks..	. 3
1	Red Pin Jack	J8
1	20 Contact Connector Socket (Female)	

MISCELLANEOUS PARTS LIST FOR MODEL No. 650

Fty, Line Cord	-5
Inter-Chassis Connecting Cable	ASM-1
Case	LG-1
Skirted Knob (Heater Switch)	K-1
Skirted Knob (Sensitivity Switch)	K-1
Push-On Knob (Test Switch)	K-2
Push-On Knob (Off-On-Life Switc	K-2
1 Amp Line Fuse..	F-2
Instruction Book	PM-1
Complete Set of Index Cards..	PM-3
Tube Index	. ASM-9
Carton	PEG-1
Tip Jack-Black	.. J-3
Tip Jack-Red	J-8
Grip Cap Assembly	ASM-2
Diode-Rectifier Test Leads (Set)...ASM-11

To：All Service Agencies \＆
Representatives

The attached Service Bulletin has been sent．to all registered omers of the Model 650.

Additional information that you should kow is as follows：
Number 1 on the attached＂Changing the \＃n pilot lite to a \＃hu bulb hes been done in production at serial \＃5163．

Number 4 on the 2 矿eched＂Add $\mathrm{k}-35$ resistor＇：has been done in production at approximately serial \＃4700．

Number 5 on the attiached＂Change R－20 resistor＂has been done in probuction at approximately serial fl4700。

Number 6 on the z＇ttached＂Change R－18 resistor＂has been done in prociuction at approximately serial \＃j000。

Number 7 on the attached＂Change R－10 and R－il resistors＂has been done in production at approximacely serial \＃6000．

An additional prodxction change is as follows：
To pick up heater to grid short，two contacts were added to the function switch．and a 10 megohm resistor $R-36$ is added to circuit

The following are errors in the instruction manual：
1．Page 6，Figize 6．Tube under test has plate returned to ground insteed of $\mathrm{B}-$ ．

2．Page 7，last paragraph．Should be headed FNP and NPN TRANSISTORS．

3．The rNET erroneous information was removed from the tube index at serial \＃5145．

```
B & KHODEL 650 THBE TESTER
```

Early field reports on the wel 650 Tupe Tester inditate the following changes for reasons incicated．

1．prevention of possible burn ont of the fill piot lite used as fuse．
Change this bulb to a H14．If a iirect short is encountered，
this fuse bulb will glow very orightle＂，Th幺s fuse will also
glow very brightiy if a tube is plugred into the visong socket．
In some cases the old fase（ foaj）hame at then the clate cap
lead accidentaily truche the front pang minle the tester was
in Cm position．thes wit averer occur，

2 Due to printeris arsor，the fors rewing on the index dasd is in erroro the
 shoulid be used for the 60 as as tine 50a3．

Card should read as follows for G0G8：

HEATER	SOCTT	
6	4%	pent． $2-82,53 R-4600$
6	49	Tri． $2-73$ ， $52 \mathrm{R}-6800$

3．Readings for the following tubes in socket 52，－ $6 T \mathbb{T}$ ， 8 NE 7 and lone 7 were printed erroneously．In oicer to test these Woes，stare socket \％ 33 nay be wired as indicated below；the setings for these tubes in this socket then are：

	TUBE	SOCKET			GCOT－ PA	Trie cm
	6EE？	6	33	$\begin{aligned} & \text { Tri } \\ & \text { Tri } \end{aligned}$	$\begin{aligned} & 88 \\ & 95 \end{aligned}$	63 red 71 black
	8 PE 7		33	$\begin{array}{ll} \operatorname{Tri} & 1 \\ \operatorname{Iri} & 2 \end{array}$	$\begin{aligned} & 88 . \\ & 95 \end{aligned}$	63 red 71 black
	IOTET	10	33	$\begin{aligned} & \operatorname{Tri} 1 \\ & T_{r i} \end{aligned}$	$\begin{aligned} & 88 \\ & 95 \end{aligned}$	$\begin{aligned} & 63 \text { red } \\ & 71 \text { black } \end{aligned}$
Pin 1－620 ohm， 2 watt，5\％resistor to Pin 3，socket 46． Pin 2 －Io Connertion Pin 3 －Terminal 3 inter－chassis plug．				Fin 4 －to Pin 3，socket 19． Fin 5 －to Fin 4；socket 19． Fin 6 －to Fin 3，socet Lo． Fin 7 －winta Leed on Transistor gain swicoh． Pin 3 \＆ 9 －to chassis ground．		

4．Add R－35， $12000 \mathrm{hm}, 1 / 2$ Vatt， 10 resistor in series with high woltare term－ inal th on main panel．Wis is to prevent off scale cillection of ineter when checking high voltage rectinizers，
5．Change R． 20 ，from 8 ？Ohir to $I 20$ ohm，$工$ Watt， 5% This is to prevent off scale deflection on meter thex．testing low voltage reatiriers，
6．Change R－18，fron $270 k$ to $470:$ to increase sensitivity of short check．
 $27 \mathrm{~K}, 1 / 2$ Watt， 5% ，to increase subility or grice emisston check．

CALIBRATING STANDARD TUBES

A, Standard tubes may be calibrated in the following manner. Select 12 new tubes of any one give type. Calibrate $\mathbf{1}$ trope from each of the following groups:

B

Group 1	Group 2	Group 3
$6 A U 6$	$12 A U 7$	$6 B Q 6$
$6 A G 5$	$12 A V 7$	$6 E Q 6$
$6 B C 5$	$12 A 27$	$6 C D 6$
$6 B A 6$	$12 B H 7$	

C. Check these tubes in a Mod B \& K checker that has been accurately calibrated per instructions and that is connected to a controlled $A C$ line accurately set to $\mathbf{1 3 5} \mathrm{V}$ 。
D. Six or seven of these tubes will have the same reading on the meter.
E. Select one of these tubes and label with the reading obtained.
F_{s} These tubes can then be used for calibration of future checkers sermced.
Where high current tubes fall to one side of standard, opposite to reading on tubes of the 6 AUU variety, it may be necessary to slightiy re-adjust the bias control. This method may be used for selection of calibrated tubes for all model tube testers. In each case the tubes are initially checked in a checker known to be good and with signal and bias cerefully set.

instaidaton mistructivin ASm-7

MODEL 650 TUBE TESTER GAS HODIFICATION KIT

Kit ASly-7 is designed in order to allor owners of the Hodel 650 Tube Tester to control sensitivity of the grid emission or "gas" test,

This circuit can then be adjusted for as critical an evaluation of gas content $\mathfrak{\varepsilon}$ grid current of vacuum tubes. as desired,

To install ASM-7 K it proceed as follow:

1. Remove large panel fron carrying case and disconnect connecting cable coming. from small panel compartonert。
2. Rerove signal control fron mounting bracket tithott disconnecting wires from control terminals ($\because \mathrm{Hi}$ controj is loceむed directly beneath socket 60).
3. Drill out rivets holaing monting braciet to sub chassis plate.

2 irount signai control on new bracket in hole closest to bend with control on lip side.
5. Mount p-43 in other mounting hole.
6. Mount new bracket in place of old one using hardware supplied.
7. Remove from pin 2 of 6 \& \boldsymbol{T} located next to meter, lead running to junction of $R-10$ and $R-11$. These resistors are located on socket side of sub-chassis pla.
8. Replace R-10, $120 \mathrm{~K}, ~ I W, 5 \%$ resistor with 68 K , $1 \mathrm{iN}, 10 \%$ resistor.
9. Remove R-II, $27 \mathrm{~K}, I / 2 \omega, 5 \%$ resistor.
10. Connect open side of new $R-10$ to, one end terminal of $P-43$.
11. Connect other end terminat of P-43 to junction of selenium rectifier, 10K resistor and 20 mid capacitor (pcint where $\mathrm{R}-11$ formerly connected).
12. Connect center lug of $\mathrm{P}-43$ to pin 2, (cathode) of 6 AT 6 tune.

ADJUSTVIENT OF GAS SENSITIVITY CONTROL

Since.the grid emission test effectively measures extremely high resistances, tir sensitivity of this test will vary with temperature and hurnidity. Loss of sens: tivity will occur under low temperature, low humidity conditions while an increa in sensitivity will occur under high humidity and temperature. Absolute maximur. sensitivity can be obtained by periodically adjusting tine gas sensitivity contrc with no tube ing the socket, so that the meter reading just falls to zero. By checking this adjustment periodically, tsis threshold point can be maintained.

For nominal sensitivity of approximately 20 meg ohm, adjust as follows:
Connect a 20 meg o h resistor between pin 1 of socket \#9 and ground, or between aity other kncwn grid $\mathrm{F}_{\mathrm{in}} \mathrm{n}$ and ground. With test switch in shorts and "gas" position, adjust P-L3 for a reading of 2000 on test meter. Controi can be reached with thin shafted screwdriver through keyway of socket \#47.

For more sensitive gas test, adjust for higher reading.
For less sensitive gas test, adjust for lower reading.

E \& K HANUFACTURING COMPANY

Chicago 13, Illinois

MODEL 610 - 650 INSTRUCTIONS

The Model 610 Test Panel when used in conjunction with your B \& K Tube Tester will enable you to test in excess of 1600 tube types. Included in this list are voltage regulator tubes, hybrid auto radio tubes, thyratron tubes and a wide assortment of European tubes used in modern Hi Fi equipment.

INSTALLATION INSTRUCTIONS

An octal socket (No. 41) on the Model 650 has to be wired in accordance with the following step by step instructions. Remove left hand socket panel by taking out wood screws.

Fig. 工
Tube Tester with 610 Panel in glace

1. Connect Pin L of Socket $\mathbf{4 1}$ to Pin $\mathbf{5}$ of Socket $\mathbf{4 3}$ using insulated wire.
2. " $\quad 2$ " 41 " 3 of cable socket
3. " " 3 " " 41 " $50 f$ Socket 56
4. $" \quad 4 \geqslant \quad 41 \geqslant>16$ of cable socket
5. " 5 .. " 41 " " 1 of Socket 43
6. " $6 ">41 ">5$ 5of Socket 66
7. " 7 " " 41 " 4 of cable socket
8. "8 .. " 41 to ground lug of socket 41

Socket 41 should be wired as shown in Fig. 2.
Replace socket panel and put back all wood screws.
Remove tube chart in compartment on left hand side of case. Remove the 2 wooden blocks that support this chart. These can be gently forced out with a screw driver. Insert $\mathbf{6 1 0}$ into compartment and fasten with the $\mathbf{4}$ wood screws provided. See Fig. 1.

Discard old chart and use new chart supplied with 610. The new chart is a combined listing of all tubes tested on the Model 650 and all of the new types listed on the $\mathbf{6 1 0}$.

$$
\begin{aligned}
& \text { WIRING OF }{ }^{*} 650 \text { PANEL FOR USE OF }{ }^{\#} 610 \\
& \text { ADAPTOR PANEL }
\end{aligned}
$$

Fig. 2

OPERATION

The operation of the Model 610 is simple and straightforward. All necessary set up information for the 610 is given on the chart.

1. Insert the plug from the 610 into the octal socket 茾45 previously wired for the 610 adapter.
2. Locate tube type to be tested on the chart. A typical listing is shown in Fig. 3.

Tube Type	Heater	Socket	Sensitivity	A	8	C	D	E	F	\square	H	1	Test
6BM8	6	610	87	2	0	1	4	9	8	04	7	1	1
	6	610	46	3	0	2	6	5	1	82	7	3	1
6SN7	6	27	46										1

Fig. 3

The first column in the chart after tube type is Heater. Set Heater switch on the tube tester to the proper voltage. The next column is Socket. If the number 610 appears in this column the tube to be tested will be inserted into the proper socket of the 610. If the tube is a type that can be tested in the basic tester then the proper socket number will appear and the tube is tested in the normal manner. If the type in our example is a 6BM8 the socket column will show 610. Proceed to set up the switch as indicated in the proper column. Each switch is lettered A, B, C, D, E, F, G and the control is letter H. Switch J has four positions and must be placed in the proper position as shown in the J column.

After the switches have been set up, insert the tube in the proper socket of the 610 and proceed with the testing for Grid Emission, Shorts and Quality with the test switch of the basic tester, just as for a tube in any of the regular sockets. If the tube under test is a multi-section tube, the switch will have to be set for the second section as indicated on the chart. See Fig. 3.

Note:- While rotating the various switches to their proper positions, the Shorts Light may light or the meter may kick up. This is normal and does not represent a defect of the instrument. When the switches are at their proper position then the Shorts Light and Grid Emission Test will indicate only defects in the tube under test.

SOCKET WIRING INSTRUCTIONS TO TEST OZ4 TUBE ON THE MODEL 650 TUBE TESTER

In order to test tube type 024, a spare socket can easily be wired to test this tube on the left hand panel. For those who desire to test this tube, this socket can be prepared at the same time that socket 41 is being wired to accommodate the Model 610. Perform the following step by step procedure. Check off each step as you proceed.1. Connect a $161 / 2^{\prime \prime}$ piece of $\# 22$ insulated wire from pin $\# 3$ of the 83 rectifier socket to pin \#17 of the inter-chassis cable connector. Both are located on the main panel. The socket terminals for both the main panel and the left hand panel inter-chassis connectors are numbered in the same manner. This is shown in Fig. 2 of your 610-650 instruction sheet. Solder both connections.2. Connect a $1 I^{\prime \prime}$. piece of \#22 insulated wire between pin \# \# of the 024 socket to be wired, to pin \#17 of the inter-chassis cable connector on the left hand panel. Again refer to Fig. 2 of the 610-650 instructions for numbering sequence. Solder both connections.3. Connect a $4.7 \mathrm{~K}, 7$ watt resistor from socket 59 , pin \#6, to the 024 socket. PIN 3 Solder both connections.4. Connect a second $4.7 \mathrm{~K}, 7$ watt resistor from socket $\mathbf{4 3}$, pin $\underset{\boldsymbol{T}}{\boldsymbol{\pi}} 5$, to 024 socket, pin \#5. Solder both connections.
The table shown below gives you the sensitivity settings and test positions for testing the 024 tube.

TUBE	HEATER	SOCKET	SECTION	TEST	SENSITIVITY		STANDARD Gint
TYPE			POS.	Good	True		
Bad	Gm						

PARTS AND PRICE LIST MODEL \#610

DESCRIPTION		$\begin{aligned} & \text { DEALER } \\ & \text { PRICE } \end{aligned}$
Cable Assembly	. . ASM-53	1.98
7 Pin Socket G-7PF	. 12
Loctal Socket G-8L	. 18
Octal Socket G-8PF	. 12
9 Pin Socket G-9PF	. 15
Cable Strain Relief $\mathrm{H}-94$. 03
Ferrite Ring H-150	. 03
$1 / 2^{\prime \prime}$ Grommet	.H-262	. 03
Plate Jack Black	. J-33	. 12
Knob, Round	. K-7	. 15
Knob, Bar	. K-17	. 15
20 K Pot ' ${ }^{\text {H' }}$. . P-75	1.77
1800 Ohm 1/2 Watt 10\% Carbon Res.	. . RC-182-A-10	. 06
22 K Ohm 2 Watt - 10% Carbon Res. RC-223-C-10	. 18
12 K Ohm 1 Watt - 10% Carbon Res.	. . RC-123-B-10	. 09
Switch, Set-Up A, B, C, D, E, F	S-50	2.67
4 Position, Slide Switch "J"	S-51	. 42
Switch, Set-Up "G'	. S-52	. 32

